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Short Communication

Increased Contact System Activation in
Mild Cognitive Impairment Patients with
Impaired Short-Term Memory
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Abstract. An activated plasma contact system is an abnormality observed in many Alzheimer’s disease (AD) patients. Since
mild cognitive impairment (MCI) patients often develop AD, we analyzed the status of contact system activation in MCI
patients. We found that kallikrein activity, high molecular weight kininogen cleavage, and bradykinin levels—measures of
contact system activation—were significantly elevated in MCI patient plasma compared to plasma from age- and education-
matched healthy individuals. Changes were more pronounced in MCI patients with impaired short-term recall memory,
indicating the possible role of the contact system in early cognitive changes.
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INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative
disorder of multifactorial nature [1], and vascu-
lar factors are known to play an important role in
its pathogenesis [2]. Cerebral amyloid angiopathy
(CAA), or the deposition of the pathogenic amyloid-�
(A�) protein in and around blood vessels, is a vascu-
lar abnormality present in 80–95% of AD patients
[3]. Other cerebrovascular pathologies present in
AD patients include cerebral blood flow alteration,
blood-brain barrier (BBB) disruption, brain hypop-
erfusion, and leakage of blood proteins into the
brain parenchyma [4–6]. For example, fibrinogen,
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a major blood protein required for clot formation,
is extravasated in AD patient brains [7]. It has been
shown that A� interacts with fibrinogen and alters
blood clot structure and impairs clot degradation
[8, 9]. Accumulated, persistent fibrinogen in the
brain parenchyma induces inflammation and memory
impairment [10]. Cerebral perfusion, BBB integrity,
and cognition were improved in AD mice treated with
dabigatran [11], which prevents fibrin clot forma-
tion, emphasizing the involvement of blood proteins
in AD pathology [12]. Similar to this study, it has
been shown that inhibiting the A�-fibrinogen inter-
action prevents AD pathology in mouse models [13].
Therefore, the interaction between A� and fibrinogen
may exacerbate cerebral pathologies in AD patients.

The intrinsic blood coagulation pathway is trig-
gered upon activation of factor XII (FXII) of the
plasma contact system [14]. In addition to throm-
bosis, this pathway can promote an inflammatory
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response. When FXII is activated, kallikrein cleaves
high molecular weight kininogen (HK) which thereby
releases bradykinin [15, 16]. A� aggregates can trig-
ger the contact system by activating FXII [17–19],
thus enhancing both of these inflammatory and
thrombotic pathways [14, 20–22].

Many AD patient plasma samples show increased
levels of activated FXII, kallikrein activity, and HK
cleavage [21, 22]. An increase in cleaved HK is pos-
itively correlated with dementia and neuritic plaque
scores of AD patients [21]. Though contact system
activation is not specific to AD [15], this finding
indicates that a dysregulated contact system could
affect AD pathogenesis and cognitive decline. Fur-
thermore, knockdown of the contact system reduces
cerebral inflammation, prevents fibrin extravasation,
and improves cognition in AD mice [23].

There is increasing evidence that subtle losses in
cognitive function may be an early indication of
AD development. Mild cognitive impairment (MCI)
refers to the transitional stage between the cogni-
tive decline associated with normal aging and mild
dementia [24, 25]. MCI patients perform reason-
ably well on indices of general cognitive function
and their ability to carry out daily living activi-
ties is largely preserved, yet they do present with
other acquired cognitive deficits, such as retrieval of
episodic and short-term memory [24]. Many MCI
patients progress to AD at a rate of 10% to 15%
per year, while healthy control subjects are diagnosed
with AD at a rate of 1% to 2% per year [24, 26, 27].
MCI patients often show gray matter loss and synap-
tic alterations [24, 28, 29], and MCI patients who
subsequently progress to AD show hypoperfusion in
the posterior cingulate cortex [24, 29, 30]. Further-
more, both MCI and AD patients present with cortical
hypometabolism with some regional variability [24,
31, 32]. These findings support the belief that MCI
is a risk factor for AD, and, as evidenced by imaging
techniques, MCI and AD pathologies share many of
the same structural and functional abnormalities.

A common biomarker for MCI and AD could be
used to quickly diagnose MCI but would also provide
an opportunity to identify those patients progressing
to early-stage AD, which would allow for preventive
care before severe AD onset. It has been reported
that there is a significant alteration in the plasma
protein profile of MCI patients who later develop
AD, suggesting that plasma proteins could serve as a
biomarker for MCI and AD [33, 34].

Here, we analyzed plasma samples from MCI
patients and age-matched cognitively normal (CN)

individuals and compared the status of contact sys-
tem activation in both groups. We measured plasma
bradykinin level, kallikrein activity, and HK cleav-
age. Our analysis suggests that the contact system is
activated in MCI patients and the extent of activation
correlates with impaired short-term recall memory.
Our data support the early involvement of an impaired
peripheral contact system in MCI and other neurode-
generative diseases.

MATERIALS AND METHODS

Plasma samples

Experiments using human plasma samples were
reviewed and approved by The Rockefeller Insti-
tutional Review Board. Plasma from MCI patients
and age-matched and education-matched CN indi-
viduals were obtained from PrecisionMed Inc. (San
Diego, CA). Patients were screened for MCI using
criteria developed by the National Institute of Neu-
rological and Communicative Disorders and Stroke
and the Alzheimer’s Disease and Related Disorders
Association (NINCDS-ADRDA) [35]. MCI diagno-
sis was established by clinical examination, including
the Mini-Mental State Examination (MMSE) and
other neuropsychological tests (Clinical Demen-
tia Rating, CDR; Logical Memory test II, LM II;
Alzheimer’s Disease Assessment Scale Cognitive
subscale, ADAS-Cog) [36]. All MCI patients had
Hachinski score ≤4, indicating no multi-infarcts or
vascular dementia [37]. None of the patients whose
plasma was included in our study had history of
stroke, heart attack, hypertension, hyperlipidemia,
diabetes, rheumatoid arthritis, thyroid disease, or per-
nicious anemia. Other neurological conditions, such
as chronic nervous system infection, Parkinson’s dis-
ease, Huntington’s disease, and Creutzfeldt–Jakob
disease were also absent in this patient cohort.
Brain MRI/CT images collected within two years
of plasma donation were analyzed to exclude other
possible causes of cognitive impairment. Subjects
were not on anticoagulant therapy, non-steroidal anti-
inflammatory medicine, or aspirin within a week of
their visit for blood donation. The blood was col-
lected in K2EDTA anticoagulant. The characteristics
of MCI and CN individuals are presented in Table 1.

Plasma bradykinin level and kallikrein activity

Plasma bradykinin level was analyzed by ELISA
as described previously [20, 38]. Plasma kallikrein
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Table 1
Characteristics and demographics of mild cognitive impairment and cognitively normal individuals

Characteristics Cognitively Mild cognitive p
normal impairment
controls patients

Individuals, n 19 25
Ethnicity Caucasian Caucasian
Female, n 10 (53%) 16 (64%)
Male, n 9 (47%) 9 (36%)
Hachinski score – ≤4
Mini-Mental State Examination (MMSE) score, mean (SD) 29.84 (0.37) 25.8 (1.95) p < 0.0001
Registration memory score in MMSE, mean (SD) 3.0 (0) 2.64 (0.90) p = 0.092
Recall memory score in MMSE, mean (SD) 2.89 (0.31) 0.92 (0.95) p < 0.0001
Clinical Dementia Rating score, mean (SD) – 0.52 (0.1)
Alzheimer’s Disease Assessment Scale Cognitive subscale score, mean (SD) – 15 (7.6)
Logical memory II score, mean (SD) – 12.2 (8.7)
Total years of education, mean (SD) 15.59 (1.62) 14.68 (1.81) p = 0.10
Age (y) at blood draw, mean (SD) 65.79 (5.0) 65.12 (7.0) p = 0.72
Age (y) at diagnosis, mean (SD) – 62.83 (7.37)
Disease duration (y), mean (SD) – 1.95 (2.33)
Stroke, hypertension, and heart attack status Not present Not present
Diabetes, hyperlipidemia, and rheumatoid arthritis status Not present Not present

activity was measured as described in [22] with some
modifications. Briefly, in a 96-well plate, plasma
samples diluted (1:20) in HEPES-buffered saline
(20 mM HEPES, pH 7.4, 140 mM NaCl) were mixed
with a chromogenic substrate, S-2302 (0.67 mM final
concentration). Absorbance at 405 nm was read for
60 min at 37◦C using a spectrophotometer (Molecular
Devices). Samples were run in duplicate.

Plasma cleaved HK level and C1 esterase
inhibitor (C1INH) level

The level of plasma cleaved HK was determined
using a sandwich ELISA [21]. The monoclonal
antibody (4B12) used in this ELISA specifically
detects cleaved HK [21]. Plasma was diluted (1:50)
in blocking buffer (1% bovine serum albumin in
0.1% tween-20/PBS), and ELISAs were performed
in duplicate as described in [21]. Plasma C1INH level
was quantified by ELISA (Abcam) as per the manu-
facturer’s instructions.

RESULTS AND DISCUSSION

Plasma contact system is activated in MCI
patients

The contact system is activated in AD patient
plasma and correlates with the severity of memory
impairment [21, 22]. Increased plasma bradykinin
level, kallikrein activity, and HK cleavage are

indicators of an activated contact system. Here, we
analyzed the bradykinin level in plasma samples from
MCI patients and age-matched CN individuals. We
found that plasma bradykinin level was significantly
increased in MCI patients compared to CN individu-
als (1590 ± 261.6 pg/mL versus 967.5 ± 109 pg/mL;
p < 0.05). Since bradykinin is generated from HK
by active kallikrein [15], we measured the plasma
kallikrein activity in MCI and CN groups. We
found that plasma kallikrein activity was also sig-
nificantly elevated in MCI patients compared to that
of CN (0.11 ± 0.01 versus 0.05 ± 0.009; p < 0.01).
Kallikrein activity was abolished in MCI plasma
when aprotinin, a known kallikrein inhibitor [39], was
added to samples (Supplementary Figure 1A).

Analysis of MMSE data from MCI patients
revealed that many MCI patients performed poorly
on recall memory (Table 1). Recall memory is evalu-
ated by giving the test subject a list of three unrelated
words, and the subject is asked to recall them after
several minutes. The maximum score for recalling
three unrelated words in MMSE is 3 [40]. Many
MCI patients (11/25) did not recall any of the words
(score 0), indicating they had impaired short-term
recall memory. Some patients (6/25) recalled one
word (score 1). The plasma kallikrein activity of
MCI patients with impaired recall (score 0 or 1)
was significantly higher than that of CN individuals
(0.12 ± 0.01 versus 0.05 ± 0.009; p < 0.01; Fig. 1A).
Plasma kallikrein activity was higher in MCI patients
with impaired recall (score 0 or 1) compared to that
of MCI patients without impaired recall (8/25; score
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Fig. 1. Activation of contact system in mild cognitive impairment (MCI) patient plasma. Plasma kallikrein activity and cleaved HK levels
in plasma from MCI and cognitively normal (CN) subjects were assessed using chromogenic assay and ELISA, respectively. MCI patients
with low recall scores (0 or 1) were grouped as ‘MCI with impaired recall’. MCI patients with higher recall scores (2 or 3) were grouped as
‘MCI without impaired recall’. A) Plasma kallikrein activity was significantly higher in MCI patients with impaired recall memory compared
to that of CN. B) Plasma cleaved HK levels were significantly higher in MCI patients with impaired recall compared to CN. C) Plasma
kallikrein activity inversely correlates with recall score. D) Plasma cleaved HK level also inversely correlates with recall score. Statistical
analysis was performed by one-way ANOVA followed by Tukey’s multiple comparison test. Correlation was analyzed using Pearson’s
correlation coefficient (r). Results are presented as mean ± SEM. N = 19 CN, 25 MCI. The difference in cleaved HK level between MCI
without impaired recall and MCI with impaired recall was significant by t-test with Welch’s correction.

2 or 3), though this trend did not reach significance
(Fig. 1A).

We also quantified the level of cleaved HK in
each patient’s plasma sample, using a sandwich
ELISA that differentiates between full-length HK and
cleaved HK [21]. Similar to the kallikrein activity
results, the ELISA showed that the level of cleaved
HK in MCI patients with impaired recall (score 0 or
1) was significantly higher than that of CN individ-
uals (39.31 ± 5.9 ng/mL versus 20.25 ± 4.4 ng/mL;
p < 0.01; Fig. 1B). Cleaved HK levels in plasma
from MCI patients with impaired recall were
also higher than MCI patients without impaired

recall (39.31 ± 5.9 ng/mL versus 20.15 ± 5.5 ng/mL;
p < 0.05 Fig. 1B). This difference was significant
when analyzed by an unpaired t-test with Welch’s
correction but not by one-way ANOVA (Fig. 1B).

The plasma protease, C1INH, negatively regu-
lates contact activation, and a decrease in C1INH
levels can trigger kallikrein generation and HK cleav-
age [15]. It has been reported that the level of
plasma C1INH is reduced in MCI patients [41]. How-
ever, we did not find any significant difference in
plasma C1INH levels between MCI and CN sam-
ples (59.9 ± 6.1 �g/mL versus 49.7 ± 7.1 �g/mL;
p = 0.28; Supplementary Figure 1B). Therefore, the
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increase in contact activation could be due to other
mechanisms such as increased plasma A� [42], which
can activate the contact system [17, 18, 22].

Episodic memory is the ability to recall events that
are specific to a time and place [24]. Community-
based longitudinal studies have found that the deficits
in episodic memory can be found at least five
years before the onset of clinical dementia [24,
43]. Episodic memory was also found compro-
mised in MCI patients and linked with hippocampal
atrophy [24].

In our patient cohort, no significant differences in
memory registration (encoding) were found between
MCI and CN groups (Table 1). However, recall
memory was significantly impaired in MCI patients
compared to CN individuals (Table 1). The recall
memory score showed a significant inverse correla-
tion between plasma kallikrein activity and plasma
cleaved HK (Fig. 1C, D). Recall memory impairment
has been also shown to correlate with synaptic alter-
ations and gray matter loss in MCI patients [28, 29].
The posterior cingulate cortex, which contains the
neural pathway for recall memory, is metabolically
impaired in MCI patients. [24, 29, 44]. Peripheral
changes, such as plasma contact system activation,
may affect the central nervous system in such ways
that ultimately affect recall memory in addition to
blood coagulation and inflammatory conditions. For
example, it has been shown that cerebral injection
of bradykinin in rats affects memory [45]. Since
bradykinin has been shown to impair the BBB [46],
blood proteins may enter the brain parenchyma and
lead to inflammatory processes, cell death, and mem-
ory loss. These mechanisms must be explored in more
detail.

Peripheral protein and amino acid alterations are
associated with cognitive function in MCI patients
[33, 34, 41, 47, 48], and peripheral contact activation
also correlates well with dementia in AD patients [21,
22]. In this study, we determined that the contact sys-
tem is also activated in MCI patients and correlates
with their recall memory status. A longitudinal study
is warranted to evaluate how the contact system fully
affects the progression from cognitively normal to
stages of MCI and AD.
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