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Abstract

A positive integer n is defined to be cyclic if and only if every group of size n is
cyclic. Equivalently, the number n is cyclic if and only if n is relatively prime to the
number of positive integers less than n that are relatively prime to n. Because every
prime number is cyclic, it is natural to ask whether a (proved or conjectured) prop-
erty of primes extends to cyclic numbers. I review proved or conjectured properties
of primes (including some new conjectures about primes) and propose analogous con-
jectures about cyclic numbers. Using the 28,488,167 cyclic numbers less than 108, I
test the conjectures about cyclic numbers and disprove the cyclic analog of the second
conjecture about primes of Hardy and Littlewood. Proofs or disproofs of the remaining
conjectures are invited.

1 Introduction

I propose some conjectures about cyclic numbers C := (c1, c2, . . .) (sequence [37, A003277]
in the On-Line Encyclopedia of Integer Sequences (OEIS)) based on analogous proved or
conjectured properties of prime numbers P := (p1, p2, . . .) (A000040). I test the conjectures
about cyclic numbers (or, for brevity, cyclics) using the 28,488,167 cyclics less than 108. I
also test some new conjectures about prime numbers (or, for brevity, primes) using the
50,847,534 primes less than 109. I invite proofs, disproofs, further numerical confirmations,
counterexamples, and additional conjectures.

1Author’s other affiliations: Departments of Statistics, Columbia University & University of Chicago.
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A natural number (positive integer) n ∈ N := {1, 2, 3, . . .} is cyclic if and only if there
exists only one group of size n, up to isomorphism. If gcd is the greatest common divisor
and φ(n) is Euler’s totient function (the number of positive integers less than n that are
relatively prime to n, A000010), then, according to Szele [50], the number n ∈ N is cyclic if
and only if gcd(n, φ(n)) = 1.

I use Szele’s condition to compute which n ∈ N are cyclic numbers. My first 104 computed
cyclic numbers exactly match the first 104 cyclic numbers computed independently by T. D.
Noe in A003277.

Michel Lagneau [37, A003277, November 18, 2012] asserted without proof that n ∈ N
is cyclic if and only if φ(n)φ(n) ≡ 1 mod n. Richard P. Stanley (personal communication,
January 20 2025) gave an elegant short proof of Lagneau’s condition. I quote it with his
permission. First, assume that n is not cyclic, so gcd(n, φ(n)) = d > 1. Then φ(n)φ(n)

is divisible by d so cannot be congruent to 1 mod n. On the other hand, assume that n
is cyclic. Euler’s generalization of Fermat’s little theorem implies that kφ(n) ≡ 1 mod n
whenever gcd(k, n) = 1. Putting k = φ(n) completes the proof.

Alexei Kourbatov (personal communications, May 24 2025 and June 1 2025) pointed
out that Lagneau’s condition can be evaluated using the well-known algorithm [35, p. 71,
algorithm 2.143] for modular exponentiation. Whether using Szele’s criterion (as I do here)
or Lagneau’s criterion for a number to be cyclic, the most computationally expensive step is
finding φ(n).

The sequence C of cyclics begins (1, 2, 3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 33, 35, 37, . . .).
Cyclics C are the union of primes P and the composite numbers n ∈ N such that n and
φ(n) are relatively prime or coprime (A050384, e.g., 1, 15, 33, 35, 51, 65, 69, 77, 85, 87, 91,
95, 115, 119, 123, 133, 141, 143, 145, 159, . . .). The only cyclic that is a square is c1 = 1.
The only cyclic that is even is c2 = 2. Consequently, the only cyclic of the form n(n− 1) for
n ∈ N is c2 = 2 with n = 2, and no cyclic is of the form n(n + 1) for n ∈ N, because both
n(n− 1) and n(n + 1) are even.

For an increasing integer sequence a := (a(1), a(2), a(3), . . .), the counting function of
a evaluated at a positive real number x is the number of elements of a that are less than or
equal to x. For example, the counting function π(·) of primes P satisfies π(10) = 4. The
prime number theorem [21, 51] gives that π(x) ∼ x/ log x as x → ∞. Let

C(x) :=
∑
m≤x

m cyclic

1 (1)

be the counting function of cyclic numbers, that is, the number of cyclic numbers that do
not exceed positive real x (A061091). For n = 1, . . . , 20, C(n) = 1, 2, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6,
7, 7, 8, 8, 9, 9, 10, 10. Erdős [15] proved that

C(x) ∼ x

eγ log log log x
as x → ∞. (2)

Here γ ≈ 0.5772156649 . . . is the Euler-Mascheroni constant and eγ ≈ 1.78107241799 . . . .
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Pollack [40] gave an asymptotic series expansion

C(x) ∼ x

eγ log log log x

(
1 − γ

log log log x
+ · · ·

)
as x → ∞ (3)

with additional terms. I shall use just these first two terms.
Cyclics are much more abundant than primes asymptotically because limx→∞ π(x)/C(x) =

0. Hence, asymptotically, almost all cyclics are composite. John Campbell and I [4] observed
that, since C(cn) = n by definition, (2) implies that

cn ∼ eγn log log log n as n → ∞, (4)

lim
n→∞

cn+1

cn
= 1,

lim
x→∞

x

cC(x)

= 1, (5)

lim
x→∞

logC(x)

log x
= 1.

The observation that cyclics are asymptotically much more abundant than primes mo-
tivates investigating which (proved or conjectured) properties of primes depend on their
asymptotic scarcity relative to cyclics, and which properties of primes carry over (exactly or
asymptotically) to the more abundant cyclics.

Another infinite increasing integer sequence that contains all primes is N. But N does
not share an elementary property that P and C share, namely, that the only even element of
the sequence is 2. Similarly, while P contains no squares and C contains exactly one square,
N includes infinitely many squares. Other infinite increasing integer sequences that share
important properties with P and C remain to be investigated.

Campbell and I [4] proved two analogies between primes and cyclics. First, under the
Riemann hypothesis, the nth prime gap satisfies pn+1 − pn = O(

√
pn log pn) as n → ∞ [10].

More precisely, under the Riemann hypothesis, for every pn > 3, pn+1 − pn < 22
25

√
pn log pn

[5]. We [4, Theorem 2] proved that, under the Riemann hypothesis, the first difference of
consecutive cyclics satisfies cn+1 − cn = o

(√
pn log pn

)
. Second, if mn(P) is the mean and

vn(P) is the variance of the first n primes, then asymptotically vn(P) ∼ (1/3)(mn(P))2 as
n → ∞ [6]. We [4, Theorem 1] proved, without the Riemann hypothesis, that the mean
mn(C) and the variance vn(C) of the first n cyclics satisfy the same asymptotic relationship,
vn(C) ∼ (1/3)(mn(C))2 as n → ∞.

This project of generalizing from primes to cyclics is not guaranteed to succeed. After
proposing in section 2 conjectures that numerical calculations have so far failed to reject, I
give in section 3 a counterexample to show that the analog for cyclics of the second conjecture
[22] of Hardy and Littlewood fails. This counterexample provides a further small, indirect
hint in support of the belief of Hensley and Richards [25] that the second conjecture of Hardy
and Littlewood for primes is false.

Because P ⊂ C, if infinitely many primes have property X, then infinitely many cyclics
have property X. For example, Euler’s proof that limn→∞

∑n
j=1 p

−1
j = ∞ immediately implies
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that limn→∞
∑n

j=1 c
−1
j = ∞. But if every prime has property X, it may be true or false,

depending on property X, that every cyclic has property X. Conversely, if infinitely many
cyclics have property X, it may be true or false, depending on property X, that infinitely
many primes have property X. But if every cyclic has property X, then every prime has
property X.

Consequently, when a conjecture about primes has been extensively verified numerically,
if that conjecture immediately implies the corresponding conjecture about cyclics, there is
no need, and I do not bother, to test numerically the analogous conjecture about cyclics. I
test numerically only those conjectures about cyclics not immediately implied by properties
of primes that are proved or conjectured and numerically supported.

A helpful referee pointed out that many additional questions could be asked about cyclics.
For example, the referee asked, are the cyclics equidistributed over arithmetic progressions
of a prescribed modulus? How does the sum of all cyclics less than or equal to positive real
x behave as a function of x? The latter question leads to the first and only theorem of this
paper, which reports, for a fixed positive integer k, the sum of the kth power of all cyclics
less than or equal to a positive real x as a function of x.

Theorem 1. Fix k ∈ N. For n ∈ N, if c1, . . . , cn ∈ C are the first n cyclic numbers, then

ck1 + · · · + ckn ∼ nckn
k + 1

∼ nk+1ekγ(log log log n)k

k + 1
as x → ∞. (6)

In particular, c1 + · · · + cn ∼ ncn/2 ∼ n2eγ log log log n/2.
For positive real x, as x → ∞, the sum of the kth power of all cyclics less than or equal

to x is asymptotic to

C(x)ckC(x)

k + 1
∼ C(x)xk

k + 1
∼ xk+1

(k + 1)eγ log log log x

(
1 − γ

log log log x

)
, (7)

using (3). In particular, the sum of all cyclics less than or equal to positive real x is asymp-
totic to

C(x)x

2
∼ x2

2eγ log log log x

(
1 − γ

log log log x

)
. (8)

Proof. Campbell and I [4, Theorem 1] showed that

n−1(ck1 + · · · + ckn) ∼ ckn
k + 1

as x → ∞.

Hence, using (4), ck1 + · · · + ckn ∼ nckn/(k + 1) ∼ n(eγn log log log n)k/(k + 1)
= nk+1ekγ(log log log n)k/(k + 1), proving (6).

Replacing n in (6) by C(x) and using (5) to approximate cC(x) yields (8).

In general, xC(x)/2 > ncn/2 because in general x > cn while C(x) = n. Figure 1 shows
that xC(x)/2 and ncn/2 closely approximate the exact sum of cyclics, and the asymptotic
approximation on the right side of (8) consistently falls below the exact sum of cyclics and
the other two approximations.
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Figure 1: For m = 1, 2, . . . , 20 and x = m × 5 × 106, the abscissa of each plotted point is
the exact sum of cyclics less than or equal to x. The ordinate of each point compares the
exact sum of cyclics less than or equal to x (solid black line, with abscissa = ordinate) with
three approximations: ncn/2 (red × marker); xC(x)/2 (blue + marker); and the asymptotic
approximation on the right side of (8) (open green circle).

2 Conjectures

2.1 Landau’s list and Legendre’s relatives

In 1912, Landau [31] presented four historic conjectures about primes. Extensively verified
numerically, these conjectures are generally believed to be true but unproved as of 2025.
Many unconfirmed and unrefuted claims to have proved one or several of Landau’s conjec-
tures have been published or posted but I am not aware that such a claimed proof has been
independently confirmed.

If true, each of Landau’s four conjectures about primes immediately implies the conjecture
about cyclics that follows it below. But the conjecture about cyclics may be true even if the
corresponding Landau conjecture about primes is false. Here are Landau’s four conjectures
about primes and analogous conjectures about cyclics. I include a few novel conjectures
about cyclics suggested by these analogs of Landau’s conjectures.
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2.1.1 Landau’s problem 1

First, Goldbach conjectured that every even n ∈ N greater than 2 is a sum of two primes.

Conjecture 2 (Goldbach analog for cyclics). Every even n ∈ N greater than 2 is a sum of
two cyclics.

On seeing Conjecture 2 in a prior draft of this paper, Carl Pomerance (personal com-
munication, March 5 2025) [41] proved that every sufficiently large even n is a sum of two
cyclics. I quote his result with his permission. Let G(n) be the number of pairs of cyclics
c1, c2 such that c1 + c2 = n. Then if n is even, Pomerance [41] proved,

G(n) ∼
∏
p>2

(
1 − 1

(p− 1)2

)
· 2n

(eγ log log log n)2
·

∏
p|n

2<p<log logn

p− 1

p− 2
as n → ∞.

2.1.2 Landau’s problem 2

Second in Landau’s list, the twin prime conjecture states that there are infinitely many
primes p such that p + 2 is also a prime. Here p and p + 2 are called twin primes.

Conjecture 3 (twin cyclics analog). There are infinitely many cyclics c ∈ C such that c+ 2
is also cyclic.

On seeing Conjecture 3 in a prior draft of this paper, Carl Pomerance (personal communi-
cation, March 5 2025) [41] proved a much stronger result, which I quote with his permission.
For positive real x, let C2(x) be the number of cyclics c ≤ x such that c + 2 is also cyclic.
Then as x → ∞,

C2(x) ∼ 2
∏
p>2

(
1 − (p− 1)−2

)
x(eγ log log log x)−2. (9)

The right side of (9) approaches infinity as x → ∞, proving Conjecture 3.
It is well known that the only prime p such that p, p + 2, p + 4 are all primes is p = 3,

because if p > 3, one of p, p + 2, p + 4 must be divisible by 3. Cyclics are different. The
composite cyclics (A050384) include multiple triplets, such as 141, 143, 145, and 213, 215,
217, and 319, 321, 323, and 391, 393, 395.

Conjecture 4 (cyclic triplets). There are infinitely many composite cyclics c ∈ C such that
c, c + 2, c + 4 are all composite cyclic.

Carl Pomerance (personal communication, March 5 2025) [41] proved a related result,
which I quote with his permission: there are infinitely many cyclic triplets c, c + 2, c + 4
(not necessarily all composite cyclics, as in Conjecture 4), and their counting function is of
order x(log log log x)−5/2(log x)−1/2 as x → ∞. As Carl Pomerance pointed out (personal
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communication, March 24 2025), since the number of primes up to x is of order x/ log x,
which is much smaller, asymptotically most of these triplets consist of three composites.

Further, the cyclics (whether prime or composite) include multiple quintuplets with suc-
cessive gaps equal to 2, such as 11, 13, 15, 17, 19, and 29, 31, 33, 35, 37, and 65, 67, 69, 71,
73, and 83, 85, 87, 89, 91, and 137, 139, 141, 143, 145, and 209, 211, 213, 215, 217, and 263,
265, 267, 269, 271.

Conjecture 5 (cyclic quintuplets). There are infinitely many cyclics c ∈ C such that c, c+
2, c + 4, c + 6, c + 8 are all cyclic.

Carl Pomerance (personal communication, March 5 2025) [41] proved a general result
which implies, for example, that infinitely many all-cyclic 8-tuples have the form n, n +
2, n + 4, n + 6, n + 8, n + 10, n + 12, n + 14 but there are no all-cyclic 9-tuples with the
additional term n + 16 because one of these nine numbers is divisible by 9, therefore not
cyclic.

2.1.3 Landau’s problem 3

Third in Landau’s list, Legendre [33] conjectured that for every n ∈ N, there exists a prime
p ∈ P such that n2 < p < (n + 1)2. Legendre’s claimed proof was based on a prior claim
that was false. Several claims to prove Legendre’s conjecture have been published or posted
but I am not aware that any has been independently confirmed.

Conjecture 6 (Legendre analog for cyclics). For every n ∈ N, there exists a cyclic c ∈ C
such that n2 < c < (n + 1)2.

A cyclic c such that n2 < c < (n + 1)2 exists for all 1 ≤ n ≤ 9998. The use of strict
inequality in Conjecture 6 is justified because no cyclic other than 1 is a square.

Desboves [12, Theorem 2, p. 290] conjectured that for every n ∈ N, there exist two primes
p, p′ such that n2 < p < p′ < (n + 1)2. Desboves asserted that if Legendre’s conjecture is
true, then his conjecture follows. The converse is obvious. I confirmed Desboves’ conjecture
numerically for the 50,847,534 primes less than 109. If true, Desboves’ conjecture immedi-
ately implies the following conjecture about cyclics. But the following conjecture may be
true even if Desboves’ conjecture is false.

Conjecture 7 (Desboves analog for cyclics). For every n ∈ N, there exist two cyclics c, c′ ∈ C
such that n2 < c < c′ < (n + 1)2.

For every positive integer n ≤ 3161, there exist c, c′ ∈ C such that n2 < c < c′ < (n+ 1)2.
The next conjectures generalize Legendre’s and Desboves’s conjectures to k > 2 primes

and cyclics.
For n ∈ N, let NP(n) := #{p ∈ P | p ∈ (n2, (n + 1)2)} be the number of primes in the

interval (n2, (n+1)2) (A014085 apart from an initial 0). For example, in the first 25 intervals
(n2, (n + 1)2), n = 1, . . . , 25, the numbers of primes are, respectively, 2, 2, 2, 3, 2, 4, 3, 4, 3,
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5, 4, 5, 5, 4, 6, 7, 5, 6, 6, 7, 7, 7, 6, 9, 8. For example, NP(6) = 4 because four primes, 37,
41, 43, 47, are between 62 = 36 and 72 = 49.

In a prior draft of this paper, I conjectured that NP(n) is asymptotic (as n → ∞) to a
regularly varying function of n with positive index not exceeding 1. Recall that a regularly
varying function [16, 47, 27] maps the positive half line x > 0 into the positive half line and
takes the form x 7→ xρℓ(x). The exponent ρ of x is a real number, commonly called the
index of the regularly varying function, and ℓ(x) is a slowly varying function of x, that is,
for every λ > 0, limx→∞ ℓ(λx)/ℓ(x) = 1. A regularly varying function generalizes a power
function x 7→ xρ.

On seeing this conjecture, Pierre Deligne (personal communication, March 6 2025) refined
my conjecture to a much more specific, heuristically plausible conjecture, which I quote with
his permission. Deligne observed that the length of the interval (n2, (n + 1)2) is asymptotic
to 2n and the probability that an integer in this interval is prime is asymptotic to 1/ log(n2),
so the number of primes in (n2, (n + 1)2) should be asymptotic to 2n/ log(n2) = n/ log n.
Deligne commented, “Of course with no way to prove it.”

Conjecture 8 (Deligne’s conjecture: primes in intervals between successive squares). As
n → ∞, the number NP(n) of primes in the interval (n2, (n+1)2) satisfies NP(n) ∼ n/ log n.

Figure 2 (left) plots NP(n) for n = 1, . . . , 31621 (blue dots) and the asymptotic approxi-
mation n/ log(n) (red line). The results support Deligne’s Conjecture 8 for primes.

Imitating Deligne’s heuristic argument for primes, the length of the interval (n2, (n+1)2)
is asymptotic to 2n. The probability that an integer in this interval is cyclic should be
proportional to C((n + 1)2)/(n + 1)2, which by (3) is asymptotic to

1

eγ log log log((n + 1)2)

(
1 − γ

log log log((n + 1)2)

)
.

Hence as n → ∞, the number of cyclics in (n2, (n + 1)2) should be asymptotic to

2n

eγ log log log((n + 1)2)

(
1 − γ

log log log((n + 1)2)

)
∼ 2n

eγ log log log(n)

(
1 − γ

log log log(n)

)
.

(10)
This heuristic argument is not a proof of the following conjecture.

Conjecture 9 (cyclics in intervals between successive squares). As n → ∞, the number
Nc(n) := #{c ∈ C | c ∈ (n2, (n + 1)2)} of cyclics in the interval (n2, (n + 1)2) is asymptotic
to (10).

In my numerical calculations, the ratio of Nc(n) to the corresponding function of n in
(10) declines slowly toward 1 as n increases, despite the increase in Figure 2 (right) in the
arithmetic difference between Nc(n) and the corresponding function of n in (10).

Let Lp be the OEIS sequence A349997, defined as “Numbers k such that the number of
primes in any [i.e., every] interval [j2, (j + 1)2], j > k, is not less than the number of primes
in the interval [k2, (k + 1)2].” Let Lp(n) be the nth element of Lp in increasing order.
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Figure 2: (left) The number NP(n) of primes in the interval (n2, (n + 1)2) (blue dots) for
n = 1, . . . , 31621 and a conjectured asymptotic approximation n/ log(n) (red curve). (right)
The number Nc(n) of cyclics in the interval (n2, (n + 1)2) (blue dots) for n = 1, . . . , 9998,
and a conjectured asymptotic approximation (10) (red line).

Conjecture 10 (k-fold Legendre for primes). For primes, Lp = {1, 7, 11, 17, 18, 26, 27, 32,
46, 50, 56, 58, 85, 88, 92, 137, 143, 145, . . .}.

For example, Lp(2) = 7 means that Np(7) = 3 (i.e., three primes 53, 59, 61 lie between
72 and 82) and (conjecturally, based on available computations) for every j > 7, Np(j) ≥ 3.

Hugo Pfoertner tabulated 2414 (conjectural) values of Lp at OEIS A349997 without re-
porting the number of primes he considered. These numerical values are conjectural because
they depend on an infinite sequence of primes not accessible to computation and not yet ana-
lyzed mathematically. Pfoertner’s 2414 values appear (Figure 3 left) to be well approximated
by anb with a ≈ 0.257, b ≈ 1.9475.

Conjecture 11 (asymptotic k-fold Legendre for primes). As n → ∞, Lp(n) is asymptotic
to a regularly varying function with index b that satisfies 3/2 < b ≤ 2.

The counting function of the sequence Lp(·) is defined for each m ∈ N as
∑

Lp(n)≤m 1.

Because Lp(·) and its counting function are asymptotically inverses, a mathematical conse-
quence of Conjecture 11 is that the counting function of Lp(·) is asymptotic to a regularly
varying function with index 1/2 ≤ 1/b < 2/3 [47, pp. 21–27] [27, section 8, pp. 16–17]. Define

9
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Figure 3: (left) The sequence Lp (A349997, black dots), and the power function (blue curve)
fitted by least squares. (middle) The counting function of Lp (black dots) and the power
function (blue curve) fitted by least squares. (right) Variance function of Lp (black dots)
and a power function (blue curve) fitted by least squares.

mp(n) and vp(n) to be, respectively, the mean and the variance of Lp(1), Lp(2), . . . , Lp(n).
Then applying [8, Theorem 1] to Conjecture 11 gives vp(n) ∼ mp(n)2/

(
(1/b)(1/b + 2)

)
=

b2mp(n)2/(1 + 2b).
The estimated exponent b ≈ 1.9475 of the power law fitted to Lp (Figure 3 left) by least

squares predicts that the counting function of Lp will be asymptotic to a power law with
exponent 1/b ≈ 0.5135. The power law fitted by least squares to the counting function of
Lp has exponent 0.5115 (Figure 3 middle), different by only 0.002.

The variance function of Lp is defined as the function (0,∞) 7→ (0,∞) from the mean
of the first n elements of Lp to the variance of the first n elements of Lp, for all n ∈ N. I
estimated the variance function (Figure 3 right) using the first 25 elements of Lp, then the first
50, then the first 75, and so on in successively longer intervals, each embedded in the next,
up to the first 2400 elements. The exponent 1/b of an asymptotic regularly varying counting
function (Figure 3 middle) predicts that the asymptotic variance function (cumulative) will
be a power function with exponent 2 and coefficient 1/

(
(1/b)(1/b + 2)

)
= b2/(1 + 2b). The

power law fitted by least squares to the variance function has exponent approximately 1.9831
(Figure 3 right), not greatly different from the predicted value 2. The estimated coefficient
is approximately 0.9676, while 1/

(
(1/b)(1/b + 2)

)
≈ 0.7748.

Since all primes are cyclics, if there are k or more primes in (n2, (n+ 1)2), then there are
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k or more cyclics in (n2, (n + 1)2).
Analogous to Lp, define Lc as numbers k such that the number of cyclics in every interval

[j2, (j + 1)2], j > k, is not less than the number of cyclics in the interval [k2, (k + 1)2]. Using
the identical algorithm used to calculate Lp for primes, with cyclics replacing primes as
the input, I calculated 769 values of Lc based on the 28,488,167 cyclics less than 108. For
example, as the first 25 cyclics are 1, 2, 3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 33, 35, 37,
41, 43, 47, 51, 53, 59, 61, 65, 67, the seven intervals [1, 4], [4, 9], . . ., [49, 64] contain Nc(n) =
2, 2, 3, 3, 4, 4, and 4 cyclics, and no later intervals in these calculations have fewer than 4
cyclics. Consequently, I conjecture that Lc(1) = 1, Lc(2) = 3, Lc(3) = 5. At greater length,
we have the following conjecture:

Conjecture 12 (k-fold Legendre for cyclics). For cyclics, Lc = (1, 3, 5, 8, 11, 14, 15, 16, 19,
21, 27, 29, 33, 38, 39, 46, 47, 51, 58, 61, 62, 66, 82, 86, 90, 104, 105, 108, 110, 118, 126, 127, 129, 131,
138, 141, 149, 152, 159, 161, 167, 170, 172, 174, 180, 182, 185, 187, . . .).

Figure 4: (left) The sequence Lc (black dots) and the power function (blue curve) fitted by
least squares. (middle) The counting function of Lc (black dots) and the power function
(blue curve) fitted by least squares. (right) The variance function (black dots) of Lc and a
power function (blue curve) fitted by least squares.

Figure 4 (left) indicates that a power function approximates closely the calculated values
of Lc for cyclics. The counting function of Lc (middle) and the variance function of Lc (right)
are also well approximated by power functions.
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Conjecture 13 (asymptotic k-fold Legendre for cyclics). As n → ∞, Lc(n) is asymptotic
to a regularly varying function with index that satisfies 1 ≤ b ≤ 2.

2.1.4 Landau’s problem 4

Fourth in Landau’s list, the near-square conjecture states that infinitely many primes p ∈ P
satisfy p = n2+1 for some n ∈ N. These primes (A002496) are one variety of the “near-square
primes.” Hardy and Littlewood [22] conjectured a still unproved asymptotic expression for
the counting function of classes of primes including near-square primes. Western [55, p.
109, table] compared the conjectured asymptotic formula of Hardy and Littlewood with
the numerically evaluated counting function of near-square primes using a list [11, pp. 238–
239] by Cunningham of the values of n < 15000 such that p = n2 + 1 is a near-square
prime. I programmed the computation and found, unexpectedly, that every one of Western’s
15 tabulated values of the counting function of near-square primes is one less than the
corresponding value I obtained. The discrepancy is due to Cunningham’s omission [11, p.
238] of n = 1 for the first near-square prime, 12 + 1 = 2.

Golubew [20, pp. 10–12] tabulated the values of n ∈ [1, 10000] such that n2 + 1 ∈ P
(including n = 1, unlike Cunningham) and conjectured [20, p. 13] that, for every m ∈ N, the
interval (m4, (m + 1)4) contains at least one near-square prime p = n2 + 1 for some n ∈ N.
I confirmed Golubew’s conjecture using the 50,847,534 prime numbers less than 109, which
include 2379 near-square primes, the last being 999444997 = 316142+1 (Figure 5, top right).
Not every interval between successive cubes (m3, (m + 1)3) for m ∈ N contains at least one
near-square prime (Figure 5, top left). For example, the interval (93 = 729, 103 = 1000)
contains no near-square prime.

The 28,488,167 cyclics less than 108 include 3,786 near-square cyclics equal to n2 + 1 for
some n ∈ N, beginning with 2, 5, 17, 37, 65, 101, 145, 197, 257, 401, 485, 577, 677, 785, 901,
1157, 1297, 1601, 1765, 1937, 2117, 2501, 2917, 3137, 3365, 3601, 3845, 4097, 4357, 5477,
5777, 6085, 6401, 7057, 7397, 7745, 8101, 8465, 8837, 9217, 9605, 10001, 10817, 11237, 11665,
12101, 12545, 12997, 13457, 14401, 14885, 15377, 15877, 16385, 16901, 17957, 18497, 19045,
19601, 20165, 20737, 21317, 21905, 22501, 23717, 24337, 24965, 25601, 26897, 27557, 28901,
30977, 31685, 32401, 33857, 34597, 35345, 36101, 37637, 38417, 40001, 41617, 42437, 43265,
44101, 45797, 46657, 48401, 49285, 50177, 51077, 52901, 54757, 55697, 56645, 57601, 59537,
60517, 62501, 63505 and ending with 99880037 = 99942 + 1 and 99, 920, 017 = 99962 + 1.

Conjecture 14 (near-square analog for cyclics). Infinitely many cyclics c ∈ C satisfy c =
n2 + 1 for some n ∈ N.

After seeing Conjecture 14 in an earlier draft, Carl Pomerance (personal communication,
June 2 2025) conjectured that n2 − 1 is cyclic for infinitely many n. He suggested that the
conjecture is plausible because all prime factors of n2 − 1 are at most n + 1.

Conjecture 15 (near-square analog of Golubew for cyclics). For every m ∈ N, the interval
(m3, (m+ 1)3) contains at least one near-square cyclic c = n2 + 1 for some n ∈ N. For every
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m ∈ N, the interval (m4, (m+ 1)4) contains at least two near-square cyclics c = n2 + 1, c′ =
n′2 + 1 for some n < n′ ∈ N.

Figure 5: (top row) The number of near-square primes p = m2 + 1 in each interval (left)
(n3, (n + 1)3) and (right) (n4, (n + 1)4). (bottom row) The number of near-square cyclics
c = m2 + 1 in each interval (left) (n3, (n + 1)3) and (right) (n4, (n + 1)4).

2.2 Oppermann’s conjecture

Oppermann [38, p. 174], in an unpublished lecture on March 9 1877, conjectured that for
every n > 1, there exist two primes p, p′ such that n2 − n < p < n2 < p′ < n2 + n. Several
claims to prove Oppermann’s conjecture have been published or posted but I am not aware
that any has been independently confirmed.

The heuristic approach of Deligne’s conjecture 8 suggests that, asymptotically as n → ∞,
each number in the interval [n2 − n, n2] has probability 1/ log(n2) of being prime, hence the
number of primes in [n2 − n, n2] should be asymptotic to n/(2 log(n)). The same argument
and conjectured conclusion hold for the number of primes in [n2, n2 + n]. These suggestions
make plausible the following conjecture:

Conjecture 16 (counting Oppermann primes). As n → ∞, the number of primes in [n2 −
n, n2] is asymptotic to n/(2 log n) and the number of primes in [n2, n2 +n] is also asymptotic
to n/(2 log n).
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If true, Conjecture 16 would imply the following:

Conjecture 17 (k-fold Oppermann conjecture for primes). For every k ∈ N, there exists
N(k) ∈ N such that for all n > N(k), there exist at least k primes in [n2−n, n2] and another at
least k primes in [n2, n2 + n]. In particular, N(2) = 16, N(3) = 36, N(4) = 46, N(5) = 76,
N(6) = N(7) = 79, N(8) = 85, N(9) = 118, N(10) = 136, N(11) = N(12) = 155,
N(13) = 188.

Oppermann’s conjecture corresponds to N(1) = 1.

Remark 18. Oppermann’s conjecture for primes implies Legendre’s conjecture for primes.
Specifically, if (a) for every n ∈ N, n > 1, there exists p ∈ P such that n(n − 1) < p < n2,
or (b) for every n ∈ N, there exists p′ ∈ P such that n2 < p′ < n(n + 1), or (c) both (a) and
(b) hold, then (d) for every n ∈ N, there exists p ∈ P such that n2 < p < (n + 1)2.

Proof. Since (n− 1)2 < n(n− 1) for all n > 1, (a) implies (d). Since n(n+ 1) < (n+ 1)2 for
all n ∈ N, (b) implies (d).

Conjecture 19 (Oppermann analog for cyclics). For every n > 1, there exist c, c′ ∈ C such
that n2 − n < c < n2 < c′ < n2 + n. The number of cyclics in [n2 − n, n2] is asymptotic to

n

eγ log log log(n2)

(
1 − γ

log log log(n2)

)
∼ n

eγ log log log(n)

(
1 − γ

log log log(n)

)
. (11)

The number of cyclics in the interval [n2, n2 + n] is asymptotic to

n

eγ log log log(n(n + 1))

(
1 − γ

log log log(n(n + 1))

)
∼ n

eγ log log log(n)

(
1 − γ

log log log(n)

)
.

(12)

The sum of (11) and (12) is asymptotic to (10), and (11) is asymptotic to (12). For
n ∈ N such that n ≥ 4, one has (11) < (12).

For the primes less than 109, for each n = 2, . . . , 31622, Figure 6 (left) plots n/(2 log n)
and the minimum of the numbers of primes in the two intervals [n2 − n, n2] and [n2, n2 + n].
For the cyclics less than 108, Figure 6 (right) compares the asymptotic expression in (11)
(red curve) with the minimum of the numbers of cyclics in the two intervals [n2 − n, n2] and
[n2, n2 + n] (blue dot).

If true, Conjecture 19 would imply the following:

Conjecture 20 (k-fold Oppermann conjecture for cyclics). For every k ∈ N, there exists
N(k) ∈ N such that for all n > N(k), there exist at least k cyclic numbers in the interval
[n2 − n, n2] and another at least k prime numbers in the interval [n2, n2 + n]. In particular,
N(2) = 4, N(3) = 7, N(4) = 13, N(5) = 16, N(6) = 18, N(7) = 21, N(8) = 25, N(9) = 31,
N(10) = N(11) = 32, N(12) = 40, N(13) = 44.

Numerically, there exist c, c′ ∈ C such that n2 − n < c < n2 < c′ < n2 + n for each
1 < n ≤ 9998. For n = 2, 3, . . . , 25, the lesser of the number of cyclics in (n2 − n, n2) and
the number of cyclics in (n2, n2 + n) is 1, 1, 2, 1, 2, 2, 2, 3, 3, 3, 3, 4, 3, 5, 5, 4, 6, 5, 6, 7, 6,
7, 9, 7, and 7. All computed later elements in this sequence are 8 or larger.
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Figure 6: (left) For the primes less than 109, the minimum of the numbers of primes in the
two intervals [n2 − n, n2] and [n2, n2 + n] is shown by a blue dot for every tenth value of n
to avoid having the blue dots overwrite the red curve. The red curve plots n/(2 log n), n =
2, . . . , 31622. (right) For the cyclics less than 108, for each n = 20, 21, 22, . . . , 9999, a
blue dot shows the minimum of the numbers of cyclics in the two intervals [n2 − n, n2] and
[n2, n2 + n]. The red line shows the asymptotic expression in (11).

2.3 Brocard’s and Desboves’ conjectures

Brocard [3] conjectured in 1904 that there are at least four primes between the squares of
two successive primes, provided that the first prime be greater than 3. However, between
the squares 9 and 25 of 3 and 5, respectively, there are more than four primes, namely, 11,
13, 17, 19, 23, so Brocard’s proviso should be replaced by requiring that the first prime be
greater than 2. Several claims to prove Brocard’s conjecture have been published or posted
but I am not aware that any has been independently confirmed.

Remark 21. Desboves’ conjecture [12] that for every n ∈ N, there exist p, p′ ∈ P such that
n2 < p < p′ < (n + 1)2 implies Brocard’s (adjusted) conjecture [3] that there are at least
four primes between the squares of two successive primes greater than 2. More generally, if
p, p′ are two primes both greater than 2, then Desboves’ conjecture [12] implies that there
are at least 2(|p′ − p|) primes between p2 and p′2.

Proof. As 2 is the only even prime, every pair of consecutive primes except 2 and 3 is
separated by at least one even number. If p > 2 and p′ = p + 2 are twin primes and
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p < m < p′, m ∈ N, then, by Desboves’ conjecture, there are at least two primes between
p2 and m2. Again by Desboves’ conjecture, there are at least two primes between m2 and
p′2. So there are at least four primes between p2 and p′2. All other pairs 2 < p < p′ of
consecutive primes have more than one intervening even number and one or more intervening
odd numbers between them, and each of those intervening numbers contributes two or more
primes to the count of primes between p2 and p′2.

For k ∈ N, k ≥ 4, define B(k) to be the smallest n ∈ N such that, for all m ∈ N with
m ≥ n, there are always at least k primes between p2m and p2m+1. For example, Brocard’s
conjecture asserts that B(4) = 2. (This 2 points to the second prime, p2 = 3, not to the first
prime 2.) T. D. Noe calculated the number of primes between p2n and p2n+1 for n ≤ 104; see
A050216. Based on Noe’s calculations, I conjecture the following.

Conjecture 22 (k-fold Brocard for primes). Let B(4) = 2, B(5) = 2, B(6) = 3, B(7) =
B(8) = B(9) = 5, B(10) = B(11) = 7, B(12) = B(13) = B(14) = B(15) = B(16) =
10, B(17) = B(18) = B(19) = B(20) = 13. Then for k = 4, . . . , 20 and for every n ∈ N such
that n ≥ B(k), there exist at least k primes between p2n and p2n+1. More generally, for every
k ∈ N, there exists B(k) ∈ N such that for every n ∈ N with n ≥ B(k), there exist at least
k primes between n2 and (n + 1)2.

Conjecture 23 (Brocard analog for cyclics). For every n > 2, there exist at least six cyclics
c ∈ C such that c2n < c < c2n+1.

There are two cyclics c2 = 2, c3 = 3 in the open interval (c21 = 1, c22 = 4). There are two
cyclics c4 = 5, c5 = 7 in (c22 = 4, c23 = 9). The six cyclics in (c23 = 9, c24 = 25) are 11, 13,
15, 17, 19, and 23. For n = 1, . . . , 25, the number of cyclics c ∈ C such that c2n < c < c2n+1

is 2, 2, 6, 8, 25, 16, 17, 21, 22, 56, 102, 36, 36, 45, 49, 96, 52, 113, 125, 65, 206, 80, 152,
83, 84. For 3 ≤ n ≤ 1009 (with c1009 = 3157), there are at least six cyclics c ∈ C such that
c2n < c < c2n+1.

If the k-fold Brocard conjecture for primes is true, then it is immediate that for k =
4, . . . , 20 and for every n ∈ N such that n ≥ B(k), there exist at least k cyclics between
p2n and p2n+1, since all primes are cyclics. The following analog for cyclic numbers is not an
obvious consequence of the k-fold Brocard conjecture for primes, and may hold true even if
Conjecture 22 is false.

Conjecture 24 (k-fold Brocard analog for cyclics). For every k ∈ N, there exists C(k) ∈ N
such that for every n ∈ N with n ≥ C(k), there exist at least k cyclic numbers c such that
c2n < c < c2n+1.

Numerically, C(2) = 1, i.e., for every n ≥ 1 computed here, there exist at least 2 cyclic
numbers c such that c2n < c < c2n+1.
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2.4 Schinzel’s conjectures

Schinzel [49, p. 155, Conjecture P1] conjectured in 1961 that, for real numbers x ≥ 117,
there is at least one prime between x and x +

√
x. When x is evaluated only at primes, the

exceptional cases (among the primes less than 109, in my computations) where there is no
prime between pn and pn +

√
pn are p2 = 3, p4 = 7, p6 = 13, p9 = 23, p11 = 31, and p30 = 113.

A stronger conjecture by Schinzel [49, p. 156] is that, for real number x ≥ 8, there is at least
one prime between x and x + (log x)2. When x is evaluated only at primes, the exceptional
cases (among the primes less than 109) where there is no prime between pn and pn+(log pn)2

are p1 = 2, p2 = 3, and p4 = 7. With their different lower bounds, both conjectures have
been confirmed numerically for x ≤ 4.44 × 1012. Conjecture P1 implies Conjecture P of
Sierpiński [49, p. 153]. Both of Schinzel’s conjectures have obvious analogs for cyclics and
one analog not so obvious. I verified these conjectures for the cyclics less than 108.

Conjecture 25 (Schinzel Conjecture P1 analog for cyclics). For every n ∈ N,

cn+1 ≤ cn +
√
cn

except for c3 = 3, c5 = 7, and c11 = 23.

Conjecture 26 (Schinzel conjecture for log2 analog for cyclics). For every n ∈ N,

cn+1 ≤ cn + (log cn)2

except for c1 = 1, c2 = 2, c3 = 3, and c5 = 7.

Conjecture 27 (Schinzel-type conjecture for 2 × log analog for cyclics). For every n ∈ N,

cn+1 ≤ cn + 2 log cn

except for c1 = 1 and c5 = 7.

2.5 Golubew’s conjectures

Noting Legendre’s conjecture for primes, Golubew [19, p. 85] conjectured in 1957 that for
n ∈ N, there is at least one pair of twin primes p, p + 2 between n3 and (n + 1)3. Further,
he conjectured that, for n ∈ N, there is at least one quartet of primes p, p + 2, p + 6, p + 8
between n5 and (n + 1)5. For n = 1, . . . , 25, I find that the number of pairs of twin primes
between n3 and (n + 1)3 is 2, 2, 3, 3, 5, 5, 4, 6, 5, 11, 9, 12, 11, 12, 17, 17, 16, 19, 16, 18,
24, 22, 17, 22, and 26. For n = 1, . . . , 103 − 1 such that (n + 1)3 ≤ 109, I find numerically
that the number of pairs of twin primes between n3 and (n + 1)3 is never less than two.
As examples, if n = 1, then (3, 5) and (5, 7) are two pairs of twin primes between 1 and
(n + 1)3 = 8; and if n = 2, then (11, 13) and (17, 19) are two pairs of twin primes between
8 and 27. Moreover, I find 3 or more pairs of twin primes between n3 and (n + 1)3 for all
3 ≤ n ≤ 999, 4 or more pairs of twin primes between n3 and (n + 1)3 for all 5 ≤ n ≤ 999, 5
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or more pairs of twin primes between n3 and (n + 1)3 for all 8 ≤ n ≤ 999, 6 or more pairs
of twin primes between n3 and (n + 1)3 for all 10 ≤ n ≤ 999, and so on.

Golubew [19, p. 84, Table 2] tabulated the number of pairs of twin primes between n3

and (n + 1)3 for n = 1, . . . , 80. I confirmed his counts with five exceptions, which I believe
to be his errors. I list the five cases in which I challenge his results with three numbers: n,
his count of twin primes between n3 and (n + 1)3, and my count of twin primes between n3

and (n + 1)3. These five cases are: 25, 27, 26; 26, 31, 32; 70, 109, 119; 74, 130, 131; 80, 160,
161.

Conjecture 28 (number of twin primes between consecutive cubes). For every n ∈ N,
the number of pairs of twin primes between n3 and (n + 1)3 is never less than two. More
generally, for every k ∈ N, there exists N(k) ∈ N such that for all n ≥ N(k) there are at least
k pairs of twin primes between n3 and (n + 1)3. Specifically, N(1) = N(2) = 1, N(3) = 3,
N(4) = 5, N(5) = 8, N(6) = N(7) = N(8) = N(9) = 10, N(10) = 11, N(11) = 13,
N(12) = N(13) = N(14) = N(15) = N(16) = 15, and N(17) = 20.

Two consecutive primes p, p′ are defined [56, p. 336] to be cousin primes if |p − p′| = 4
and defined to be sexy primes if |p − p′| = 6. By these definitions, 3 and 7 are not cousin
primes and 11 and 17 are not sexy primes because they are not consecutive. Every other
pair of primes p, p′ with |p−p′| = 4 is consecutive, hence cousin. Many other pairs of primes
p, p′ with |p− p′| = 6 are not consecutive, hence not sexy. For n = 1, . . . , 25, I find that the
number of pairs of cousin primes between n3 and (n + 1)3 is 0, 2, 2, 5, 3, 5, 8, 3, 11, 7, 12,
7, 15, 14, 13, 10, 19, 13, 20, 21, 22, 23, 24, 28, and 31. For n = 1, . . . , 25, I find that the
number of pairs of sexy primes between n3 and (n + 1)3 is 0, 0, 3, 2, 5, 6, 7, 11, 7, 15, 11,
12, 19, 15, 20, 21, 30, 27, 29, 33, 30, 37, 43, 36, and 52. These numbers and all the following
counts of cousin primes between successive cubes suggest the following conjectures:

Conjecture 29 (number of cousin primes between consecutive cubes). For n ∈ N with
n > 1, the number of pairs of cousin primes between n3 and (n + 1)3 is never less than two.
More generally, for every k ∈ N, there exists N(k) ∈ N such that, for all n ≥ N(k), there
are at least k pairs of cousin primes between n3 and (n+ 1)3. Specifically, N(1) = N(2) = 2,
N(3) = 8, N(4) = N(5) = N(6) = N(7) = 9, N(8) = N(9) = N(10) = 12.

Conjecture 30 (number of sexy primes between consecutive cubes). For n ∈ N with n > 2,
the number of pairs of sexy primes between n3 and (n+ 1)3 is never less than two. (While 3
pairs of sexy primes occur between 33 and 43, only 2 pairs of sexy primes occur between 43 and
53.) More generally, for every k ∈ N, there exists N(k) ∈ N such that, for all n ≥ N(k), there
are at least k pairs of sexy primes between n3 and (n + 1)3. Specifically, N(1) = N(2) = 3,
N(3) = N(4) = N(5) = 5, N(6) = 6, N(7) = 7, N(8) = N(9) = N(10) = N(11) = 11.

Conjecture 31 (asymptotic k-fold primes between consecutive cubes). As n → ∞, the
numbers of pairs of twin primes, cousin primes, and sexy primes between consecutive cubes
n3 and (n + 1)3 are asymptotic to regularly varying functions of n with indices between 3/2
and 2, and the indices for twin primes and cousin primes are identical.
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Figure 7: (left) Each dot represents, on the vertical axis, the number of pairs of consecutive
primes pm, pm+1 in the interval between n3 and (n + 1)3 for the value of n on the horizontal
axis. Gaps pm+1 − pm = 2, 4, 6 correspond to twin (blue dots), cousin (red dots), and sexy
(yellow dots) primes. Black curves show power functions anb fitted by least squares. For twin
primes (gap = 2), a = 0.079, b = 1.689. For cousin primes (gap = 4), a = 0.0804, b = 1.686.
For sexy primes (gap = 6), a = 0.124, b = 1.708. (right) Each dot represents, on the vertical
axis, the number of pairs of consecutive cyclics cm, cm+1 in the interval between n3 and (n+1)3

for the value of n on the horizontal axis. Gaps cm+1 − cm = 2, 4, 6 correspond to twin (blue
dots), cousin (red dots), and sexy (yellow dots) cyclics. Black curves show power functions
anb fitted by least squares. For twin cyclics (gap = 2), a = 0.5493, b = 1.950. For cousin
cyclics (gap = 4), a = 0.3187, b = 1.983. For sexy cyclics (gap = 6), a = 0.1051, b = 2.034.

Figure 7 (left) supports Conjecture 31 numerically.
Turning from primes to cyclics: twin cyclics, cousin cyclics, and sexy cyclics are pairs of

consecutive cyclics with first difference 2, 4, and 6, respectively. For n = 1, . . . , 25, I find
that the numbers of pairs of twin cyclics between n3 and (n + 1)3 are 2, 4, 7, 13, 17, 22, 32,
41, 44, 57, 70, 80, 99, 107, 122, 132, 142, 171, 189, 220, 221, 239, 271, 292, and 310. For
n = 1, . . . , 25, I find that the numbers of pairs of cousin cyclics between n3 and (n + 1)3

are 0, 1, 3, 8, 8, 14, 15, 22, 29, 37, 36, 51, 50, 69, 71, 95, 92, 97, 120, 129, 142, 149, 177,
175, and 194. For n = 1, . . . , 25, I find that the numbers of pairs of sexy cyclics between n3

and (n + 1)3 are 0, 0, 1, 0, 2, 4, 7, 7, 9, 8, 13, 13, 19, 17, 16, 23, 38, 44, 36, 42, 46, 58, 54,
67, and 70. These numbers and all the following counts of cyclics between successive cubes
(n3, (n + 1)3) suggest the following:
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Conjecture 32 (number of twin cyclics between consecutive cubes). For every n ∈ N, the
number of pairs of twin cyclics between n3 and (n + 1)3 is never less than two. For every
k ∈ N, there exists N(k) ∈ N such that for all n ≥ N(k) there are at least k pairs of
twin cyclics between n3 and (n + 1)3. Specifically, N(1) = N(2) = 1, N(3) = N(4) = 2,
N(4) = N(5) = N(6) = N(7) = 3, N(8) = N(9) = N(10) = N(11) = N(12) = N(13) = 4.

Conjecture 33 (number of cousin cyclics between consecutive cubes). For n ∈ N with
n > 1, the number of pairs of cousin cyclics between n3 and (n + 1)3 is never less than one.
For every k ∈ N, there exists N(k) ∈ N such that for all n ≥ N(k) there are at least k pairs
of cousin cyclics between n3 and (n+ 1)3. Specifically, N(1) = 2, N(2) = N(3) = 3, N(4) =
N(5) = N(6) = N(7) = N(8) = 4, N(9) = N(10) = N(11) = N(12) = N(13) = N(14) = 6.

Conjecture 34 (number of sexy cyclics between consecutive cubes). For n ∈ N with n ≥ 5,
the number of pairs of sexy cyclics between n3 and (n + 1)3 is never less than two. For
every k ∈ N, there exists N(k) ∈ N such that for all n ≥ N(k) there are at least k pairs
of sexy cyclics between n3 and (n + 1)3. Specifically, N(1) = N(2) = 5, N(3) = N(4) = 6,
N(5) = N(6) = N(7) = 7, N(8) = 10, N(9) = N(10) = N(11) = N(12) = N(13) = 11.

Conjecture 35 (asymptotic k-fold cyclics between consecutive cubes). As n → ∞, the
numbers of twin cyclics, cousin cyclics, and sexy cyclics between consecutive cubes n3 and
(n + 1)3 are asymptotic to regularly varying functions of n with indices between 1 and 5/2.

2.6 Sophie Germain primes and cyclics

In approaching a proof of Fermat’s last theorem, Sophie Germain considered (as a very special
case of much more general hypotheses) pairs of primes (p, 2p+1) such as (3, 7) and (5, 11). A
prime p such that 2p+1 is prime is called a Sophie Germain prime (or an SG prime), and the
prime 2p + 1 is called a safe or auxiliary prime. Identifying the first appearance historically
of SG primes is challenging because much of Germain’s work was never published, appeared
in correspondence, is mentioned in the work of other mathematicians, or was published
anonymously or pseudonymously [32].

It is conjectured but unproved that there are infinitely many SG primes. For positive
real x, let πSG(x) be the counting function of SG primes, i.e., the number of SG primes less
than or equal to x. It is conjectured but not proved [48, p. 123] that, as x → ∞, we have

πSG(x) ∼

2
∏

{p∈P|p>2}

p(p− 2)

(p− 1)2

 x

(log x)2
.

If there are infinitely many SG primes, then Conjecture 36 is true, but Conjecture 36
may be true even if there are only finitely many SG primes.

Define a cyclic c ∈ C to be a Sophie Germain cyclic (or an SG cyclic) if 2c + 1 ∈ C.

Conjecture 36 (infinitely many SG cyclics). There are infinitely many Sophie Germain
cyclics.
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After seeing Conjecture 36 in a draft of this paper, Carl Pomerance (personal commu-
nication, May 24 2025) announced that he can prove that the number of Sophie Germain
cyclics less than x is asymptotic to cx(eγ log log log x)−2 for an appropriate c > 0, and hence
that Conjecture 36 is true.

Let σn be the nth SG cyclic. The first 25 SG cyclics are 1, 2, 3, 5, 7, 11, 15, 17, 23, 29,
33, 35, 41, 43, 47, 51, 53, 59, 61, 65, 69, 71, 79, 83, 89. For example, σ7 = 15 is an SG cyclic
because 2× 15 + 1 = 31 ∈ P is cyclic, although 31 itself is not an SG cyclic, as the following
list shows. The first 25 cyclics that are not SG cyclics are 13, 19, 31, 37, 67, 73, 77, 85, 87,
91, 97, 101, 103, 109, 115, 137, 139, 145, 157, 163, 177, 181, 187, 193, 199. For example,
2 × 13 + 1 = 27.

It is well known that every SG prime except SG prime 3 is congruent to 2 mod 3, for if
an SG prime p were congruent to 1 mod 3, then 2p+ 1 would be congruent to 3 mod 3, i.e.,
composite, contradicting the assumption that p is an SG prime. The SG cyclics are different.

Conjecture 37 (SG cyclics mod 3). As the number of SG cyclics grows without limit,
the number of SG cyclics congruent to j mod 3, j = 1, 2, 3, grows without limit, and the
limiting fraction of SG cyclics congruent to 1 mod 3 equals the limiting fraction of SG cyclics
congruent to 3 mod 3.

After seeing an earlier version of Conjecture 37, Carl Pomerance (personal communica-
tion, May 24 2025) announced that he can show that the fractions of SG cyclics congruent
to j mod 3 approach the limits w1 = w3 = 0 and w2 = 1.

Based on the first 3,441,316 SG cyclics, the proportions of SG cyclics congruent to 1,
2, and 3 mod 3 are approximately 0.1360, 0.7252, 0.1388. Based on the first 6,882,632 SG
cyclics (twice as many), the proportions of SG cyclics congruent to 1, 2, and 3 mod 3 are
approximately 0.1342, 0.7290, 0.1368.

Conjecture 38 (Desboves analog for SG cyclics). For every n ∈ N, there exists at least two
SG cyclics in (n2, (n + 1)2).

For n = 1, . . . , 7070, every interval (n2, (n + 1)2) contains at least two SG cyclics. For
example, for n = 1, . . . , 25, the number of SG cyclics in each interval (n2, (n+ 1)2) is 2, 2, 2,
2, 3, 3, 4, 4, 3, 3, 6, 5, 4, 7, 6, 5, 8, 9, 6, 10, 7, 8, 7, 8, 9.

2.7 Firoozbakht’s and related conjectures

Firoozbakht conjectured in 1982 that, if pn is the nth prime starting from p1 = 2, then
(pn)1/n decreases strictly as n ∈ N increases [44]. Firoozbakht’s conjecture has been verified
numerically for all primes less than 264 ≈ 1.844 × 1019 [52].

Ribenboim [43, p. 185] dated this conjecture, communicated to him by the author, “from
about 1992,” but Kourbatov [29] gives what appears to be the correct date, 1982 [44].

Campbell and I [4] first stated Conjectures 39–41 of Firoozbakht type concerning cyclic
numbers and tested them using only the cyclics not exceeding 4×106. Here I test Conjectures
39–41 plus two new Conjectures 42 and 43 using the cyclics less than 108.
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Conjecture 39 (Firoozbakht analog for cyclics 1). For every positive integer n excluding
n = 1, 2, 3 and 5, we have

c1/nn > c
1/(n+1)
n+1 .

The four exceptions are 1 < 21/2, 21/2 < 31/3, 31/3 < 51/4, and 71/5 < 111/6.

Conjecture 40 (Firoozbakht analog for cyclics 2). For every positive integer n > 1, we
have

c1/(n−1)
n > c

1/n
n+1.

If 11/0 = 1∞ := 1, then the only exception is c1 = 1 < c12 = 2.

Conjecture 41 (Firoozbakht analog for cyclics 3). For every k∈ N, there exists a least
m∈ N, call it N(k), such that, for all n > N(k), we have

c1/(n+k)
n > c

1/(n+k+1)
n+1 .

In particular, if k = 1 or k = 2, then N(k) = 5; and if k = 3 or k = 4, then N(k) = 11.

For the primes among the cyclic numbers, Conjecture 39 is stronger (gives tighter inequal-

ities) than Firoozbakht’s conjecture [4]. For example, Conjecture 39 gives c
1/6
6 = 111/6 ≈

1.4913 > c
1/7
7 = 131/7 ≈ 1.4426 whereas Firoozbakht’s conjecture gives p

1/5
5 = 111/5 ≈

1.6154 > p
1/6
6 = 131/6 ≈ 1.5334.

Conjecture 42 (Firoozbakht analog for cyclics 4). For every k∈ {0} ∪ N, define

c̄(k) := max
n∈N

c1/(n+k)
n .

Then

c̄(0) ≈ 1.4953 > c̄(1) ≈ 1.4085, > c̄(2) ≈ 1.3495, > c̄(3) ≈ 1.3053, > c̄(4) ≈ 1.2710 > . . . .

Conjecture 43 (Firoozbakht analog for SG cyclics). For every n ∈ N excluding n = 1, 2, 3
and 5, we have

σ1/n
n > σ

1/(n+1)
n+1 .

The four exceptions are 1 < 21/2, 21/2 < 31/3, 31/3 < 51/4, and 71/5 < 111/6, exactly as in
Conjecture 39.

I confirmed Conjecture 43 for the first 6,882,632 SG cyclics.
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2.8 Andrica and related conjectures

Andrica [1] conjectured that, for all n ∈ N, we have ∆
√
pn :=

√
pn+1 −

√
pn < 1. Visser [52]

verified Visser’s stronger version (quoted below) of Andrica’s conjecture for all primes less
than 264 ≈ 1.84× 1019. Several claims to prove Andrica’s conjecture have been published or
posted but I am not aware that any has been independently confirmed.

Conjecture 44 (Andrica analog for cyclics). For all n ∈ N, ∆
√
cn := (cn+1)

1/2−(cn)1/2 < 1.

Ribenboim [43, p. 191] observed that the conjecture

lim
n→∞

(
√
pn+1 −

√
pn) = 0 (13)

would imply Andrica’s conjecture. An editor [18, p. 61] remarked that “it is a difficult and
as yet unsolved problem whether” (13) is true. No originator of conjecture (13) is given in
[18, 43]. Wolf [57] gives an impressive heuristic argument for the truth of (13).

Figure 8 provides numerical support for conjecture (13) and for Conjecture 46 below with
t = 1/2, which is the analogous conjecture for cyclics. I also verified Andrica’s conjecture for
primes less than 109 and its analog Conjecture 46 (with t = 1/2) for cyclics less than 108.

Conjecture 45 deals with ptn+1−ptn for real t ∈ (0, 1/2]. Because d2
(
(p+ g)t−pt

)
/dg dt =

(g + p)t/(g + p) + t(g + p)t−1 log(g + p) > 0 for g > 0, t > 0, and p > 1, the difference
ptn+1 − ptn is an increasing function of t and of pn+1 − pn.

Conjecture 45 (generalized analog for primes). For real t ∈ (0, 1/2], we have

lim
n→∞

(ptn+1 − ptn) = 0. (14)

Conjecture 45 obviously implies (13).

Conjecture 46 (generalized analog for cyclics). For real t ∈ (0, 1/2], we have

lim
n→∞

(ctn+1 − ctn) = 0. (15)

Visser [53, p. 182] conjectured that, except for n ∈ {2, 4, 6, 9, 11, 30} corresponding to
pn ∈ {3, 7, 13, 23, 31, 113},

∆
√
pn :=

√
pn+1 −

√
pn <

1

2
.

A generalization of the obvious analog for cyclics is as follows:

Conjecture 47 (Visser analog for cyclics). For a fraction ϵ ∈ (0, 1/2), there exists N(ϵ) ∈ N
such that, for all n > N(ϵ), we have

∆
√
cn :=

√
cn+1 −

√
cn < ϵ. (16)
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Figure 8: (above) The values (blue dots) of ∆
√
pn :=

√
pn+1 −

√
pn for n = 1, . . . , 1000 and

the reverse cumulative maximum (red line), that is, the cumulative maximum starting from
∆
√
p1000 and working back to ∆

√
p1. The decrease of the reverse cumulative maximum as

n increases displays the approach of ∆
√
pn in the direction of 0 as n increases. (below) The

values (blue dots) of ∆
√
cn :=

√
cn+1 −

√
cn for n = 1, . . . , 1000 and the reverse cumulative

maximum of ∆
√
cn for cyclics (red line). The grey line reproduces the reverse cumulative

maximum for primes. The grey line for primes is never less than the red line for cyclics in
these examples.

In particular, except for n ∈ {3, 5, 11} corresponding to cn ∈ {3, 7, 23},

∆
√
cn :=

√
cn+1 −

√
cn <

1

2
(17)

and except for n ∈ {1, 3, 4, 5, 10, 11, 21, 70} corresponding to cn ∈ {1, 3, 5, 7, 19, 23, 53, 199},

∆
√
cn :=

√
cn+1 −

√
cn <

1

3
. (18)

Kosyak, Moree, Sofos, and Zhang (hereafter KMSZ) conjectured [28, p. 216, Eq. (2)] (see
also [36]) that if n ≥ 31 (so pn ≥ 127), then

pn+1 − pn <
√
pn + 1.

A generalization of this conjecture consistent with the primes less than 109 is as follows:
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Conjecture 48 (generalized KMSZ for primes). For finite positive or negative integer k,
there exists N(k) ∈ N such that, for all n > N(k) (strict inequality), we have

pn+1 − pn <
√
pn + k. (19)

In particular, for k ∈ [−20,−17], N(k) = 263; for k ∈ [−16,−3], N(k) = 217; for k = −2,
N(k) = 34; for k ∈ [−1,+3], N(k) = 30 (k = 1 is the KMSZ conjecture); and for k ≥ 4,
N(k) = 0, i.e., (19) holds for all n ∈ N.

An analogous conjecture is consistent with the cyclics less than 108.

Conjecture 49 (generalized KMSZ for cyclics). For finite positive or negative integer k,
there exists N(k) ∈ N such that, for all n > N(k) (strict inequality), we have

cn+1 − cn <
√
cn + k. (20)

In particular, for k = −20,−19,−18, . . . ,−1, 0,+1, the corresponding 22 values of N(k) are
N(k) = 216, 208, 176, 176, 159, 141, 127, 120, 109, 98, 83, 70, 70, 70, 70, 70, 23, 21, 21, 11, 11, 11,
and for k ≥ 2, N(k) = 0, i.e., (20) holds for all n ∈ N.

As mentioned in the Introduction, Carneiro et al. [5] proved that, under the Riemann
hypothesis, for every pn > 3, pn+1 − pn < 22

25

√
pn log pn.

Conjecture 50 (Carneiro analog for cyclics). For every cn > 3, we have

cn+1 − cn <
22

25

√
cn log cn. (21)

The conjectured upper bounds on prime gaps in Conjecture 48 and on cyclic gaps in
Conjecture 49 and Conjecture 50 are very likely far from the best possible upper bounds.
For example, for the primes less than 109, maxn(pn+1 − pn) = 282 (the gap following prime
436273009) while, for the next to last of these primes,

√
pn + 4 ≈ 31626.7755. Similarly, for

the cyclics less than 108, maxn(cn+1 − cn) = 24 while, for the next to last of these cyclics,√
cn + 2 ≈ 10001.9998. It seems worth exploring further generalizations of (19) and (20)

obtained by replacing the square root on the right sides by an exponent ϵ ∈ (0, 1/2).

Conjecture 51 (Carneiro analog for SG cyclics). For every SG cyclic σn > 3, we have

σn+1 − σn <
22

25

√
σn log σn. (22)

I confirmed Conjecture 51 for the first 6,882,632 SG cyclics.
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2.9 Rosser, Dusart and related conjectures

The prime number theorem [21, 51] is equivalent to pn ∼ n log n. Rosser [45] proved that, for
all n ∈ N, pn > n log n. Dusart [14] proved that, for all n > 1, pn > n(log n + log log n− 1).
By analogy with Rosser’s and Dusart’s inequalities for primes, I conjecture, using (4) for
cyclics, the following:

Conjecture 52 (Rosser analog for cyclics). For all n > 1,

cn > eγn log log log n; (23)

Conjecture 53 (Dusart analog for cyclics). For all n > 1,

cn > eγn(log log log n + log log log log n). (24)

Conjectures 44, 46, 47, 49, 50, 52, and 53 are consistent with all numerically evaluated
cn ∈ (1, 108).

After seeing Conjectures 52 and 53 in a draft of this paper, Carl Pomerance (personal
communication, June 3 2025) computed that

cn = eγn(log log log n + γ + o(1))

(which refines (4)). So Conjecture 52 holds for n sufficiently large and Conjecture 53 fails for
n sufficiently large. The numerical results in this paper fail to distinguish between Conjecture
52 and Conjecture 53 because log log log log 108 ≈ 0.0670 < γ ≈ 0.5772.

2.10 Additive and multiplicative inequalities

Extending the Bertrand-Chebyshev theorem that 2pn > pn+1 for all n ∈ N, Ishikawa [26,
Theorem 1], Gallot et al. [17, Lemma 10], and I [9, Theorem 2] proved independently, and
with different proofs, that if n > 1, then pn + pn+1 > pn+2. When n = 1, equality holds:
p1 + p2 = p3 = 5.

Conjecture 54 (Ishikawa analog for cyclics). For all n > 2,

cn + cn+1 > cn+2. (25)

When n = 1 or n = 2, equality holds: c1 + c2 = c3 = 3 and c2 + c3 = c4 = 5.

Conjecture 55 (Ishikawa analog for SG cyclics). For all n > 2,

σn + σn+1 > σn+2. (26)
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I verified this conjecture for the first 6,882,632 SG cyclics. When n = 1 or n = 2, equality
holds: σ1 + σ2 = σ3 = 3 and σ2 + σ3 = σ4 = 5.

More generally [9, Theorem 1], if b1, . . . , bg are g > 1 nonnegative integers (not necessarily
distinct), and d1, . . . , dh are h positive integers (not necessarily distinct), with 1 ≤ h < g,
then there exists a positive integer N such that, for all n ≥ N , we have

pn−b1 + pn−b2 + · · · + pn−bg > pn+d1 + · · · + pn+dh .

A concrete example [9] is pn + pn+1 + pn+2 > pn+3 + pn+4, proved for all n ≥ N = 8.
Analogously, for cyclic numbers, I make the following conjecture:

Conjecture 56 (sum-3-versus-sum-2 analog for cyclics). For all n > 9,

LHS(n) := cn + cn+1 + cn+2 > RHS(n) := cn+3 + cn+4. (27)

For n = 1, 2, 3, 4, 5, 8, 9, I find numerically that LHS(n) < RHS(n). For n = 6, 7 and all
computed values of n > 9, I find numerically that LHS(n) > RHS(n).

According to Ribenboim [43, p. 185], Dusart [13] proved Mandl’s conjecture that (p1 +
p2+ · · ·+pn)/n ≤ pn/2 for all n > 8. The inequality also holds for n = 7. In all the examples
I know, the inequality is strict wherever the weak inequality holds.

Conjecture 57 (Dusart-Mandl analog for cyclics). For all n > 5,

c1 + c2 + · · · + cn
n

<
cn
2
.

The opposite strict inequality holds for n = 1, 2, 3, 4, 5.

Conjecture 58 (Dusart-Mandl analog for SG cyclics). For all n > 5,

σ1 + σ2 + · · · + σn

n
<

σn

2
.

I verified this conjecture for the first 6,882,632 SG cyclics. The opposite strict inequality
holds for n = 1, 2, 3, 4, 5.

Laurenţiu Panaitopol (1940–2008) [39] and I [7] proved independently a multiplicative
inequality for primes: if m ∈ N, n ∈ N, and m ≤ n, then pm·n < pmpn unless (m,n) = (3, 4)
or (m,n) = (4, 4), in which cases the reverse strict inequality holds.

Conjecture 59 (Panaitopol analog for cyclics). If m ∈ N, n ∈ N, and 3 ≤ m ≤ n, then
cm·n < cmcn unless (m,n) = (3, 3) or (m,n) = (5, h) for h = 5, 6, 7, 8, 9, 10, in which cases
the reverse strict inequality holds.

Vrba [54] conjectured (in 2010, according to Kourbatov [30]) that

lim
n→∞

pn(∏n
j=1 pj

)1/n
= e. (28)

Sándor and Verroken [46] in 2011 and independently Kourbatov [30] in 2016 proved (28).
Hassani [23, 24] and Kourbatov [30] bounded the approach of pn/(

∏n
j=1 pj)

1/n to e. Kour-
batov [30] gave a short proof and calculated higher-order terms in a series expansion.
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Conjecture 60 (Vrba analog for cyclics).

lim
n→∞

cn(∏n
j=1 cj

)1/n
= e.

For n = 28488167, I calculate cn = 99999997 and cn/(
∏n

j=1 cj)
1/n ≈ 2.7362, not a bad

approximation to e ≈ 2.7183. To circumvent numerical overflow of
∏n

j=1 cj in this calculation,

I computed cn/(
∏n

j=1 cj)
1/n by means of the equivalent exp{log cn − (

∑n
j=1 log cj)/n}.

Hassani [23, Theorem 1.1] also proved that

lim
n→∞

(p1 + · · · + pn)/n

(p1 × · · · × pn)1/n
=

e

2
.

Conjecture 61 (Hassani analog for cyclics).

lim
n→∞

(c1 + · · · + cn)/n

(c1 × · · · × cn)1/n
=

e

2
.

For n = 28488167, I calculate

(c1 + · · · + cn)/n

(c1 × · · · × cn)1/n
≈ 1.3638,

e

2
≈ 1.3591.

If Conjectures 60 and 61 are true, then dividing the former equality by the latter equality
yields an equality Campbell and I [4, Theorem 1] proved:

lim
n→∞

cn
(c1 + · · · + cn)/n

= 2.

Thus the difference between (c1 + c2 + · · · + cn)/n and cn/2, which appear in an inequality
in Conjecture 57, is proved to vanish asymptotically as n → ∞.

Analogs of Conjectures 60 and 61 for SG cyclics, replacing cn by σn, are obvious and are
numerically plausible.

2.11 Sequence of absolute difference sequences: Proth, Gilbreath

Define {a(n) | n ∈ {0} ∪ N} to be a sequence of absolute difference sequences (here-
after, SADS) if, for each n ∈ {0} ∪ N, a(n) = (a1(n), a2(n), a3(n), . . .) is an infinite se-
quence of real numbers such that, for all n ∈ N and all m ∈ N, we have am(n) =
|am(n − 1) − am+1(n − 1)|. In more detail, starting from an arbitrary initial real se-
quence a(0) := (a1(0), a2(0), a3(0), . . . , am(0), am+1(0), . . .), the next sequence is a(1) :=
(|a1(0) − a2(0)|, |a2(0) − a3(0)|, . . . , |am(0) − am+1(0)|, . . .), and the elements of each succes-
sive sequence a(n) give the absolute values of the first differences of elements of the preceding
sequence.
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Proth [42] in 1878 computed numerically the behavior of a SADS starting from the
first seven primes (he included 1 as the first prime, which I ignore) and observed that
every successor sequence begins with 1. For example, a1(1) = |3 − 2| = 1 and a1(2) =
||3 − 2| − |5 − 3|| = |1 − 2| = 1, and so on. He suggested that a1(n) = 1 for all n ∈ N.
The journal editor, Eugène Catalan, in a gentle concluding footnote, asked (my translation):
“Are not the theorems of M. Proth that one has just read rather postulates?” [≪Est-ce que
les théorèmes de M. Proth, qu’on vient de lire, ne sont pas, plutôt, des postulata?≫] I take
Proth’s suggestion as a conjecture, generally known as N. L. Gilbreath’s conjecture [43, pp.
191-192]. The Proth-Gilbreath conjecture has been verified for the primes less than 1013.

Conjecture 62 (Proth-Gilbreath analog for cyclics). A SADS starting from the cyclic num-
bers C after omitting c1 = 1 has 1 as the first element of every successor sequence.

I verified this conjecture for 1 million successor sequences of the cyclic numbers following
but not including c1 = 1.

Conjecture 63 (Proth-Gilbreath analog for SG cyclics). A SADS starting from the SG
cyclics after omitting σ1 = 1 has 1 as the first element of every successor sequence.

I verified this conjecture for 1 million successor sequences of the SG cyclics following but
not including σ1 = 1.

3 Second Hardy and Littlewood conjecture: cyclic ana-

log is false

The second conjecture of Hardy and Littlewood [22] states that π(m+n) ≤ π(m) +π(n) for
all integers 2 ≤ m ≤ n.

Conjecture 64 (Hardy and Littlewood analog for SG primes). The counting function of
SG primes obeys πSG(m + n) ≤ πSG(m) + πSG(n) for all 2 ≤ m ≤ n.

I verified Conjecture 64 for all 2 ≤ m ≤ 910664, m ≤ n ≤ 999997.
Using the counting function C(·) (1) of cyclic numbers, an analog for cyclics of the second

conjecture of Hardy and Littlewood, starting from 1 ≤ m ≤ n, is as follows:

Conjecture 65 (Hardy and Littlewood analog for cyclics). For all integers 1 ≤ m ≤ n,
C(m + n) ≤ C(m) + C(n).

This conjecture is false. Let m = 209 = c71, so C(209) = 71. Let n = 389 = c128, so
C(389) = 128. Then C(m + n) = C(598) = 200 because c200 = 595 < 598 < c201 = 599.
Thus C(m + n) = C(598) = 200 > C(m) + C(n) = 71 + 128 = 199. Counterexamples like
this one are abundant.

To the extent that analogies between primes and cyclics are valid, this counterexample
gives a further small hint to support the belief of Hensley and Richards [25] that the second
conjecture of Hardy and Littlewood [22] about primes is false.
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Conjecture 66 (Hardy and Littlewood analog for Sophie Germain cyclics). For all integers
1 ≤ m ≤ n, Cσ(m + n) ≤ Cσ(m) + Cσ(n).

The counterexample to Conjecture 65 for cyclics, m = 209 = σ46, n = 389 = σ83 is not a
counterexample to Conjecture 66 for SG cyclics because σ120 = 593 < 598 < σ121 = 599 and
therefore Cσ(209 + 389) = Cσ(598) = 120 < Cσ(209) + Cσ(389) = 46 + 83 = 129.

For m = 1, . . . , 106 and n = m, . . . , 106, I found no counterexamples to Conjecture 66 for
SG cyclics. It remains open.
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