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Preface 

Food webs hold a central place in ecology. They describe which organisms feed 
on which others in natural habitats. This book describes some recently discovered 
empirical regularities in real food webs. It proposes a novel theory that unifies 
many of these regularities. It offers researchers the most extensive available 
collection of edited data on community food webs. 

The book is intended for graduate students, teachers and researchers primarily 
in ecology, especially community ecologists with a quantitative orientation. The 
theoretical portions of the book provide materials that could be useful to teachers 
of applied combinatorics, in particular random graphs. Researchers in the theory 
of random graphs will find some unsolved mathematical problems here. 

The first portion of the book, a general introduction, reviews the empirical 
and theoretical discoveries about food webs presented here. 

The second portion of the book shows that community food webs obey several 
striking phenomenological regularities. Some of these regularities unify; they 
apply to all webs, regardless of the kind of habitat in which they are observed. 
For example, the ratio of number of trophic links (feeding connections between 
a living consumer and a living resource) to the number of kinds of organisms 
is approximately independent of the total number of kinds of organisms in the 
web. Other regularities differentiate; they show that the habitat of a web 
significantly influences the structure of the food web. For example, food chains 
in habitats that are three-dimensional on the human scale, such as the open 
ocean or forest canopy, are longer than those in two-dimensional habitats, such 
as a rocky ocean shore. 

The third portion of the book presents a theoretical analysis of some of the 
unifying empirical regularities. Several simple models, based on random directed 
graphs, are considered. All but one of the models are clearly rejected by the 
data. The sole survivor, called the cascade model, explains the major empirical 
regularities qualitatively and quantitatively. The cascade model predicts the 
proportions of top, intermediate and basal species in a web. The model gives 
the first exactly derived predictions of the frequency distribution of the length 
of food chains, and these predictions are in acceptable agreement with observa­
tions. The model explains the newest observations of the frequency of intervality 
in webs. 
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The second and third portions of the book are preceded by introductions that 
review the background of the following chapters. 

The fourth portion of the book presents 113 community food webs. Collected 
from scattered sources and carefully edited, these webs are the empirical basis 
for the results in this volume. We believe they are the largest available set of 
data on community food webs. We hope they will provide a valuable foundation 
for future studies of community food webs. We welcome corrections of errors 
in these data and additions to the stock of webs. We hope that, by making the 
data easily and widely available, we can attract other scientists to the study of 
food webs and thereby accelerate the obsolescence of this book. 

New York , N.Y., November 1989 Joel E. Cohen 



Synopses of the Chapters 

Chapter I. General Introduction 

§ O. Food Webs and Community Structure 
Joel E. Cohen 

A central problem of biology is to develop helpful concepts (e. g., genes) and 
tested quantitative models (e. g., Mendel's laws) to describe, explain and predict 
biological variation. This book describes recent discoveries, descriptive and 
explanatory, about variation in the food webs of ecological communities. 

Chapter II. Empirical Regularities 

§ O. Untangling an Entangled Bank 
Joel E. Cohen 

Darwin wrote about food webs in a literary way. The systematic attempt to 
record all the feeding relations in a natural community apparently began in the 
twentieth century. Now many webs have been reported. The great variability 
of these webs invites description and explanation. Descriptions can unify (all 
webs share certain properties) or differentiate (certain webs differ systematically 
from other webs). The chapters in this section present some examples of both 
kinds of descriptions. These empirical generalizations raise questions about the 
quality of the underlying data and the appropriateness of the data for the analyses 
that are made of them. Suggestions for improving the quality and quantity of 
future food web data are offered. 

A. General Regularities 

§ 1. Ratio of Prey to Predators in Community Food Webs 
Joel E. Cohen 

In community food webs, the ratio of the number of kinds of prey (or living 
resources) to the number of kinds of predators (or consumers) displays no 
increasing or decreasing trend, over the observed range of numbers of kinds 
of organisms. 



VIII 

§ 2. Community Food Webs Have Scale-Invariant Structure 
Frederic Briand and Joel E. Cohen 

Synopses of the Chapters 

In community food webs, the proportions of top, intermediate and basal trophic 
species are, on average, independent of the total number of trophic species. 
This scale-invariance explains the direct proportionality between the numbers 
of prey and predator trophic species. 

§ 3. Trophic Links of Community Food Webs 
Joel E. Cohen and Frederic Briand 

In community food webs, the mean number of trophic links is proportional to 
the total number of trophic species. The numbers of trophic links of each kind 
(e. g. from basal to intermediate species, or from intermediate to top species) 
are also roughly proportional to the total number of trophic species. 

§ 4. Food Webs and the Dimensionality of Trophic Niche Space 
Joel E. Cohen 

If the trophic niche of a kind of organism is a connected region in niche space, 
then it is possible for trophic niche overlaps to be described in a one-dimensional 
niche space if and only if the trophic niche overlap graph is an interval graph. 
An analysis of 30 food webs, using the combinatorial theory of interval graphs, 
suggests that a niche space of dimension one suffices, with unexpectedly high 
frequency, to describe the trophic niche overlaps implied by real food webs in 
single habitats. 

B. Differential Regularities 

§ 5. Environmental Control of Food Web Structure 
Frederic Briand 

In community food webs, the trophic connectance is lower in habitats with 
marked fluctuations of the physical environment than in webs with relatively 
constant physical habitats. 

§ 6. Environmental Correlates of Food Chain Length 
Frederic Briand and Joel E. Cohen 

In community food webs, the average lengths and the maximal lengths of food 
chains are independent of primary productivity, contrary to the hypothesis that 
longer food chains should arise when more energy is available at their base. 
Environmental variability alone also does not appear to constrain mean or 
maximal chain length. However, habitats that are three-dimensional or solid, 
like the forest canopy or the water column of the open ocean, have distinctly 
longer food chains th'an habitats that are two-dimensional or flat on the human 
scale, like a grassland or lake bottom. 
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Chapter III. A Stochastic Theory of Community Food Webs 

§ 1. Theory: Circles of Complexity, Spherical Horses 
Joel E. Cohen 

IX 

Theories of food web structure have been strongly influenced by the tradition 
in physics of modeling dynamic processes by systems of differential equations. 
Such models may be linear or non-linear, and may have fixed or random para­
meters. All such models necessarily posit dynamic processes, and such processes 
cannot be tested against static food web data. The theoretical approach taken 
in the following chapters is tuned to the nature of most food web data, which 
are static and phenomenological. The aim is to find the simplest assumptions, 
with the least theoretical superstructure, that can unify the observed empirical 
regularities. Any phenomenological model, no matter how successful, remains 
only a partial, cross-sectional description of dynamic ecological processes. In spite 
of its apparent limitations, the cascade model presented in the following chapters 
offers the first quantitative description of some important features of food webs. 

§ 2. Models and Aggregated Data 
Joel E. Cohen and Charles M. Newman 

Several simple models, based on random directed graphs, are proposed to 
explain the structure of food webs. Several are rejected for qualitative or 
quantitative failures to describe the data. A model called the cascade model is 
shown to predict the form and parameters of the observed scale-invariance in 
the numbers of kinds of species and kinds of links as a consequence of the 
observed scale-invariance in the ratio of links to species. 

§ 3. Individual Webs 
Joel E. Cohen, Charles M. Newman and Frederic Briand 

The cascade model is tested against data from individual webs. It shows a 
higher ratio of links to species for webs in constant habitats than for webs in 
fluctuating habitats. 

§ 4. Predicted and Observed Lengths of Food Chains 
Joel E. Cohen, Frederic Briand, and Charles M. Newman 

An exact quantitative theory for the expected numbers of chains of each length, 
the first such theory, is derived from the cascade model of community food 
webs, and is tested with considerable success against the observed numbers of 
chains in 113 webs. 

§ 5. Theory of Food Chain Lengths in Large Webs 
Charles M. Newman and Joel E. Cohen 

The cascade model provides the first exact explanation of why the lengths of 
food chains are much less than the number of species in a community. According 
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to the cascade model, the median value of the longest chain increases very 
slowly with the number of trophic species, remaining below 17 for up to one million 
trophic species. When the number of trophic species in a web becomes extremely 
large, the cascade model predicts that the mean length of chains approximately 
equals the mean number of predators plus prey of any species in the web; this 
prediction is apparently new, and is testable. 

§ 6. Intervality and Triangulation in the Trophic Niche Overlap Graph 
Joel E. Cohen and Zbigniew J. Palka 

In 113 community food webs, the fraction of webs that are interval is strongly 
associated with the number of species in the webs, declining from one for small 
webs (16 or fewer species) toward zero for large webs (33 or more species). 
The cascade model predicts that, for small numbers of species, the probability 
that a web is interval is near one, while for large numbers of species, the 
probability that a web is interval declines extremely rapidly toward zero. The 
quantitative and qualitative agreement between the observed and predicted 
relative frequencies of interval webs is reasonable. The broad ecological inter­
pretation is that the larger the number of species in a community, the less 
likely it is that a single dimension suffices to describe the community's trophic 
niche space. 

Chapter IV. Data on 113 Community Food Webs 

Assembled and edited by Frederic Briand and Joel E. Cohen 
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Chapter I. General Introduction 

§o. Food Webs and Community Structure 

Joel E. Cohen 

1. Introduction 

A central problem of biology is to devise helpful concepts (such as genes) and 
tested quantitative models (such as Mendel's laws) to describe, explain and 
predict biological variation. The problem of characterizing variation arises in 
different guises in population genetics (genetic variation), demography (varia­
tion by age, sex, or location), epidemiology (variation by risk factors and disease 
status), and ecology (variation in species composition and interactions in com­
munities). In each field, there is variation over time, in space, and among units 
of observation (individuals, populations, or comparable habitats). 

This introduction reviews some recent efforts to describe, explain and predict 
variation in the food webs of ecological communities. There are many notions of 
an ecological community and many approaches to describing and understanding 
community ecology. Panoramic reviews of community ecology are available (such 
as Diamond and Case 1986; Kikkawa and Anderson 1986; National Research 
Council 1986; May 1986). For present purposes, a community is whatever lives 
in a habitat (lake, forest, sea floor) that some ecologist wants to study. 

Once the physical boundaries of a habitat are defined, it is natural to study 
flows of matter and energy across and within the boundaries. A partial descrip­
tion of these flows is provided by food webs, which used to be called food-cycles 
(Elton 1927). 

A food web describes which kind of organisms in a community eat which 
other kinds, if any. A community food web (hereafter simply "web") describes 
the feeding habits of a set of organisms chosen on the basis of taxonomy, location 
or other criteria without prior regard to the feeding habits among the organisms. 
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Webs were invented in the natural-historical apptoach to community ecology as 
a descriptive summary of which species were observed to eat which others. 

If an ecological community is like a city, a web is like a street map of the 
city: it shows where road traffic can and does go. A street map usually omits 
many important details, such as the flow of pedestrian and bicycle traffic, how 
much traffic flows along the available streets, what kind of vehicular traffic it is, 
the reasons for the traffic, the laws governing traffic flow, rush hours, and the 
origin of the vehicles. By analogy, a web often omits small flows of food or pre­
dation on minor species, the quantities of food or energy consumed, the chemical 
composition of food flows, the behavioral and physical constraints on predation, 
temporal variations (periodic or stochastic) in eating, and the population dy­
namics of species involved. Thus a web gives at best very sketchy information 
about the functioning of a community. But just as a map provides a helpful 
framework for organizing more detailed information, a web helps picture how a 
community works. 

Many approaches to studying webs are available. I will not attempt here a 
comprehensive review of food webs, since such reviews are available (see Pimm 
1982 and in press; DeAngelis et al. 1983; Lawton in press). A difference oftem­
perament, training, and language seems to divide those who prefer to study webs 
in physical and chemical terms (such as Lotka 1925; Lindemann 1942; Wiegert 
1976; Budyko 1980; Margalef 1984; Remmert 1984) from those who prefer to 
study webs in terms of the natural history of species of living organisms (such as 
many authors in the collection by Hazen 1964). Here "natural history" comprises 
morphological, genetic, physiological, behavioral, and demographic characteris­
tics of species. Recent natural-historical approaches have focused on combina­
torial aspects of web structure (Cohen 1978; Sugihara 1982, 1983, 1984), on the 
theory of interactions between web structure and the stability of dynamic mod­
els (May 1973; Pimm and Lawton 1977; Pimm 1982, 1984; Sugihara 1982), and 
on empirical generalizations (Paine 1980; Briand 1983; Beaver 1983, 1985). 

Fortunately, nature is serenely indifferent to the prejudices ecologists bring 
her. It will eventually be necessary to integrate the physico-chemical and natural­
historical approaches to community ecology. I hope that the food web models 
reviewed here will help bring about that integration. 

This introduction reviews some recent discoveries about webs, suggests op­
portunities for further empirical and theoretical study, and sketches some uses 
for actual and potential knowledge about webs. I attempt to give here an in­
formal description of the discoveries that are presented more technically in the 
following chapters. 

So far as I know, webs were first described in scientific detail at the beginning 
of this century. Simplifications that they were, the webs appeared forbiddingly 
complex relative to the concepts available for understanding them. The webs 
differed strikingly from one habitat to another. Now enough webs have been 
patiently observed and recorded to demonstrate that ensembles or collections 
of webs display simple general properties that are not evident from any single 
web. Building on a collection of webs that I initiated (Cohen 1978), F. Briand 
assembled and edited 113 community webs from 89 distinct published studies. 
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Thus many field ecologists contributed to the discoveries reviewed here. Most of 
the world's biomes are represented among these webs. There are 55 continental 
(23 terrestrial and 32 aquatic), 45 coastal, and 13 oceanic webs, ranging from 
arctic to antarctic regions. The sources and major characteristics of these webs 
are listed in Chap. 11.6. The webs are fully documented in Chapter IV of this 
book. 

In what follows, I will illustrate what a web is and how a web is described. 
I will present some recent quantitative empirical generalizations about webs. 
Then I will present a simple model, called the cascade model, that unifies the 
quantitative generalizations. Though this model does not purport to represent 
everything field ecologists know is happening in webs, no other model at present 
connects and explains quantitatively what is observed. The cascade model also 
makes novel predictions that can be tested. Then I will describe problems from 
other parts of ecology that can be analyzed using the cascade model and the 
facts on which it is based. Finally, I will sketch some potential uses of facts and 
theories about webs. 

2. Terms 

Let me introduce some terms and illustrate them with an example. A trophic 
species is a collection of organisms that have the same diets and the same preda­
tors. This definition combines Sugihara's definitions (1982, p. 19) that resources 
are trophically equivalent if they have identical consumers and that consumers 
are trophically equivalent if they have identical resources. A trophic species will 
sometimes, but not always, be a biological species in the usual sense of biological 
species: a collection of organisms with shared genetics. A trophic species may 
be a biological species of plant or animal, or several species, or a stage in the 
life cycle of one biological species. Hereafter the word "species" without further 
specification means "trophic species" . 

Independently of Sugihara (1982, p. 19), Briand and I (Chap. 11.2) introduced 
the concept of trophic species to find out if there was merit in a criticism that 
Pimm (1982, p.168) made of my earlier finding (Chap. 11.1) that webs generally 
had about 4 (biological) species of predators for every 3 (biological) species 
of prey. Pimm suggested that ecologists distinguish among species with fur or 
feathers, which are likely to be consumers, more often than among species with 
more difficult taxonomy, such as many plants, microorganisms and insects, which 
are likely to be consumed. The excess of predators, he suggested, could be an 
artifact of the interests and knowledge of ecologists. 

To test that possibility, Briand and I devised an automated lumping procedure 
that puts together those biological species or other biological units of a web that 
eat the same kinds of prey and have the same kinds of predators. We call each 
equivalence class that results from such lumping a trophic species. Our intent was 
to apply a uniform rule to distinguishing among the units of a web in order to see 
if this uniform rule altered the ratio of predators to prey. Indeed it did! A slight 
excess of predators remains, but the ratio of predators to prey counting lumped 
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or trophic species is much nearer 1: 1 than the ratio based on the original data 
(Chap. II.2). Pimm's criticism had merit. We believe that using trophic species, 
as we shall do henceforth in this introduction, corrects a bias of ecologists and 
gives a more realistic picture of the trophic structure of communities. 

A web is a collection of trophic species, together with their feeding relations. 
Each arrow in a web goes from food to eater, or from prey to predator. I call 
each arrow a "link", short for "trophic link" . 

Rat 
Pig ~ 

~~ I /7 Coconut crabs 

Terns Frigate birds 

~:~::M"", \) ./"'''''' 
c/oconut -/ 7 Starlings 

" " // -:::~. ~ / Pandanus _> Organic 
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-->Snails 

--"'Fungi 

Marine environment Terrestrial environment 

Fig. 1.0.1. Food web in the Kapingamarangi Atoll. Redrawn from p. 157 of Niering 1963. As 
reported by Niering, the biological units in this figure range taxonomically from individual bio­
logical species (man, pig) to very large aggregates of species (phytoplankton, land vegetation), 
and do not necessarily correspond to trophic species 

Fig. 1.0.1 (redrawn from Niering 1963) pictures the unlumped web on an island 
in the Pacific Ocean. Some species are top, meaning that no other species in the 
web eats them, such as reef heron, starlings. Some species are intermediate, 
meaning that at least one species eats them, and they eat at least one species, 
such as insects, skinks, fish. Some species are basal, meaning that they eat no 
other species, such as algae, phytoplankton. The web omits decomposers. A 
crude way to quantify the structure of webs is to count the numbers of species 
that are top, intermediate and basal. 

These three kinds of species specify four kinds of links: basal-intermediate 
links, such as phytoplankton to zooplankton; basal-top links, such as coconut 
to man; intermediate-intermediate links, such as zooplankton to fish; and inter-
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mediate-top links, such as fish to frigate birds. Additional information about 
structure is given by the numbers of links of each of these four kinds. 

A chain is a path of links from a basal species to a top species, such as from 
phytoplankton to fish to terns. The length of a chain is the number of links in 
it. In Fig. 1.0.1, the longest chain has only four links, and there is only one chain 
of length four. 

A cycle is a directed sequence of one or more links starting from, and ending 
at, the same species. A cycle of length 1 describes cannibalism, in which a species 
eats itself. Cannibalism is common in nature. But ecologists report cannibalism 
so unreliably that we have suppressed it from all the data even where it is 
reported. A cycle of length 2 means that A eats Band Beats A. In this example, 
as in most webs, there are no cycles of length 2 or more. 

In summary, the terms just defined are trophic species, including top, inter­
mediate and basal; links, including basal-intermediate, basal-top, intermediate­
intermediate and intermediate-top; and chains, length (the number oflinks) and 
cycles. 

In what follows, the terms "observed web" or "real web" mean a web edited 
to eliminate obvious errors, inconsistencies and oversights, in which the original 
ecologist's biological units are replaced by trophic species, and in which canni­
balism and isolated species (species without feeding relations to any others) are 
excluded. It is useful to ask in what sense sU'ch webs are "real". 

Clearly the processed data are more constrained by reality than, for example, 
webs constructed a priori as model ecosystems. As a relative term, "real" means, 
not that the data are perfect, but that they are not invented. 

I think it may eventually be possible to claim much more for edited webs based 
on trophic species. By analogy, chemists have learned that it is more useful and 
economical to describe chemical "reality" in terms of chemical elements, which 
were once considered hypothetical, than in terms of gross phenomenology like 
color, taste and density. Geneticists have learned that it is more useful and 
economical to describe the factors affecting inheritance in terms of genes, which 
were once considered hypothetical, than in terms of the gross phenomenology 
of certain macroscopic characters. I suggest that a web in which the units are 
trophic species may prove to be a more useful and economical description of the 
trophic organization of ecological communities than a description in terms of 
taxonomic phenomenology. Whether trophic species are closer to reality than the 
full glory of a naturalist's notebook will have to be determined by the eventual 
usefulness of the empirical and theoretical generalizations that develop using 
trophic species. 

3. Laws 

Here are five laws or empirical generalizations about webs. 
First, excluding cannibalism, cycles are rare. This generalization, without 

detailed supporting data, has been known for a long time (Gallopin 1972). Of 
113 webs, three webs each contain a single cycle of length 2, and there are no 
other cycles (Chaps. III. 2 , IlIA). 



6 Chapter I. General Introduction 

The rarity of cycles is not an artifact of using trophic species instead of the 
original units of observation, such as biological species, size classes, or aggregates 
of species. The reason is that the lumping procedure does not alter the connec­
tivity of the web: the trophic species containing unit A is trophically linked to 
the trophic species containing unit B if and only if A was originally trophically 
linked to B. It follows that any cycle present in the original web must be rep­
resented by a cycle of the same length in the lumped web. Therefore, excluding 
cannibalism, if 110 of 113 lumped webs have no cycles, then 110 of the origi­
nal webs had no cycles. The remaining three of the original webs had no cycles 
longer than length 2. There is no evidence that cycles occur in more webs if 
biological species are used instead of trophic species. 

Second, chains are short (Hutchinson 1959). If one finds the maximum chain 
length within each web, then the median of this maximum in the 113 webs is four 
links and the upper quartile of the maximum chain length is five links (Chap. 
lIlA). The longest chains in all 113 webs had ten links, and only one web had 
chains that long. 

The last three laws deal with scale invariance (Chaps. II.1-3). Scale invariance 
means that webs of different size have constant shape, in some sense. 

Our third law is scale invariance in the proportions of all species that are 
top species, intermediate species and basal species (see Fig. A.2.2a-c). There is 
evidently no increasing or decreasing trend in these proportions as the number 
of species increases (Chap. II.2). Here scale invariance describes the observation 
that as the number of species in 62 webs varies from 0 to 33, the proportions 
of top, intermediate and basal species apparently remain invariant. This scale 
invariance explains my earlier observation (Chap. 11.1) that the ratio of num­
ber of predators to number of prey has no systematic increasing or decreasing 
trend when webs with different numbers of species are compared. The number 
of predators is the sum of the numbers of top plus intermediate species, while 
the number of prey is the sum of the numbers of intermediate plus basal species. 
Mithen and Lawton (1986) and Tilman (1986) have developed other explana­
tions for the same finding. 

Our fourth law is scale invariance in the proportions of the different kinds of 
links. In Fig. A.3.2a, for example, the abscissa is the number of species and the 
ordinate is the proportion of basal-intermediate links among all links. There is no 
clear evidence of an increasing or decreasing trend. The proportions of different 
kinds of links, like the proportions of species, are approximately scale-invariant. 

The fifth law is that the ratio of links to species is scale-invariant. In Chap. 
lIlA, Fig. 4 plots the observed number of links in each web against the observed 
number of species, for 113 webs. The data are approximated well by a straight 
line with slope about 2. That means that a web of 25 species has on average 
about 50 links. We first came across this generalization with 62 webs (Chap. II.3). 
Then Briand collected an additional 51 webs, and we found that the new data 
superimpose beautifully on the old data (Chap. lIlA). Several other investigators 
independently arrived at equivalent conclusions (Chap. 11.0). So far, this scale­
invariant ratio of links to species is a consistent feature of nature. 
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In summary, I have reviewed evidence for five "laws" of webs. Qualitatively, 
these laws state that cycles are rare, chains are short, and there is scale-invariance 
in the proportions of different kinds of species, in the proportions of different 
kinds of links, and in the ratio of links to species. Each of these laws may be 
stated quantitatively. 

By constructing hypothetical examples, it is not too hard to see that each 
of. these laws may fail to hold while the remaining laws continue to hold. This 
means that the laws are logically independent. That all five laws characterize 
observed webs suggests that the laws are not empirically independent, and that 
it might be possible to find fewer than five assumptions which could explain and 
unify the five laws. 

I make no claim that these are the only important empirical "laws" of webs. 
For example, I have omitted my finding (Chap. IIA) that the trophic niches of 
predators in webs may be usually represented by intervals of a line (see also Chap. 
III.6), and Sugihara's findings (1982, 1983, 1984) on the rarity of homological 
holes and the high frequency of rigid circuits. I selected the five "laws" reviewed 
above because they are phenomenologically important and because a simple 
model can connect them qualitatively and quantitatively. 

4. Models 

I turn now to a model that shows how the five empirical regularities described 
in the preceding section are related. 

Let S denote the number of trophic species and L the number of links. List all 
the species along both the rows and columns of a "predation matrix," a square 
table of numbers with S rows and S columns. Name the matrix A. Put a 1 in the 
intersection of row i and column j (element aij of the matrix A) if the species 
labeled j eats the species labeled i, and a 0 if species j does not eat species i. 
Since cannibalism is excluded from the data, all the diagonal elements (where 
i = j) are set equal to O. In terms of this predation matrix, the total number 
of links is the sum of the elements of A. The sum picks up a 1 if there is a link 
from prey i to predator j and a 0 if there is no link. 

The predation matrix also tells whether a species is top. If a species is top, 
then nobody eats it. That means that the row of that species should be all O's. 
So a O-row corresponds to a top species. Similarly, a O-column corresponds to 
a basal species because the species eats nothing. A species that has neither a 
O-row nor a O-column is intermediate. 

I now describe the cascade model, but not the calculations required to squeeze 
results out of it. Some limnologists (such as Carpenter et al. 1985) use the 
term "cascade" with a different meaning, to describe the dynamics of limiting 
nutrients in webs. When the term "cascade" appears, it seems advisable to look 
for a definition. In this book, "cascade" refers only to the model in the next 
paragraph. 

First, the cascade model supposes that nature numbers the S species in the 
community from 1 to S (without showing us the numbering), and that the 
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numbering specifies a pecking order for feeding, as follows. Any species j in this 
hierarchy or cascade can feed on any species i with a lower number i < j (which 
doesn't mean that j does feed on i, only that j can feed on i). However, species 
j cannot feed on any species with a number k at least as large, k ~ j. Second, 
the cascade model assumes that each species actually eats any species below it 
according to this numbering with probability diS, independently of whatever 
else is going on in the web. Thus the probability that species j does not eat 
species i < j is 1- diS. 

The assumptions of an ordering of species, of a probability of feeding pro­
portional to II S that is the same for all possible feeding relations, and of in­
dependence among feeding relations, are all there is to the cascade model. In 
the predation matrix A, aij is 0 always if i ~ j. The predation matrix in the 
cascade model is strictly upper triangular, i.e., every element on or below the 
main diagonal is O. An element above the diagonal (i < j) is 1 with probability 
diS and is 0 with probability 1- diS, and all elements are independent. 

As is conventional, I use E to denote the average or expected number. I now 
show how to compute E(L), the expected number of links, according to the 
cascade model. The expected number of links is the expectation of the sum of 
the predation matrix elements. There are S2 elements in the predation matrix A 
and the probability is diS that an element aij (i < j) above the main diagonal 
equals 1. All other elements of A are 0 by construction. Since there are S( S -1) 12 
elements above the main diagonal, the expected sum of the elements of A is 
S(S - 1)/2 x diS = d(S - 1)/2 = E(L). Thus E(L) is a linear function of S 
with slope d12. 

Since at present I have no theory to predict the slope, I have to estimate 
the slope from the data in Fig. 4 of Chap. IliA. The slope of the line there is 
approximately 2, so I take d = 4 approximately. That's the only curve-fitting in 
this model. Everything else is derived. Thus E(L) = 2(S - 1) = 2S - 2. Among 
webs with 26 species, the average number of links is predicted to be 50. Since the 
number of species ranges from 3 to 48 in our data, the constant term -2 in this 
equation is negligible compared to the term 2S proportional to S. Qualitatively, 
the cascade model reflects the observation that the expected number of links 
is nearly proportional to the number of species. Quantitatively, the link-species 
scaling law fits because I made it fit by taking d = 4. 

Roughly speaking dl2 (more exactly, d(S -1)/(2S)) is the average number of 
predators per species and roughly dl2 is the average number of prey per species. 
Here the average is taken over all webs with a given number of species and, more 
importantly, over all species within a web. Obviously, a species at the top of the 
cascade has no predators, while a species at the bottom of the cascade has no 
prey. However, averaged over all positions in the cascade, an average species has 
about 2 predators and about 2 prey. 

As the number of species becomes large, the cascade model predicts 26 per­
cent top species, 48 percent intermediate species and 26 percent basal species. 
Thus the model predicts a 1:1 ratio of predators to prey. We observe 29 per­
cent top species, 53 percent intermediate and 19 percent basal (see Fig. A.2.2), 
giving roughly a 1.1:1 ratio of predators to prey. The model predicts the follow-
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ing percentages of basal-intermediate, basal-top, intermediate-intermediate and 
intermediate-top links: 27, 13, 33, and 27. We observe, correspondingly, 27, 8, 
30, and 35 (see Fig. A.3.2). 

It is nice that the cascade model reproduces all the laws of scale-invariance 
qualitatively, but far more striking that the cascade model gives a remarkable 
quantitative agreement between observed and predicted proportions. We put one 
number d into the cascade model and get out five independent numbers (because 
the three species proportions have to add up to 1 and the four link proportions 
have to add up to 1). I emphasize that these predictions use only the observed 
ratio of links to species. 

For a finite number of species, we calculated from the cascade model the ex­
pected fraction of top species and the predicted variance. In Chap. 111.2, Fig. 1 
shows that the cascade model predicts not only the means but also the variabil­
ity in the proportion of top species. I don't know whether the cascade model 
can predict the variability in proportions of links because I don't know how to 
calculate analytically what variability the cascade model predicts and have yet 
to do appropriate numerical simulations. 

The cascade model was built to, and does, explain qualitatively and quan­
titatively the mean proportions of different kinds of species and links. Can the 
cascade model describe the number of chains of each length, counting all the 
possible routes from any basal species to any top species? 

0) 0 
®V 
V 

Fig. 1.0.2. Hypothetie&l. food web to illustrate how the frequency distribution of chain lengths 
is counted. There is one chain length 1 (from species 1 to species 2) and there are two chains 
of length 2 (from species 1 to species 4 and from species 1 to species 5) 

Let me illustrate with an artificial example (Fig. 1.0.2) how to get a frequency 
histogram of chain length from a web. The link from 1 to 2 is a chain of length 
1. The path 1,3,4 is a chain of length 2, and the path 1, 3, 5 is another chain 
of length 2. A numerical summary of the chain length distribution of the web 
in Fig. 1.0.2 is that it has one chain oflength 1, two chains of length 2 and no 
longer chains. 

In Chap. 111.4, Fig. 1 shows the expected number of chains of each length, 
according to the cascade model, using parameters of a typical web, namely 17 
species and d near 4. The same figure also shows the results of one hundred 
computer simulations of the model using the same parameters. The sample mean 
numbers of chains of each length agree well with the theoretically expected 
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number calculated from the model. That agreement is evidence that both the 
calculations and the simulations are right. 

How well does the cascade model predict the observed distribution of chain 
length of a real web? To find out, we generated random webs according to the 
cascade model with the parameters of the observed web. We measured how of­
ten the chain length distribution of a random web was further from the chain 
length distribution predicted by the cascade model than the real observed chain 
length distribution was from the predicted distribution. We used two measures 
of goodness of fit: the sum of squares of differences and a measure like Pearson's 
chi-squared. If the discrepancy between the observed and the expected frequency 
distributions was not larger than most of the discrepancies between webs ran­
domly generated according to the cascade model and the mean frequency dis­
tribution expected from the model, we said the fit was good. If the discrepancy 
between observed and predicted chain length distributions was bigger than most 
simulated discrepancies, we said the fit was bad. 

Have no illusions about what a good fit means. In Chap. IliA, Table 2, food 
web 18 illustrates a good fit while food web 37 illustrates a poor fit. Food web 18 
is the Kapingamarangi Atoll food web (see Fig. 1.0.1 above) of Niering (1963). 
For food web 18, Table 2 of Chap. IIIA shows four chains of length 4 while 
Fig. 1.0.1 has one chain of 4 links. The reason for this discrepancy is that Cohen 
(1978) added to the predation matrix for this web links that Niering (1963) 
described in his text but omitted from his figure. 

Of 62 webs in Briand's original collection, the chain length distributions of 11 
or 12 (depending on the measure of goodness offit used) were badly described by 
the cascade model. The model's success with the chain length distributions of 50 
or 51 of these webs made us afraid that we had overfitted the model to the data. 
Perhaps by constructing the cascade model to explain the mean proportions 
of top, intermediate and basal species and the proportions of different kinds 
of links, we had used so much information from the data that there was no 
possibility for the fits to the chain length distribution to be bad, even though 
they were not used to build the model. This worried us. So Briand found and 
edited 51 additional webs which we had never analyzed before. The ratio of links 
to species was roughly the same for these new webs as for the old webs, as I 
mentioned already. With these fresh data, we found only five webs with poor 
fits to the cascade model's predicted frequency distribution of chain length. The 
proportion of poor fits, 5 of 51 webs, was smaller among the new webs than it 
had been among the original webs (Chap. IliA). 

The cascade model uses no information about chain length to predict the 
frequency distributions of chain length. The predictions derive solely from the 
number of species and the number of links. No other parameters are free. 

Apparently, the niche overlap graph of most webs is an interval graph, i.e., 
the overlaps of trophic niches revealed by most webs are consistent with the 
trophic niches being I-dimensional (Chaps. I1.4, I11.6). Unexpectedly, the cas­
cade model predicts the conditions under which intervality is common or rare. 
This prediction uses no fitted parameters. 
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The cascade model needs to be tested further, tested until it fails, as it surely 
will. How well can the cascade model predict the moments of chain length (as 
Stuart Pimm has asked), or patterns of omnivory? Can the cascade model relate 
to the combinatorial web models of Sugihara (1982, 1983, 1984)? Much testing 
remains to be done. 

The cascade model makes new predictions. In large webs (5 > 17), the cascade 
model implies a novel rule of thumb: The mean length of a chain should equal the 
mean number of prey species plus the mean number of predators of an average 
species (Chap. 111.5). Both should equal a number near 4. This purported rule 
is open to empirical test. 

The cascade model explains qualitatively why the longest chains in webs 
are typically short. Newman and I (Chap. III.5) derived the relative expected 
frequency of various chain lengths as the number of species goes to infinity, 
according to the cascade model, and found that, with a realistic value of d, 
practically no chains have length 8, 9, or 10. The cascade model predicts that, 
in very large webs, the length of the longest chain grows like (log S)/(log log S). 
That is very slow growth. In a web with 108 species, which is probably an upper 
bound for the world, the cascade model predicts that the longest chain will 
almost never have more than 20 links. 

5. Connections 

The cascade model connects with quantitative questions and theories elsewhere 
in ecology. I will sketch the connection of the cascade model with three topics: 
the species-area curve, the relative importance of predation and competition in 
communities, and allometric equations for the effects of body size. 

First, one of the best known quantitative empirical generalizations of ecology 
is the species-area curve (MacArthur and Wilson 1967; Schoener 1976, 1986; 
Diamond and May 1981). In its simplest form, the species-area curve asserts that 
the number of biological species on an island is proportional to the area of the 
island raised to some power near 1/4. (When examined in detail [Schoener 1986], 
species-area curves are vastly more complicated.) The cascade model predicts, 
among other things, how the mean or maximal length of chains depends on the 
number of trophic species in a community. If the number of trophic species can 
be assumed or demonstrated (by a future empirical study of actual webs) to 
be proportional to the number of biological species, then a combination of the 
species-area curve and the cascade model predicts how chain length should vary 
on islands of different areas. 

Without going into the details of the formulas, it is evident that if the number 
of species on an island increases very slowly with area, and if the maximal or 
mean chain length in a web increases very slowly with the number of species in 
a community, then the maximal or mean chain length should increase extremely 
slowly, or be practically constant, with increasing island area. The combination 
of the species-area curve and the cascade model explains, qualitatively at least, 
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why there is not a known relation between the area a community occupies and 
the mean or maximal chain length of its web. 

An alternative explanation, suggested by Robert T. Paine, is that there is no 
known relation between the area of a community and the mean or maximal chain 
length of its web because nobody has looked for such a relation. If the cascade 
model provokes an ecologist to examine the relation empirically, the model will 
have served a useful purpose. 

Second, the cascade model relates to the roles of competition and predation 
in ecological communities. Hairston, Smith and Slobodkin (1960), as described 
succinctly by Schoener (1982, p. 590), "argued that competition should prevail 
among top predators, whereas predation should prevail among organisms of in­
termediate trophic status, mainly herbivores. Because the herbivores are held 
down by competing top carnivores, competition should prevail again among the 
herbivore's [sic] food species, green plants." Menge and Sutherland (1976, p. 353) 
proposed, by contrast, that as trophic position goes from high to low within a 
community, the relative importance of predation should increase monotonically 
while the relative importance of competition should decline monotonically. Con­
nell (1983) and Schoener (1983) reviewed at length field experiments on inter­
specific competition which bear on these generalizations, and Schoener (1985) 
analyzed the points of agreement and disagreement in the two reviews. 

Predation and competition can be interpreted in terms of quantities com­
putable from the cascade model. It is then possible to examine whether these 
quantities behave according to the generalizations of Hairston et al. (1960) or 
Menge and Sutherland (1976). For example, a natural measure of the amount of 
predation on trophic species i in the cascade model is the expected (or average) 
number of predators on trophic species i, which is easily seen to be d(S - i)/S. 
There are S - i species above species i in the trophic pecking order, and the 
probability that anyone of them will feed on species i is diS, so the expected 
number of predators on species i is the product d(S - illS. Since i = 1 is the 
lowest trophic position in the cascade model and i = S is the highest, the cas­
cade model implies that this measure of predation should increase linearly as 
trophic position goes from high to low within a community, exactly as proposed 
by Menge and Sutherland (1976). As the generalizations of Hairston et al. and 
Menge and Sutherland pertain to the relative importance of competition and 
predation, the behavior of a measure of predation needs to be related to the 
behavior of a measure of competition, such as one used by Briand (Chap. 11.5). 

Third, physical interpretations of the ordering of trophic species assumed in 
the cascade model may make it possible to connect the study of webs with 
the study of alloIl}etry and physiological ecology. The combination might be 
called "ecological allometry" . For example, extending to entire webs a qualitative 
suggestion of Elton (1927, pp.68-70) for individual chains, suppose that each 
trophic species consists of individuals more or less homogeneous with respect 
to size or mass, and that the larger the species' label i = 1,2, ... , S in the 
cascade model (i.e., the higher the trophic position), the larger the mass of 
each individual in that species. (Food chains of parasites generally follow the 
opp(!)site rule: parasites are much smaller than their hosts [Elton 1927, Chap. 6].) 
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The assumption that body mass increases with a species' label i in the cascade 
model can be tested empirically, since it implies that no (nonparasitic) trophic 
species can eat a species larger than itself. When trophic species in real webs 
are ordered by body mass, is the predation matrix generally upper triangular, 
as assumed by the cascade model? [Since this introduction was written, the 
identical question occurred independently to Warren and Lawton (1987). In the 
food web of an acid pond community, when trophic links were determined by 
laboratory tests (not in the field), the predation matrix was largely, but not 
entirely, upper triangular.] 

If size-ranked predation matrices are generally upper triangular, the cascade 
model can connect facts about food webs with quantitative empirical general­
izations that physiological ecologists have discovered about body size (Peters 
1983; Calder 1984; Peterson et al. 1984; Peters and Raelson 1984; Vezina 1985; 
May and Rubinstein 1985). From preliminary calculations, it appears that sev­
eral empirical ecological generalizations, which have previously lacked a physical 
explanation, may be derived from a combination of the cascade model with 
assumptions or facts about body size. 

6. Applications 

This work may eventually contribute to human well-being in four ways. 
First, environmental toxins cumulate along food chains. "Eating 0.5 kg of Lake 

Erie fish can cause as much PCB [polychlorinated biphenyl] intake as drinking 
1.5 x 106 L of Lake Erie water"{National Research Council 1986). An under­
standing of the distribution of the length of food chains is necessary, though not 
sufficient, for understanding how toxins are concentrated by living organisms. 

Second, people have not been very successful at anticipating all the con­
sequences of introducing or eliminating species. Such perturbations of natural 
ecosystems are being practiced with increasing frequency in programs of biolog­
ical control. An understanding of the invariant properties of webs is essential for 
anticipating the consequences of species' removals and introductions. For exam­
ple, a perturbation that eliminated most of the top trophic species, or most of 
the basal trophic species, could be expected to be followed by major changes in 
the structure of the web if the community adjusts to reestablish invariant propor­
tions of top, intermediate and basal species. The cascade model or its successors 
may eventually make it possible to derive more quantitative predictions. 

Third, an understanding of webs will help in the design of nature reserves and 
of those future ecosystems that will be required for long-term manned spaceflight 
and extra-terrestrial colonies. A nature reserve with all top species would be 
expected to have trouble, according to the cascade model. For humans to survive 
and to be fed in space, we need to know more about the care and feeding of webs. 

Fourth, and finally, since some webs include man, an understanding of webs 
may give us a better understanding of man's place in nature, here on earth. 
We have not detected any consistent differences between webs that contain man 
and webs that do not. Of course, we have not looked yet at webs of agricultural 
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ecosystems strongly influenced by man. When we look at new classes of webs, 
we may expect to see new patterns. 



Chapter II. Empirical Regularities 

§O. Untangling an Entangled Bank 

Joel E. Cohen 

... plants and animals, most remote in the scale of nature, 
are bound together by a web of complex relations. 

Darwin (1859, p. 73) 

The chapters in the empirical portion of this book are part of a funny story. 
At least, the story is funny if viewed from sufficient distance. In cartoon form, 
the story has three panels. In the first panel, country folks (the field ecologists) 
happily record the glories of nature in their notebooks and publish summaries 
in the form of food webs. In the second panel, naive city folks (the theoretical 
ecologists) assemble and analyze the food webs. They trumpet to the world 
general patterns that emerge from the collected food webs. (That's what this 
empirical part of the book is about.) In the third panel, the field ecologists, 
some puzzled, some aroused, rear back and dig in their heels: "Wait a minute! 
We didn't expect anybody to use our food webs as data." Meanwhile, in the 
background, a few mice busily build a scaffolding of theory to hold together the 
general patterns found in panel two. (That's what the theoretical portion of the 
book, Chap. III, is about.) 

1. Natural History 

Let us return to the first panel. Food webs figure, in literary garb, in one of 
the most famous paragraphs in biology, the last paragraph of Darwin's On the 
Origin of Species (1859). That paragraph begins: 

It is interesting to contemplate an entangled bank, clothed with many plants of many kinds, 
with birds singing on the bushes, with various insects flitting about, and with worms crawling 
through the damp earth, and to reflect that these elaborately constructed forms, so different 
from each other, and dependent on each other in so complex a manner, have all been produced 
by laws acting around us. 
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Darwin summarizes his theory of evolution and resumes: 

Thus, from the war of nature, from famine and death, the most exalted object which we 
[Darwin speaks anthropocentrically here] are capable of conceiving, namely, the production of 
the higher animals, directly follows. 

The study of food webs is the study of that war of nature, and of the laws acting 
around us which govern it. 

Darwin's literary account offood webs presaged and soon motivated empirical 
studies. In papers published from 1876 onward, Forbes (1977 reprint) described 
in detail the diets of birds, fishes and insects. These papers may contain the first 
sink food webs. In his 1878 paper on the food of Illinois fishes, Forbes explained 
the purposes of his investigations, and emphasized that "We ought also to gain, 
by this means, some addition to our knowledge of the causes of variation, of the 
origin and increase, the decline and extinction of species ... What groups crowd 
upon each other in the struggle for subsistence? Do closely allied species, living 
side by side, ever compete for food?" Forbes did not cite Darwin explicitly here, 
but Darwin's ideas appeared clearly. 

Camerano (1880), in a paper generously sent me by Stuart Pimm, initiated 
more abstract descriptions of the entangled bank. His hypothetical tree-like 
diagrams show feeding relations among different classes of organisms. Unlike 
Forbes's sink webs, Camerano's sketch was intended as a description of an en­
tire community. The diagrams are remarkably similar in form to Darwin's illus­
tration of divergence of character (1859, lithograph inserted between pages 116 
and 117), though with different labels. In function, Camerano's diagrams closely 
resemble schematic webs seen in elementary textbooks of ecology today. Camer­
ano distinguished vegetation, herbivores, and carnivores. Among carnivores, he 
distinguished predators, parasites and endoparasites. He even initiated a math­
ematical formalism to describe or explain equilibrium in complex communities. 

The earliest food web graphs in English that I know of are Shelford's (1913) 
hypothetical descriptions of communities. It remained for British empiricism to 
produce a real description of a whole community. Summerhayes and Elton (1923) 
reported a detailed food web of Bear Island. Another detailed food web centered 
on the herring and plankton community (Hardy 1924) and a web of the animals 
that live on pine (Richards 1926) quickly followed. An industry was born. The 
industry continues to this day, with considerable improvements in technology 
and product. 

As for the technology of inferring the existence of trophic links, Forbes col­
lected consumers and examined macroscopically the contents of their stomachs. 
Many observers determined trophic links simply by macroscopic observation of 
one living organism eating another. The techniques of natural history have not 
lost their value, but have recently been joined by more sophisticated techniques. 
The stomachs of certain marine organisms contain a gray-green paste from which 
it is not easy, or even possible, visually to identify the diet. Recently, antibodies 
have been applied to that paste to identify proteins that are specific to individ­
ual prey species. In addition, the isotopic composition of the tissue of organisms 
living around hot-water vents in the deep ocean floor has been carefully analyzed 
to determine whether the tissue was based on sun-based detritus chains or on 
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chains that derived energy and nutrients from the earth's core (Van Dover et al. 
1988). (See also Hart 1989.) 

As for product, only recently have accounts of food webs improved on the 
reporting, more than a century ago, of Forbes (1977 reprint). Forbes gave de­
tailed matrices, listing consumers by species in column headings and prey often 
by species in row labels, with actual numbers of specimens of each consumer and 
each prey item. Some of his predation matrices were classified by month of obser­
vation to bring out seasonal changes in feeding habits. Unfortunately, Forbes's 
high standard was not maintained. In the hands of many later reporters, a food 
web became little more than an error-prone diagram with boxes and arrows. 
By happy contrast, a recent tropical rocky intertidal web is presented as a large 
matrix accompanied by the number of individuals of each kind observed feeding, 
the mean wet weight of each kind of consumer, various exclosure experiments 
to determine the regulatory role, if any, played by consumers, percent cover of 
certain sessile species, rates of biomass accumulation and change in abundance 
of various species in the web (Menge et al. 1986). In another recent collection of 
webs, the detailed variations in time and space of feeding relations in tree holes 
of various sizes are accompanied by the abundance of each species (Kitching 
1987). 

Chapter IV of this book presents 113 community food webs in the form of pre­
dation matrices, with a simple identification of each species. In many cases, the 
original sources provide additional information. Based on the numerous other 
smaller collections of webs assembled by other investigators, I guess that proba­
bly over a thousand community food webs, and perhaps equal numbers of source 
webs and sink webs (Cohen 1978), have been observed, though many remain un­
published. 

Just as molecular biology has benefited from computerized banks of protein 
sequences and nucleic acid sequences, ecology needs to establish an ecobank, in 
which investigators could share their best estimates of natural webs. An ecobank 
could serve as a depository for the many webs which may not merit indepen­
dent publication but which are, nevertheless, highly useful as a basis for fur­
ther analysis. Establishment of an ecobank with the advice and governance of 
active ecologists might encourage the development of common standards or lan­
guage for presenting webs. Descriptions of a web could be refined as successive 
investigators contributed additional information about body sizes, population 
abundances or temporal variations, for example. Data could be distributed via 
telecommunications or standard computer media. 

An ecobank is a long way from the entangled bank Darwin (1859) described. 
As he was an assiduous gatherer of data, I like to believe he would have approved 
the idea. 
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2. Empirical Laws 

In the second panel of the cartoon, order emerges from the replication of chaos. 
When I was a graduate student two decades ago, food webs were presented 

like (pre-Darwinian) butterflies, as works of natural beauty, to be admired for 
all their inscrutable complexity. The patent variation between one food web and 
the next web was taken as clear evidence (by my friends who were molecular 
biologists) that the structure of webs was not a fit subject of science, or (by my 
friends who were ecologists) that webs could only be understood one at a time, 
through detailed study of the population dynamics and natural histories of each 
kind of organism in the web. 

The primitive theoretical concept behind all the work in this book is that 
it is. worth looking at an ensemble (of webs, in this case) for order that may 
not be apparent in isolated individuals. Students of statistical mechanics could 
recognize this primitive theoretical concept as their own, but it is not uniquely 
their own; statistical mechanics owes it, I believe, to the social and biological 
sciences of the first two-thirds of the nineteenth century, and it probably goes 
further back. 

Based on the first collection of food webs (Cohen 1978), I observed a few 
empirical regularities that had not been noticed before. The trophic niche overlap 
graphs were interval graphs surprisingly often (Chap. IIA); and the ratio of the 
number of kinds of prey to the number of kinds of predators seemed to be 
independent of the total number of kinds of organisms in the web (though the 
ratio was higher for sink webs as a group than for community webs as a group) 
(Chap. 11.5). 

The easy availability of data and the possibility of unsuspected order at­
tracted attention from people who like to look for order. Based on the same 
data, MacDonald (1979) promptly observed that the ratio, which he called 13, of 
the number L of trophic links to the number 8 of kinds of organisms in the. 30 
webs had a mean 1.88 and a fractional root mean square deviation of 0.27, with 
no notable difference between sink webs and community webs. For all 30 webs 
of Cohen (1978), the ratio lay between 1 and 3. 

Simultaneously, Rejmanek and Stary (1979) plotted L/[8(8-1)/2]' a quantity 
they called the connectance C, as a function of 8 for 31 plant-insect-parasitoid 
webs, one data point for each web. It appears likely that their webs were con­
structed as source webs, in the terminology of Cohen (1978). The data points for 
nearly all 31 webs fell between the two hyperbolic curves C = 2/8 and C = 6/8. 
The curve C = 4/8 ran through the center of this band and through the center 
of the data, though Rejmanek and Stary (1979) preferred C = 3/8 as a descrip­
tion of central tendency. MacDonald (1979), in a note added in proof, pointed 
out that the hyperbolic relationship of Rejmanek and Stary (1979) between con­
nectance and number of species is equivalent to the constancy of f3 = L/8 when 
(8 - 1)/8 approximates 1. If C = 4/8, then f3 = 2 approximately. 

The hyperbolic relation between connectance and number of species was con­
firmed by Pimm (1982) and Auerbach (1984), with some additional data includ­
ing Cohen's (1978). 
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Without reference to MacDonald (1979) or Rejmanek and Stary (1979), Briand 
(Chap. U.5) revised some of Cohen's (1978) community food webs and collected 
an additional 27. (Warning: Briand's connectance C is twice the connectance 
C of Rejmanek and Stary (1979), Pimm (1982), and Auerbach (1984).) Briand 
found that the number of trophic links "increases as a nearly linear function of 
S" and, based on a straight line fitted by the method of least squares to the 
logarithms of Sand L, suggested that L = 1.3S1.1. 

Cohen and Briand (Chap. 11.3) examined the relation of L to S with 62 
community food webs. Without presuming to distinguish a power law relation 
with an exponent of 1.1 from simple linearity (corresponding to an exponent of 
1.0), we found approximate proportionality between Land S. The coefficient of 
proportionality was roughly 1.9 with a standard deviation of 0.1. Still unaware 
of MacDonald's (1979) work, we at least noted the equivalence of our linear 
relation to the hyperbolic relation between connectance and number of species. 

Cohen and Newman (Chap. 111.2) gave the name "link-species scaling law" 
to the linear relation between links and species. Cohen, Briand and Newman 
(Chap. IlIA) confirmed the relation with all 113 webs collected by Briand and 
estimated a coefficient of proportionality (the slope of the regression through 
the origin) of 2.0 with a standard deviation of 0.1. 

Only in preparing this book did I realize that MacDonald (1979) was the first 
to remark that (3 = L / S varies little from one web to another. Thus the "link­
species scaling law" has been discovered independently three times, in slightly 
different but mathematically equivalent forms: first by MacDonald (1979), as the 
near-invariance of (3; second by Rejmanek and Stary (1979) as the hyperbolic 
relation between connectance and the number of species; and third by Briand 
(Chap. 11.5) and Cohen and Briand (Chap. 11.3) as a linear relation between 
trophic links and species. One hundred ofthe 113 webs studied by Cohen, Briand 
and Newman (Chap. IlIA) are independent of the webs used by MacDonald, and 
the webs studied by Rejmanek and Stary are independent of all the others. The 
link-species scaling law appears as a robust fact about food webs. 

The story of the link-species scaling law is not the only case of simultaneous 
or independent discovery in the chapters that follow. Sugihara (1982) observed 
that it was natural to consider kinds of organisms that had identical predators 
and identical prey as a single unit. He called two kinds of organisms with the 
same diets and predators "trophically equivalent." At the same time, without 
giving an exact definition, Yodzis (1982) suggested that organisms with "simi­
lar" diets and predators could be considered as "trophic species". Unaware of 
these proposals, Briand and Cohen (Chap. 11.2) introduced the "lumping" of 
trophically identical species, i.e., species that were trophically equivalent in the 
sense of Sugihara (1982), and began referring to the resulting equivalence classes 
as "trophic species" (Chap. 11.3). 

Based on this experience with the "link-species scaling law" and the concept 
of "trophic species" , I would not be surprised if other empirical generalizations 
and concepts reported in this section of the book have also been anticipated in 
one form or another. 
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The empirical papers in this portion of the book do not pretend to be encyclo­
pedic. Other students of food webs and community ecology have reported many 
other empirical generalizations. These generalizations concern food chain length 
(see Chaps. III.3-4), the shape of trophic pyramids, element recycling, niche 
overlaps (Cohen 1978) and niche packing (Sugihara 1982). Moreover, I would be 
surprised if no further empirical generalizations emerge from data such as those 
assembled in Chap. IV. 

However, some caution is necessary about forming generalizations. May (1983) 
pointed out that webs from different classes of habitats, e.g., terrestrial vs. ma­
rine, may differ because of the difference in training and interests of the classes 
of people who study those habitats, rather than because of differences in nature. 
This valid caution does not apply to generalizations based on all food webs. 

3. Facts or Artifacts? 

In the third panel, the field ecologists react to the theoretical ecologists who 
muck about in their food webs. 

Paine (1988) pointed out numerous dangers and pitfalls in the use of existing 
webs as a foundation for ecological generalizations and theory. Some of his cau­
tions apply to generalizations based on all food webs, not just to generalizations 
about differences among classes of webs. For example, to explain the hyperbolic 
relation between connectivity and number of species, Paine (1988) proposed the 
hypothesis of "artistic convenience": "When S [the number of species] is small, 
more links can be portrayed; when S is substantially higher, only those deemed 
to be most meaningful are drawn and connectance is correspondingly reduced. 
Necessity for graphical clarity, then, results in the omission of some links." 

The merit of this criticism of graphical food webs cannot be denied, but it 
does not apply to webs reported in matrix form. Here is a student research 
project: separate the 111 published webs in Chap. IV according to whether the 
original web was published as a picture or as a matrix or as both, and see whether 
the points (species, links) fall into separate clouds according to the format of 
reporting. Send me the results, please. 

Put positively, the possible bias introduced by artistic convenience argues 
for the use of the venerable predation matrix in reporting webs. The predation 
matrix has advantages besides avoiding the siren of "artistic convenience." The 
elements of the matrix can indicate the magnitudes of flows. If an observer puts 
every observed feeding relation in the matrix, as Forbes did more than a century 
ago, then the analyst can experiment with different threshold levels in deciding 
which trophic links are important and which are not. The margins of the matrix 
can easily accommodate reports of observation effort (e.g., hours spent, traps 
set), sample sizes, means and variances of body weights, estimates of population 
abundance or biomass, and other useful descriptors that will bind food webs 
to the rest of population biology and ecology. Finally, matrices are machine 
readable, and therefore easily shared as data. 
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Unfortunately, large, detailed matrices are not easily read by people who, after 
all, are the final consumers of food webs. Hence, an artistically done graph of a 
web, even if incomplete, retains its value for conveying the ecologist's impression 
of a community. 

In addition to the problem of communicating results, Paine (1988) raises 
fundamental problems of gathering the data. Some species are harder to see 
than others. Some species, while easily seen, are more mobile than others and 
therefore less readily incorporated in a web. Transient species, as is their custom, 
come and go. How should the ecologist deal with them? The trophic relations 
of individuals within a biological species sometimes (e.g., Hardy 1924) depend 
strongly on the individual's age, stage or size. Summaries at the species level 
should not overlook these ontogenetic differences. 

All these problems (differential ease of obervation, transient species, and age­
stage effects) also affect other studies of community ecology, such as studies 
of species-abundance distributions, energy flow, or island biogeography. Paine's 
criticisms should stimulate empirical webologists to be more explicit about how 
they deal with the problems he raised. In many papers that report food webs, 
the existence of these problems is less troubling than the absence of any mention 
in the report that the observer was aware of them and had an explicit, consistent 
procedure for dealing with them. 

There are other problems with web data besides the ones that troubled Paine 
(1988). For example, "dimension" has different clear definitions in different con­
texts, but caution is required in each context. Schoener (1974), while not focusing 
on webs, used "dimension" to refer to any measurable variable useful in describ­
ing a species' niche, including feeding and distribution in time and space. Cohen 
(1978) considered only trophic, or feeding, dimensions. Cohen, Briand and New­
man (Chap. 111.4) and Briand and Cohen (Chap. 11.6) consider the apparent 
flatness or solidity of the physical setting of the food web, at the scale of the 
human observer. L. Dyck, M.J. Sibbald and P.R. Sibbald (personal communi­
cation, December 1987) pointed out that a forest that looks three-dimensional 
on the scale of a human observer might look flat on the scale of an insect who 
lives on a leaf. Other organisms of intermediate size might perceive a mixture of 
apparent physical dimensions. They suggested that fractal "dimension" might 
be useful in characterizing habitats. The suggestion remains to be explored. The 
important point is that "dimension" is not a unitary concept in ecology, and 
alertness is needed in using it to characterize food webs. 

Like "dimension", the term "variability" figures importantly in Chap. 11.6. 
This term, too, is used in different senses in different contexts. Even within 
mathematical statistics, there are many measures of variability. In ecology, each 
formal measure can be multiplied by a variety of empirical interpretations. Al­
though the classification of food web environments in Chap. 11.6 as "constant" 
or "fluctuating" is subjective to some extent, it preceded our analysis of the in­
fluence of variability on food chain length, and therefore was not biased by that 
analysis. I hope that less subjective measures of variability, comparable among 
food webs, will be systematically used by future reporters of food webs. 
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The criticisms that the empirical webologists have leveled at theoretical anal­
yses of their data return to them as a challenge. Their data are valuable, perhaps 
more valuable than they knew. The methods by which the data are gathered and 
reported need to be made more explicit, more consistent, and more trustworthy. 
The many imperfections of the data assembled in this book, and the likely im­
perfections of the theory based on those data, should provoke field ecologists to 
render the data obsolete by replacing them with more food webs more system­
atically observed and more carefully reported. At the same time, flawed data 
are not necessarily worthless data. Further analyses of the assembled data on 
community food webs are welcome. 

All the preceding criticisms of generalizing from existing webs are reasonable, 
however valid they may be. I suspect that the energy that sometimes accom­
panies such criticisms may arise from an irrational source, rarely articulated. 
A field ecologist who has devoted years of life to the minute observation and 
analysis of one or a few ecological communities is aware, as no reader of a brief 
published report can be, of the special characteristics that distinguish the biota 
and physical habitat of his or her study sites, both from one another and from the 
study sites of others. A theoretically inclined reader who extracts a few simpli­
fied measurements from an already condensed publication in order to show how 
this lovingly observed community is like all other communities must indeed ap­
pear presumptuous and be a source of irritation to more than one field ecologist. 
There is an inescapable tension between the thrilling uniqueness of individual 
communities and general empirical ecological laws, whatever their explanation. 

A helpful perspective comes from the study of the solar system. "Unique 
events are difficult to accommodate in most scientific disciplines. The solar sys­
tem, however, is not uniform. All nine planets (even such apparent twins as 
the earth and Venus) and over 50 satellites are different in detail from one an­
other ... [There are many examples.] All this diversity makes the occurrence of 
single events more probable in the early stages of the history of the solar sys­
tem" (Taylor 1987, p.477). Notwithstanding this diversity, there is no doubt 
among physicists that these single events and the dynamics of the solar system 
were, are and will be governed by uniform laws of physics and chemistry. Only 
through a thorough understanding of those laws has it become possible to col­
lect appropriate data about the unique characteristics of planets and satellites 
from earth-based observations, lunar collections, and planetary missions. Only 
through an increasing theoretical understanding of those laws in combination 
with the best data has it become possible to make good inferences about unique 
early events. 

Likewise, in the study of food webs, and of community ecology generally, ecol­
ogists require a good understanding of general laws to appreciate the common 
features and differences among food webs and ecological communities. 



A. General Regularities 

§ 1. Ratio of Prey to Predators in Community Food Webs 

Joel E. Cohen 

Whether the diversity of resources limits the diversity of consumers, and specif­
ically, whether the number of kinds of prey limits the number of kinds of preda­
tors, has been of continuing interest in theoretical ecology and wildlife man­
agement (Haigh and Maynard Smith 1972; Levin and Paine 1974; Sullivan and 
Shaffer 1975). Food webs from the ecological literature were collected in ma­
chine readable form to study this question empirically. We report here that in 
community food webs, the ratio of the number of kinds of prey to the number of 
kinds of predators seems to be constant, near 3/4. This invariance has not been 
noticed in earlier studies of individual cases. 

Before analysis, food webs were characterised as one of three types - com­
munity, sink and source. Community food webs describe all kinds of organisms 
(possibly restricted to some location, size or taxa) in a habitat, without reference 
to the eating relations among them. Sink food webs describe all the prey taken 
by a set of one or more selected predators, plus all the prey taken by the prey of 
those predators, and so on. Source food webs describe all the predators on a set 
of one more selected prey organisms, plus all the predators on those predators, 
and so on. Sink and source food webs, hypothetical or schematic constructions, 
and avowedly incomplete, partial or tentative food webs were excluded from 
further study. Fourteen community food webs were thus selected. The complete 
data and individual cases are discussed in Cohen (1978). When the report of a 
food web contained ambiguous or uncertain information about a feeding rela­
tion, the web was included in two versions, one based only on the unambiguous 
information and the other incorporating the additional uncertain or probable 
eating relations. The analysis here, based on all versions, makes no claim that 
the data points are statistically independent and attaches no probability values 
to the statistics calculated. 

The food webs describe the diets or predators not of individual organisms but 
of kinds of organisms. A 'kind of organism' may be a stage in the life cycle or a 
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size class within a single species, or a collection of functionally or taxonomically 
related species, according to the practice of the original report. The numbers 
in the following analyses refer to these ecologically defined kinds of organisms, 
not necessarily to any conventional taxonomic unit. A predator is defined as a 
kind of organism that consumes at least one kind of organism in the food web. 
A prey is defined as a kind of organism that is consumed by at least one kind of 
organism in the food web. Some kinds of organisms may be both predators and 
prey. 

In community food webs, the number m of prey is very nearly proportional to 
the number n of predators (Fig. A.1.1). A least squares regression of m against 
n gives 

m = 1.79 + O.71n. (1) 

The sample standard deviation of the regression coefficient is 0.07 and the linear 
correlation coefficient between m and n is 0.90. The standard error of estimate, or 
sample standard deviation from regression, is 4.62. As is obvious from Fig. A.1.1, 
the regression may be well approximated by a straight line through the origin. 
The least squares regression is 

m = 0.77n. (2) 

The proportionality between the number of prey and the number of predators 
in Fig. A.1.1 is based on 24 versions of 14 food webs reported over a period of 
decades. When the food webs were collected and encoded it was not known that 
such a simplicity would emerge. It therefore seems likely that this invariance 
in the proportions of predators and prey represents a fact about nature, rather 
than an artefact of collusion or convention. 

Given that the proportion of prey to predators is a scale-invariant feature of 
community food webs, the proportion can be predicted quantitatively from other 
facts. For a given food web with m prey and n predators, let A be the number 
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of predator-prey couples. (If X eats Y and Yeats X, the couples (X, Y) and 
(Y, X) are counted as distinct. If X eats X, (X, X) also counts as a couple. 
In the conventional graphical representation of a food web, A is the number of 
directed arrows from prey to predator.) Then within any food web 

A = (average prey per predator) x n 

= (average predators per prey) x m. (3) 

The grand mean over all 24 community food web versions, weighting each food 
web equally, of the average prey per predator is 2.418; the grand mean of the 
average predators per prey is 3.199. If these means apply to each food web, then 
substitution into equation (3) predicts 

min = 2.418/3.199 = 0.756 (4) 

which differs trivially from the least squares regression in equation (2). 
The simplicity of the argument from the proportionality between m and n to 

equation (4) may raise a suspicion that its success depends on an arithmetical 
fact rather than on the observed invariance of proportions of predators and prey 
in nature. A numerical example disproves this suspicion. Suppose a sample of 
community food webs consisted of two food webs. Suppose the first food web 
matrix had mI = 8 prey, nI = 6 predators, and Al = 19.2 predator-prey couples 
(neglecting the requirement that Al be integer for the sake of argument). Then 
its (average predators per prey)! is 2.4 and its (average prey per predator)! is 3.2. 
Suppose the second food web matrix had m2 = 4, n2 = 10, and A2 = 16. Then 
its (average predators per preyh = 4.0 and (average prey per predatorh = 1.6. 
Then the grand mean over both food webs of the average predators per prey 
is 3.2 and the grand mean of the average prey per predator is 2.4, which are 
close enough to the observed. But the straight line through the pairs (n, m) 
satisfies m = 14 - n. Only because nature assures a constant proportion of prey 
to predators do the grand mean of the average predators per prey and the grand 
mean of the average prey per predator apply to all food webs. 
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If the ratio of prey to predators in community food webs is a constant of 
the order of 3/4, then dividing equation (3) by n leads to the prediction that a 
regression (Fig. A.1.2) of average prey per predator against average predators per 
prey should be a straight line through the origin with slope 3/4. The regression 
coefficient of a straight line through the origin is 0.69, not far from 3/4. 

In conclusion, in community food webs, the number of kinds of prey, as op­
erationally defined by field ecologists, approximates 3/4 the number of kinds of 
predators. This results from the study only of an ensemble of food webs, rather 
than of individual cases. 

§2. Community Food Webs Have Scale-Invariant Structure 

Frederic Briand and Joel E. Cohen 

We have analysed 62 community food webs drawn from published studies and 
have found a remarkable regularity in ecosystem structure: in biological com­
munities, the proportions of top, intermediate and basal species are, on average, 
independent of the total number of species. Hence, there is a direct proportion­
ality between the numbers of prey and predators. 

The finding (Chap. 11.1) that, in community food webs, the ratio of prey 
to predators is 3:4 may be challenged on two grounds: first, it is based on a 
relatively small set of 14 webs, and second it may indicate that taxonomists 
have exercised greater taxonomic refinement in classifying organisms at higher 
than at lower trophic levels (Pimm 1982). 

A community food web involves the feeding, that is, trophic, relations among 
all organisms found in a well-defined habitat by the original investigator. Or­
ganisms are separated into 'trophic species', which may be a single biological 
species, or a size class or stage in the life cycle of a single biological species, or 
a collection of functionally or taxonomically related biological species, accord­
ing to the original report. Throughout this paper a 'species' refers to a 'trophic 
species', not necessarily to a single biological species. A 'top' species is a preda­
tor that has no predator. An 'intermediate' species is a species that is both a 
predator and a prey. A 'basal' species is a prey that has no prey. 

The community food webs analysed include 40 webs assembled and described 
by Briand (Chap. 11.5); of these, 13 are corrected and drawn from the 14 origi­
nally used by Cohen (Chap. 11.1). Details of the food webs are presented in Chap. 
IV. We find that the number of prey is roughly proportional to the number of 
predators with a slope less than 1 (Fig. A.2.1a). This is also true for webs from 
constant and fluctuating environments, although they are quite different in over­
all structure (Chap. 11.5). On the far right of Fig. A.2.1a, four outliers emerge 
from the general relationship: a cluster of three constant food webs (C), all from 
Fryer's study (1959) of littoral communities of Lake Nyasa, and one fluctuating 



§2. Community Food Webs Have Scale-Invariant Structure 27 

30 / 
/ 

/,,"\0 
F/oI>, 
/ 

I 
/ 

/ e 
If 

f 
r 

20 / 
/ 

>- / 
/ f LLI Ie 0:: a.. I t f 

I 
I e 

l&... f/ r c 

0 f~ e 

d 
f / c f 

rIt,t f C c 
Z 10 ef, f 

fV f f C 

f /f e f 
Ife 

f/ f 
r / 
I 

I 
I 

a 

30 / .. / 
·1 
~/ 
/ 

/ 
/r 

I 
/ c 

Ir f 

20 
If 

1 
)0- / 
LLI 1 
0:: fl f a.. I c 

I&.. I c 
0 / f 

~ 
Cf 

rflc 
(r~f c 

10 c ~r f 
rT 

f fir c 
e f 

/1 e f 

I 
fF. 

I. 

b 
0 10 20 

NQ OF PREDATORS 

Fig. A.2.1a,b. Number of prey species as a function of number of predator species in 62 
community food webs. F, fluctuating environment. C, constant environment. An environment 
is classified as 'fluctuating' if the original report indicates temporal variations of substantial 
magnitude in temperature, salinity, water availability, or any other major physical parameter. 
The magnitude, and not the predictability, of the fluctuations is the criterion of classification. 
The symbols F and C have been shifted from their exact locations by a small random amount 
to indicate when several food webs have exactly the same coordinates. (a) Original data; (b) 
after lumping. The solid line through the origin is fitted on the assumption that the variance 
of the residuals is proportional to the number of predators. The slope is 0.8819 
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food web (F) representing a salt meadow from New Zealand (Paviour-Smith 
1956). 

There can be no direct test ofPimm's conjecture (1982) of why the slope is less 
than 1, without repeating the original field studies with a uniform attention to 
taxonomic detail. As an indirect test, we examined the ratio of prey to predators 
in the 62 food webs, after we had 'lumped' trophically identical species. That is, 
in each food web, whenever two or more species are preyed on by exactly the same 
set of predators, and prey upon exactly the same set of prey, we treated them 
as one. This procedure, which we call 'lumping', removes possible differences in 
the propensity to split, both among observers and among trophic levels. 

Lumping moves the outliers into or much closer to the bulk of the remaining 
data points, for both fluctuating and constant webs (Fig. A.2.1b). The correlation 
coefficient between numbers of predators and prey among the 43 fluctuating webs 
increases from 0.83 before lumping to 0.92 after, and from 0.58 to 0.64 among 
the 19 constant webs. In other words, eliminating predators or prey that are 
trophically identical tightens the relation between numbers of predators and 
prey. 

Because individual observers tend to influence prey-predator ratios, we shall 
deal only with the lumped version of the webs. Because some observers con­
tributed more than one food web to our collection, the assumption of indepen­
dence that is required to justify attaching probability values to significance tests 
using the unlumped data is open to challenge. Though the assumption of inde­
pendence is probably more acceptable with the lumped version of the webs, we 
shall base our statistical analysis primarily on descriptive statistics. Fortunately 
the patterns in the data are clear. 

If a straight line, either with arbitrary intercept or through the origin, is 
fitted to a scatter plot of the 62 community food webs, the squared residuals 
increase with the number of predators. This reveals that the usual least-squares 
procedure, which assumes the variance of residuals constant regardless of the 
abscissa, is not appropriate to these data. 

If a regression line is fitted through the origin on the assumption that the 
variance of the residuals is proportional to the number of predators, then the 
estimator of the slope is simply the ratio of the mean number of prey divided by 
the mean number of predators. Under this assumption, a straight line through 
the origin fitted to all 62 food webs has slope 0.8819 or approximately 0.9. 

This slope is higher than the slope near 0.75 found in Chap. 11.1, so there 
appears to be some merit in Pimm's suggestion (1982) that ecologists have ex~ 
ercised greater taxonomic refinement at high trophic levels than at low. This 
suggestion, however, is not quantitatively sufficient to account for the excess, 
that remains after lumping, in the number of predators over the number of prey. 

Classical ecological theory views predators as generally limited by resources, 
and the diversity of predators in particular as being limited by the diversity of 
prey. From this perspective it would seem more natural to treat the number of 
prey as an independent variable and the number of predators as a dependent 
variable. However, when the number of predators is regressed against the num­
ber of prey, using a straight line through the origin with variance of residuals 
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proportional to the abscissa, the standard error of estimate (with 61 degrees of 
freedom) increases from 3.1 to 3.5. 

This observation means that the number of predators is a better predictor of 
the number of prey than the reverse. This raises the intriguing possibility that, in 
both constant and fluctuating environments, the number of predators is causally 
more important in controlling the number of prey than vice versa. Evidence and 
theory in favour of this suggestion have been independently reviewed by Jeffries 
and Lawton (1984). 

That we find a linear relationship between number of prey and number of 
predators is not too surprising, since the x- and y-axes share a similar quantity, 
namely the intermediate species, which are both prey and predators. What is 
surprising is the tightness of the fit, considering the size and heterogeneity of the 
sample examined. This suggests two possibilities: either the redundant variable, 
that is, the number of intermediate species, is very large compared with the 
number of basal and top species in most communities, or the proportions of all 
species in a food web that fall into each of these three categories are, overall, 
independent of the total number of species. 

Fig. A.2.2 illustrates the reality of the second alternative: in the 62 webs 
examined, the fractions of top, intermediate and basal species are, on average, 
independent of the total number of species, although there is a slight tendency 
for the fraction of top species to increase and for the fraction of basal species to 
decrease as the total number of species increases. To obtain a global estimate 
of the proportions of species in each of the three categories (top, intermediate, 
basal), we summed over all food webs the observed numbers in each category, and 
divided by the sum total of species over all food webs. The global proportions of 
top, intermediate and basal species correspond to the heights of the horizontal 
lines in Fig. A.2.2a-c. 

The scatter of points about the horizontal lines in Fig. A.2.2, when constant 
and fluctuating food webs are considered together, agrees with the hypothesis 
that in each food web the top, intermediate and basal species are multinomially 
sampled from the total species in proportions that are constant for all webs. If 
the species counts are arranged in a 3 x 62 contingency table with rows for top, 
intermediate and basal species and one column for each web, a homogeneity test 
yields a X2 statistic of 138.9 with 122 df, which is not significant at the 0.1 level. 

There is no evidence for a difference between constant and fluctuating food 
webs in the mean proportions of top, intermediate and basal species. A homo­
geneity test of a 3 x 2 contingency table with rows for top, intermediate and basal 
species and columns for constant and fluctuating food webs, and the summed 
species counts as cell entries, gives a X2 statistic of 1.4 with 2 df, which is not 
significant at the 0.1 level. 

However, the proportions of top, intermediate and basal species in constant 
food webs, considered separately, are significantly more variable, and the pro­
portions in fluctuating food webs, considered separately, are significantly less 
variable, than expected from multinomial sampling (using a 0.02 significance 
level). Separate homogeneity tests of the constant webs (in a 3 x 19 contingency 
table) and of the fluctuating webs (in a 3 x 43 contingency table) yield X2 of 
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Fig. A.2.2a-e. Three ratios plotted as a function of the number of species. The fitted lines 
are constrained to be horizontal (slope = 0). (a) Top species/total species. The height of the 
line is 0.2853. (b) Intermediate species/total species. The height of the line is 0.5251. (e) Basal 
species/total species. The height of the line is 0.1896 

82.8 with 36 df and 56 with 84 df, respectively. The visual counterpart of this 
statistical result is the appearance in each panel of Fig. A.2.2 of fluctuating food 
webs near the horizontal line and of constant food webs scattered above and be­
low the band of fluctuating webs. Food web structure appears more constrained 
in fluctuating than in constant environments, as previously noted (Chap. 11.5; 
Yodzis 1981). 

We now show that the empirical regularities in Fig. A.2.1b can be derived 
from the approximate scale-invariance shown in Fig. A.2.2. 

Let S be the total number of species in a single community food web, T 
the expected number of top species in that web, I the expected number of 
intermediate species, B the expected number of basal species, R the expected 
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number of predators and Y the expected number of prey. By definition 

8=T+I+B, 

R=T+I, 
Y = I +B. 

By observation 

T /8 = p or T = p8, 
I/8=q or I=q8, 
B/8=r or B=r8, 

p = 0.2853 (Fig. A.2.2a) 

q = 0.5251 (Fig. A.2.2b) 

f = 0.1896 (Fig. A.2.2c) . 

31 

(1) 
(2) 

(3) 

(4) 
(5) 
(6) 

Adding equations (5) and (6) and dividing by the sum of equations (4) and (5), 
we recover the observed regularity (Fig. A.2.1b) 

Y/R=a or Y=aR, a=(q+r)/(q+p). (7) 

The predicted value (q + f)/(q + p) = 0.8819 is identical to the observed ii = 
0.8819 because of the formulas we used to estimate the slope a and the pro­
portions p, q and r. However, the observation in Fig. A.2.1b that the average 
number of prey is a linear function of the number of predators is not a tautol­
ogous consequence of the estimation formulas. The proportionality of prey to 
predators follows from the scale-invariance we have discovered here. Were data 
available, it would be interesting to examine whether the distribution of biomass 
into top, intermediate and basal species is also scale-invariant. 

We conclude that the values of any two of the three parameters p, q and r 
summarize succinctly a substantial amount of information about the empirical 
regularities found in community food webs and provide a factually grounded 
benchmark against which the deviations of particular food webs may be mea­
sured. Why these proportions take the values they do and why the proportions 
are scale-invariant remain open questions (see Chap. III). 

§3. Trophic Links of Community Food Webs 

Joel E. Cohen and Frederic Briand 

1. Problem and Hypotheses 

How does the total number L of links in a web vary as the number 8 of species 
increases? At least three hypotheses are plausible. First, the number of potential 
links increases as 82 because the maximal number of edges in a directed graph 
on 8 nodes is 8(8 - 1). If there were a constant probability that any potential 
link were a real link, the mean E( L) of L would be proportional to 82 . Second, if 
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each species could eat or serve as food for only a finite number of other species, 
regardless of how many species were present in the community, the mean E( L) 
would be proportional to S. Third, both ofthe preceding hypotheses might apply 
over different ranges of values of S. When the number of species in a community 
is small, L may be constrained only by the availability of potential links and 
hence vary as S2. When the number of species in a community is large, L may 
be limited by the potential for interaction of each species and hence vary as 
S. The same relation between Land S might also arise because field ecologists 
might be more thorough in recording links when the total number of species in 
the community is small, but proportionally more prone to omission when the 
number of species is large. 

According to these three hypotheses, plots against S, on the abscissa, of (a) 
the square root of L, (b) L, or (c) some power of L between 1/2 and 1, on the 
ordinate, should be approximately linear. 

2. Definitions and Data 

A community food web (henceforth abbreviated to "web") includes the feeding 
relations among all organisms found in a well-defined habitat by the original 
investigator. Organisms with identical sets of prey and identical sets of predators 
have been combined into a single "lumped" species (Chap. 11.2). Throughout 
this chapter, "species" means trophic species, not necessarily a single biological 
species. A "top" species is a predator that has no predator. An "intermediate 
species" is a species that is both a predator and a prey. A "basal" species is a 
prey that has no prey. The number of basal, intermediate, top, and all species 
in a web will be denoted by B, I, T, and S. 

A "trophic link" (hereafter, "link") is any reported feeding or trophic relation 
between two species in a web. Observers use various criteria to decide how much 
feeding justifies the reporting of a link and how much failure to observe feeding 
justifies reporting the absence of a link. 

Webs are classified as arising in ''fluctuating'' or "constant" environments. 
The environment is considered to be fluctuating if the original report indicates 
temporal variations of substantial magnitude in temperature, saJinity, water 
availability, or any other major physical parameter. This fluctuation may re­
sult from a pronounced seasonality, as in temperate terrestrial systems, from 
daily oscillation, as in intertidal systems, or from irregular perturbations, such 
as hurricanes. The magnitude, and not the predictability, of the fluctuations is 
the criterion of classification. Only 19 of 62 environments in our sample qualify 
as constant, including the deep sea and most, but not all, tropical systems. Since 
the classification of an environment as constant or fluctuating is to some extent 
subjective, we point out that this task was carried out before we had analyzed 
the data and uncovered any pattern. 

The 62 webs analyzed here are drawn from published studies. Details are 
presented in Chap. IV. 
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3. Results 

Fig.A.3.l shows, plotted against S, Ll / 2 (a), L (b), and L3/ 4 (c). The slopes 
of the straight lines plotted through the origin are computed on the assumption 
that the variance of the (transformed) ordinates is proportional to the abscissa. 
Visual inspection of Fig. A.3.1a rejects the first hypothesis: the trend of the data 
points is distinctly concave compared to the fitted straight line. When the square 
roots of links vs. species are plotted separately (not shown here) for constant 
and fluctuating webs, both graphs show a concave trend like that of Fig. A.3.1a. 
Visual comparison of Fig. A.3.1b and c is less decisive. Plotting the 3/4 power 
of L (Fig. A.3.1c) brings the points closer to the fitted line at low values of S 
but, at high values of S, lets most of the points fall below the line. 

We accept E(L) as proportional to S. This approximation does no obvious 
violence to the data and simplifies further analysis. 

If E(L) = cS and the variance in L is proportional to S, then the estimate 
c = 1.8559 is the ratio of the total number oflinks, 1919, to the total number of 
species, 1034, in our 62 webs. The standard deviation of cis 0.0740. 

The number L of links is the sum of the numbers LBI, LBT, LII, and LIT 
of links from basal to intermediate, from basal to top, from intermediate to in­
termediate, and from intermediate to top species, respectively. Fig. A.3.2 shows, 
plotted against S, the proportions of links in each category LBIi L (a), LBT/ L 
(b), LII/L (c), and LIT/L (d). No increasing or decreasing trends are evident. 
Thus, the mean proportions of links of each kind are roughly invariant with re­
spect to the total number of species in the web, though variability around the 
mean is evident. It follows that the average numbers of links of each kind, in 
addition to the average total number of links, increase in proportion to the total 
number of species, again with variability. 

Table 1. Summary sta.tistics of the numbers of species and links 
in 62 webs, by type of web, type of species, and category of link 

Type of unit Webs 

Constant Fluctua.ting All 

No. Fraction No. Fraction No. Fraction 

Webs 19 43 62 
All species 351 1.000 683 1.000 1034 1.000 

B 66 0.188 130 0.190 196 0.190 
I 177 0.504 366 0.536 543 0.525 
T 108 0.308 187 0.274 295 0.285 

All links 811 1.000 1108 1.000 1919 1.000 
B-1 198 0.244 327 0.295 525 0.274 
B-T 92 0.113 56 0.051 148 0.077 
I-I 260 0.321 318 0.287 578 0.301 
I-T 261 0.322 407 0.367 668 0.348 

B, ba.sa.l; I, intermediate; T, top 
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Fig. A.3.la-c. Number of l.inka \L~ as a function of the number of trophic species (S) in 
62 webs. Plotted against S are L' (a), L (b), and L3'. (c). C = constant environment; 
F = fluctuating environment. The symbols F and C have been perturbed from their exact 
locations by a small random amount to indicate when several food webs have exactly the 
same coordinates. In the straight lines through the origin plotted here and in Fig. A.3.3, the 
slopes are computed assuming that the variance of the ordinates (as transformed, in a and c) 
is proportional to the abscissa. In a, the trend of the data points is concave compared to the 
fitted straight line. In c, the points lie closer to the fitted line at low values of S but, at high 
values of S, most of the points fall below the line 

Table 1 shows the numbers LBI, LBT, LII and LIT and proportions oflinks in 
each of the four categories, summed for constant, fluctuating, and all webs. The 
proportions of each category of links are highly variable among webs, compared 
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Fig. A.3.2a-d. The proportions of links in each category as a function of species. Plotted 
against S are LBdL (a), LBT/L (b), LII/L (c), and LIT/L (d), where LBI, LBT, LII, and 
L IT are the numbers of links from basal to intermediate, from basal to top, from intermediate 
to intermediate, and from intermediate to top species, respectively. No increasing or decreasing 
trends are evident in the data. The points in the upper left corner of a are based on very few 
links. The heights of the fitted horizontal lines are the ratio of the links in the given category, 
summed over all webs, to the total links, summed over all webs 

to the variation among webs that would be expected from multinomial sampling 
with proportions that are the same for all webs. If the counts of links are arranged 
in a 4 x 62 contingency table with one row for each type of link and one column 
for each web, a homogeneity test yields a X2 of 794.2 with 183 degrees of freedom 
(df). If the summed link counts of the constant webs are compared to the summed 
link counts of the fluctuating webs in a 4 x 2 contingency table (the counts 
are shown in Table 1), a homogeneity test yields a X2 of 33.0 with 3 df. A 
homogeneity test of the link counts for the 19 constant webs alone yields a X2 of 
510.3 with 54 df, while the same test for the 43 fluctuating webs alone yields a 
X2 of 284.0 with 126 df. Under the assumption, which is open to doubt, that the 
observations of different webs are mutually independent, the astronomically low 
significance level of each of these values of X2 rejects the null hypothesis that 
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the variation among webs in the proportions of links of each category is due to 
random sampling. 

We now display the relation between number of links and number of species 
at a level of resolution finer than that of Figs. A.3.1 and A.3.2. Our previous 
analysis of community webs (Chap. II.2) established that there are fixed positive 
constants r, p, and q such that, within multinomial sampling error, for each 
web, E(B) = rS, E(I) = qS, and E(T) = pS. These equations mean that the 
average number of basal species is proportional to the total number of species 
and similarly for intermediate and top species. For all webs, r = 0.190, q = 0.525, 
and p = 0.285 (Table 1). The differences between constant and fluctuating webs 
are within multinomial sampling error (Chap. II.2). As a consequence of this 
simple proportionality, the geometric mean of any two of B, I, and T should 
be roughly proportional to S. Since, as Fig. A.3.2 implies, the number of links 
of each kind is also proportional to S (with substantial variability, in light of 
the above inhomogeneity), LBI should be roughly proportional to (BI)1/2, with 
variability. 
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Fig. A.3.3. ~a) Plot of the number LBI of basal-intermediate links against the geometric 
mean (BI)l/ of basal and intermediate species and analogous plots for basal-top links (b), 
intermediate-intermediate links (e), and intermediate-top links (d). A straight line through 
the origin is most plausible as a description of the data in a and d, less so for c, and least so 
for b. In b, many webs, both constant and fluctuating, lack links from basal to top species 
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Fig. A.3.3a plots LBJ against (BI)1/2. The remaining panels of Fig. A.3.3 
give similar plots for basal-top links (b), intermediate-intermediate links (c), and 
intermediate-top links (d). The linear model in Fig. A.3.3b is least satisfactory 
because for many webs, both constant and fluctuating, there are no links from 
basal to top species. 

The linearity or near-linearity in Fig. A.3.3 is not materially changed when 
the links of constant and fluctuating webs are plotted separately on the same 
axes or when the links of constant and fluctuating webs are plotted separately 
against the product of the corresponding species numbers - e.g., LBI against 
BI rather than against (BI)I/2 (not shown). For fluctuating webs, the apparent 
convexity of LBT against (BT)I/2 is somewhat diminished in the plot against 
BT. 

Table 2. Regression coefficients of the number (lI) of links in a 
specified category against the geometric mean number (x) of the 
corresponding types of species 

Type of link Webs -------------------------------

B-1 
B-T 
I-I 
I-T 

Constant 

Slope SD 

1.3824 0.0989 
0.4437 0.1530 
0.8258 0.0877 
1.5464 0.0938 

Fluctuating 

Slope SD 

1.5817 0.1038 
0.8317 0.1265 
1.0907 0.1092 
1.8053 0.1206 

All 

Slope SD 

1.6802 0.0908 
0.6580 0.0976 
1.0645 0.0906 
1. 7891 0.0983 

All regressions assume that the variance in the ordinate II is pro­
portional to the abscissa x. SD = standard deviation of the esti­
mated slope coefficient. B, basal; I, intermediate; T, top 

Table 2 gives the regression coefficients, and their standard deviations, of 
the number of each kind of link against the geometric mean number of species 
in the source and sink class, for all webs (corresponding to the slopes of the 
lines plotted in Fig. A.3.3a-d) and for constant and fluctuating webs separately. 
Regressions (not reported here) that assume a line through the origin with the 
standard deviation of the residuals proportional to the abscissa give, in every 
case, a larger mean square residual and a visually poorer fit. 

The regression coefficients in Table 2 and the values of r, q, and P in Table 1 
can, in some cases, be combined to predict accurately the proportion of each 
kind of link shown in Table 1. For example, suppose that the proportion of 
basal-intermediate links is given by 

PBI= LBdL, 

that the regression in Fig. A.3.3a is summarized by 
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and that B, I, and T are all proportional to S. Then 

PBI = aBI(BI)I/2 J[aBI(BI)I/2 + aBT(BT)I/2 

+ aII(II)I/2 + aJT{IT)I/2] 

= aBI(rq)I/2 J[aBI(rq)I/2 + aBT(rp)I/2 + aIIq + aJT(qp)I/2] . 

Table 3. Predicted fractions of links of each 
category, for constant and fluctuating webs sep­
arately and for all webs 

Type of link Webs --------------------Constant Fluctuating All 

B-1 0.2732 0.2561 0.2740 
B-T 0.0685 0.0963 0.0791 
I-I 0.2672 0.2966 0.2889 
I-T 0.3911 0.3510 0.3579 

X2 44.6144 31.2953 1.6049 

The X2 statistic to measure goodness of fit be­
tween the observed fractions (given in Table 1) 
and the predicted fractions given here has 3 dr. 
When computing the predictions for the con­
stant webs, both the regression coefficients and 
the proportions of species of each type were 
derived from the constant webs only and sim­
ilarly for the fluctuating webs. B, basal; I, in­
termediate; T, top 

Table 3 shows the predicted proportions of links of each category, based on 
the regression coefficients aij from Table 2, the values of p, q, and r from Ta­
ble 1, and a goodness-of-fit X2 (with 3 df) when the predicted proportions are 
compared with the observed proportions of links of each category. For all webs 
combined, the predicted proportions agree remarkably well with the observed; 
the discrepancy could be attributed entirely to sampling fluctuation. 

However, this good agreement is not a strong confirmation that the number 
of links of each category scales according to the geometric mean rather than, say, 
according to the product. If, for example, in the above equations the regression 
coefficient of LBI against BI is used and (BI)I/2 is replaced by BI, and similarly 
for BT, II, and IT, then the predicted proportions also agree remarkably well, 
though not as well, with the observed (X2 = 3.95). The excellent agreement 
between observed and predicted proportions of links of each category is rather 
robust with respect to the exact way in which the numbers of links scale with 
an increasing number of species. 

For constant and fluctuating webs considered separately, the quantitative dis­
crepancies between the observed and predicted proportions of each category 
of link are not large, but the X2 statistic indicates that the fit would be re-
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jected at any conventional level of significance, under the assumption of inde­
pendence among webs. Among constant webs, fewer basal-intermediate links and 
more basal-top links are observed than predicted. Among fluctuating webs, more 
basal-intermediate and fewer basal-top links are observed than predicted. These 
discrepancies precisely cancel when all webs are considered together. [When con­
stant webs are compared with fluctuating webs, rather than each with the pre­
dictions of a model, the ratio of basal-intermediate links to total species is higher 
in constant webs (198/351 = 0.564) than in fluctuating webs (327/683 = 0.479), 
contrary to the comparison with the model. The ratio of basal-top links to total 
species is higher in constant webs (92/351 = 0.262) than in fluctuating webs 
(56/683 = 0.082), in parallel with the model comparison.] 

When a web has intermediate species (as do all those in our sample), the pres­
ence of basal-top links gives the top species collectively a more flexible trophic 
strategy, in that some top predators prey on intermediate species and some (pos­
sibly the same) top predators prey on basal species. The deficit of basal-top links 
in fluctuating webs and the excess of basal-top links in constant webs, relative 
to the proportions expected from our simple model of scaling, suggests that 
fluctuating webs are trophically more constrained than constant webs. 

Further evidence that fluctuating webs may be more severely constrained 
than constant webs is provided by comparing the standard deviations of char­
acteristics of fluctuating and constant webs. Since the number of species in our 
sample of constant webs ranges from 11 to 33, while the number of species 
in our sample of fluctuating webs ranges from 3 to 33, we have, for the pur­
poses of this comparison, removed from the sample of fluctuating webs those 
13 webs with fewer than 11 species. Compared to the 19 constant webs, the 
remaining 30 fluctuating webs have smaller standard deviations of the num­
ber of: basal-intermediate links, basal-top links, intermediate-intermediate links, 
intermediate-top links, total number of links, basal species, intermediate species, 
top species, total species, predator species (T + J); and smaller standard devia­
tions ofthe ratios: links per species, basal links (LBI + LBT) per basal species, 
intermediate links (LBI + LIl + LIT) per intermediate species, and top links 
(LBT+LIT) per top species. The 30 fluctuating webs were slightly more variable 
than the 19 constant webs only in the number of prey species (B + I). 

4. Discussion 

According to our newly assembled data, the mean number of links L in a web 
is approximately proportional to the total number of species S. The coefficient 
of proportionality is ~ 1.8559 with a standard deviation of 0.0740. 

The hypothesis that the mean of L is proportional to S may be derived from 
empirical observations that the connectance C varies approximately inversely as 
S. The observation was first made by Rejmanek and Stary (1979) in a collection 
of 31 plant-aphid-parasitoid webs and confirmed by Pimm (1980, 1982) in a sam­
ple of 18 miscellaneous webs, including those assembled by Cohen (1978). Since 
C is approximately proportional to LS-2, if C varies approximately as l/S then 
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L/8 is approximately independent of 8, or L is approximately proportional to 8. 
(Conversely, if L is proportional to 8, then e varies as 1/8.) Pimm (1980; 1982, 
p. 89) interpreted his empirical generalization as a consequence of a behavioral 
supposition: "Suppose each species in a community feeds on a number of species 
of prey that is independent of the total number of species in the community." 

The alternative hypothesis, that some power of L between 1/2 and 1 is pro­
portional to 8, may be new and is also not ruled out by the data. 

The only prior explicit examination of the relation between Land 8 appears 
to be Briand's (Chap. II.5 and Fig. B.5.2a) empirical finding, based on 40 "un­
lumped" webs, that L = 81.1. He observed that this relation was "nearly linear." 

Without presuming to discriminate between a power law exponent of 1.1 
and one of 1.0, we find that Fig. A.3.1, which is based on 62 lumped webs, 
confirms the approximate correctness of Briand's finding and is consistent with 
the hypothesis of Pimm, at least within the range of 8, 3-33, covered. 

That the mean of L is approximately proportional to 8 indicates that the 
trend of 8e or L/8 is roughly independent of variation in 8. This may appear 
to contradict Briand's (1983, p.37) finding, based on a principal components 
analysis, that the product of species 8 times "upper connectance" is a major 
discriminator of variation among webs. However, upper connectance counts both 
links and "potential competitive links," and the latter increases as a nearly 
quadratic function of 8 (Chap. 11.5 and Fig. B.5.2b). Therefore 8 times upper 
connectance is much more variable among webs than is 8e, since connectance 
e, as used here and by Pimm (1980, 1982), counts only links. 

Links are more subject to errors of omission than are species, because a feeding 
interaction between a predator and prey must be observed or inferred for a link 
to be recorded, whereas no special behavior need be observed for a species to be 
recorded. Consequently, future webs collected with more systematic attention to 
recording all links may yield larger estimates of C than that based on present 
data. 

The likelihood of recording a link may vary more among observers than the 
likelihood of recording a species. Variability among observers in the probability of 
recording a link may explain why the above homogeneity tests for links, under the 
assumption of independence, reject the null hypothesis of multinomial sampling 
fluctuations with constant proportions. 

The approximately linear relation in Fig. A.3.3 between the expected number 
of links of each category and the geometric mean number of species in the source 
and sink categories appears to be new. 

Earlier observations have suggested that fluctuating webs are more severely 
constrained in trophic structure than constant webs (Chaps. II.2,5). The finding 
here that fluctuating webs have significantly fewer basal-top links, and constant 
webs have significantly more basal-top links, than expected from a simple model 
based on pooled proportions, may be interpreted to be consistent with the ear­
lier observations. Similarly, the standard deviations of many characteristics of 
constant webs exceed those of fluctuating webs. 
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5. Conclusion 

Together, this chapter and Chap. 11.2 show that the main features of the struc­
ture of food webs - namely, the numbers of top, intermediate, and basal species 
and the numbers of links from each kind of predator to each kind of prey - all 
behave in quantitatively simple, interpretable ways as the number of species in 
webs ranges from 3 to 33. The data on which our quantitative generalizations 
are based are the most extensive and most carefully edited presently available. 
Nevertheless, because of variations among observers in field practices and defini­
tions of concepts, the present generalizations will have to stand the test of more 
consistent and thorough field work in the future. 

Our findings open at least three lines of further inquiry. First, how can these 
ecological generalizations be explained in terms of the behavior, genetics, and 
population dynamics of species, individually and in interaction? Second, do these 
ecological generalizations suffice to explain other significant features of food 
webs (Cohen 1978; Hutchinson 1959; Cohen 1983)? Third, what characteristics 
of individual communities account for their deviations from the overall trends? 

§4. Food Webs and the Dimensionality of Trophic Niche Space 

Joel E. Cohen 

Ecological studies of where the organisms in communities are and what the 
organisms do (especially what they eat) frequently use the concept of niche space, 
the set of the environmental (including biotic) factors acting on an organism 
(Hutchinson 1944, 1965; Miller 1967; Vandermeer 1972; Pianka 1976). Studies 
of what organisms eat frequently also use the concept of a food web (Shelford 
1913; Gallopin 1972). 

Here is presented a new technique for using food webs to gain information 
about the minimum number of dimensions of a niche space necessary to rep­
resent, in a specific sense, the overlaps among observed trophic niches. Based 
on the application of this technique to data, it is inferred that, within habitats 
of limited physical and temporal heterogeneity, the overlaps among niches along 
their trophic (feeding) dimensions can be represented in a one-dimensional space 
far more often than expected by chance alone. 

1. Materials and Methods 

Classification and Selection of Food Webs 

Prior to analysis, published or privately communicated food webs were char­
acterized as describing a single habitat or as describing a composite of several 



42 Chal;>ter II. Empirical Regularities 

habitats. Food webs were also characterized as attempting to describe all the 
kinds of organisms (possibly restricted to some location, size, or taxa) in a habi­
tat, without reference to the eating relationships among them ("community food 
webs"); or as attempting to describe all the prey taken by a set of one or more 
predators, plus all the prey taken by the prey of those predators, and so on 
("sink food webs"); or as attempting to describe all the predators on a set of 
one or more prey organisms, plus all the predators on those predators, and so 
on ("source food webs"). Source food webs were excluded from further study 
because they are uninformative about whether the community food webs of 
which they form a part are interval. Hypothetical or schematic constructions 
and avowedly incomplete, partial, or tentative food webs were also excluded. 
Fourteen community food webs and 16 sink food webs from 21 different papers 
were thus selected. 

Units of Description 

These food webs describe the diets or predators not of individual organisms but 
of kinds of organisms. A "kind of organism" may be a stage in the life cycle or 
a size class within a single species, or it may be a collection of functionally or 
taxonomically related species, according to the practice of the original report. 
This analysis assumes that a group of organisms qualifies as one "kind" of or­
ganism in a food web only if its niche, viewed as a region or set of points in 
niche space, is connected along the trophic dimensions - that is, only if it is 
possible to pass from anyone point in the niche to any other without leaving 
the niche. For example, if two stages in the life cycle of a single species of insect 
were so different that the region in niche space corresponding to one stage were 
unconnected to the region corresponding to another, it is assumed that the two 
stages would have feeding habits sufficiently different that the stages would be 
distinguished as different "kinds" in a food web. 

Machine Representation of Food Webs 

Each food web selected for study was stored in a computer as a matrix with m 
rows and n columns. Each column corresponds to a predator or other kind of 
organism that consumes at least one of the kinds of organisms in the food web. 
Each row corresponds to a prey or other kind of organism eaten by at least one 
of the kinds of organisms in the food web. Some kinds of organisms are both 
predators and prey. Let Wij be the entry in the i-th row and j-th column of a 
given food web matrix. Then Wij = 1 if predator j eats prey i and Wij = 0 if 
predator j does not eat prey i. Version A of a food web includes only eating 
relationships that could be unambiguously established from the original report; 
version B includes any additional eating relationships that were uncertain or 
probable. 
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The Overlap Matrix and the Number of Niche Overlaps 

If two kinds of predators both eat some kind of prey, then along some trophic 
dimensions the niches of those two predators logically must overlap. The n by 
n overlap matrix which describes the overlaps among the trophic niches of the 
predators has 1 wherever the predator corresponding to the row and the predator 
corresponding to the column both eat some kind of prey in common, and 0 
elsewhere. The overlap matrix is symmetric with respect to its main diagonal, 
which contains all Is. The number of niche overlaps E is defined as the number 
of Is above the main diagonal. Overlap matrices were constructed corresponding 
to version A and version B of each food web. 

The Overlap Matrix and the Dimension of Trophic Niche Space 

We say that a food web is interval, and that the trophic niche overlaps that it 
describes can be represented in a one-dimensional niche space, when its overlap 
matrix is the adjacency matrix of an interval graph (Klee 1969). An interval 
graph is the intersection graph of a set of intervals of the real line. More explicitly, 
a food web is interval if and only if, for each kind of predator i in the food web, 
there exists an interval i' of the real line such that for any two predators i and 
j, Lk=l WkiWkj > 0 when and only when the corresponding intervals i' and j' 
overlap. Not every food web with four or more predators is interval. 

To test whether a food web is interval, a computer program implementing the 
algorithm of Fulkerson and Gross (1965) was written by Thomas Mueller. The 
performance of this algorithm was verified by hand for several hundred examples, 
and the same algorithm was used for both observed and artificially generated 
food webs (see below). 

Monte Carlo Estimation of the Probability of an Interval Food Web 

In order to compare the observed frequency of interval food webs with the fre­
quency that would be expected if the food webs or niche overlaps were drawn 
by chance, it is necessary to estimate the frequency of interval food webs in a 
universe of possible food webs from which the observed food webs may be drawn. 
Two possible universes, or models of a random food web, are described here; the 
results of five other models are consistent with these. 

Model 6 assumes that every predator in a given food web has a constant and 
independent probability p of preying on each prey. The probability p is estimated 
separately for each food web as A/(mn) in which A is the sum of all elements 
in the food web matrix (that is, the observed number of feeding relationships) 
and mn is the maximum possible number of relationships in the food web. For 
each food web, 100 artificial food webs are generated by distributing a 1 with 
probability p and a 0 with probability 1 - p into each element of an m by n 
matrix, independently for each element. 

Model 7 assumes that the number E of niche overlaps in a given food web 
is fixed but that the pairs of predators that have overlapping trophic niches are 
randomly determined. For each food web with E overlaps, 100 artificial overlap 
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matrices are generated by distributing E Is at random among the elements above 
the main diagonal. 

Let lij be the proportion of the 100 artificial food webs that are interval 
according to modelj using the parameter values (A,E,m,n) of food web i. For 
a set S of food webs (e.g., the set of version A community food webs) the mean I' 
and variance (12 of the number of interval food webs expected according to model 
j are I' = :Lies lij and (12 = :Lies lij(l- lij), respectively. The probability of 
a discrepancy between an observed number of interval food webs in a set S and 
the expected I' is assessed by treating z = (observed number of interval food 
webs - 1')/(1 as a standardized normal random variable. Assuming the validity 
of the normal approximation, the probability that z exceeds 3.1 by chance alone 
is less than 0.001 (one-tailed test). 

2. Results 

Most food webs based on single habitats are interval (Table 1). The one sink 
food web and the two community food webs that are not interval are reviewed 
below. A higher proportion of food webs based on composite communities are 
noninterval. This finding does not conflict with the hypothesis that most or all 
single-habitat food webs are interval (see Discussion). 

Table 1. Numbers of interval and noninterval food webs 

Habitats Community food webs Sink food webs 

Interval Noninterval Interval Noninterval 

Single 7 
Composite 11/24 

13 
1 

1 
1 

4 One food web was interval in version A and noninterval in 
version B. There were no other discrepancies between versions 
AandB 

Because the distinction between single and composite habitats is less clear­
cut, both conceptually and in ecological reports, than that between community 
and sink food webs, the comparison between the observed number of interval 
food webs and the number expected by chance from two model universes of 
food webs retains only the distinction between community and sink food webs 
(Table 2). Community food webs are interval significantly more frequently than 
expected by chance, assuming either random eating relationships (model 6) or 
random niche overlaps (model 7). Sink food webs are interval significantly more 
frequently than expected by chance, assuming random niche overlaps (model 
7) but not assuming random eating relationships (model 6), considering either 
version A (definite information only) or version B (additional uncertain infor­
mation) food webs only. The significant excess of sink interval food webs when 
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Table 2. Comparison of observed frequencies of interval food webs with expectations assuming 
random predatory relations (model 6) or random niche overlap (model 7) 

Set of food web versions Versions Observed Model 6 Model 7 

in set, no. Normal Normal 
no. interval Mean, SD, deviate, Mean, SD, deviate, 

J.I. u z J.I. u z 

All versions-
Community food webs 24 14 4.83 1.13 8.11 2.95 1.26 8.73 
Sink food webs 20 18 14.47 0.88 4.01 13.42 0.66 6.96 

Version A 
Community food webs 14 9 3.27 0.93 6.16 2.19 0.96 7.09 
Sink food webs 16 14 12.48 0.87 1.74 11.42 0.66 3.92 

Version B 
Community food webs 14 8 2.89 0.82 6.21 1.82 0.86 7.19 
Sink food webs 16 14 11.65 0.79 2.99 10.42 0.66 5.44 

- Food webs for which versions A and B are identical are counted only once here 

all versions are considered together (z = 4.01) is an artifact of the lack of inde­
pendence between different versions of the same food web. 

Individual Cases 

One food web (Kohn 1959) reports prey organisms consumed by vermivorous 
species of the gastropod genus Conus in Hawaii at subtidal reef stations and at 
marine bench and deep water habitats. It is thus a sink food web describing a 
composite habitat, and it is not interval. The numbers of specimens examined 
of each predator range from 4 to 342. It seems plausible that, when only a few 
specimens of a predator are examined, some kinds of prey eaten on occasion 
might not be seen. The resulting omission of some trophic niche overlaps may 
cause a true underlying one-dimensional trophic niche space to appear to be 
more than one-dimensional. When only predators represented by more than 20 
specimens (a threshold determined in advance) are included in a reanalysis, the 
food web is still not interval. 

From this food web, the specimens taken at subtidal reef stations were se­
lected to create the only sink, single-habitat food web which turned out to be 
noninterval (Table 1). However, if predators represented by 20 or fewer speci­
mens taken at the subtidal reef stations are excluded, the resulting food web is 
interval. In this case, restricting attention to the adequately sampled predators 
is not enough to make the food web based on composite habitats interval but 
does yield an interval food web for a single habitat. Because the food webs of 
the single habitat and the composite community are reported by the same ob­
server, the difference between them cannot be attributed to different definitions 
of "kind of organism." 

The two single-habitat community food webs that are noninterval describe 
the sandy shore and Crocodile Creek of Lake Nyasa (Fryer 1959); a third food 
web describing the rocky shore is interval. The coded forms of these food webs 
incorporate extensive additions, based on the text, to the ambiguous food web 
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graphs. The number of specimens of each predator examined is not reported, so 
it is impossible to exclude predators that were lightly sampled. 

3. Discussion 

Community Food Webs 

The number of community food webs that are interval greatly (and significantly) 
exceeds the number expected assuming either random eating relations (model 6) 
or random trophic niche overlaps (model 7). The quantitative adequacy of two 
noninterval community food webs based on single habitats cannot be assessed. 
The finding that several composite-habitat community food webs are noninterval 
is consistent with the hypothesis that every niche space within a single habitat 
is one-dimensional. It is likely that the features that differentiate one habitat 
from another are multidimensional (Cody 1968; Schoener 1974) and different 
from the dimension of variation within a habitat. 

Sink Food Webs 

The only single-habitat sink food web that is noninterval becomes interval if 
lightly sampled predators are excluded. All single-habitat sink food webs based 
on sufficient sampling are interval. The number of sink food webs that are inter­
val greatly (and significantly) exceeds the number expected, assuming random 
trophic niche overlaps. The parameters of the sink food webs evidently specify 
a region of the model universe 6, which assumes random eating relationships, in 
which the frequencies of interval food webs are nearly as high as those observed. 

Because all of the adequately sampled sink food webs are consistent with 
a one-dimensional niche space in single habitats, the failure of the observed 
frequency of interval sink food webs to be significantly larger than expected 
from some models in no way weakens the conclusion that all or nearly all single­
habitat community or sink food webs are interval. 

Nonuniquene8S of the One Dimension 

If a one-dimensional niche space can represent trophic niche overlaps in a single 
habitat, the single dimension identified in one community may differ from that in 
another. In a single habitat, the one dimension may be chosen from a manifold of 
monotonically related dimensions such as predator size and prey size (Schoener 
1967). 

What Is the One Dimension? 

A few food web studies provide enough information on feeding and distribution 
to suggest what the one dimension may be. For example, among Hawaiian snails 
(Kohn 1959), Conus sponsalis, C. abbreviatus, C. ebraeus, and C. chaldaeus have 
all possible pairwise overlaps of diet on marine benches and, in all four species, 
individuals between 27 and 28 mm long were found on the marine bench at 
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station 5. If the dietary overlaps found from the pooled marine bench sample are 
faithfully reflected at station 5, the length of the snails is then a candidate for the 
single dimension of a space in which trophic niche overlaps can be represented. 
On the other hand, on reef platforms, the food web is again interval. There the 
diets of C. ebraeus and C. sponsalis overlap, but neither diet overlaps with that 
of C. flavidus or C. lividus, which do overlap with each other. Because all four 
species are found between 0% and 30% of the distance from the shore to the 
outer edge of the reef platforms at stations 3, 7, and 9, that distance measure 
can be excluded in this case as the one dimension along which trophic niche 
overlaps can be represented. 

Operational Definitions of "Dimension" 

Different kinds of studies of niche space, such as those of resource partitioning 
(Cody 1968; Schoener 1974) or those based on competition experiments, use dif­
ferent operational definitions of "dimension". Niche overlap inferred from food 
webs is a necessary but not a sufficient condition for exploitation competition 
when one common limited resource is food. Niche overlap is neither necessary 
nor sufficient for interference competition (Pianka 1976). Therefore, a low level 
of exploitation competition may be inferred when a low level of niche overlap is 
observed in food webs; but a high level of niche overlap implies only the possi­
bility of a high level exploitation competition. A concordance among the results 
of the different kinds of studies of "dimensionality" would represent a major 
empirical discovery. If a concordance among the different operational definitions 
of "dimension" is taken for granted but turns out to be contrary to fact, the 
word will become a conceptual trap for the unwary. 

Why One Dimension? 

Several interpretations are possible of why the trophic niche space of single 
habitats appears to be representable in one dimension. If the finding were a 
tautology because we say that communities describe composite habitats when 
their niche spaces turn out not to be one-dimensional, then we would not have 
the embarrassment of the two single-habitat community food webs that are not 
interval. This interpretation cannot explain the excess frequency of interval food 
webs observed in comparison with expectations from random models. We dismiss 
the accusation of tautology. 

It is plausible to expect a predator that can take prey at two different values 
of any natural continuous variable (such as prey size, seed hardness, altitude, or 
humidity) to be able to take prey at all intermediate values of the same variable. 
This argument implies only that a trophic niche should be convex, and hence 
(Klee 1969) that three independent dimensions are always sufficient to represent 
trophic niche overlap. The argument does not explain why one dimension suffices. 

It may be shown that there is no necessary connection between the one di­
mensionality of a community's niche space and the qualitative stability (May 
1973) of the dynamical system implied by its food web. The possibility of a sta-
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tistical association between qualitatively stable and interval food webs remains 
uninvestigated. 

The finding that single-habitat food webs are interval while trophic niches are 
commonly described in multidimensional terms may reflect the difference be­
tween community ecology and physiological ecology. Organisms may have more 
degrees of freedom in their physiological capacities to exist under varied cir­
cumstances than the biotic, especially trophic, interactions with other kinds of 
organisms in their community permit them to enjoy. 

Extensions 

When food webs are not interval, a combinatorial approach can reveal whether 
the niche overlaps could be represented by the overlaps of regions in a higher 
dimensional space (Roberts 1969a), but it is necessary to have quantitative in­
formation about the actual shape of niches before applying this theory. When 
a food web is not interval, it may also be worth examining how far it is from 
being interval (Kendall 1969). 

Shortcomings of This Approach 

These results suffer from at least four major shortcomings. First, the concepts 
in terms of which the data are reported and the results are framed are ambigu­
ous (e.g., what constitutes a "single habitat"?). Second, statistical features of 
the data used, especially the sampling design and reporting, leave much to be 
desired. Third, even if the concepts were clear and the statistics of the data im­
peccable, the claimed results do not attempt to answer important quantitative 
questions. In particular, most available food webs record feeding relationships as 
either present or absent. It is impossible to determine whether the high frequency 
of interval food webs depends in some special way on replacing underlying con­
tinuous variables that describe the frequency of predation by a dichotomous rep­
resentation. Finally, a derivation of the claimed results from a more fundamental 
dynamic theory is lacking. Each of these shortcomings opens opportunities for 
further empirical and theoretical investigation. 

A review of these results, including examples of the technique of analysis, the 
complete food web data, a discussion of each food web, a fuller analysis of the 
consequences, interpretation, and limitations, and recommendations for further 
research, as well as a synthesis with related results, appear in Cohen (1978). An 
overview of results since 1978 is given in Chap. III.6, where the theme of this 
chapter is taken up again. 



B. Differential Regularities 

§5. Environmental Control of Food Web Structure 

Frederic Briand 

The past decade has seen a surge of interest in food web structure and orga­
nization, largely under the impulse of theoretical ecologists concerned with the 
relation between complexity and stability (see review by May 1981). However, 
due to the small number of natural food webs generally known from the pub­
lished record, most of these studies have remained confined to rather abstract 
models of randomly constructed communities. As a result we find that some 
very basic questions still elude us, for instance the extent to which, and even 
whether, habitat type and environmental variability affect the structure of food 
webs in nature. 

To tackle this problem, I assembled and analyzed a collection, the largest to 
date, of 40 community food webs drawn from the published record and repre­
sentative of a wide variety of environments. Community food webs are defined 
as those webs which attempt to include all the kinds of organisms found in a 
particular habitat. A "kind of organism" (interchangeable henceforth with the 
term "species") may be an individual species, or a stage in the life cycle or a 
size-class within a single species, or it may be a collection of functionally or 
taxonomically related species. In every case the segregation follows the practice 
of the original report. 

The 40 food webs studied are listed in Table 1, along with their source of ref­
erence. They include 13 webs previously described by Cohen (1978), although 5 
of those required corrections. Webs only partially defined, too schematic in rep­
resentation, or else based on information drawn from different locations, were 
omitted. For each community a food web matrix indicating trophic interactions 
was built, based on the graph and in some cases on additional information con­
tained in the text of the original report. These matrices are given as webs 1-40 
in Chap. IV. 
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Table 1. Origin and main structural parameters of the food webs analyzed. Trophic structure 
indicates how many kinds of organisms occupy each trophic level from producers to top preda­
tors. Species feeding on more than one trophic level are recorded at their highest position in 
the web. Sand C denote species richness and connectance, respectively 

CaSe Community 
No. 

Trophic structure S C(%) Reference 
(producers .... 
top predators) 

A. Fluctuating environment. 

1 Cochin estuary 2-4-1-1-1 9 69.4 Qazim (1970) 
2 Knysna estuary 3-7-4-1 15 47.6 Day (1967) 
3 Long Island estuary 4-10-6-4 24 21.4 Woodwell (1967) 
4 California salt marsh 2-2-6-2-1 13 56.4 Johnston (1956) 
5 Georgia salt marsh 3-2-2 7 33.3 Teal (1962) 
6 California tidal flat 2-7-5-3-2-5-1 25 30.3 MacGinitie (1935) 
7 Narragansett Bay 3-5-7-4-1 20 33.2 Kremer and Nixon (1978) 
8 Bissel Cove marsh 4-4-2-4-1 15 41.9 Nixon and Oviatt (1973) 
9 Lough Ine rapids 2-3-4-1 10 51.1 Kitching and Ebling (1967) 

10 Exposed intertidal (New England) 2-2-1 5 70.0 Menge and Sutherland (1976) 
11 Protected intertidal (New England) 3-4-1 8 42.9 Menge and Sutherland (1976) 
12 Exposed intertidal (Washington) 3-7-1-2 13 46.2 Menge and Sutherland (1976) 
13 Protected intertidal (Washington) 3-6-2-2 13 48.7 Menge and Sutherland (1976) 
14 Mangrove swamp (station 1) 1-3-3-1 8 57.1 Walsh (1967) 
15 Mangrove swamp (station 3) 1-5-2-1 9 58.3 Walsh (1967) 
16 Pamlico River 4-4-5-1 14 36.3 Copeland et al. (1974) 
17 Marshallese reefs 3-3-3-3-1-1 14 28.6 Hiatt and Strasburg (1960) 
18 Kapingamarangi atoll 8-9-2-3-5 27 20.8 Niering (1963) 
19 Moosehead Lake 2-3-8-3-1 17 42.6 Brooks and Deevey (1963) 
20 Antarctic pack ice zone 3-3-5-3-4-1 19 29.8 Knox (1970) 
21 Ross Sea 3-2-1-1-1-1-1 10 55.6 Patten and Finn (1979) 
22 Bear Island 6-10-2-3-2-2-2-1 28 27.5 Summerhayes and Elton (1923) 
23 Canadian prairie 1-5-4-4-1 15 59.1 Bird (1930) 
24 Canadian willow forest 4-3-1-3-1 12 36.4 Bird (1930) 
25 Canadian aspen communities 3-11-8-2-1 25 30.7 Bird (1930) 
26 Aspen parkland 9-10-6-4-3-1-1 34 20.0 Bird (1930) 
27 Wytham Wood 4-6-4-5-3 22 27.3 Varley (1970) 
28 New Zealand salt-meadow 7-19-10-9 45 13.5 Paviour-Smith (1956) 

B. "Conlltant" environment. 

29 Arctic seas 2-3-6-6-3-2 22 31.2 Dunbar (1954) 
30 Antarctic seas 1-2-3-2-3-2-1 14 52.7 Mackintosh (1964) 
31 Black Sea epiplankton 2-3-5-1-1-1-1 14 83.5 Petipa et aI. (1970) 
32 Black Sea bathyplankton 2-3-5-1-1-1-1 14 84.6 Petipa et aI. (1970) 
33 Crocodile Creek 5-16-6-4-2 33 39.0 Fryer (1959) 
34 River Clydach 4-4-1-2-1 12 56.1 Jones (1949) 
35 Morgan's Creek 2-4-2-2-3 13 74.4 Minshall (1967) 
36 Mangrove swamp (station 6) 8-7-4-2-1 22 34.8 Walsh (1967) 
37 California sublittoral 6-10-3-5 24 26.1 Clarke et aI. (1967) 
38 Lake Nyasa rocky shore 3-10-9-9 31 67.1 Fryer (1959) 
39 Lake Nyasa sandy shore 5-15-12-5 37 29.8 Fryer (1959) 
40 Malaysian rain forest 3-3-4-1 11 52.7 Harrison (1962) 
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For purposes of comparison, I distinguished at the start between two broad 
categories of ecosystems: those exposed to high and those exposed to low tempo­
ral variability of the physical environment. By convention any system described 
in the original report as subjected to substantial variations in temperature, salin­
ity, pH, water availability, or any other major parameter, was labelled ''fluctuat­
ing." Accordingly, Table 1 lists 28 communities as representative of fluctuating 
environments and the remaining 12 as representative of "constant" environ­
ments. I emphasize that this distinction is based only on the amplitude of the 
changes, and not on their degree of predictability. 

The striking disparity of food web structures encountered in nature can be 
appreciated from Table 1. Except for the closely related planktonic communi­
ties of the Black Sea (codes 31 and 32) that are similarly constructed, each 
network appears unique in design. If structural trends do exist, they are not 
readily apparent. For instance I find that the ratio of prey to predator species 
is far less constant than previously indicated by Cohen (1978). Nor is there any 
significant correlation (Student's t test; P > .05) between species richness and 
prey: predator ratio, percentage of specialized predators (those feeding only on 
one kind of prey), or food chain length. Taken singly, none of these variables 
can discriminate among fluctuating, constant, aquatic, terrestrial, tropical, or 
nontropical systems. 

On the other hand, environmental variability is found to have a marked impact 
on the connectance, that is, the fraction of nonzero off-diagonal elements in the 
community matrix. Such a matrix indicates not only trophic interactions, as does 
the food web matrix, but also direct competitive interactions. Since interference 
competitors are not identified in the original reports, one must adopt simple 
and realistic criteria to that effect. I follow here the procedure used by Yodzis 
(1980), which yields a relatively high estimate of connectance but possesses such 
attributes. Whenever two predator species (say a and b) have at least one prey 
in common, I recognize them as potential interference competitors and so enter 
the elements Aab and Aba as nonzero in the community matrix. The connectance 
is calculated simply as 

n 
C = S(S -1) , 

where n denotes the number of nonzero interaction coefficients Aij in the com­
munity matrix, and S the number of species in the system. 

As shown in Fig. B.5.1a, for any given number of species, the connectance 
is significantly lower in fluctuating than in constant environments (t test, P < 
.005). This confirms a prediction tentatively advanced by May (1981), and is 
most interesting in light of the importance attached to connectance in stability 
theory. One recalls in particular the work of Gardner and Ashby (1970) and the 
proposition by May (1972) that communities in the neighborhood of equilibrium 
will tend to be stable if 

i(SC)1/2 < 1 
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Fig. B.5.1. (a) Connectance of food webs as a function of species richness (S) in fluctuating 
( .) and constant (0) environments. The solid line represents the regression curve for fluctu­
ating environments y = 2.20x-O•65 (r = -.83, P < .001). The regression curve for constant 
environments y = 2.71x-o.58 (r = -.60, P < .05) is not represented as it is based on a 
small sample size. The dashed line indicates the lower boundary for connectance, equal to 
2S-1. (b) Maximum average interaction strength, calculated as (SO)-1/2 (hence, according 
to May's equation, the upper bound on i which allows stability), as a function of species 
richness, where a = connectance .• = fluctuating environments; 0 = constant environments. 
The solid line represents the regression curve for fluctuating environments y = 0.68x-O.11 

(r = -.62, P < .001). For constant environments, the relation between the two variables is 
not significant (P > .1). The dashed lines indicate the upper and lower boundaries, equal to 
2-1 / 2 and S-172, respectively 

and unstable otherwise. There S and C denote, respectively, species richness 
and connectance, while i represents the average strength of interaction among 
species. 

Within the context of this relation, it is important to determine whether com­
plexity (high S) is handled functionally or structurally by real systems. In other 
words, do complex systems retain their stability by reducing i, C, or both? The 
present study indicates that the answer will depend on the degree of environ­
mental variability. In fluctuating systems the decrease in C associated with high 
S is so abrupt that only a slight reduction of i will be required to preserve sta­
bility (see Fig. B.5.1b). On the other hand, complex systems subjected to more 
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Fig. B.S.2. (a) Number of predator-prey links as a function of species richness (S) in fluctuat­
ing (.) and constant (0) environments. The dashed lines indicate the upper and lower possible 
boundaries, equal to S(S - 1)/2 and S - 1, respectively. (b) Number of potential competitive 
links as a function of species richness in fluctuating (.) and constant (0) environments. The 
dashed line indicates the upper possible boundary, equal to S(S - 1)/2. There is no lower 
boundary 

constant environmental conditions must depend on much weaker interactions, 
or else be more fragile. 

I suggest that the difference in connectance patterns between the two en­
vironments results from the optimization of feeding, which imposes structural 
constraints in one case and functional adaptations in the other. In fluctuating 
systems, environmental perturbations do limit the time available for feeding. 
There, it would appear advantageous for the consumer species to rely on briefer 
but more intense periods of predation. If this is correct, i then is the factor that 
must be maximized, at the expense of C when necessary. By contrast, in con­
stant environments the structure of complex food webs need not be constrained 
to accommodate as large an i as possible. In ~uch environments, weaker inter­
actions may be tolerated since they can be exploited on a more continuous and 
reliable basis. It is even conceivable that in such systems both C and i might 
be large. This would violate the conditions for stability, but the risk appears 
acceptable considering the low probability of environmental disruption. 

It is perhaps worthy of note that the components of connectance relate quite 
distinctly to species richness: on one hand, the number of trophic links, that 
is, the total of nonzero entries in the food web matrix, increases as a nearly 
linear function of S (y = 1.3:c1.10); on the other hand, the number of potential 
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competitive links, calculated by scoring one link for every pair of predator species 
sharing one or more prey species between them, increases as a quadratic function 
of S (y = 0.07z2.09). Both regressions are highly significant (r = .88; P < .001), 
and in each case the dependent variable is markedly lower in fluctuating than in 
constant environments (see Fig. B.5.2). 
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Fig. B.5.3. Segregation of ecosystems as a function of the percentage of strictly herbivorous 
species in the community and the product of species richness and connectance (SC). The code 
numbers identify the communities listed in Table 1. From left to right the groups represent 
Atlantic coast intertidal (10,11), forest (24, 40, 27), estuarine (3, I, 2), pelagic (21, 20, ... ), 
Pacific coast intertidal (12, 13), and mixed terrestrial ecosystems (28, 25, ... ). Although river 
and salt-marsh habitats are well represented, their respective communities do not appear 
distributed closely on this graph 

Finally, some remarkable relations do emerge when one attempts to relate 
habitat type and food web structure. As shown in Fig. B.5.3, intertidal, forest, 
estuarine, pelagic, and mixed terrestrial communities appear as distinct groups 
in the space defined by connectance, species richness, and percentage of strictly 
herbivorous species; the last variable is chosen as indicative of food web shape. 
Clearly, then, ecological networks tend to be more similar within, than between, 
classes of ecosystems, and this is the case regardless of geographic location and 
taxonomic composition. I emphasize, however, that the limits delineating each 
group are only drawn tentatively and must be interpreted with caution. At the 
least, they imply that environmental constraints will impose a far greater rigidity 
of web shapes and a much smaller choice of trophic patterns than previously 
assumed. 
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A community food web (Cohen 1978) describes the feeding relations in a com­
munity of organisms. A trophic species (Briand and Cohen 1984) (hereinafter 
species) in a web is a collection of organisms that feed on a common set of or­
ganisms and are fed on by a common set of organisms. Species z is linked to 
species y when energy flows from z to y, that is, when y feeds on z. A chain is 
an energy path or sequence of links that starts at a species that eats no other 
species in the web and ends at a species that is eaten by no other species in the 
web. The length of a chain is the number of links it comprises. The mean chain 
length of a web is the arithmetic average of the lengths of all chains in the web. 

Two major hypotheses and one empirical generalization have been proposed 
to relate chain lengths to environmental conditions. The first hypothesis, known 
as the "energetic hypothesis" (Hutchinson 1959), proposes that chain length is 
limited by the inefficiency with which energy is transmitted by predation and 
by the minimal energy requirements of predators. Limited available energy may 
make it impossible to support enough individuals to maintain a population, 
may make it impossible for individuals to find enough prey to survive, or may 
constrain chain length through other mechanisms. In its simple form, this hy­
pothesis predicts that chains should be longer in ecosystems with higher primary 
productivity. It has been tested experimentally (Pimm and Kitching 1987) and 
rejected for small artificial ecosystems, and it remains to be tested further exper­
imentally. From a review of nine studies ranging from energetically impoverished 
to highly productive environments, Pimm (1982) concluded that there was no 
evidence for food chains being longer in more productive habitats. 

The second hypothesis, known as the dynamical stability hypothesis (Pimm 
and Lawton 1977), is based on the finding in specific mathematical models of 
ecosystems that the longer the chains, the more severe the restrictions that 
must be imposed on the coefficients of the models for equilibrium to be feasible 
or stable. Further, in certain models, ecosystems with longer chains take longer 
to return to equilibrium once perturbed, so that webs with longer chains may 
be less likely to persist in nature. This hypothesis predicts that chains should be 
longer in ecosystems exempt from large perturbations. To our knowledge, there 
is no reported evidence for or against this hypothesis. 

The empirical generalization (Briand 1983a), based on 34 webs, proposes that 
chains tend to be longer in three-dimensional than in two-dimensional environ­
ments. An environment is classified as having dimension 2 if it is essentially flat, 
like a grassland, the tundra, a sea or lake bottom, a stream bed, or the rocky 
intertidal zone. An environment is classified as having dimension 3 if it is solid, 
like the pelagic water column or a forest canopy. Webs from habitats integrating 
both flat and solid environments are considered as having "mixed" dimension. 

To evaluate the relative influence on chain length of the primary productivity, 
the variability, and the dimensionality of the environment, we studied a collection 
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of 113 webs, culled from 89 published and 2 unpublished studies, to cover as wide 
a diversity of natural environments as possible. Most of the world biomes are 
represented. There are 55 continental (23 terrestrial and 32 aquatic), 45 coastal, 
and 13 oceanic webs, ranging from arctic to antarctic regions. 

Only webs partially defined, presented too sketchily, or based on information 
explicitly drawn from different locations were excluded from this collection. The 
webs were not screened by rejection of outliers or by any other statistical proce­
dure based on the data. Only obvious biological errors were amended in editing 
the data. Although all webs were treated consistently in this collection, the prac­
tices of field ecologists in observing and reporting webs are not standardized. As 
the apparent characteristics of an individual web may reflect the idiosyncrasies 
of its observer, it is appropriate with these data to attend to broad trends and 
major differences among distributions. 

The 113 webs studied are listed in Table 1 together with their sources and the 
following characteristics: mean chain length, maximal chain length, number of 
species, number oflinks, productivity, variability, dimensionality, and geographic 
origin. The details of all of these webs are fully documented (Chap. IV); the 
frequency distributions of chain length of all webs have been reported (Cohen, 
Briand and Newman 1986). This large collection allows comparisons to be made 
that are more sensitive than before to small differences in mean chain length. 

The productivity of a web is classified as low if the net primary productivity 
of its ecosystem falls below 100 g of carbon per square meter per year and high 
if it exceeds 1000 g of carbon per square meter per year. Of 113 webs, 22 were 
classified as having low productivity, 10 as having high productivity, and 6 as 
having intermediate productivity. The remaining 75 webs were unclassified fQr 
want of information. 

The variability of a web's habitat is classified as fluctuating or constant. The 
environment is fluctuating if the original report indicates temporal variations of 
substantial magnitude in temperature, salinity, water availability, or any other 
major physical parameter. The magnitude, not the predictability, of the vari­
ations is the criterion of classification. Of 113 webs, 64 were classified as fluc­
tuating and 17 as constant. The remaining 32, previously (Cohen, Briand and 
Newman 1986) unclassified, are considered here as intermediate. 

Of 113 webs, 40 were classified as having dimension 2 and 28 as having dimen­
sion 3. Forty-five webs previously (Cohen, Briand and Newman 1986) recorded 
as having neither dimension 2 nor dimension 3 are here considered as having 
mixed dimension. 

Some subjective judgments are involved in classifying webs as fluctuating or 
constant and as two-dimensional or three-dimensional. For the first 40 webs in 
the series (Cohen 1978; Chap. 11.5), the facts supporting these judgments are 
already documented. 

All calculations were performed for both mean and maximal chain lengths. 
Maximal chain lengths varied in parallel with mean chain lengths throughout. We 
present the mean (within-web) chain lengths descriptively using box plots (Tukey 
1977; McNeil 1977). We attempt no formal statistical tests of differences between 
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distributions because it is doubtful that the webs in our collection form a random 
sample from a well-defined universe of webs (Cohen, Briand and Newman 1986). 

Fig. B.6.1 shows that the distributions of mean chain lengths are similar, with 
virtually identical medians, in webs differing markedly in productivity. Contrary 
to the energetic hypothesis, high-energy systems do not support longer chains, 
on average or maximally, than energetically impoverished environments. The 
possibility remains that energy influences chain length but that highly produc­
tive systems attract a greater fraction of energetically less efficient consumers, 
which prevent the assembly of longer food chains. Lacking detailed data on the 
energetic efficiency of the web species, we cannot exclude this possibility (Yodzis 
1983). 

The distributions of mean chain length are relatively distinct in fluctuating 
compared to constant webs and quite distinct in webs having dimension 2 com­
pared to those having dimension 3. The upper quartile of mean (within-web) 
chain length for the 40 webs of dimension 2 is 2.6 links, which falls below the 
lower quartile (2.7 links) of mean chain length for the 28 webs of dimension 3. 

With a sufficiently large collection of fuily described webs, it would be possi­
ble to cross-classify each web by its productivity, variability, and dimension and 
thereby to study the dependence of chain length on all three variables simulta­
neously. When the 113 webs are cross-classified by the variability and dimension 
of the environment only (and not by productivity, which is unknown for many 
webs), there are only two webs in constant environments of dimension 2. There 
are 27 webs in fluctuating environments of dimension 2, and this is the largest 
number in any cell of the cross-classification. Not enough webs are available to 
support further cross-classification. 

It would be hasty to conclude that variability and dimensionality indepen­
dently influence chain length. Of the two-dimensional webs, 27 are fluctuating 
and 2 are constant; of the three-dimensional webs, 13 are fluctuating and 7 
are constant. Thus the proportion of constant webs is more than five times 
as high among three-dimensional webs as among two-dimensional webs. No 
such risk of confounding affects the interpretation of the effect of productiv­
ity in Fig. B.6.1, since webs from environments with low or high productivity 
include comparable fractions of fluctuating and constant, and two-dimensional 
and three-dimensional, habitats. 

To assess the relative influence of environmental dimension and variability 
on chain lengths, we compared the distributions among webs of mean (within­
web) chain lengths in fluctuating and constant webs having comparable, mixed 
dimension (Fig. B.6.2a) and in two- and three-dimensional webs of comparable 
variability in constant, fluctuating, or intermediate habitats (the last comparison 
being shown in Fig. B.6.2b). 

If environmental variability alone markedly affects the length of chains, then 
the distributions in Fig. B.6.2a should be distinct. That is not the case: given a 
mixed dimension, constant environments do not support markedly longer chains 
than fluctuating environments, contrary to the dynamic stability hypothesis. 

If environmental dimension alone markedly affects chain length, then the dis­
tributions for webs with intermediate variability in Fig. B.6.2b should be distinct. 
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That is clearly the case. Further, in fluctuating habitats, the 27 webs with di­
mension 2 have a median 2.3 mean chain length, less than the median 2.8 mean 
chain length of the 13 webs with dimension 3. In constant habitats, the two webs 
with dimension 2 have a median 2.3 mean chain length, less than the median 
4.0 mean chain length of the seven webs with dimension 3. Although there are 
too few webs in constant two- or three-dimensional habitats to justify any firm 
conclusion, the differences are consistent in the three comparisons: controlling 
for variability, webs in two-dimensional habitats have shorter mean chain lengths 
than those in three-dimensional habitats. 

We conclude from our data that the dimensionality of the environment in­
fluences mean or maximal chain length more than environmental variability. 
Dimensionality is a major determinant of chain length in natural communities. 
Why this is so remains to be explained, although it is evident that environmen­
tal dimension may affect the probability per unit time of an encounter between 
predator and prey. 

Table 1. Characteristics of 113 webs. Serial numbers and sources are as in Chap. IV. Produc-
tivity: 0, unclassified (unknown or intermediate); 1, low; 2, high. Variability: 0, intermediate; 
1, fluctuating; 2, constant. Dimension: 0, mixed; 2, two dimensional; 3, three dimensional. 

Mean Max. No. of No. of Prod. Var. Dim. Habitat 
number chain chain trophic links 

length length species 

1 3.13 4 8 14 0 0 0 Cochin backwater, India 
2 2.71 3 14 22 0 1 0 Knysna estuary, South Africa 
3 2.30 3 24 34 0 1 2 Salt marsh, Long Island, USA 
4 2.74 4 13 26 0 1 0 Salt marsh, California 
5 2.00 2 6 5 2 0 0 Salt marsh, Georgia 
6 3.82 6 25 43 0 1 0 Tidal fiat, California 
7 2.79 4 18 30 0 0 0 Narragansett Bay, Rhode Island 
8 2.44 4 15 25 2 1 0 Salt marsh, Rhode Island 
9 2.86 3 9 13 0 0 0 Lough Ine Rapids, Ireland 

10 2.00 2 3 2 0 1 2 Exposed rocky shore, New England, USA 
11 2.00 2 5 4 0 1 2 Protected rocky shore, New England, USA 
12 2.25 3 9 13 0 1 2 Exposed rocky shore, Washington 
13 2.50 3 9 14 0 1 2 Protected rocky shore, Washington 
14 2.40 3 8 10 0 0 0 Mangrove swamp 1, Hawaii 
15 2.33 3 7 7 0 1 0 Mangrove swamp 3, Hawaii 
16 2.14 3 14 20 2 1 0 Pamlico estuary, North Carolina 
17 3.56 5 14 23 0 0 3 Coral reefs, Marshall Islands 
18 2.00 4 23 35 0 0 0 Kapingamarangi Atoll, Polynesia 
19 3.00 4 17 32 1 1 3 Moosehead Lake, Maine 
20 3.26 5 19 30 1 0 3 Antarctic pack ice zone 
21 4.61 7 9 20 0 0 3 Ross Sea 
22 3.69 7 28 58 0 1 0 Bear Island, Spitsbergen 
23 2.40 4 15 27 0 1 2 Prairie, Manitoba 
24 2.70 4 12 18 0 1 3 Willow forest, Manitoba 
25 2.16 4 24 37 0 1 3 Aspen communities, Manitoba 
26 2.93 6 32 56 0 1 0 Aspen forest, Manitoba 
27 2.89 4 22 39 2 1 3 Wytham Wood, England 
28 1.96 3 32 35 0 1 0 Salt meadow, New Zealand 
29 3.14 5 16 22 1 0 3 Arctic seas 
30 5.02 7 14 32 1 0 3 Antarctic seas 
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Table 1. Continued 

Web Mean Max. No. of No. of Prod. Var. Dim. Habitat 
number chain chain trophic links 

length length species 

31 3.90 6 14 51 0 0 3 Epiplankton communities, Black Sea 
32 3.86 6 14 52 0 2 3 Bathyplankton communities, Black Sea 
33 1.93 4 29 48 0 2 0 Crocodile Creek, Malawi 
34 2.56 4 12 27 0 2 2 River Clydach, Wales 
35 2.72 4 13 36 0 0 2 Morgan's Creek, Kentucky 
36 2.07 4 19 35 0 0 0 Mangrove swamp 6, Hawaii 
37 2.75 4 24 46 0 2 0 Marine sublittoral, southern California 
38 2.13 3 31 95 0 2 0 Lake Nyasa, rocky shore, Malawi 
39 1.80 3 33 70 0 2 0 Lake Nyasa, sandy shore, Malawi 
40 1.88 3 11 15 0 2 3 Rain forest, Malaysia 
41 5.92 8 18 49 1 2 3 Tropical seas, epipelagic zone 
42 4.95 8 15 36 2 2 3 Upwelling areas, Pacific Ocean 
43 3.13 5 20 38 0 2 3 Kelp bed community, south California 
44 3.63 5 12 29 2 2 0 Marine coastal lagoons, Guerrero, Mexico 
45 2.14 3 11 20 0 2 2 Cone Spring, Iowa 
46 4.43 8 19 68 1 0 3 Lake Texoma, Texas 
47 4.22 5 27 50 0 2 0 Swamps, south Florida 
48 3.53 5 13 20 0 1 0 Nearshore marine 1, Aleutian Islands 
49 2.56 4 12 20 0 1 0 Nearshore marine 2, Aleutian Islands 
50 2.44 3 14 23 0 1 2 Sand beach, California 
51 3.28 5 25 46 0 0 0 Shallow sublittoral, Cape Ann, Massachusetts 
52 2.08 3 20 32 0 1 2 Rocky shore, Torch Bay, Alaska 
53 1.95 2 22 31 0 1 2 Rocky shore, Cape Flattery, Washington 
54 2.58 4 14 20 0 0 0 Western rocky shore, Barbados 
55 2.46 3 12 18 2 1 2 Mudflat, Ythan Estuary, Scotland 
56 2.22 3 10 14 0 1 2 Mussel bed, Ythan Estuary, Scotland 
57 3.29 5 9 19 2 0 0 Brackish lagoons, Guerrero, Mexico 
58 4.28 7 17 21 0 1 0 Sphagnum bog, Russia, USSR 
59 2.37 4 29 61 0 1 3 Trelease Woods, Dlinois 
60 2.36 3 33 69 0 1 3 Montane forest, Arizona 
61 2.00 3 8 10 1 1 2 Barren regions, Spitsbergen 
62 3.00 4 11 12 1 1 2 Reindeer pasture, Spitsbergen 
63 3.16 4 18 75 0 0 2 River Rheidol, Wales 
64 1.67 2 19 28 0 0 2 Linesville Creek, Pennsylvania 
65 1.85 2 13 25 0 0 2 Yoshino River rapids, Japan 
66 2.93 4 10 18 0 0 2 River Thames, England 
67 3.94 6 21 62 0 0 0 Mudflats, Mississippi River, Iowa 
68 2.63 4 22 32 0 1 3 Loch Leven, Scotland 
69 3.62 6 29 73 0 1 0 Tagus Estuary, Portugal 
70 2.49 3 14 28 0 1 0 Crystal River Estuary, Florida 
71 5.15 7 16 32 0 1 3 Lake Rybinsk, Russia, USSR 
72 3.95 5 17 32 0 1 3 Heney Lake, pelagic zone, Quebec 
73 2.38 3 10 15 0 1 3 Hafner Lake, Austria 
74 2.38 4 21 36 0 1 2 Sand beach, South Africa 
75 2.75 4 9 14 0 1 3 Vorderer Finstertaler Lake, Austria 
76 2.67 4 14 17 1 1 0 Neusiedler Lake, Austria 
77 3.63 5 13 24 0 2 0 Lake Abaya, Ethiopia 
78 3.15 5 16 27 2 2 0 Lake George, Uganda 
79 3.41 5 21 29 0 1 0 Lake Piiijli.rvi, offshore, Finland 
80 3.35 5 27 70 0 1 0 Lake Piiijli.rvi, littoral zone, Finland 
81 2.73 4 12 19 1 0 0 Sendai Bay, mesopelagic zone, Japan 
82 3.71 5 10 14 0 1 0 Permanent freshwater rockpool, France 
83 2.45 4 25 67 1 1 0 Lake Pyhiijii.rvi, littoral zone, Finland 
84 3.61 5 12 23 0 1 0 Temporary pond, Michigan 
85 3.61 5 27 49 2 1 0 Tasek Bera Swamp, Malaysia 
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Table 1. Continued 

Web Mean Max. No. of No. of Prod. Var. Dim. Habitat 
number chain chain trophic links 

length length species 

86 4.09 6 16 37 0 1 3 Suruga Bay, epipelagic zone, Japan 
87 2.91 4 11 17 1 0 0 Ice edge community, High Arctic, Canada 
88 1.95 2 16 42 0 0 2 Lestijoki River Rapids, Finland 
89 2.89 4 18 32 0 0 3 River Cam, England 
90 1.84 2 22 39 0 1 2 Old field, New Jersey 
91 3.00 4 10 13 0 1 3 Shigayama coniferous forest, Japan 
92 2.00 3 18 18 1 0 2 High Himalayas community, Tibet 
93 2.12 3 26 70 1 1 2 Alpine tundra, Montana 
94 3.35 5 12 19 1 1 2 Wet coastal tundra, Barrow, Alaska 
95 2.50 4 10 12 1 1 2 'l\mdra, Prudhoe, Alaska 
96 1.92 2 9 16 1 1 2 'l\mdra, Yamal Peninsula, Siberia 
97 2.00 3 11 17 1 1 2 'l\mdra, South Yamal, Siberia 
98 3.54 5 17 39 1 0 2 Sand dunes, Namib Desert, Namibia 
99 2.51 4 48 138 1 0 2 Sonora Desert, Arizona 

100 3.34 6 22 59 1 0 2 Rajasthan Desert, India 
101 1.67 2 6 5 0 1 0 Temporary freshwater rockpool, France 
102 3.97 7 9 27 1 2 3 Plankton, oligotrophic tropical Pacific 
103 5.59 10 23 133 1 2 3 Tropical plankton community, Pacific 
104 3.16 5 27 62 0 0 2 Rocky shore, Bay of Panama 
105 3.67 5 10 22 0 1 2 Rocky shore, Gulf of Maine, USA 
106 2.41 5 35 73 0 1 2 Rocky shore, Monterey Bay, California 
107 2.50 3 10 14 0 1 2 Bay pilings community, New Jersey 
108 2.27 3 14 20 0 1 2 Rocky shore, Cabrillo Point, California 
109 2.88 4 21 57 0 1 2 Rocky shore, central Chile 
110 2.13 3 13 23 0 1 2 Rocky shore, Cape Ann, Massachusetts 
111 2.44 3 19 36 0 1 2 Mudflat, Cape Ann, Massachusetts 
112 1.83 3 14 17 0 1 0 Low salt marsh, Cape Ann, Massachusetts 
113 2.11 3 11 12 0 1 0 High salt marsh, Cape Ann, Massachusetts 



Chapter III 
A Stochastic Theory of Community Food Webs 

§ 1. Theory: Circles of Complexity, Spherical Horses 

Joel E. Cohen 

The introduction to the empirical portion of this book describes a three-panel 
cartoon. In the middle panel, theoretical ecologists collected community food 
webs and discovered some entertaining empirical regularities. (That summarizes 
the preceding chapters of this book.) In the background of the last panel, mice 
were constructing a theoretical scaffolding to hold together the observed empir­
ical regularities. This portion of the book presents that scaffolding. 

The materials in a scaffolding are often used for more than one building. The 
theory in this portion of the book is no exception. This introduction describes 
where some of the previously used pieces of the theoretical scaffolding came 
from, and suggests some directions for future extensions. 

There is a well-known joke about a theoretical physicist who decides to con­
quer biology using methods that proved so powerful in physics. After modestly 
taking a whole week to learn biology, he or she begins: "Consider a spherical 
horse." The history of the theory in this portion of the book might be viewed 
as a progression from spherical horses, to random spherical horses, to the neighs 
of a random spherical horse. To form a clearer image of a scaffolding built of 
spherical horses, read on. 

1. Spherical Horses 

Lotka, in his 1925 magnum opus Elements of Physical Biology, and in earlier 
papers, constructed an influential model of community ecology from the kinetic 
equations of chemistry. He proposed that the species (chemical or biological) of 
a community evolve according to a family of autonomous, generally nonlinear, 
first-order ordinary differential equations. As special cases, he considered a pair 
of equations that model interactions between a predator and a prey, and another 
pair of equations that model interactions between two competitors. The famous 
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"Lotka-Volterra equations" refer to one or another of these pairs of nonlinear, 
first-order ordinary differential equations. Lotka's perspective on ecological dy­
namics has influenced much ecological theory (e.g., there are 11 index references 
to Lotka or his equations in May 1981; 3 references in the subject index, but 
none in the name index, of Strong et al. 1984; and 7 references in the subject 
index of Diamond and Case 1986), including in particular models of food webs 
(e.g., Pimm 1982). It is ironic that Lotka apparently did not consider himself an 
ecologist, and hoped for recognition from physicists that was never forthcoming 
(Kingsland 1985). 

The history that led Lotka to his view of ecological communities is perhaps 
equally ironic. Trained as a physical chemist, Lotka studied for the 1901-1902 
academic year in Leipzig, where he was greatly influenced by the lectures of 
Ostwald, a Nobel Laureate in chemistry. Ostwald in turn was greatly influenced 
at that time by the views of Haeckel, who (in 1866) coined the word "ecology". 
Haeckel saw Darwinian evolution, and the survival of the fittest (interpreted as 
naively as possible), as the universal law of human groups as well as of nonhuman 
species. In 1906, not long after Lotka's studies in Leipzig, Ostwald helped found 
the Monist League. Its purpose was to advance the views of Haeckel. In the social 
and cultural setting of Germany, Haeckel's Monism provided an interpretation 
of Darwinism that eventually justified the systematic destruction of non-Aryans 
(Stein 1988). 

Lotka, who would have been among those destroyed had he remained in 
Leipzig, carried away from Leipzig the purely scientific interpretation of Ost­
wald's Monistic views. Coming to America, Lotka began the program of research 
and publication that culminated in his 1925 book. His 1907 paper, "Studies on 
the mode of growth of material aggregates", followed a mathematical theory 
of stable age-structured populations with a model of isothermal monomolecu­
lar reactions (Cohen 1987). He viewed both models as "the study of the laws 
governing the distribution of matter among complexes of any specified kind, as 
determined by their general physical character." 

Here is a spherical horse! Lotka, more than many who adopted his perspec­
tives and used his models, knew a spherical horse when he saw one, even if he 
rode it. In 1932, Lotka ended a paper on what are now called the Lotka-Volterra 
equations for two competing species with the observation: "It is perhaps hardly 
to be expected that concrete examples of the law of growth for two popula­
tions here discussed shall be found in nature." Among the feature of nature 
these equations neglect are: the age structure of the competing species, genetic 
heterogeneity within each species, spatial and temporal heterogeneity in the 
environment and in the parameters of interaction, possible roles of learning, in­
terference from other species that may be present, and exhaustion or resupply 
of nutrients. The list could be extended, but suffices to indicate why Lotka's 
abstract, general models are spherical horses. 

Nevertheless, when Gause constructed microbiological "ecosystems" that were 
sufficiently simplified to be described by ,the Lotka-Volterra competition equa­
tions, the equations were enshrined as useful keys to vastly more complex nature. 
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Perhaps one reason for the influence of Lotka-Volterra equations on food web 
theory is that they provide a language that can-formalize Darwin's theoretical 
intuitions about food webs. Darwin (1859, p. 72) described a region of Paraguay 
where no cattle, horses, or dogs run wild because a certain fly lays its eggs in 
the navels of these animals when the animals are born. He then hypothesized: 

Hence, if certain insectivorous birds (whose numbers are probably regulated by hawks or beasts 
of prey) were to increase in Paraguay, the flies would decrease - then cattle and horses would 
become feral, and this would certainly greatly alter (as indeed I have observed in parts of 
South America) the vegetation: this again would largely affect the insects; and this, as we just 
have seen in Staffordshire, the insectivorous birds, and so onwards in ever-increasing circles of 
complexity. 

In a second example, Darwin (1859, pp.73-74) described the crucial role of 
British insects in pollinating British flowers, and the apparent influence of field­
mice on insects. He again hypothesized: 

Hence it is quite credible that the presence of a feline animal in large numbers in a district 
might determine, through the intervention first of mice and then of bees, the frequency of 
certain flowers in that district! 

Hypotheses such as these ignore the age structure of the competing species, 
genetic heterogeneity within each species, spatial and temporal heterogeneity in 
the environment and in the parameters of interaction, possible roles of learning, 
interference from other species that may be present, and exhaustion or resupply 
of nutrients. Does this list sound familiar? Darwin's hypotheses are made to order 
for the stoichiometric equations of Lotka; in both, predation simply inhibits the 
population growth and population size of the prey and enhances the population 
growth and population size of the predator. Though their verbal formulation 
makes them appear to be horses of another color, Darwin's hypotheses about 
food chains and food webs are spherical horses as much as Lotka's. 

Like Lotka, Darwin knew a spherical horse when he saw one. Immediately 
after the preceding example, he wrote (1859, p. 74): 

In the case of every species, many different checks, acting at different periods of life, and 
during different seasons or years, probably come into play; some one check or some few being 
generally the most potent, but all concurring in determining the average number or even the 
existence of the species. In some cases it can be shown that widely-different checks act on the 
same species in different districts. 

Darwin recognized age structure, seasonality, and spatial heterogeneity. This 
recognition did not make him afraid to build around his observations a scaffold­
ing of spherical horses. 

2. Random Spherical Horses 

Meanwhile, back at the spherical ranch (where the spherical horses range), nu­
clear physicists were trying to understand the distribution of energy levels, or 
spectra, of nuclei. In a typical experiment, nuclei of some element are bombarded 
by neutrons with differing amounts of energy, and the number of particles flying 
out are counted as a function of the energy of the bombarding neutrons (Mehta 
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1986). The frequency histogram of counted particles as a function of energy, 
called the spectrum, displays discrete sharp peaks. The problem is to explain 
the location of these peaks. 

In the 1950s, the physicist Eugene P. Wigner introduced the idea that the 
distribution of peaks could be understood as the distribution of the eigenvalues 
of a certain square symmetric matrix with random elements. By a happy co­
incidence, the set of eigenvalues of a matrix is called its spectrum, so Wigner 
proposed that energy spectra could be described by random matrix spectra. This 
weird idea gives an amazingly good quantitative description of observed energy 
spectra (Mehta 1986). 

Wigner discovered that if the size (i.e., number of rows or columns) of his 
particular random matrix increases while the variance of each element falls like 
the reciprocal of the size of the matrix, then the empirical distribution function 
of the spectrum (which is just a statistical summary of where the eigenvalues 
are) approaches a specific limit, the so-called semicircle law. Moreover, there 
is a fixed number such that, with a probability that approaches one as the 
matrix gets arbitrarily large, the largest eigenvalue falls arbitrarily close to the 
fixed number. This means that the cumulative probability distribution function 
of the largest eigenvalue looks like a step function, jumping from nearly zero 
below the fixed number to nearly one above the fixed number. As the largest 
eigenvalue of a matrix determines the stability of a linear system described 
by that matrix, Wigner proved, in effect, that the stability of a linear system 
described by his random matrix obeys a similarly abrupt transition. Wigner's 
results (e.g., Wigner 1958) have been very extensively generalized and refined 
(e.g. Bai and Yin 1988). 

In 1972, Robert M. May, another physicist by training, proposed that Wigner's 
mathematics could illuminate an important question of ecology: what is the re­
lation between the complexity and the stability of communities? May's central, 
and powerful, idea was that if it is difficult to investigate the relation between 
stability and complexity in individual communities, it may be informative to 
investigate that relation in a hypothetical ensemble of random communities. 
In the absence of data, such communities could be constructed according to hy­
potheses chosen largely for analytical convenience, to take advantage of Wigner's 
mathematics. 

May's model, truly a random spherical horse, might have been named Son 
of Lotka. His model describes the population dynamics of a set of interacting 
species by a set of nonlinear first-order differential equations, assumed to have 
a point of equilibrium. Around this equilibrium, the nonlinear dynamics are 
approximated by a linear equation dz / dt = Az. Here z is a vector with as many 
elements as there are species in the community, and each element represents that 
species' deviation from its equilibrium. The matrix A is called the community 
matrix. The diagonal elements of A are fixed at -1, so that each species is stable 
by itself. The off-diagonal elements are set equal to zero with probability 1 - C 
and otherwise, with probability C, are chosen at random from a distribution 
with mean zero and some positive variance. The parameter C, 0 < C < 1, is 
called the connectance. It is the probability of interaction between two species. 
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May (1972) found that, as the number of species became very large, if the 
product of the number of species times the connectance times the variance of 
the off-diagonal elements remained less than one, then the probability that the 
community would be stable approached one, i.e., certainty, while if the same 
product remained greater than one, then the probability that the community 
would be stable approached zero, i.e., impossibility. May interpreted his finding: 

Applied in an ecological context, this ensemble of very general mathematical models of multi­
species communities, in which the population of each species would by itself be stable, displays 
the property that too rich a web connectance ... or too large an average interaction strength 
... leads to instability. The larger the number of species, the more pronounced the effect. 

According to this conclusion, any increase in complexity, whether measured 
by number of species, connectance, or interaction strength, brings an initially 
stable community closer to instability. This conclusion contradicted the then­
received wisdom among ecologists that the more complex a community is, the 
more stable it is. May's random spherical horse, amplified in his monograph 
(May 1973), kicked open the ecological barn door, and a stampede of theoretical 
and empirical studies thundered out. See the reviews and references of May 
(1981) and Pimm (1984). 

It took a dozen years to notice that May's claims, in the generality with 
which they were originally stated, were mathematically false (Cohen and New­
man 1984, 1985). Wigner had assumed symmetry, May had not. In a footnote, 
May (1972) had suggested that "the present results for the largest eigenvalue 
and its neighbourhood can be obtained by using Wigner's original style of ar­
gument on" the product of the community matrix times the transpose of that 
matrix, which is indeed symmetric. Attempts by others to fill in the details of 
May's sketch were doomed to failure. 

Nevertheless, in a model in which the random community matrix changes 
randomly in time, conclusions very like May's hold under certain assumptions 
(Cohen and Newman 1984). For a model with a fixed community matrix, as 
May (1972) assumed, Geman (1986) discovered additional conditions sufficient 
to guarantee May's conclusions about stability. Additional conditions sufficient 
to guarantee May's conclusions about instability remain to be discovered for a 
model with a random community matrix fixed in time. This random spherical 
horse still limps in one leg. 

But in an important sense, by the time the limp became obvious, it did not 
matter! Indeed, May's random spherical horse, limp and all, has arguably been 
much more useful than many a technically correct model in theoretical ecology. 

First, May's model contributed importantly to ecological theory. The model 
raised the level of ecologists' thinking about the relation between complexity and 
stability. The model encouraged ecologists to think in terms of an ensemble of 
ecosystems composed according to some random process. The model strength­
ened the growing willingness among ecologists to think abstractly and exactly 
about ecological issues in general. It demonstrated that multi-species community 
models could, in principle, be analyzed using methods more recent than Lotka's 
general theory of equilibrium. It provoked a host of more detailed models. 
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Second, May's conclusions made quantitative predictions that could be tested 
against data. For example, for a fixed variance in the off-diagonal elements of 
the community matrix, the maximum connectance that is compatible with a 
stable community is predicted to fall as the reciprocal of the number of species 
in the community, asymptotically as the number of species becomes very large. 
Reinterpreted as a statement about communities with a finite number of species, 
this prediction prompted Rejmanek and Stary (1979) to collect food webs; as 
predicted, they found a hyperbolic relation between connectance and the number 
of species. Though other interpretations of this observation are now possible 
(Cohen and Newman 1988), it was May's model that prompted the observation 
in the first place. 

A random spherical horse that promotes theory and observation is not a bad 
horse! 

3. Neighs of 8 Random Spherical Horse 

In another part of the spherical ranch, while Wigner was analyzing the asymp­
totic theory of the spectra of random matrices, two mathematicians, P. ErdOs 
and A. Renyi, were developing a revolutionary theory of random graphs. A ran­
dom graph consists of a set of vertices and some probabilistic rule for assigning 
edges between pairs of vertices. Think of each vertex as representing a species in 
an ecological community, and of each edge as some bidirectional relation between 
species, e.g., competition. In 1960, ErdOs and Renyi showed that amazing things 
happen in a random graph if the number of vertices grows arbitrarily large while 
the probability of an edge between two vertices is a specified, declining function 
of the number of vertices. For example, if the probability of an edge between 
two vertices declines ever so slightly faster than the reciprocal of the number 
of vertices, then almost surely a large random graph will contain no cycles of 
any order; but if the probability of an edge between two vertices declines ever so 
slightly slower than the reciprocal of the number of vertices, then almost surely a 
large random graph will contain cycles of every order. Thus the reciprocal of the 
number of vertices is called the threshold function for cycles of all orders: when 
edges are asymptotically more (or alternatively less) probable than the recipro­
cal of the number of vertices, cycles of all orders are nearly sure to be present 
(or alternatively absent). Erdos and Renyi discovered threshold functions for a 
host of interesting graph properties, and many more have been discovered since 
(e.g. Bollobas 1985). 

Given data about community food webs, these discoveries about random 
graphs are exciting because they reveal large-scale order in random mathemati­
cal objects, graphs, that are much closer to the form of most food web data than 
are the quantitative community matrices assumed in the models of Lotka and 
May; in this sense, because random graphs simplify quantitative relations into 
purely combinatorial ones, they are the neighs of random spherical horses. On 
the other hand, these discoveries are frustrating because random graphs are not 
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random directed graphs, or digraphs, as food webs are; random graphs do not 
represent directed relations between species, such as one species eating another. 

One possible response is to construct from food webs undirected graphs, such 
as trophic niche overlap graphs (Cohen 1978) or resource graphs or common 
enemy graphs (Sugihara 1982; Lundgren and Maybee 1985). If the probabilistic 
models of Erdos and Renyi (1960) are appropriate, then their methods and 
theorems give information about the asymptotic behavior of these undirected 
graphs (e.g., Cohen, Koml6s, and Mueller 1979). 

A second possible response, slower and more laborious, is to construct digraph 
models appropriate for food webs, taking inspiration from ErdOs and Renyi 
(1960). Cohen (1978) considered six digraph models for food webs, all of which 
were unsuccessful; Cohen and Newman (Chap.III.2) consider three more, two 
of which clearly fail. Pimm, Yodzis (1984), Lawton, DeAngelis, Sugihara (1982) 
and others have considered many other models; see Pimm (1982) for references. 
The cascade model, which is the principal support of the theoretical scaffolding 
in the following chapters, is not the first idea that came to mind, though it 
incorporates elements of many of its predecessors. 

The cascade model is an incomplete, cross-sectional description of dynamic 
ecological processes. In directing attention to a finite set of species (though they 
are trophic species rather than biological species), the cascade model reveals 
itself a descendant of the spherical horses of Darwin, Lotka, and May. (Where 
are the age structure and the genetic heterogeneity of the species, and where 
the temporal and spatial heterogeneity [e.g., Levin 1978] of the environment?) 
In supposing that the presence or absence of interaction between two species 
is randomly determined, the cascade model shows the genes Qf May's random 
spherical horse. In replacing the quantitative effects of one species preying on 
another by a simple all-or-none relation, i.e., in replacing the horse by its neigh, 
the cascade model shows the parentage of the random graph theory of ErdOs 
and Renyi (1960). 

Each of the following chapters points out limitations of the cascade model; 
but one limitation is perhaps not sufficiently emphasized. The cascade model, by 
construction, has no cycles, i.e., excludes the possibility that e.g. A eats B and B 
eats A, or A eats B, Beats C, and C eats A. The justification for this exclusion is 
empirical: published food webs rarely report such cycles. Nevertheless, in nature, 
energy flows not only uphill, in chains of grazing or browsing and carnivory, but 
also downhill, in chains of detritus, decomposition and decay (see e.g. Wood­
well 1970; Cousins 1980). The cascade model neglects the trophic or chemical 
processes of recycling, but only because most of the available data do, too. As 
Kenneth Wachter suggested (personal communication, 16 May 1986), the cas­
cade model really aims to describe the largest cycle-free portion of community 
food webs. 

Stripping away dynamics (Darwin, Lotka), stability (Lotka, May), and that 
warm feeling that being able to tell a story about a model gives you, the cas­
cade model concentrates on explaining the phenomenology of observed food web 
structure, using a minimum of hypotheses. This concentration on structural 
phenomenology does not deny the importance of other aspects of food webs; 
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it is merely a point of departure. The walls rise with the scaffolding, and the 
wallpaper comes later. 

4. What Next? 

The achievements of the cascade model have been summarized in the general 
introduction to this book, and are set out in detail in the following chapters. 
There are two main directions to explore next: seeing what else the cascade model 
can, or cannot, explain; and seeing what explains the structure and parameters 
of the cascade model. 

The introduction to this book suggested that the cascade model, in con­
junction with the standard species-area curve, might explain the very weak, or 
nonexistent, connection between the area of an island and the length of the 
longest chains in its food web. 

Other areas where the cascade model might offer explanations are: the roles 
of predation and competition as a function of trophic position in a community; 
allometric relations between the body sizes of predators and prey; differences 
in mean or maximal food chain length between different classes of habitats; the 
pyramid of numbers and biomass in communities; and differential responses to 
environmental perturbations as a function of trophic position in a community. 

In the other direction, if the cascade model continues to be useful, it becomes 
a challenge to explain the form and parameters of the model itself. I, and in­
dependently Warren and Lawton (1987), suggested that the upper triangular 
form of the predation matrix assumed by the cascade model might result from 
ordering the species in a community by size, if animals eat prey that are smaller 
than themselves. In one food web derived from laboratory experiment, rather 
than from field observation, Warren and Lawton (1987) found that when con­
sumers were ordered by increasing size, the predation matrix was close to, but 
not quite, upper triangular. The role of size as the possible order in the cascade 
model deserves much further empirical study, using food webs derived from the 
field. 

In addition to assuming an ordering of species, the cascade model assumes 
that the probability of a link from any species to any species above it in the 
ordering falls as the reciprocal of the number of species in the community. This 
hypothesis is mathematically equivalent to the link-species scaling law. Cohen 
and Newman (1988) use stability criteria inspired by May's (1972), in combina­
tion with a model of the incompleteness of ecological observations, to derive the 
link-species scaling law. Other possible derivations should be explored. 

Thus serious first steps have already been taken to explain the two structural 
assumptions of the cascade model, namely, the ordering of species and the link­
species scaling law. Still in need of explanation are the model's two parameters. 
One parameter is the coefficient of proportionality between the probability of a 
link and the reciprocal of the number of species. This coefficient is about 4 for 
large numbers of species. Why? The other is the number of species. Explaining 
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the number of species occupied Darwin (1859) and has occupied every ecologist 
smce. 

§2. Models and Aggregated Data 

Joel E. Cohen and Charles M. Newman 

1. Introduction 

A food web is a set of kinds of organisms and a relation that shows which kinds of 
organisms, if any, each kind of organism in the set eats. A community food web is 
a food web obtained by picking, within a habitat or set of habitats, a set of kinds 
of organisms on the basis of taxonomy, size, location, or other criteria, without 
prior regard to the eating relations among the organisms (Cohen 1978, pp.20-
21). In the past hundred years, ecologists have reported many community food 
webs. Briand (Chap. IV) collected and edited 62 of these, including 13 of those 
assembled by Cohen (1978). Several simple empirical generalizations describe the 
~ajor features of these community food webs, viewed as an ensemble (Chaps. 
11.2, 11.3). 

The purpose of this chapter is to propose a simple explanation that accounts 
for these empirical generalizations in an economical way. The proposed expla­
nation (the 'cascade' model of section 6) is one several attempted models. The 
unsuccessful models will also be reviewed to show why models that are simpler 
than the one we ultimately propose do not account for the major features of the 
data. 

Section 2 introduces our terminology and summarizes the empirical gener­
alizations that this work aims to explain. Sects. 3-6 describe successively more 
restricted stochastic models, based on random directed graphs, and their failures 
and successes in accounting for the observed generalizations. Section 7 reviews 
the results obtained, relates them to prior results, and points out some of their 
limitations. 

The next chapter (Chap. 111.3) tests further the most successful model pro­
posed here, by using disaggregated data on individual community food webs. 

2. Terminology and Empirical Generalizations 

We shall follow the terminology and restate the major conclusions of Briand & 
Cohen (1984) and Cohen & Briand (1984) (Chaps. 11.2-3). 

By a species, we mean a class of organisms that prey on the same kinds of 
organisms and are preyed on by the same kinds of organisms. A species in this 
sense may result from lumping together kinds of organisms that were identified 
as separate by a reporting ecologist but that were recorded as having the same 
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sets of prey and the same sets of predators (Briand & Cohen 1984). A species 
in this sense bears no necessary relationship to a biological species. 

By a link, we mean any reported feeding or trophic relation between two 
species in a community food web. Observers use various criteria to decide how 
much feeding justifies the reporting of a link and how much failure to observe 
feeding justifies reporting the absence of a link (Cohen & Briand 1984). 

A community food web graph represents a community food web as a directed 
graph or digraph. (The use of digraphs to represent food webs was proposed, 
apparently independently, by Harary (1961) and Gallopin (1972).) The vertices 
of the digraph correspond to the set of species in the community food web, and 
there is an arrow or directed edge from vertex i to vertex j in the digraph if 
and only if species j feeds on species i, that is, food flows from species i to 
species j. In the description of the theory of digraphs by Robinson & Foulds 
(1980), the possibility that i = j, that is, cannibalism, is excluded. As will be 
explained below, cannibalism was excluded from our data, independently of the 
theory of digraphs. Consequently the data are consistent with the assumptions 
of Robinson & Foulds (1980). Henceforth we shall use the single word web to 
mean a digraph that represents a community food web. We shall sometimes use 
the words species and vertex interchangeably. 

A predator is a species that eats at least one species in the web. A prey is a 
species that is eaten by at least one species in the web. A top species is a species 
not eaten by any species in the web. Such a species is represented in the web by 
a vertex that is called a sink (Robinson & Foulds 1980, p. 20). An intermediate 
species is a species that has both at least one predator and at least one prey. A 
basal species is a species that eats no species. Such a species is represented in 
the web by a vertex that is called a source (Robinson & Foulds 1980, p. 20). 

A species that neither eats nor is eaten by any species (an isolated species) is, 
according to the definitions just given, both a top and a basal species. However, 
either such species do not exist in reality or reports of webs, with rare exceptions, 
exclude them. In the whole collection of 62 webs that we shall analyse, only two 
or three isolated species in total were reported by the original sources, and these 
isolated species have been excluded in the editing of the data (F. Briand, personal 
communication). 

We now distinguish special subsets of top and basal species. A proper top 
species is a top species that is also a predator, that is, a species that is eaten by 
none, but that eats at least one other species. A proper top species is represented 
by a vertex that is a proper sink in the terminology of Robinson & Foulds (1980, 
p. 20). A proper basal species is a basal species that is also a prey, that is, a species 
that eats none, but that is eaten by at least one other species. A proper basal 
species is represented by a vertex that is a proper source (Robinson & Foulds 
1980, p. 20). Because isolated species are absent from our data, all reported top 
species are proper top species and all reported basal species are proper basal 
species. In the absence of isolated species, we can partition all species in a web 
into the sets of proper top, intermediate, and proper basal species. 
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A basal-intermediate link is a link from a (necessarily proper) basal species to 
an intermediate species; similarly for a basal-top link, an intermediate-intermediate 
link, and an intermediate-top link. 

For a given reported web, let S denote the total number of species (vertices), T 
the number of (proper) top species, I the number of intermediate species, B the 
number of (proper) basal species, L the total number of links, LBI the number of 
basal-intermediate links, LBT the number of basal-top links, L II the number of 
intermediate-intermediate links, and LIT the number of intermediate-top links. 

The adjacency matrix A of a web (or of any digraph) is an S x S matrix in 
which the element aij in row i and column j equals 1 if species i is eaten by 
species j, and equals 0 if species i is not eaten by species j. Thus species j is a 
basal species if and only if column j of A is 0, because column j of A is 0 if and 
only if species j eats no species in the web. Species j is a proper basal species 
if and only if column j of A is 0 and row j is not O. Similarly species i is a top 
species if and only if row i of A is O. Species i is a proper top species if and only 
if row i is 0 but column i is not O. Species i is isolated if both row i and column 
i are O. 

As is conventional, let E(.) denote the expectation or average of the random 
variable enclosed in parentheses. Let a bar denote the sample mean of the random 
variable it covers. Thus B is the sample mean number of basal species, while 
E(B) is the expected number of basal species according to some model. 

The three major findings of Briand & Cohen (1984) and Cohen & Briand 
(1984) may be stated as 'scaling laws', that is, as summaries of how the variables 
just defined change, or scale, as the total number of species in a web increases. 
Each of these scaling laws has two parts: (i) a qualitative part that states the 
approximate form of a scaling relationship, and (ii) a quantitative part that 
estimates the numerical value of the parameter or parameters in the scaling law. 
The scaling laws are cross-sectional, not longitudinal: they describe a comparison 
of many webs at the moment of observation, not the development of a single web 
over time resulting from the sequential addition of species. 

Species Scaling (Briand &; Coben 1984) 

(i) As S varies from 3 to 33 lumped species, B, I and T are all approximately 
proportional to S. Equivalently, the proportions of species that are basal, 
intermediate and top show no pronounced trend, neither increasing nor de­
creasing, as S varies from 3 to 33. 

(ii) Approximately, B = 0.19S, I = 0.53S, and T = 0.29S for all webs. (The 
sum 0.19+0.53+ 0.29 exceeds 1 due to rounding. For more exact figures, see 
Table III.2.1.) 

It seems plausible (Pimm 1982) that ecologists have been more interested in 
species at the top of webs than in species at the bottom, and that the coefficient 
0.19 for the observed fraction of basal species is lower than the true fraction 
of basal species. When Briand & Cohen (1984) 'lumped' trophic species, they 
found that the ratio of basal species to top species increased relative to the ratio 
observed by Cohen (1977, 1978), as expected from Pimm's suspicions. Supposing 
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that the number oftop species in Table 111.2.1 were correctly observed, and that 
the number of basal species were increased to equal the number of top species, 
as predicted by all of our models, the fraction of all species that are top species 
would decline to 0.26 and the fraction of all species that are basal would increase 
to 0.26. This number seems a reasonable estimate of the fractions of top and 
basal species, corrected for the possible undercount of basal species. 

Table m.2.1. Summary statistics of the numbers of species and links in 62 community webs, 
by type of web, type of species, and category of link (from Cohen & Briand 1984; Chap. II.3) 

constant webs fluctuating websQ all webs 
number fraction number fraction number fraction 

webs ... 19 43 62 

all species 351 1.000 683 1.000 1034 1.000 
basal 66 0.188 130 0.190 196 0.190 
intermediate 177 0.504 366 0.536 543 0.525 
top 108 0.308 187 0.274 295 0.285 

all links 811 1.000 1108 1.000 1919 1.000 
basal-intermediate 198 0.244 327 0.295 525 0.274 
basal-top 92 0.113 56 0.051 148 0.077 
intermediate-intermediate 260 0.321 318 0.287 578 0.301 
intermediate-top 261 0.322 407 0.367 668 0.348 

Q The environment of a web is considered to be 'fluctuating' if the original report indicates 
temporal variations of substantial magnitude in temperature, salinity, water availability or any 
other major physical parameter. Otherwise, the environment of the web is considered to be 
'constant' 

Link Scaling (Cohen & Briand 1984) 

(i) As 8 varies from 3 to 33, LBI, LBT, LII and LIT are all approximately 
proportional to L. Equivalently, the proportions of links that are basal­
intermediate, basal-top, intermediate-intermediate and intermediate-top 
show no pronounced trend, neither increasing nor decreasing, as 8 varies 
from 3 to 33. 

(ii)Approximately, LBI = 0.27L, LBT = 0.08L, LII = 0.30L, and LIT = 0.35L, 
for all webs. 

Link-Species Scaling (Cohen & Briand 1984) 

(i) As 8 varies from 3 to 33, L is approximately proportional to 8. Equivalently, 
the ratio of total links to total species in a web shows no pronounced trend, 
neither increasing nor decreasing, as 8 varies from 3 to 33. 

(ii) Approximately, L = 1.868, for all webs. (More precisely, the coefficient of 
proportionality is 1.8559 with a stan~ard deviation of 0.0740.) It will be 
convenient later to have a notation for the empirically observed ratio of links 
to species; we denote this quantity by d, to suggest 'density of links per 
species'. Thus in our data d = 1.86 approximately. 
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In stating these empirical generalizations, we have repeatedly emphasized 
that the range of variation in the total number of lumped species S among 
the webs collected by Briand is from 3 to 33. We cannot know whether these 
generalizations will continue to hold in webs with substantially larger S. The 
theory to be developed predicts that the scaling laws will continue to hold for 
larger S. 

The scaling laws just stated are all first-order laws that describe trends only. 
They neglect entirely variability with respect to the trends. We shall discuss 
variability briefly in connection with the cascade model of §6. 

A fourth empirical generalization plays a major role in attempts to explain 
the first three. Gallopin (1972, p.266) observed that 'directed food webs are 
in general acyclic, although exceptions are possible'. Cohen (1978, p. 57) found 
one case of cannibalism, but no larger cycles, in four webs. In the 62 webs of 
Briand, cannibalism was reported by very few of the original sources, and then 
only for one species in each web. Because cannibalism is widespread in nature, 
particularly among invertebrates, the original investigators must have largely, 
but not consistently, ignored cannibalism. Consequently, Briand chose to exclude 
all ofthe few reported cases of cannibalism (F. Briand, personal communication). 

To be precise in describing trophic cycles other than cannibalism, we now 
define (Robinson & Foulds 1980, pp. 24-25,70) a walk in a digraph to be a finite 
sequence, consisting of vertices and edges alternately, beginning and ending with 
vertices, in which each edge goes from the vertex written on its left to the vertex 
written on its right. For example a, (a, b), b, (b,c), c is a walk from vertex a to 
vertex c through the edges (a, b) and (b,c). A walk in which the first vertex is the 
same as the last vertex is a closed walk. The length of a walk is the number of 
edges it contains, each counted as often as it occurs. A cycle is a closed walk in 
which all vertices are distinct except the first and last. If two cycles pass through 
the same set of vertices in the same order, differing only in the vertex that is 
written down first, the two cycles are considered to be identical. A k-cycle is a 
cycle of length k > O. (If cannibalism is excluded, then I-cycles are impossible. 
However, it will sometimes be convenient later to consider the possibility of a 
directed edge from a vertex to itself, that is, an I-cycle or loop.) For k > 0, 
a digraph is k-acyclic if it contains no h-cycles, for h = 1, ... , k. A digraph is 
acyclic if it contains no k-cycles, for any k > O. 

If we use this language, all 62 of Briand's webs are acyclic except cases 21 and 
30 (in the numbering of Chap. IV where the unlumped matrices are given). Webs 
21 and 30 each contain a single cycle oflength 2, and no longer cycles (F. Briand, 
personal communication). We summarize the distribution of cycles in the webs 
assembled by Briand with a fourth empirical generalization: acyclicity. 

Acyc1icity (Gallopin 1972) 

Nearly all webs are acyclic. 
It seems nearly certain that decomposers feed on what appear as top species 

and are food for what appear as basal species. The absence of cycles of length 
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greater than 2 implies that the reporters of webs ignore the decomposers. There­
fore we cannot examine the ecological role of decomposers with these data. 

3. Model 0: Anarchy 

We shall say that a random variable Y is Bernoulli with parameter p, and shall 
write Y '" B(p) , for 0 :$ p :$ 1, if Y = 1 with probability p and Y = 0 with 
probability q = 1 - p. (In our notation, '" means 'has the distribution of' or 
'distributed as' rather than 'asymptotically or approximately equals'.) We shall 
say that a random matrix X is independently and identically distributed (LLd.) 
Bernoulli with parameter p, and shall write X", i.i.d. B(p), if every element Xij 

of X is '" B(p), and all elements of X are Li.d. (Since p is assumed constant for 
all elements of the matrix, the additional requirement that they be identically 
distributed is redundant, but is retained to accord with convention.) 

Suppose A, the S x S adjacency matrix of a model web, were'" Li.d. B(p). 
Then E(L) = pS2. However, according to the link-species scaling law, L = dS. 
These two equations are simultaneously satisfied (with E(L) = L) if p = diS. 
To avoid confusing the empirical estimate of density d with a model parameter, 
we shall specify p in all of our models as c/ S. The relation between the model 
parameter c and the sample statistic d will vary from model to model. 

Suppose that each species in a web of S species has an identical and inde­
pendent chance p of eating any species, including itself, in the web, where, as 
the number S of species increases, the probability p decreases according to c/ S, 
that is, let A '" Li.d. B( c/ S) for S ~ c. 

We now analyse the properties of model 0 and compare them with the em­
pirical generaliza:tions above, using d = 1.86 as an estimator for c. 

Species Scaling 

The probability that a species is a top species is qS, and this is also the proba­
bility that a species is a basal species. Thus 

E(T)/S = E(B)/S = qS = (1- c/S)S (3.1) 

is the expected fraction of species that are top species in a web of S species, 
and also the expected fraction of species that are basal species. Thus model 0 
predicts that the fractions of top and basal species should be equal. 

Similarly, the probability that a species is a proper top species is qS(1_qS-l), 
and this is also the probability that a species is a proper basal species. Thus 
model 0 predicts that the fractions of proper top and proper basal species should 
be equal. 

This prediction is only roughly consistent with the empirical observation that 
0.19 of species are basal and 0.29 of species are top. However, like Pimm (1982), 
we believe that ecologists often are more interested in species at the top of food 
chains than in species at the bottom. If other predictions of the model turned 
out to be correct, we would be prepared to accept the model's prediction that 
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in properly collected data, the expected fractions of top and of basal species are 
equal. 

The right member of (3.1) increases monotonically and becomes close to the 
limiting value 

lim E(T)/S = lim E(B)/S = e-c 
8-00 8_00 

(3.2) 

even for moderate values of S. For example, (1 - d/10)l° = 0.13 and (1 -
d/20)2° = 0.14 while e-d = 0.16. Thus model 0 predicts that the fractions oftop, 
basal and intermediate species should be very nearly independent of the number 
S of species in the web. The same conclusion applies to the asymptotic fractions 
of proper top and proper basal species, which are both equal to e-d - e-2d . The 
predicted change in these proportions for S between 3 and 33 would probably be 
undetectably small, given the variation among webs in the observed proportions 
(Chap. 11.2). 

While model 0 explains the qualitative part of the species scaling law, its pre­
dicted asymptotic fractions of top and basal species seem too low to explain the 
quantitative part of the species scaling law. The predicted asymptotic fraction 
0.16 is substantially lower than the fraction 0.26 estimated above. The predicted 
asymptotic ratio of expected number of proper top or proper basal species to 
the expected number of non-isolated species, given by [e-C - e-2C]/[1_ e-2c], is 
0.14, further still from the estimated fraction 0.26. 

In going from the proportions of top or basal species to the proportions of 
proper top or proper basal species, the term involved in the corrections, e-2c = 
0.024, is small compared with the terms being corrected, given the observed 
ratio 1.86 of links to species, and appears in both numerator and denominator. 
When the proportions of top and basal species are corrected to the proportions of 
proper top and proper basal species, they decrease slightly. This slight decrease 
holds in the remaining models as well. For this reason, we shall not discuss 
proper top or proper basal species further until we come to model 3. 

Link Scaling 

We skip the analysis of link scaling because model 0 will be evaluated on other 
grounds. 

Species-Link Scaling 

The assumed behavior of p as a function of S is chosen to reproduce the observed 
species-link scaling. 

Acyclicity 

Although model 0 predicts that about 84% (that is, a fraction 1 - e-d ) of webs 
will display cannibalism, model 0 should not be rejected on this basis because 
cannibalism has been suppressed from the data. However, according to theorem 
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1 below, model 0 also predicts that about 82% (that is, a fraction 1 - e-rP /2) 
of webs will have one or more 2-cycles, which is grossly contrary to observation. 

Effect of Lumping 

According to model 0, it could happen that, for some i < j, column i is identical 
to column j and row i is identical to row j. In this case, if the simulated matrix 
were to be treated in the same way as the real data were treated, species i and 
j should be lumped. Our analysis so far has ignored the possible need to lump 
species in the simulated webs. We now show that the probability of needing to 
lump two non-isolated simulated species according to model 0 is so small that it 
is perfectly reasonable to ignore lumping, given the observed ratio 1.86 of links 
to (lumped) species. 

Choose i < j. Define P(lump i and j) to be the probability that, in a matrix 
A with entries ahk generated by model 0, column i equals column j and row i 
equals row j. Similarly, define P(lump non-isolated i and j) to be the probability 
that, in a matrix A generated by model 0, column i equals column j, row i equals 
row j, and column i or row i or both are not all zero. The 48-4 entries in the two 
columns and rows consist of 2(8 - 2) pairs of entries and one quartet of entries 
(aii' aij, aji, ajj). To lump species i and j, we require that the two entries of 
each pair be equal and the four entries in the quartet be equal. Hence P(lump i 
and j) = (p2 + q2)2S-4(p4 + q4), and P(lump non-isolated i and j) = P(lump i 
and j) - P(i and j are isolated) = (p2 + q2)2S-4(p4+ q4) - q4S-4. The expected 
fraction of species that are non-isolated but lost by lumping is then less than or 
equal to 

S ; 

(1/8) L LP(lump non-isolated i and j) 
;=2 i=l 

= (1/2)(8 - 1)[(1- 2pq)2S-4(p4 + q4) _ q4S-4] , (3.3) 

which, as 8 increases, approaches c2e-4c = 0.002 when c = 1.86. Thus the 
expected fraction of non-isolated vertices of a random web generated according 
to model 0 that should be lumped is negligible, so we do not correct the previous 
calculations for lumping. 

Effect of Disconnected Weak Components 

All reported webs are weakly connected in the sense that the set of species cannot 
be divided into two non-empty subsets with no link between the two subsets. 
(The adjective 'weak' allows for the possibility that the linkage might be in one 
direction only.) A weak component is a maximal set of vertices (species) that is 
weakly connected. Thus all reported webs have only a single weak component. 
We now show that the expected fraction of non-isolated species that belong to 
a single weak component according to model 0 is asymptotically so close to 1 
that it is reasonable to ignore the effect of disconnected weak components, given 
d = 1.86. 
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According to Erdos & Renyi (1960, p.56, Theorem 9b), the fraction of all 
species (including isolated species) that belong to the largest weak component 
of a web is asymptotically 

00 

1- (2c)-l L kk-l(2ce-2c )k /k! . (3.4) 
k=l 

Hence the fraction of all species that are not isolated and do not belong to the 
largest weak component is 

00 

(2c)-l Lkk- l (2ce-2C)k /k! _ e-2c 

k=l 
00 

(3.5) 

= (2c)-l L kk-l(2ce-2c)k /k! 

k=2 

which is approximately 0.002 when c = 1.86. Thus 99.8% of the non-isolated 
species of a random web generated according to model 0 belong to a single 
weak component, so we do not correct the previous calculations for disconnected 
components. 

In summary, model 0 can explain roughly the observed scale-invariance in the 
proportion of top, intermediate and basal species and the numerical similarity 
in the proportions of top and basal species. But it predicts fractions of top and 
basal species that are too low and fractions of food webs with cycles that are far 
too high. 

4. Modell: Finitely Acyclic Democracy 

The most straightforward way to eliminate the problem of too many cycles is 
by assumption. We start with the weakest assumption that is a priori plausible. 

Suppose there is a finite positive integer k and a finite positive real number 
c such that, for S ~ c, the adjacency matrix A of a web with S species is 
'" i.i.d. B(c/S), conditional on A being k-acyclic. 

Biologically, this model assumes that any species can eat any species with 
equal probability c/ S provided that, in the resulting feeding relations, it never 
happens that species X eats species X (no I-cycles), nor that species X eats 
species Y and species Yeats species X (no 2-cycles), nor that species X eats 
species Y, species Yeats species Z and species Z eats species X (no 3-cycles), 
nor that there are any cycles of length up to and including k, which is fixed and 
independent of S. 

One way to simulate this model would be to generate Bernoulli matrices 
according to model 0 and then throwaway those matrices A in which the trace 
(sum of the diagonal elements) of A + A2 + ... + Ak exceeds O. 

Before considering general k, we consider the special case of I-acyclic demo­
cracy. 
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i-Acyclic Democracy 

To generate an S x S Bernoulli matrix A with parameter cjS, conditional on 
no cannibalism (no I-cycles), set the diagonal elements of A equal to 0 with 
probability 1. The off-diagonal elements of A are to be filled with independent 
random variables ,... B(cjS) as before. Then E(L) = (cjS)S(S - 1). Since the 
species-link scaling law gives r = dS, we can estimate c by c = dSj(S - 1), 
which approaches d for large S but is larger than d for finite S. 

The probability that a species is a top species is qS-I, where q = 1 - cjS, 
and this is also the probability that a species is a basal species. Thus 

E(T)jS = E(B)jS = qS-l = (1- dj[S _1])S-1 (4.1) 

is the expected fraction of species that are top species in a web of S species, and 
also the fraction of species that are basal species. This model predicts that the 
fractions of top and basal species should be equal. The asymptotic behaviour of 
E(T)jS and E(B)jS for large S is identical to that in (3.2) for model O. The 
predicted asymptotic fractions of top and basal species are too low to accord 
well with observation. 

A web will have a 2-cycle if there exist indices i, j =:j:. i such that aij = 1 and 
aji = 1. For a given i and j, the probability that there is a 2-cycle through i 
and j is p2, so the probability that there is no 2-cycle through i and j is 1 _ p2. 
The probability that there is no 2-cycle in the entire web is 

(1- p2)S(S-I)/2 = (1 - {dj[S _1]}2)S(S-I)/2 -+ e-rP /2 = 0.18 (4.2) 

so that about 82% of such model webs would have at least one 2-cycle. This 
proportion is grossly too high and we are forced to abandon I-acyclic democracy 
as unrealistic. 

The calculated asymptotic fraction e-C of webs under model 0 (anarchy) that 
have no I-cycles may be multiplied by the calculated asymptotic fraction e-c? /2 
of webs under I-acyclic democracy that have no 2-cycles to give the predicted 
asymptotic fraction e-c-c? /2 of webs under model 0 that are 2-acyclic, that is, 
have neither I-cycles nor 2-cycles, because under model 0 the diagonal elements 
of the adjacency matrix are independent of the off-diagonal elements. 

k-Acyclic Democracy: The General Case 

From the perhaps surprising finding that the predicted asymptotic fraction of 
top or basal species is e-C under the anarchy model as under the model of 1-
acyclic democracy, one might conjecture that the proportion is the same under 
the k-acyclic democracy model, for any finite k> O. From the formula e-c-c? /2 
for the asymptotic fraction of webs under model 0 that are 2-acyclic, and from 
the analogous formulas for undirected graphs of ErdOs & Renyi (1960), one might 
conjecture that the asymptotic proportion of k-acyclic digraphs under model 0 
is exp (- E~=1 ch j h). The following theorem and corollary establish that both 
of these conjectures are correct. 
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Theorem 1. Suppose that for some c ~ 0 and for S ~ c, the adjacency matrix 
A of a web with S species is "" i.i.d. B(c/S). (This is model 0.) Let Mk(S) 
be the number of distinct k-cycles in the web, k = 1,2, ... , S, and let Y(S) 
be the number of prey species of species 1, that is, the sum of column 1 of A. 
Let M(S) = E~=l Mh(S) be the total number of distinct cycles in A. Then 
for any k ~ 0, the random vector (Y(S), M1(S), ... , Mk(S)) (which is inter­
preted as the scalar Y(S) if k = 0) converges in distribution as S -+ 00 to 
a random vector with independent Poisson-distributed components with mean 
(c, c, c2 /2, c3 /3, ... , ck /k), that is, for any non-negative integers y, m1,"" mk> 

lim P(Y(S) = y,Ml(S) = ml. ... ,Mk(S) = mk) 
5-+00 

k 

= e-C[cY /y!] II {e-(ch /h)[(ch /h)mh]/mh!} . (4.3) 
h=l 

For 0 ~ c < 1, (Y(S), M(S)) converges in distribution as S -+ 00 to a bivari­
ate random vector with independent Poisson-distributed components with mean 
(c, -In(1 - c)). 

Corollary. Under the above assumptions, for any c ~ 0 and any k ~ 1, as S -+ 00 

P(Y(S) = y I Ml(S) = 0, ... , Mk(S) = 0) -+ e-C[cY /y!] . (4.4) 

The left member of (4.4) is the probability that species 1 has y prey in the model 
of k-acyclic democracy. For 0 ~ c < 1, the asymptotic probability that species 1 
has y prey in an acyclic web is also Poisson, that is, 

P(Y(S) = y I M(S) = 0) -+ e-C[cY /y!] . (4.5) 

The corollary follows immediately from Theorem 1 and the definition of con­
ditional probability. The proof of Theorem 1 is deferred to Appendix 1. 

The corollary (with y = 0) implies that, in the model of k-acyclic democracy, 
the fraction of species with no predators, and the fraction of species with no 
prey, both approach e-C as S -+ 00. The mean number of species on which a 
given species preys, and the mean number of species that prey on a given species, 
both approach c. 

In summary, for fixed finite k, the model of k-acyclic democracy predicts that 
the expected fractions of top and basal species are equal and, asymptotically for 
large numbers S of species in a web, independent of S. These predictions are 
roughly consistent with the data. The model also predicts that the numerical 
value of this asymptotic fraction should be lower than that observed. However, 
in concluding that this discrepancy exists, we are assuming that it is appropriate 
to use the ratio d = 1.86 of links to species, observed in the finite range of S 
from 3 to 33, to estim.ate the asymptotic effective density of links c. 
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5. Model 2: Acyclic Democracy 

Excluding cycles up to any fixed finite order k, as in modell, might be quali­
tatively different, in the limit of large S, from excluding cycles of all lengths in 
the limit of large S. To investigate this possibility, we have partly analysed the 
next model. 

Suppose there is a finite positive real number e such that, for S 2: e, the 
adjacency matrix A of a web with S species is '" i.i.d. B(ejS), conditional on A 
being acyclic. 

Biologically, this model assumes that any species can eat any species with 
equal probability cjS, provided that, in the resulting feeding relations, it never 
happens that species X eats species X (no I-cycles), nor that species X eats 
species Y and species Yeats species X (no 2-cycles), nor that species X eats 
species Y, species Yeats species Z and species Z eats species X (no 3-cycles), 
and so on, excluding all cycles of length up to and including S. 

The theoretical results available to us so far require us to discuss separately 
two cases: 0 ~ c < 1, and 1 ~ c. 

In the first case, (4.5) implies that the fractions of top and basal species 
are equal and, asymptotically for large S, independent of S. These predictions 
are roughly consistent with the data. However, since the expected value of the 
observed density d must be no larger than the model parameter c, and since 
d> 1, this first case is not of empirical interest, given our data. 

In the second case, 1 ~ c, we have so far no exact results concerning the 
asymptotic proportions of top and of basal species. By symmetry these propor­
tions must be equal. The results of our numerical investigations, which we will 
now describe, can be interpreted to be consistent with the conjecture that, for 
S ~ c, the fraction of top species and the fraction of basal species both approach 
e-d* , where d* is the asymptotic (large S) effective density of links. We know 
that this is also the case when c < 1 since then d* = c. However, when c 2: 1, 
we have no theory so far that permits us to compute c from d* or vice versa. 

To estimate the fractions of zero rows and of zero columns according to model 
2, we have resorted to simulation, settling at last on the third of three ap­
proaches described in Appendix 2. This approach to simulation, which is actu­
ally a slight modification of model 2, guarantees that the model parameter c 
equals the asymptotic ratio d* of links to species. For S = 10 and S = 20, and 
for each value of c = 0.5(0.5)4.0 (an abbreviation for the sequence of numbers 
0.5,1.0,1.5, ... ,4.0), Table 111.2.2 compares the simulated mean fractions of zero 
rows and of zero columns in 100 acyclic matrices with the conjectured asymp­
totic fraction e-c • For the lower values of c, the agreement between the sampled 
fractions of zero rows or columns and e-c is excellent. For the larger values of 
c, e-C falls more rapidly than the sampled fractions of zero rows or columns. 
For large c, the difference between e-C and the sampled fraction of zero rows or 
columns is slightly smaller for S = 20 than for S = 10. 
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Table III.2.2. The simulated mean fractions of zero rows or 
zero columns in 100 acyclic S X S matrices with exactly Sc,posi­
tive elements, generated by the third approach (Appendix 2) to 
simulating model 2, and the fractions predicted by the asymp­
totic function e-d• conjectured in (5.1) and by the function 
(6.2a) (with c replaced by 2c) derived for model 3, the cascade 
model 

c S= 10 predictions S = 20 
rows columns exp( - c) model 3 rows columns 

0.5 0.5854 0.5974 0.6065 0.6321 0.5959 0.5962 
1.0 0.3500 0.3494 0.3679 0.4323 0.3644 0.3600 
1.5 0.2313 0.2445 0.2231 0.3167 0.2341 0.2470 
2.0 0.1669 0.1769 0.1353 0.2454 0.1585 0.1642 
2.5 0.1620 0.1232 0.0821 0.1987 0.1522 0.1332 
3.0 0.1318 0.1042 0.0498 0.1663 0.1121 0.1142 
3.5 0.1147 0.1056 0.0302 0.1427 0.0959 0.1133 
4.0 0.1032 0.1000 0.0183 0.1250 0.0859 0.0820 
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For S = 10, the standard deviation (computed from the numerical simulation) 
of the proportion of zero rows (in a single matrix, not in the mean proportion) 
at first increases with increasing c and then declines slowly from a maximum of 
approximately 0.09 when c = 1 to a minimum of approximately 0.02 when c = 4. 
Since 100 matrices were generated, the standard deviation ofthe simulated mean 
proportions given in Table II1.2.2 is one-tenth as large, that is, not exceeding 
0.01. The standard deviations when S = 20 are similar, and the same conclusion 
applies. Thus the difference in Table II1.2.2 between the sampled proportion of 
zero columns or rows and e-C = e-d• for the larger values of c appears to be 
real. 

If this difference approaches 0 as S --+ 00, then we may conjecture, pending 
further theoretical progress, that in model 2, 

lim E(T)jS = lim E(B)jS = e-d• . 
8 ..... 00 8 ..... 00 

(5.1) 

If this is so, then, like models 0 and 1, model 2 can explain roughly the observed 
scale-invariance in the proportion of top, intermediate and basal species and the 
numerical similarity in the proportions of top and basal species. But it predicts 
fractions of top and basal species that are too low according to the conjecture 
(5.1), and that are too low (according to our simulations) even for S = 10 (in 
Table III.2.2, c = 2.0 gives a fraction of 0 rows near 0.17, lower than the estimate 
from data of 0.26). 

6. Model 3: Cascade 

Many biologists might be reassured by the failure of the models considered so 
far because these models make the biologically implausible assumption that any 
species is capable, in principle, of eating any other species. These models assume 
that it is only a matter of chance that the grass does not eat the cow, nor the lamb 
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the wolf. Yet it is not absurd to consider such models. It is a healthy discipline 
to require that they be rejected by quantitative data and not by 'intuitions' that 
are often wrong. 

Now that the previous models have been rejected for their quantitative fail­
ures, we must abandon the assumption that each species could potentially eat 
any other, while imposing the least possible additional structure. We shall do so 
by noticing an important feature of acyclic matrices. 

An S x S matrix A is called strictly upper triangular if aij = 0 whenever 
i ~ j. This means that the main diagonal and all matrix elements below the 
main diagonal are zero; the non-zero elements of A, if any, lie strictly above the 
main diagonal. For brevity, we shall henceforth call such a matrix triangular. 

If the adjacency matrix of a web with S species is triangular, the species 
labelled 1 can potentially be eaten by any species other than itself, but can eat 
none. The second species can potentially be eaten by the species labelled 3 to 
S, but can eat only species 1. And so on: the species labelled S can potentially 
eat all the other species, but can be eaten by none of them. Thus a triangular 
adjacency matrix describes a strict trophic hierarchy or cascade. 

A digraph is acyclic if and only if its vertices can be numbered in such a 
way that its adjacency matrix is triangular (for example, Robinson & Foulds 
1980, p. 176). Thus the adjacency matrix A of a web is acyclic if and only if 
some permutation, applied to both rows and columns of A, changes the matrix 
to triangular form. Model 2 can be interpreted as saying that the luck of the 
draw determines which species eat which others, provided that, when all is done, 
the species can be arranged in a cascade. The order of species in the cascade is 
determined (non-uniquely) after the trophic links are chosen. 

We now suppose that the order of species in the cascade is determined before 
the trophic links are chosen. 

Suppose there is a finite positive real number c such that, for S ~ c, the 
elements above the main diagonal of the adjacency matrix A are '" LLd. B(c/S), 
while the elements on or below the main diagonal are fixed with probability 1 
a.t o. 
Theorem 2. Suppose that for some c ~ 0 and for S ~ c, the adjacency matrix A 
of a web with S species is triangular, with the elements above the main diagonal 
'" i.i.d. B(c/S). (This is model 3.) Let T be the number of zero rows (top species) 
and B be the number of zero columns (basal species) in A. Then, with p = cIS, 
q = 1- p, 

E(T) = E(B) = [1- qS]/p, 

var(T) = var(B) = (1 - qS)/p _ (1 _ q2S)/(1 _ q2) . 

Asymptotically, 

lim E(T)/S = lim E(B)/S = (l/c)(l- e-C ) , 
S-+oo S-+oo 

lim var(T/S) = lim var(B/S) = 0 . 
s-+oo S-+oo 

(6.1a) 

(6.1b) 

(6.2a) 

(6.2b) 
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If Tp is the number of proper top species, Bp is the number of proper basal 
species, N is the number of not isolated species, and I is the number of inter­
mediate species, then 

E(Tp) = E(Bp) = S[(l-l)/c- qS-l] , 

E(I) = 8[1 - 2(1 - qS)/c + qS-l] , 

E(N) = 8(1 _ qS-l) , 

and asymptotically 

lim E(Tp)/E(N) = lim E(Bp)/E(N) 
S-+oo S-+oo 

(6.3a) 

(6.3b) 

(6.3c) 

= ([1- e-C]/c - e-C}/[l- e-C] , (6.4a) 

lim E(I)/E(N) = {1- (2/c)[1- e-C] + e-C}/[l- e-C] • (6.4b) 
S-+oo 

For large c, e-c is nearly zero so the asymptotic fraction of top or proper top or 
basal or proper basal species approaches l/c. Also, the total number L of trophic 
links is binomially distributed with mean and variance 

E(L) = p8(8 - 1)/2 = c(8 - 1)/2 , 
var(L) = pq8(8 - 1)/2 = c(8 - c)(8 - 1)/(28) , 

(6.5) 

and the numbers of links of each kind have means 

E(LBI) = E(LIT) = (8 - 1)(1 + qS-l) - (1 + q)(l- qS-l)/p, (6.6a) 

E(LBT) = (1- qS-l)/p - (8 - l)qS-l , (6.6b) 

E(LII) = p8(8 - 1)/2 - (8 -1)(2 + qS-l) 

+ (1 - qS-l )(1 + 2q)/p . (6.6c) 

Asymptotically, as 8 --+ 00, 

E(LBI)/E(L), E(LIT)/E(L) --+ 2[c(1 +e-C ) - 2(1- e-c )]/c2 , (6.7a) 

E(LBT)/ E(L) --+ 2[1- e-c - ce-c]/c2 , (6.7b) 

E(LII)/ E(L) --+ 1 - 2[c(2 + e-C ) - 3(1 - e-c)]/c2 . (6.7c) 

Proof. Only elementary calculations are required, noting that the probability 
that species i is basal is qi-l, the probability that species i is top is qS-i, the 
probability that species i is proper top is qS-i _qS-l, the probability that species 
i is proper basal is qi-l - qS-l, the probability that species i is intermediate 
is 1 - qi-l - qS-i + qS-l, and the probability that species i is not isolated is 
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1 - qS-l. Also, 

S j-I 

E(LBI) = PI: I: qi-I(1- qS-j) , 

j=2i=1 

S j-I 

E(LBT) = PI: I:qi-IqS- j , 

j=2 i=1 

S j-I 

E(LIT) = PI: I:(1- qi-l)qS-j , 

j=2 i=1 

S j-I 

E(LII) = PI: I:(1- qi-I)(1_ qS-j) . 

j=2i=1 

(6.8) 

When (6.5) is solved for P and E(L) is replaced by the observed number of 
links, it becomes apparent that P is what ecologists call the (lower) connectance 
(F. Briand, personal communication). 

To compare the predictions of model 3 with observation requires an estimate 
of c. From (6.5), 

c = 2E(L)/(S - 1) . (6.9) 

For a single finite S, replacing E(L) by the total number of links, we estimate 
c as twice the total number of links divided by S - 1. However, for a single 
value of c common to all webs, we use an asymptotic estimate. Asymptotically, 
as S --+ 00, the link scaling law indicates that I is dS, and S/(S - 1) ! 1 as 
S --+ 00, so that c is estimated as 2d = 3.72. We now examine the macroscopic 
predictions of model 3, using this single estimate of c = 3.72. We shall review 
the scaling laws stated in Sect. 2. 

Species Scaling 

Figure III.2.1 shows the predicted mean proportion of top species and a confi­
dence interval of ±2 standard deviations as a function of S, using (6.1) with a 
single value of c = 3.72, superimposed on the data of Briand & Cohen (1984). 
FigureIII.2.2 shows the same for basal species. (Cf. Fig. A.2.2.) 

The predicted mean proportion of top or of basal species changes so slowly 
in the observed range of S as to defy discrimination from constancy. According 
to (6.1) with c = 3.72, model 3 predicts the mean and variance in the propor­
tion of top species to be (with identical results for basal species) as shown in 
Table III.2.3. Thus model 3 reproduces qualitatively the species scaling law. 

Quantitatively, model 3 predicts asymptotic proportions of basal, intermedi­
ate and top species equal to 0.26, 0.48, and 0.26. (By using the remark after 
(6.4), we can easily see why the predicted proportion of top species is near one 
quarter. Because e-3•72 = 0.024, the fraction of top species is predicted to be 
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Figure 111.2.1. The predicted mean proportion of top species (middle line) and a confidence 
interval of ±2 standard deviations (upper and lower lines) as a function of total species S, 
according to the cascade model. In this figure and Fig.III.2.2, X is constant environment, 
o is fluctuating environment. The symbols x and 0 have been perturbed from their exact 
locations by a small random amount to indicate when several food webs have exactly the same 
coordinate. The data are replotted from Briand & Cohen (1984) 

slightly greater than one quarter.) The observed proportions are 0.19,0.53, and 
0.29. As we suggested above, if observer bias has lowered the fraction of basal 
species, a plausible estimate of the proportion of top and of basal species is 0.26, 
exactly as predicted by model 3. Thus the quantitative agreement between the 
predicted asymptotic mean and the observed mean is good. The model predicts a 
decrease in the standard deviation that is suggested by the data on basal species 
but that is not observed in the data on t-op species. 

In summary, model 3 predicts the form and the parameter value of the species 
scaling law. It is only partly successful in explaining the variation with respect 
to the species scaling law. 

We now show that models 0 and 1, and perhaps 2 (if conjecture (5.1) is valid), 
predict asymptotic fractions of top or basal species that are lower than those 
predicted by model 3. From (3.2), (4.4) and (6.2a), we must establish that for 
any non-negative c (for example, c = 1.86), e-C $ (1 - e-2C )/(2c). We use 2c in 
place of c on the right of (6.2a) so that, asymptotically, models 0, 1 and 3 will 
all have the same effective density d* of links. The inequality is equivalent to 
the inequality c $ (eC - e-C )/2, which is easily proved by noting that both sides 
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Figure m.2.2. The predicted mean proportion of basal species (middle line) and a confidence 
interval of ±2 standard deviations (upper and lower lines) as a function of total species S, 
ACcording to the cascade model. The symbols and source of data are as in Fig. 111.2.1 

Table 111.2.3. Predicted mean and 
variance in the proportion of top 
species, ACcording to model 3 

S E(T)/(S) [var(T/S)j1/2 

5 0.269 0.104 
15 0.265 0.086 
25 0.264 0.069 
35 0.264 0.059 
00 0.262 0 

approach 0 when c ! 0 and by comparing derivatives of both sides with respect 
to c. 

This inequality raises a question. In Table 111.2.2, the simulated fractions 
of top and basal species exceed e-c. We have just shown that (1- e-2C )/(2c) 
exceeds e-c. Might not (1-e-2c )/(2c), shown in Table 111.2.2 under the column 
headed 'predictions, model 3', be a better description of the simulated fractions 
of top and basal species in model 2 than e-d·? Table 111.2.2 gives a weak hint 
that this may not be the case. Though, for c = 4.0, the simulated fractions of 
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top and basal species are near those predicted by model 3, as S increases from 
10 to 20 the simulated fractions move slightly away from (1 - e-2C)/(2c) and 
towards e -c. 

Link Scaling 

Figure 111.2.3 shows the ratio of the expected number of links of each kind to 
the expected total number of links, based on (6.5) and (6.6) with c = 3.72, for S 
between 4 and 40. For S > 10, the ratios are effectively constant. For S $ 10, the 
predicted curves for E(LBI)/E(L) and E(LIT)/E(L) reproduce the suggestion 
of a decline in the observed values of L BI / L in Fig. A.3.2a and in the observed 
values of LIT/L in Fig. A.3.2d. The predicted increase in E(LIT)/E(L) might 
even be reflected in the data of Fig. A.3.2c. However, few of the real webs had 
10 or fewer species, so these suggestions from the data are very weak. Overall, 
the qualitative predictions of model 3 are consistent with the qualitative link 
scaling law. 

Quantitatively, model 3 predicts the asymptotic proportions of each kind of 
link shown in Table 111.2.4. The principal discrepancy between the data and the 
model is that fewer basal-top links and more intermediate-top links are observed 
than predicted. 

0.4 

intermediate -intermediate links 

c 
0 . .,::; basal-intermediate and intermediate- top links 
8 0.2 
0, 
0 

'"' Q. 

0 10 

basal- top links 

20 

total species 
30 40 

Figure 111.2.3. The predicted ratio of the expected number of links of each kind to the 
expected total number of links, according to the cascade model with c = 3.72, for total numbers 
of species S = 4(2)40. For S > 10, the ratios change little 

Table 111.2.4. Observed proportions of each kind of link, and asymptotic 
predicted proportions according to model 3 

type of link observed proportion predicted proportion 
from (6.7) with c = 3.72 

basal-intermediate 0.27 0.27 
basal-top 0.08 0.13 
intermediate-intermediate 0.30 0.33 
intermediate-top 0.35 0.27 
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Link-Species Scaling 

That model 3 correctly predicts the qualitative relation between total links and 
total species follows from (6.5). Quantitative agreement is guaranteed by the 
choice of c = 3.72. 

Acyclicity 

Acyclicity is guaranteed by making the adjacency matrices triangular. 
In summary, model 3 correctly predicts the qualitative species scaling and 

link scaling laws in webs with more than a handful of species. Quantitatively, 
model 3 also predicts, to a first approximation, the observed proportions of basal, 
intermediate and top species and the observed proportions of each kind of link. 

Sensitivity Analysis 

We are sceptical about the completeness of observation of trophic links, espe­
cially those that involve what are currently described as basal species. If mod­
erately more trophic links were observed, would our quantitative predictions be 
radically altered? If so, the present quantitative estimates of model 3 are approx­
imately right for the wrong reason, namely, that the effective density of links 
happened to be low. Thus it is important to know how the predicted asymp­
totic proportions of species and of links of each kind vary as c varies in the 
neighbourhood of its estimated value 3.72. 

Figure 111.2.4 plots the predicted asymptotic proportions of basal, top, proper 
basal, proper top, and intermediate species among all non-isolated species, based 
on (6.2) and (6.4), as a function of c = 0.5(0.5)10. As c increases from 3.5 to 
4.5, the predicted asymptotic proportions of proper basal or proper top species 
declines from 0.25 to 0.21 while the predicted asymptotic proportion of inter­
mediate species among non-isolated species increases from 0.49 to 0.58. Neither 
range of variation seems incompatible with the data. 

Figure 111.2.5 plots the predicted asymptotic proportions oflinks of each kind, 
based on (6.7), as a function of c = 0.5(0.5)10. As c increases from 3.5 to 4.5, the 
predicted asymptotic proportions of basal-intermediate or intermediate-top links 
declines from 0.27 to 0.25, the proportion of basal-top links declines from 0.14 to 
0.09, and the proportion of intermediate-intermediate links increases from 0.31 
to 0.40. Such changes improve the agreement between the observed and predicted 
proportions of basal-top links but worsen the agreement between the observed 
and the predicted proportions of the remaining classes of links. However, the 
changes in the predicted asymptotic proportions are not very radical in any 
case. In particular, the estimate of c = 3.72 happens to fall very near where the 
curve for basal-intermediate and intermediate-top links is flattest. 

We conclude that the predicted asymptotic proportions of species and links 
of each kind are not so sensitive to the exact value of the observed ratio of links 
to species as to exclude the possibility of a somewhat greater effective density 
of links. 
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Figure 111.2.4. The predicted asymptotic proportions of basal, proper basal, top, proper top, 
and intermediate species, as a fraction of non-isolated species, according to the cascade model, 
for c = 0.5(0.5)10. Because basal and top species are plotted here as a fraction of non-isolated 
species, the sum of proportions (basal + intermediate + top) exceeds 1. The excess over 1 is 
small once c > 3. The sum of proportions (proper basal + intermediate + proper top) equals 1 

Lumping 

Would lumping substantially alter the number of species and hence the propor­
tions of interest in the cascade model? The same approach used to analyse lump­
ing in model 0 shows that, for i < i, P(lump i and i).= .(1-2'p9)~+i-j-1 q2(j-i)-1 
while P(lump non-isolated i and i) = (1 _ 2pq)S+'-J-1 q2(J-,)-1 _ q2(S-1)-1 

The expected fraction of species that are not isolated and lost by lumping is 
then less than or equal to 

S j 

(1/ S) E E P(lump non-isolated i and j) 
j=2i=1 

= (q2S-3 /[Sr])[(S _ 1)(1 + r)S-1 

- {(I + r)S-l - l}/r - S(S - l)r/2] , (6.10) 

where r = (p/q)2. As S -t 00, (6.10) approaches c2e-2c/3 = 0.003 when c = 
3.72. In model 3 as in model 0, the effect of lumping non-isolated species is 
negligible. 



92 

0.8 

0.6 

0.2 

o 2 

Chapter III. A Stochastic Theory of Community Food Webs 

4 
c 

intermediate - intermediate 
links 

basal-intermediate and 
intermediate -top links 

6 8 10 

Figure m.2.1i. The predicted asymptotic proportions of links of each kind, according to the 
cascade model, for c = 0.5(0.5)10 

Effect of Disconnected Components 

The effect of weak components is essentially identical in models 0 and 3. The 
calculation based on (3.4) remains the same, with the parameter c of (3.4) still 
estimated by d = 1.86 rather than by 2d. As in model 0, asymptotically all but 
a negligible fraction of species belong to the largest weak component. 

So far, we have taken c as exogenously determined, for example, by the feed­
ing apparatus or behavioural flexibility of species, and have attempted to predict 
other structural features of webs from that parameter. Why might c assume a 
value in the vicinity of 3.72? Figure III.2.5 shows that c = 3.72 is in the range 
around 2.69 where the predicted asymptotic proportions of basal-intermediate 
and intermediate-top species are maximal. It is tempting to speculate, but with­
out theoretical or additional empirical support at the moment, that the effective 
density of links is adjusted to maximize the proportions of links between basal 
and intermediate species, and between intermediate and top species. 

7. Conclusions 

In this section, we shall first summarize the conclusions we draw from the four 
models we have considered. We then relate our results to some earlier efforts to 
model webs. Finally, we mention two important limitations on our results. 
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Briand (1983; Chap. 11.5), using 'unlumped' webs, first suggested, and Cohen 
& Briand (1984; Chap. 11.3), using 'lumped' webs, demonstrated that the average 
total links of a web are nearly proportional to the total species ofthe web. Within 
the framework of the random digraph models considered here, this observation 
has the important implication that the probability of a given species eating or 
being eaten by another given species must vary as the reciprocal of the total 
number of species in the web. This has the further consequence that the number 
of predators or prey of a randomly chosen species is asymptotically independent 
of the total number of species in the web. 

The exclusion of cycles of finite lengths or of all lengths as S increases is 
insufficient to reproduce quantitatively the species scaling law, although an open 
mathematical question remains in the analysis of model 2. That question is: 
when c ~ 1, what is the asymptotic mean fraction of zero columns or of zero 
rows in a random S x S matrix whose elements are independently and identically 
distributed Bernoulli random variables with mean c / S, conditional on the matrix 
being acyclic? 

To explain the observed proportions of top and basal species, it appears to be 
necessary to suppose that there is an ordering, hierarchy, or cascade of species 
that constrains the possible predators and prey of each species. Under this as­

sumption, it is possible to predict qualitatively, and to fair approximation quan­
titatively, the species scaling law and the link scaling law, by using a single 
parameter from the data, the ratio of total links to total species. 

In evaluating the quantitative discrepancies between the observed and pre­
dicted proportions of each kind of species and each kind of link, it is important 
to recall that no fitting is involved in generating the predicted proportions. The 
only numerical parameter taken from the data is the observed ratio of the total 
number of links to the total number of species. In addition to its qualitatively 
correct predictions, model 3 gives seven numbers for the price of one. (Of these 
seven, only five are independent: two of the three proportions of kind of species, 
and three of the four proportions of kinds of links.) 

The gross testing presented here demonstrates that the overall proportions 
of species or links are consistent with the predictions of model 3. The following 
chapter (Chap. 111.3) examines how well model 3 describes individual webs. 

Cohen (1978, pp. 58-61) considered six stochastic models of webs that are sim­
ilar to those considered here. His model 6 models the adjacency matrix ('food 
web matrix') of a web with m prey and n predators by constructing an m x n 
matrix in which each element equals 1 with probability L' /(mn) and equals 0 
with probability 1 - L' /(mn), where L' is the observed number of links, inde­
pendently for all elements. This model 6 is similar to model 0 here, but model 
6 limits the number of prey to m and the number of predators to n. Model 0 
here allows the adjacency matrix to be S x S so that the numbers of prey and 
predators are limited only by S. None of the models of Cohen (1978) rules out 
cycles (like our models 1 and 2) or imposes a cascade structure (like our model 
3). 

Lawlor (1978) observed that in randomly constructed matrix models of ecosys­
tems, when the probability of a non-zero entry in the matrix is independent of 
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the number of species, an overwhelming majority have 3-cycles if the number of 
species increases beyond 20 (contrary to his and others' informal observations 
that such cycles are rare in real webs). However, when the probability of a non­
zero entry varies inversely as the number of species (as we suppose in this paper, 
on the basis of the link-species scaling law), Lawlor found (without giving the 
details of the calculations) that the proportion of random matrix models with­
out 3-cycles increases with increasing numbers of species. He concluded that the 
usefulness of 'random' models of ecosystems depends critically on whether the 
models possess the specific structural patterns characteristic of real ecosystems. 
This conclusion we share. 

We are aware of at least two major limitations of the scope of the models and 
data we have investigated here. First, we have dealt only with the combinatorial 
structure of webs, rather than with quantities of stocks and flows. Our approach 
is more like gross anatomy than like physiology. Second, we have dealt only with 
a static snapshot of webs, ignoring cyclical, successional, or other changes. That 
is, the gross anatomy is frozen, rather than in motion. In spite of these important 
limitations, we have provided, in the cascade model, a unifying perspective of 
simplicity and potential usefulness. 

Appendix 1: Proof of Theorem 1 

In this proof, we shall omit the explicit dependence on S where possible; for 
example, we replace Y(S) by Y, M(S) by M. Let C(k) be the set of possible 

distinct k-cycles. For s E C(k), let B~k) = 1 if cycle s occurs in (the web specified 

by) the random adjacency matrix A, B~k) = 0 if s does not occur. Then the 

number of k-cycles in A is Mk = Mk(S) = EsEC(I<) B!k) . 

Since the random variables {aidr=l are independent with E(ail) = ciS, it 
is a standard fact that Y converges in distribution to a Poisson variable with 
mean c. 

Let #(.) denote the cardinality (number of elements) of the set in parentheses. 
Then 

so that 

The random variables {B~k)}sEC(k) are non-decreasing functions ofthe indepen­
dent elements {aij} of A and hence are associated. (Recall that a finite family 
{Xl, ... , Xn} of random variables is defined to be associated if cov (J( Xl, ... , 
Xn),9(Xl, ... ,Xn)) ~ 0 for any real functions f and 9 that are coordinate-wise 
increasing.) A theorem independently discovered by Wood (1982) and Newman 
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et al. (1984) (and stated as Theorem 11 by Newman (1984)) then implies that 
Mk converges in distribution to a Poisson variable with mean ck /k, for c ~ 0, 
k ~ 1, provided that 

11·m '" cov(B(k) B(k) - 0 
S L..J s, s' - , 

....... 00 
(AI) 

where the summation extends over pairs 8, 8' E C(k) such that 8 =f. 8'. 
Similarly, according to Theorem 10 of Newman (1984), which is taken from 

Newman (1980), (4.3) holds if, in addition, 

lim cov(Y, Mh) = 0 , 
s ....... OO 

lim COV(Mh, Mj) = 0, 
s ....... OO 

for all c ~ 0 and all h,j such that 1 ~ h =f. j ~ k. 
So we must prove (AI) and (A2). 

(A2a) 

(A2b) 

For k = 1, as noted in the text, each B~k) is just an aii so that coy (aii' ajj) = 0 
for i =F j and (AI) holds. Also, for k = 1, cov(Y,Mt} = cov(an, an) = 
(c/S)(I- ciS) so that (A2a) holds for h = 1. Similarly cov(Ml>Mj) = 0 for 
j =f. 1. We may henceforth assume k,h,j ~ 2. 

Unless the two cycles, 8 and s' =F s share some directed edge, B~k) and B~:) 
are independent. Similarly, ail and Bik) are independent unless the edge (i,l) 
is in s. Since, for k > 1, au and Bik) are independent, 

s 
cov(Y, Mk) = L L cov(ail, B~k) 

i=l sEC(k) 

= (S - 1) L' cov(a2l, B~k) + L cov(an, B1k) 
sEC(k) sEC(k) 

",' (k) = (S-1) L..J cov(a2l,Bs ), 

sEC(k) 

where L' is over those cycles s that include the edge (2,1). There are exactly 
(S - 2)!/(S - 2 - (k - 2»! such k-cycles. If il = 2, i2 = 1, i3, ... , ik are the 
vertices of such a cycle, with ik+1 = il = 2, then 

k 

cov(a2l,B~k) = cov(a2l,a21 II aijij+l) 
j=2 

= (c/S)k-l var(a2I) = (c/S)k(l- ciS) . (A3) 



96 Chapter III. A Stochastic Theory of Community Food Webs 

Thus 

cov(Y, Mk) = [(S - 1)!/(S - k)!](c/sl(1- ciS) -+ 0 as S -+ 00 , 

which proves (A2a). 
Suppose s is an h-cycle and s' is a j-cycle. Let 13 = f3(s, s') denote the number 

of edges shared in both s and s'. Analogously to (A3), we have 

. P 
cov(B1h), B!1» = (c/S)h-p(c/S)i-pvar(II aigig+l) 

g=l 

= (c/S)h+i -2P[(c/S)p - (c/S)2p] 

= (c/S)h+i - P[I- (c/S)p] = O(S-h-HP ) . (A4) 

Then, for some fixed So E C(k), and for C1 = {( s, s') Is =f:. s'}, C2 = {s E 
C(k)ls =f:. so}, 

L cov(B1k) , B!~» = #(C(k» L cov(B1!) , B!k» 
C1 C2 

= #(C(k»(L O + 2: 1 + ... + 2: k- 1) 

= #( C(k»(L 1 + ... + L k-2) (A5) 

where E P denotes E cov (B1!) , B!k» over those s E C(k) such that f3(so, s) = 13. 
The last equality in (A5) holds because there can be no s E C(k) with f3(so, s) = 
k - 1 and because each term in the EO sum vanishes. 

Now the removal of k - 13 > 0 edges from a k-cycle So leaves some number 
'1 ~ 1 of disconnected walks. A cycle c E E P must reconnect these walks into 
a cycle (in an order that may differ from the order in so). Thus s is specified 
by the order of the walks shared with So and by '1 new walks leading from an 
end point of one shared walk to a starting point of another shared walk. If these 
'1 new walks have lengths L1, ... , Lfj' with L1 + ... + Lfj = k - 13, then for a 
given ordering of the shared walks, the number of such new walks is bounded 
above by SL1-1S~-1 ... SL'I-1 = Sk-P-fj and thus by Sk-p-1. So for 13 < k 
the number of terms in any EP is bounded by Sk-P-1 times a combinatorial 
coefficient that depends only on k and 13 but not on S. By using (A4) with 
h = j = k, we may bound (A5) above by 

k-2 
#( C(k» L 0(S-2k+P Sk-p-1) = O(Sk S-k-1) = O(S-l) , (A6) 

P=l 

which proves (AI). 
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We now prove (A2b). As in (A5), for h < j, 

COV(Mh, Mj) = #(C(h)) L: cov(Bi~), Bij)) 

sEC(j) 

= #(C(h))(L:0 + L:l + ... + L:h) 

= #(C(h))(L:l + ... + L: h-l). 
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(A7) 

In the last equality, "Lh = 0 because no j-cycle can share h edges with the 
h-cycle So if h < j. As in the derivation of (A6) as an upper bound for (A5), we 
see that with h - f3 > 0, the number of terms in "L/3 is 0(Sj-/3-1). Then (A4) 
implies that (A7) is bounded by 

h-l 
#(C(h)) L: O(S-h-i+/3 Sj-{3-1) = O(Sh S-h-l) = O(S-I) , 

/3=1 

which proves (A2b). 
The claimed limiting behaviour of (Y(S), M(S)) for 0 :::; c < 1 now follows 

from (4.3) by approximating M(S) by MZ(S) = "L~=1 Mh(S) for large fixed k. 
For fixed k, (4.3) implies that (Y(S), MZ(S)) converges in distribution as S -+ 00 

to a 2-vector with independent Poisson components and mean (c, "L~=1 ch jh). 
Moreover, 

00 

EIM(S) - Mk'(S)1 = E(M(S) - Mk'(S)) = L: #(C(h))E(Bi~)) 
h=k+l 

00 

~ L: chjh 
h=k+l 

-+ 0 as k -+ 00 for c < 1 . 

Now for any real numbers rand t 

IE(exp{i(rY(S) + tM(S))}) - E(exp{i(rY(S) + tMZ(S))}) I 
~ E(I exp{it(M(S) - Mk'(S))} - 11) 
~ Elt(M(S) - Mk'(S)) I -+ 0 as k -+ 00 . 

Therefore, the limiting distribution of (Y(S), M(S)) equals the limiting distri­
bution, as k -+ 00, of the limiting distribution, for any fixed k, as S -+ 00, of 
(Y(S), Mk'(S)). This proves the claimed results when 0 :::; c < 1. 
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Appendix 2: Numerical Simulation of Acyclic Random Digraphs 

We have programmed three numerical approaches to investigating the fraction 
of zero rows or columns in a matrix that is ,..., i.i.d. B(c/S), conditional on being 
acyclic. 

The first, and most naive, approach is to generate matrices that are,..., i.i.d. 
B( c/ S) and reject those that have a cycle of any length. There are two difficulties 
with this approach. First, given a value of c, this approach generates acyclic webs 
very inefficiently. For example, with an arbitrarily chosen c = 2.1, the number 
of Bernoulli matrices that had to be generated to find 100 acyclic matrices of 
each size in a sample calculation was as shown in Table III.2.Al. 

Table m.2.Al. Matrices generated according to 
a first naive approach 

size of matrix 
(5) 

3 
5 

10 
15 
20 

number of matrices generated 
to get 100 acyclic 5 X 5 matrices 

34972 
16113 
28726 
62825 

279401 

We lack theory for what the numbers on the right of the table should be, either 
for finite S or in the limit as S -+ 00. (These results show, incidentally, first that 
the fraction of acyclic matrices among Bernoulli matrices, for fixed c, need not 
be a monotone decreasing function of S, and second that the fraction of 10-
acyclic Bernoulli matrices, asymptotically as S -+ 00, according to Theorem 1, 
bears no close relation to the fraction of 10-aCYclic 10 x 10 Bernoulli matrices. 
According to (4.3), the former fraction is exp( - El~1 ck /k), which is less than 
10-157 when c = 2.1, while according to the numerical results above the latter 
fraction is approximately 100/28726.) 

A second difficulty with this first approach is that, so far, we lack theory 
to guide the choice of c when we want to compare the computed fractions of 
zero rows or columns with data. By throwing away the matrices with cycles, we 
change the expected number of matrix elements that equal 1 from pS2 = cS 
to some (so far) unknown smaller function of c and S. For comparison with 
data, we want to choose c so that the 'effective density' of links, estimated as 
(average number of matrix elements equal to l)/S, equals the observed d = 1.86. 
In the numerical simulations described above, with c = 2.1, the total number of 
elements equal to 1, summed over 100 acyclic matrices, and the average effective 
density per matrix, were as shown in Table III.2.A2. 
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Table m.2.A2. Number and effective density of 
links in naively generated acyclic matrices 

size of matrix number of Is effective 
(5) in 100 acyclic matrices density 

3 
5 

10 
15 
20 

239 
537 

1293 
2124 
3094 

0.80 
1.07 
1.29 
1.42 
1.55 
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Depending on the matrix size S, the effective density can be quite different 
from c in model 2. Again, we lack theory for what the numbers on the right 
should be, either for finite S or as S -+ 00. 

A second approach, based on the ideas of Erdos & Renyi (1960), avoids both 
of these difficulties, but encounters a subtler third difficulty. In this approach, 
to obtain an effective density c, we construct a random acyclic matrix with the 
integer part of cS (denoted int (cS» edges. This is impossible if cS > S( S - 1) 12 
(or more generally if cS exceeds the maximum number of links possible in an 
S x S acyclic matrix). Provided int (cS) is sufficiently small, we add one edge at 
a time. We choose a 0 element of the matrix, with probability equal to 1 divided 
by the number of 0 elements that could be changed to 1 without creating a 
cycle. To identify the 0 elements that are available to be changed to 1 without 
creating a cycle, we maintain in an auxiliary matrix the transitive closure of 
the adjacency matrix. We continue adding edges until int (ciS) edges have been 
added. If, because of the sequence of edges chosen, the required number of 1 's 
cannot be added to the matrix, then the partly completed matrix is abandoned 
and a fresh start is made. This generates a random acyclic matrix with effective 
density close to c. 

The virtue of this second approach is that it guarantees LIS = c = d* = d 
approximately (recall that c is the model parameter with ciS being the proba­
bility of a random link, d* is the asymptotic (large S) effective ratio of links to 
species, and d is the observed ratio LIS oflinks to species in real webs). A draw­
back, which we overlooked at first, is that this approach does not generate all 
random digraphs with S vertices and, say, E (always directed) edges with equal 
probability. In the probability distribution over digraphs assumed by model 2, 
any two digraphs with S vertices and E edges occur with equal probability. 
However, in the numerical approach just described, suppose S = 6 and we wish 
to choose randomly E = 3 edges. There are 6 x 5 = 30 ways to choose the first 
edge without creating a loop. Suppose, without loss of generality, that the edges 
are labelled so that the first edge is (1,2), that is, the edge goes from vertex 1 
to vertex 2. There are then 28 ways to choose the second edge (edge (1,2) has 
already been chosen and edge (2,1), which would create a cycle, is forbidden). 
If the second edge is, for example (3,4), then there are 26 ways to choose the 
third edge. But if the second edge is (2,3), then there are only 25 ways to choose 
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the third edge because two edges have already been chosen and three edges are 
forbidden «2,1), (3,2) and (3,1». 

Our third approach modifies the procedure just described to avoid this dif­
ficulty. As each randomly chosen edge is added to a digraph, the number of 
available edges that could have been chosen at that stage is noted. The product 
of all the numbers of available edges is assigned to the generated digraph as a 
weight. This weight is the inverse of the probability of choosing the edges in the 
particular random digraph in the order in which the edges occurred. The weight 
assigned to a given digraph may vary depending on the order in which the edges 
are chosen. All the statistics (such as the mean or variance of the fraction of 
species that are top or basal) computed from the random digraphs generated 
according to this third approach incorporate the weights, so that all digraphs 
with a given number of vertices and edges are represented with equal probability. 

When the unweighted simulations based on the second approach are compared 
with the weighted simulations based on the third approach, the simulated mean 
fractions of 0 rows and columns were generally slightly larger when weighted, 
but usually not by more than 0.01 and never (for the range of parameters in 
Table 111.2.2) by more than 0.04. A conjecture that for large S and for c small 
compared to S the two approaches give identical mean proportions of 0 rows 
and columns seems plausible. 

The simulations based on the second and third approach are not identical to 
those based on the first, naive approach. There is no variation in the number 
of edges (links) per acyclic digraph generated according to the second or third 
approach, while there is variation in the number of edges per acyclic digraph 
generated naively by the first approach. As in the parallel case of undirected 
graphs considered ErdOs & Renyi (1960), we expect (but have not proved) that 
this difference in approach to simulating model 2 has no effect in the limit of 
large S. 

§3. Individual Webs 

Joel E. Cohen, Charles M. Newman and Frederic Briand 

1. Introduction 

A food web is a set of different kinds of organisms and a relation that shows 
the kinds of organisms, if any, that each kind of organism in the set eats. A 
community food web is a food web whose vertices are obtained by picking, within 
a habitat or set of habitats, a set of kinds of organisms (hereafter called species) 
on the basis of taxonomy, size, location, or other criteria, without prior regard 
to the eating relations (specified by trophic links) among the organisms (Cohen 
1978, pp. 20-21). 
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In the previous chapter (Chap. III.2), several models were proposed to de­
scribe the structure of community food webs. When models were tested against 
data on 62 community food webs in Chap. II1.2, a crucial parameter in all the 
models, namely the ratio of links to species, was estimated from the aggregated 
data on all webs taken together. One model, the cascade model, successfully 
described, to a first approximation, the proportions of all species that are top, 
basal and intermediate, and the proportions of all links of each kind. 

The purpose of this chapter is to test how well the cascade model describes 
webs when the ratio of links to species is estimated separately for each web. 

In section 2 we describe the cascade model, show how to estimate the param­
eters of the model, and verify the correctness of the estimation procedure. In 
section 3 we test the assumption, made in Chap. III.2, that the ratio of links to 
species is constant for all webs. We then test seven predictions of the cascade 
model, estimating this ratio separately for each web. In section 4 we evaluate 
the results of this chapter and relate them to the results of Chap. III.2. 

We shall use a number of terms with special meanings that are given in 
section 2 of Chap. III.2. These terms include: web, species, link, predator, prey, 
top, proper top, intermediate, basal, proper basal, adjacency matrix, isolated, 
triangular. We shall not repeat the definitions here. 

Webs are classified as arising in 'fluctuating' or 'constant' environments. The 
environment is considered to be 'fluctuating' if the original report indicates tem­
poral variations of substantial magnitude in temperature, salinity, water avail­
ability or any other major physical parameter. The magnitude, and not the 
predictability, of the fluctuations is the criterion of classification. Since the clas­
sification of an environment as constant or fluctuating is to some extent sub­
jective, we point out that this task was carried out before we had analysed the 
webs and uncovered any pattern. 

The 62 webs analysed here are drawn from published studies. They include 
the 40 webs assembled and described by Briand (1983; Chap. II.5). Of these, 
13 are drawn from the 14 originally used by Cohen (1978). Details of the webs 
appear in Chap. IV. 

2. The Cascade Model and Parameter Estimation 

The cascade model assumes that the S species of a web may be labelled from 
1 to S so that, for some finite positive real number c ~ S, the probability that 
species j feeds on species i is 0 if j ~ i. If i < j, then j feeds on i with probability 
p = ciS and does not feed on i with probability q = 1- ciS, independently for 
all 1 ~ i < j ~ S. 

All numerical predictions of the cascade model depend on the values of the 
model's two parameters c and S. These two parameters, in turn, depend only 
on the observed numbers of links and of species. 

In the data we shall use to test this model, only proper top species (that is, 
those that eat at least one other species) and only proper basal species (that is, 
those that are eaten by at least one other species) are reported. Thus the total 
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number of observed species in a web is not S but the number of not isolated 
species. The true number S of species in a web is not directly counted. 

The expected number E( N) of not isolated species depends on both c and 
S according to (6.3c) in Chap. 111.2. Similarly, the expected number E(L) of 
links in a web depends on c and S according to (6.5) in Chap. 111.2. To test the 
predictions of the cascade model with individual webs, we estimate c and S by 
the method of moments. That is, if S' is the observed number of species (that 
is, S' is the observed value of the random variable N, the number of not isolated 
species), and L' is the observed number of links (that is, L' is the observed value 
of the random variable L, the number of links in a web), we replace E(N) on 
the left of (6.3c) in Chap. 111.2 by S' and E(L) on the left of (6.5) in Chap. 111.2 
by L'. The resulting equations are restated as (AI) in the appendix. We then 
solve this system of two nonlinear equations for the two unknowns c and S by 
using Newton's method, as described in the appendix, except for the one web 
with S' = 3. For this web, we take S = 3 and then compute c by solving (Ala). 

As a check on the correctness of the numerical solutions c and S, we used 
the numerical values of c and S to compute E(L) from (6.5) in Chap. 111.2 and 
E(N) from (6.3c) in Chap. 111.2. In figures not shown, we plotted L' as a function 
of the calculated E(L) and S' as a function of the calculated E(N). A line of 
slope one through the origin passed through all the plotted characters except, as 
expected, the web with S' = 3, verifying that the computed numerical solutions 
for c and S in fact satisfy (AI) adequately. 

The computed values of S are not in general integers. We could force them to 
be integers by replacing S with the integer closest to S and then solving (Ala) 
for a new value of c. A simpler alternative, which we adopt here, is to interpret 
the equations of the cascade model derived in Chap. 111.2 as applying whether 
S is integral or positive real. 

From (6.3c) in Chap. 111.2 or (Alb), it follows that if S > 1 and e-c ~ 1, 
then S is approximately S' . In the data plotted in Fig. 111.3.1, S does not greatly 
exceed the observed values of S'. In fact S - S' < 2.1 for all webs but one. For 
the exceptional web (Paviour-Smith 1956), S - S' = 5.5, where S = 37.5. This 
exceptional case is visible as the outlying fluctuating web in the lower right corner 
of Fig. 111.3.1. Briand & Cohen (1984) also noted that this web was an outlier 
on a plot of prey against predators based on unlumped data (Fig. A.2.la). This 
web appears to be unusual in both the relation between links and total species 
and the relation between predators and prey. 

3. Testing The Predictions of The Cascade Model 

The tests of the cascade model in Chap. 111.2 use a single value of c for all webs. 
If this procedure is correct, then a plot of c against S, estimated individually 
for each web, should display no increasing or decreasing trend. Substantial vari­
ability in c as a function of S is expected because the realized number of not 
isolated species need not exactly equal the mean E(N) and the realized number 
of links need not exactly equal the mean E(L). 
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Figure III.3.1. The estimated value of c as a function of the total number of species S. The 
straight line c = 3.438 + 0.017S is an ordinary least-squares regression line fitted under the 
assumption that the variance of the residuals is independent of S, and without constraints on 
the slope or intercept. The slope 0.017 has a standard deviation of 0.022. There is no evidence 
of a rise or fall in c with increasing S. In this and all subsequent figures, the plotted symbols 
have been perturbed by a small random amount from their exact positions to indicate when 
several symbols coincide. x, constant web; 0, fluctuating web. Only 'lumped' webs are used 
(Briand & Cohen 1984; Chap. 11.2) 

Figure 1I1.3.1 shows that there is no evidence of a pronounced trend in the 
estimated c as a function of the estimated 8. Because 8 and 8 -1 are close to the 
observed number 8' of not isolated species, the observation that c = 2L' / (S - 1) 
has no significant trend as a function of 8 follows from the link-species scaling 
law (Chap. III.2) that L' /8' has no increasing or decreasing trend as a function 
of 8'. 

The observation of a slightly positive slope in Fig. I1I.3.1 is consistent with 
two earlier observations. First, by using multiple versions of the unlumped com­
munity webs of Cohen (1978), Yodzis (1980) observed that with increasing 8', 
the observed (lower) connectance e', defined bye' = 2L' /[8'(8' -1)], decreases 
nearly but not quite as fast as 1/8'. Now e' = c(1/8')[(8 - 1)/(8' - 1)] and 
the last factor [(8 - 1)/(8' - 1)] approximates 1. Therefore if c has no trend as 
a function of 8, e' would be expected to decline approximately as 1/8'. Sec­
ondly, by using 40 unlumped webs, Briand (1983; Chap. 11.5) observed that the 
number L' of links was proportional to 8'1.1 rather than to 8'. Because of the 
overlaps among the sets of data used by Yodzis (1980), Briand (1983) and here, 
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the findings ofYodzis (1980) and Briand (1983) are by no means independent of 
ours. Moreover, the webs analysed by Yodzis and Briand were unlumped while 
ours are lumped. Thus there is no persuasive evidence against the natural null 
hypothesis that for the lumped webs studied here, c is effectively constant as S 
Increases. 

Of the 19 constant webs, 14 fall above the regression line in Fig. III.3.1. Of 
the 43 fluctuating webs, 34 fall below the regression line. The difference in the 
proportions of webs above the regression line (74% for constant webs, 21% for 
fluctuating webs) is too large to be attributed to chance (X2 = 15.7 with one 
degree of freedom, a value with extremely low probability if one chooses to 
believe the underlying but doubtful assumption of independence among webs). 
For a given number of species, constant webs have more links than fluctuating 
webs (Briand 1983; Chap. 11.5). 

This difference demonstrates at the level of individual webs the aggregate 
difference in the ratio of links to species between constant and fluctuating webs. 
For constant webs, the ratio of links to species is 811/351 = 2.31, while for 
fluctuating webs, the ratio is 1108/683 = 1.62. 

The use of a single value for c in Chap. III.2 overlooks differences in the typical 
values of c of two distinguishable kinds of webs, the constant and the fluctuating, 
making it all the more surprising that the aggregated predictions of the cascade 
model in Chap. III.2 are not worse. Here, since c and S are estimated separately 
for each web, we are testing how the cascade model applies to individual webs, 
both constant and fluctuating. 

We now test seven predictions of the cascade model. In Figs. III.3.2-8 the 
abscissa is the expected value of some feature of a web, according to the cascade 
model, and the ordinate is the observed value of that feature. If the estimated 
values of c and S corresponded exactly to the true values of c and S and if the 
observed value of each feature in each web corresponded to the expected value, 
then all data points would fall along a line of slope one through the origin. The 
cascade model is a stochastic model, however, so the data points are expected to 
deviate from such a line, but not systematically. Since the scales of the abscissa 
and ordinate vary, a line of slope one through the origin is drawn in Figs. III.3.2-8 
for comparison. 

There is no reason to assume that half of the data points should fall above, and 
half below, the line of slope one, because we have not proved that, according 
to the cascade model, the variables of interest are symmetrically distributed 
about their mean. However, as the number of species in a web increases, it 
seems reasonable to suppose that the distributions of these variables approach 
normality. In this limit of large S, it seems reasonable to anticipate roughly half 
of the data points above and half below the line of slope one if the cascade model 
is correct. 

As might be expected, in Figs. III.3.2-8 the variance of the observed number, 
plotted on the ordinate, increases as the expected number, plotted on the ab­
scissa, increases. Since all the abscissae are increasing functions of the number of 
species in a web, the variances of observed numbers also increase with increasing 
size of web. 
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Figure III.3.2. The observed number of (proper) basal species as a function of the expected 
number of proper basal species according to the cascade model. In this and all the following 
figures, the solid straight line passes through the origin with slope 1. This is not a regression 
line, but should describe the trend of the data if the predictions of the cascade model are 
approximately correct 

Figure III.3.2 plots the observed (proper) basal species against the expected 
proper basal species, computed from (6.3a) in Chap. 111.2. There appear to be 
'rows' of data points in Fig. 111.3.2 because the observed numbers of basal species 
are constrained to be integers, while the expected numbers can vary continuously. 
The bulk of the data points, though by no means all, fall below the line of slope 
one. This finding is consistent with the fact that fewer basal than top species 
are observed and with the observation in Chap. 111.2 that fewer basal species are 
observed than expected using an aggregate estimate of c. No difference between 
constant and fluctuating webs in the success of the cascade model is immediately 
evident from Fig. 111.3.2. This absence of apparent difference is consistent with 
the finding of Briand & Cohen (1984; Chap. 11.2) that the proportions of (proper) 
basal, intermediate, and (proper) top species are homogeneous between constant 
and fluctuating webs, within statistical fluctuations. 

Figure 111.3.3 plots the observed intermediate species against the expected 
intermediate species, computed from (6.3b) in Chap. 111.2. The constant webs 
fall nearly evenly above and below the line of slope one (9 fall above, 10 fall 
below). The bulk of the fluctuating webs fall slightly above the line. This small 
difference is consistent with the insignificantly greater aggregate proportion of 
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Figure m.3.3. The observed number of intermediate species as a function of the expected 
number of intermediate species according to the cascade model 

intermediate species in fluctuating webs than in constant webs (54% versus 50%). 
Overall, the agreement between observed and expected species is good. 

Figure 111.3.4 plots the observed (proper) top species against the expected 
proper top species, computed from (6.3a) in Chap. 111.2. The constant web with 
17 top species appears to be an outlier. This same web, which describes the 
rocky shore of Lake Nyasa (Fryer 1959) also appeared as an outlier in a plot, 
with unlumped data, of prey against predators (Fig. A.2.1a). For both constant 
and fluctuating webs, there is a suggestion that the remaining points may rise 
convexly. At least in the middle range of expected values, however, the agreement 
between observation and expectation is good. 

In summary, when the expected numbers of species of each kind are compared 
with the observed, the agreement is best for intermediate species and is fair for 
proper top and proper basal species. The cascade model describes the kinds of 
species in constant and fluctuating webs about equally well. 

Figure 111.3.5 plots the observed basal-intermediate links against the expected 
basal-intermediate links, computed from (6.6a) in Chap. 111.2. There is no sign 
of systematic deviation between the points and the line of slope one, for the 
constant and fluctuating webs considered separately or together. 

Figure 111.3.6 plots the observed basal-top links against the expected basal­
top links, computed from (6.6b) in Chap. 111.2. Contrary to expectation, there 
are many webs with no basal-top links or one only. The line through the origin 
with slope one passes through the mass of the remaining points, but even for 
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Figure 111.3.4. The observed number of (proper) top species as a function of the expected 
number of proper top species according to the cascade model 

these the scatter about the line is large, compared with that in Figs. III.3.5, 7 
and 8. 

Figure III.3.7 plots the observed intermediate-intermediate links against the 
expected intermediate-intermediate links, computed from (6.6c) in Chap. II1.2. 
The apparent outlier with six observed intermediate-intermediate links in the 
lower right corner of Fig. II1.3.7 is the same web that appears above as the 
potential outlier in Fig. 111.3.4. This same web appears again as the outlier with 
59 observed intermediate-top links in the top-right corner of Fig. 111.3.8. Clearly 
this web is exceptional in several respects, when compared with other webs. Aside 
from this outlier, the remaining webs are scattered more or less symmetrically 
about the line of slope one, and no systematic deviations are evident. 

Figure 111.3.8 plots the observed intermediate-top links against the expected 
intermediate-top links, computed from (6.6a) in Chap. III.2. As in Fig. III.3.5 
(apart from the single outlier), there is no sign of systematic deviation of the 
points from the line of slope one, for the constant and fluctuating webs separately 
or together. 

In summary, the cascade model provides a good description of the numbers of 
basal-intermediate, intermediate-intermediate, and intermediate-top links, aside 
from one outlying constant web, and a rather poor description of the number of 
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Figure m.3.5. The observed number of basal-intermediate links as a function of the expected 
number of basal-intermediate links according to the cascade model 

basal-top links. The cascade model describes the links of constant and fluctuating 
webs about equally well. 

4. Discussion and Conclusions 

We have tested a model, called the cascade model, which assumes that species 
in a community are arranged in a hierarchy or cascade of potential feeding rela­
tions. This model assumes that whether a potential feeding relation becomes an 
actual feeding relation is determined randomly, independently of all other poten­
tial feeding relations. The probability that a potential feeding relation becomes 
actual is assumed to be the same for every potential feeding relation within a 
community, and to vary inversely as the number of species in the community. 

Consequently, according to the model, for a randomly chosen species in a 
community, the mean number of other species that prey on it or that are prey 
to it is independent of the total number of species in the community. Thus 
the model is consistent with the hypothesis, suggested by Pimm (1982, p.89), 
that 'each species in a community feeds on a number of species of prey that is 
independent of the total number of species in the community', provided that the 
term 'each species' is replaced by the term 'a randomly chosen species'. 
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Figure 111.3.6. The observed number of basal-top links as a function of the expected number 
of basal-top links according to the cascade model 

In Chap. 111.2 we showed that the cascade model describes several important 
properties of webs, to a first approximation, when a fixed probability parame­
ter, estimated from aggregated data, is applied to all webs. There is no logical 
necessity for the cascade model to describe individual webs, given that it suc­
ceeds reasonably in the macroscopic analysis. Tests of the cascade model using 
data on individual webs are logically and empirically independent of tests using 
aggregated data. Indeed, it would be surprising to find that ecological 'assembly 
rules' as simple as the cascade model apply to communities that arise in diverse 
environments. 

To test the cascade model's ability to describe individual webs, we used two 
numbers, the observed number of not isolated species and the observed number 
of links, to estimate the two parameters of the cascade model: the unknown true 
number S of species and the unknown constant c to which the probability of a 
feeding relation is proportional. We then computed the expected values of seven 
characteristics of webs and compared them with the observed. 

In 62 webs, with exception of an occasional outlier, the cascade model de­
scribes well the numbers of intermediate species (Fig. 111.3.3), basal-intermediate 
links (Fig.1I1.3.5), intermediate-intermediate links (Fig. III.3.7), and interme­
diate-top links (Fig.1I1.3.8). It describes fairly the numbers of proper basal 
(Fig. III.3.2) and proper top (Fig. 111.3.4) species. It describes poorly the num­
bers of basal-top links (Fig. III.3.6). 
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Figure 11l.3. 7. The observed number of intermediate-intermediate links as a function of the 
expected number of intermediate-intermediate links according to the cascade model 

For a given value of S, the probability cIS that a species will prey on another 
species, when their positions in the trophic hierarchy permit, is higher in constant 
webs than in fluctuating webs. Given c and S, the cascade model describes the 
numbers of kinds of species and kinds of links in constant and fluctuating webs 
about equally well, according to our examination of the data. 

Cohen & Briand (1984; Chap. 11.3) noted that the proportions of each kind of 
link appear to differ between constant and fluctuating webs. Since the cascade 
model describes the numbers of each kind of link about equally well in constant 
and fluctuating webs, the difference in proportions may be explained by the 
difference in the typical values of c for constant and fluctuating webs, rather than 
by some deeper structural difference between constant and fluctuating webs. The 
difference in the typical values of c between constant and fluctuating webs is not 
explained by the cascade model. 

In testing the model, we present graphical comparisons of the observations 
and predictions so that the reader can make his or her own verbal summaries of 
how good or bad the fit is. We avoid formal statistical measures of goodness of 
fit because the data may not be independent and because we are interested in 
simultaneous inference about the model as a whole. The assumption of indepen­
dence among webs appears doubtful, since some authors contributed more than 
one web and the proclivities of authors do appear to influence the structure of 
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Figure Ill.3.8. The observed number of intermediate-top links as a function of the expected 
number of intermediate-top links according to the cascade model 

webs. We are less concerned to test hypotheses about any portion of the cascade 
model than to see how well, on the whole, it describes simultaneously several 
major features of webs, some of which may not be independent. (For example, 
given the total number of not isolated species, the observed numbers of proper 
top, intermediate, and proper basal species are not independent.) 

How should one evaluate the discrepancies between theory and observation 
most evident in Fig. 111.3.6, and strongly suggested by Figs. 111.3.2 and 4? One 
can be sceptical about the model, but not the data; or one can be sceptical 
about the data, but not the model; or one can be sceptical about both. We are 
sceptical about both. 

As for the data, the earlier chapters by Briand and Cohen, jointly and sepa­
rately, indicate that there is great variability among observers in the operational 
definitions of species and links and in the detail of published reports of field 
work. Often, these operational definitions are not even described in the pub­
lished reports. A first step that field ecologists could make toward improving the 
data would be to describe in detail how the species and links are operationally 
defined. A second step would be to work toward some uniform definitions. 

Nevertheless, the data analysed here are the best available at present. The 
regularities in these data merit theoretical attention. 
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As for the model, numerous assumptions underlying it are unrealistic. Is it 
plausible to assume that the species at the top of the hierarchy or cascade is 
equally likely to prey on all other species in the community? Is it plausible to 
assume that the prey species a predator eats are chosen independently of the 
abundance of the prey species and stochastically, once and for all, as the model 
implicitly assumes? We think not. 

Nevertheless, the cascade model provides a very simple unifying perspective, 
quantitatively testable and open to improvement, that explains for the first time 
several empirical regularities in the structure of webs. The ecological generaliza­
tions explained by the cascade model still need to be derived from a persuasive 
and testable theory of behaviour, population dynamics, and trophic interactions. 

The cascade model also needs to be tested further against macroscopic data. 
Can the c.ascade model explain the observed frequency of intervality (Cohen 
1978) in food webs? Can the cascade model explain the observed frequency 
distributions of length of food chains? See Chaps. III. 4-6. 

Appendix: Estimation of c and S by Newton '8 Method 

Given observed numbers of species S' and observed numbers of links L', the 
parameter c and the true number of species S satisfy, according to model 3 (the 
cascade model): 

0= c(S - 1)/2 - L' == VI , 

0= (1- [1- c/SJS - 1 )S - S' == V2 . 

(Ala) 

(Alb) 

We find c and S numerically by Newton's method (for example, Rektorys 1969, 
pp.118Q-1181). 

Step 1. Let Co = 2L'/(S'-1), So = S'. (These are initial estimates.) 
Step 2. Compute 

J11 = (So - 1)/2 , 
J12 = co/2, 

J21 = (So - 1)(1- co/So)SO-2 , 

J22 = 1- (l-co/SO)SO-l[l+co(So-l)/(So-co) + So In(l- co/So)] . 

(This is the Jacobian of the nonlinear system (AI), that is J11 = OV1/0C, etc., 
evaluated at (co, So).) 

Step 3. Compute A = J-1 , that is, 
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and VI, v2 from (AI) with c replaced by Co, S by So, then 

(The new estimates of c and S are Cl, SI.) 
Step 4. Stop if ICI - col + ISo - SII < 0 = 0.01. (Stop when the procedure 

quasi-converges. The value of 0 = 0.01 was chosen to require the final estimates 
Cl ,SI to be changing far less than the uncertainty in the data.) 

Step 5. Otherwise, replace the value of Co by the value of Cl and replace 
the value of So by the value of SI. Then go to step 2. (Iterate with improved 
estimates. ) 

When applied to the 62 pairs (S', L') from the webs assembled by Briand, 
this procedure stopped after at most 3, and generally 2, iterations, except for 
the pair (S', L') = (3,2) from one web (code number 10). For this web, the 
procedure diverged, and we used the initial estimate. 

§4. Predicted and Observed Lengths of Food Chains 

Joel E. Cohen, Frederic Briand and Charles M. Newman 

1. Introduction 

The purpose of this chapter is to derive a quantitative theory of the length 
of food chains from a mathematical model of community food webs called the 
cascade model and to test this theory quantitatively against data from real food 
webs. The cascade model was developed and tested by Cohen & Newman (1985; 
Chap. III.2) and by Cohen et al. (1985; Chap. 111.3). The predictions of the 
cascade model describe, to a first approximation, several major characteristics 
of a collection of 62 real webs: the proportions of all species that are top, basal 
and intermediate, and the proportions of all links from basal to intermediate 
species, from basal to top species, from intermediate to intermediate species, 
and from intermediate to top species. 

This chapter determines what the cascade model implies for the frequency 
distribution of the length of food chains in webs with a finite number of species 
and compares the predictions with observations. The number of species in the 
observed webs ranges from 3 to 48. The theory of chain lengths is developed 
further for webs with a large number of species in the next chapter (Newman & 
Cohen 1986; Chap. 111.5). 

Section 2 reviews present biological theories of food chain lengths; section 3 
presents terminology for chains and reviews the cascade model. Section 4 gives 
exact results about the frequency distribution of chain lengths for webs with a 
finite number of species and proposes a way to evaluate the goodness of fit of 
the cascade model's predictions to the observed frequency distribution of chain 
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length in an individual web. A mathematical proof in section 4 (the only one in 
this chapter) is set off by Proofat the beginning and. at the end. Readers may 
defer or skip the proof with no loss of continuity. 

In section 5, we find that the cascade model describes acceptably most, but 
not all, of the frequency distributions of chain length observed in 62 webs, other 
aspects of which were previously used to develop and test the model. Does the 
cascade model succeed in most of these webs because the model was selected to 
describe other aspects of the same data, since such selection might constrain the 
possible frequency distributions of chain length? 

No, according to the results of section 6. There we examine the frequency 
distributions of chain lengths in a freshly assembled and edited collection of 51 
webs that have not been previously related to the cascade model. The species­
link scaling law (Cohen & Briand 1984; Chap. 11.3), one ofthe central features of 
the cascade model, is not contradicted by these new data. The cascade model de­
scribes acceptably 46 of the 51 observed frequency distributions of chain lengths; 
this majority is even larger than the majority of its successes with the original 
62 webs. 

According to section 7, the mean and variance calculated from the expected 
numbers of chains of each length cannot validly be compared with the mean 
and variance of chain lengths in an observed web. If such a comparison is made, 
nevertheless, the mean chain lengths are described acceptably, but not the vari­
ances. 

In section 8, we explain why we doubt the assumption that the 113 webs in our 
collection are a random sample from some statistical ensemble of webs. Under 
this dubious assumption, a Kolmogorov-Smirnov test rejects the null hypothesis 
that the cascade model's predictions describe the chain lengths in the ensemble 
of webs sampled by either the original 62 or the new 51 webs or all 113 combined. 

Most of the 16 or 17 webs with chain lengths that the cascade model fits 
poorly have unusually large average chain lengths (greater than four links) or 
unusually small average chain lengths (fewer than two links). 

Finally, in section 9, we review the accomplishments of the chapter, relate 
them to previous work, and propose several further studies. An appendix presents 
algorithms that were used to compute the frequency distribution of chain length 
and the length of the longest chain of a given web. 

Chap. IV presents in detail the sources and full data on all 113 (62 + 51) 
webs. 

2. The Length of Food Chains: Present Ecological Theory 

Elton (1927 [1935], p. 56) justifies attention to food webs and food chains: 'The 
primary driving force of all animals is the necessity of finding the right kind of 
food and enough of it. Food is the burning question in animal society, and the 
whole structure and activities of the community are dependent upon questions 
of food-supply.' 
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To our knowledge, Elton (1927 [1935], p.56) is the first to introduce the 
terminology 'food chains': 'There are, in fact, chains of animals linked together 
by food, and all dependent in the long run upon plants. We refer to these as 
''food chains" , and to all the food-chains in a community as the ''food-cycle''.' 
Elton's 'food-cycle' has been generally replaced by 'food-web'. 

In notes added to the second impression, Elton (1927 [1935], p. xxvii) remarks 
that 'the first food-cycle diagram was published by V.E. Shelford' in 1913. Elton 
does not remark that the community described by Shelford's diagram is hypo­
thetical, but observes elsewhere (p. 57): 'Extremely little work has been done so 
far on food-cycles, and the number of examples which have been worked out in 
even the roughest way can be counted on the fingers of one hand'. 

Systematic quantitative data about food chains have been assembled only in 
the last decade. To our knowledge, the first numerical data on the frequency 
distribution of chain lengths in real food webs are presented by Cohen (1978, 
pp.56-59), who emphasizes the need for, but does not provide, a quantitative 
theory (see also Cohen 1983). 

The most comprehensive, quantitative and empirically based modern presen­
tation of theories about the length of food chains that we know of is Pimm's 
(1982, Chap. 6, pp. 99-130). He evaluates four hypotheses to explain why food 
chains rarely contain more than, roughly, five animal species (Hutchinson 1959, 
p. 147). Some recent perspectives on these hypotheses and their cousins are given 
by May (1983) and DeAngelis et al. (1983); see also Chap. II.6. 

First, the energetic hypothesis suggested by Hutchinson (1959, p. 147) pro­
poses that the length of food chains is limited by the inefficiency with which 
energy is transmitted along a chain and by the minimal energy requirements of 
predators at the top of a chain. This hypothesis could be interpreted to pre­
dict that food chains in ecosystems with higher primary productivity should 
be longer. Pimm's data do not confirm this prediction, though the ecosystems 
in Pimm's collection with extremely low primary productivity do have short 
chains. However, the energetic hypothesis could also be interpreted to predict 
that food chains in ecosystems with higher primary productivity can support 
energetically less efficient intermediate and top species without any change in 
chain length. Data on chain length alone, without detailed information on the 
energetic efficiency of the species in the chains, can neither establish nor disprove 
the energetic hypothesis. In a pioneering experimental study, Pimm & Kitching 
(1987) compared the chain lengths of artificial ecosystems with varying levels of 
energy input. They found no evidence of increasing chain lengths with increasing 
energy inputs. 

Secondly, the size or design hypothesis predicts that chains should be limited 
in length by the requirement that a predator be larger than its prey. Pimm 
points out that parasites need not obey this requirement, and suggests that size 
or design requirements have no simple or easily testable effects on chain length. 

Thirdly, the optimal foraging or evolutionary shortening hypothesis cites ad­
vantages in energetic efficiency that result from feeding low (near the primary 
producers) in food chains, and other energetic advantages that result from feed­
ing high (near top predators), and suggests that the observed distributions of 
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chain lengths result from an equilibrium of these opposing selective advantages. 
Although examples appear to illustrate one or another aspect of this hypothesis, 
precise quantitative predictions do not seem to follow from it. 

Fourthly, the dynamical stability hypothesis argues first that, in several spe­
cific mathematical models of interacting populations, the longer the chains, the 
more severe the restrictions that must be imposed on the coefficients in the 
models for an equilibrium to be feasible or stable, and second that in certain 
models, those with longer food chains take longer to return to equilibrium once 
perturbed, so that systems with longer chains are less likely to persist in nature. 
The models (generally based on Lotka-Volterra equations) that support the dy­
namical stability hypothesis have not been independently verified. When these 
models are tested against data including data on chain length, it will be possible 
to decide what weight this hypothesis deserves as an explanation. 

In addition to these four hypotheses, Kitching and Pimm (1985) describe 
seven environmental factors that may influence webs in phytotelmata. Phytotel­
mata are plant-held waters, such as occur in the axils of trees, bamboo internodal 
spaces, bromeliads, tree holes, and pitcher plants. The factors affecting webs in­
clude the size (surface area and volume) of the body of water, the latitude (hence 
climate), the size of the pool of species available to colonize the phytotelma, the 
evolutionary history of the host plants (see Beaver 1985), the particular host 
plant species, the successional stage, and altitude. Most of these factors influ­
ence webs in general. Kitching & Pimm give no quantitative predictions of the 
effects on chain length of changes in these factors. 

Pimm (1982, appendix 6A) also presents a so-called 'null-hypothesis' about 
chain lengths. To our knowledge, his is the first simple quantitative model of web 
structure that is used to derive quantitative predictions about the frequency dis­
tribution of chain length. To describe Pimm's model, we repeat some definitions 
from Chaps. 111.2-3. A proper basal species is a species that preys on no other 
species but is preyed on by at least one other. An intermediate species is a 
species that preys on at least one other species and is preyed on by at least one 
other species. A proper top species is a species that preys on at least one other 
species and is preyed on by no other species. If Bp, I and Tp are the numbers 
of proper basal, intermediate and proper top species in a community with L 
(trophic) links, Pimm constructs a predation matrix with (Bp + I) rows and 
(Tp + I) columns. All but L elements of the matrix are zero. The L elements 
that are equal to 1 are randomly assigned subject to three constraints: each 
proper top or intermediate species has at least one prey (at least one 1 in its 
column), each proper basal or intermediate species has at least one predator (at 
least one 1 in its row) and, to assure that the web is acyclic, the submatrix where 
intermediates prey on intermediates is strictly lower triangular. (The species are 
numbered from the top of the web to the bottom, contrary to the convention we 
adopt for the cascade model.) 

For each of 13 real webs, Pimm computes the modal trophic level of each 
real top species (which, except for some minor details, is one greater than the 
modal length, defined below, of chains leading up to that species) and the modal 
trophic level of each (proper) top species in simulated webs generated as just 
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described. He then adopts a conservative procedure for deciding when the vector 
of simulated trophic levels of (proper) top species is smaller than the vector of 
real trophic levels of top species. He concludes that the simulated trophic levels 
of top species are smaller than the real levels in a proportion P of simulations 
whose mean (over different real webs) is 'significantly less' (Pimm 1982, p.l04) 
than 0.5, though he gives no significance level, and therefore that real chains are 
shorter than would be expected 'at random' according to the null hypothesis. 

This conclusion seems liable to two criticisms. First, assuming with Pimm 
that the observed webs are independent observations (we shall return to this 
assumption), we believe that Pimm's null hypothesis that the expected P = 0.5 
should be replaced by the null hypothesis that P is approximately uniformly 
distributed between 0 and 1. P will not be exactly uniformly distributed under 
the null hypothesis because the number of trophic levels is a discrete, not a con­
tinuous, random variable. When we perform a one-sample Kolmogorov-Smirnov 
test of the null hypothesis that Pimm's 13 P values are drawn from a uniform 
distribution, we obtain a D13-statistic of 0.389. The probability that a value 
that large or larger would occur by chance alone is between 0.02 and 0.05. We 
conclude that the data do not overwhelmingly reject Pimm's null hypothesis. 

Secondly, Pimm's test of the hypothesis that the expected P = 0.5 is based 
on adding X2 values for each of the 13 webs; this is equivalent to treating the 
webs as independent. The webs are chosen from ten papers; Paine is the author 
or a co-author of two of these. We doubt that different webs reported by the 
same observer are independent in structure because the observer brings the 
same, usually unstated, biases to all his observations (Chaps. 11.4-5, 111.2-3). 
Under the worst dependence, Pimm's X2 value could be based on as few as 
nine independent observations. The probability that a Dg-statistic of 0.389 or 
larger would occur by chance alone is between 0.05 and 0.1 according to the 
Kolmogorov-Smirnov test. 

We are less persuaded than Pimm that his null hypothesis is a bad idea. 
Pimm's model is in the same family, though perhaps not in the same genus, as 
the cascade model that we now review. 

3. Terminology; The Cascade Model 

This section reviews and introduces terminology, then describes the cascade 
model (as in Chaps. 111.2-3). 

A food web is a set of kinds of organisms and a relation that shows which, 
if any, kinds of organisms each kind of organism in the set eats. A community 
food web is a food web whose vertices are obtained by picking, within a habitat 
or set of habitats, a set of kinds of organisms (hereafter called species) on the 
basis of taxonomy, size, location or other criteria, without prior regard to the 
eating relations (specified by trophic links) among the organisms (Cohen 1978, 
pp.20-21). Hereafter 'web' means 'community food web'. A basal species is a 
species that eats no other species, and a top species is a species that is eaten by 
no other species. 
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In the representation of a web by a directed graph or digraph (see Chap. 
III.2), each vertex corresponds to a (lumped trophic) species. An edge (always 
directed) (a, b) from vertex a to vertex b corresponds to a link from species a 
to species b, meaning that species b eats species a. An example of a walk in a 
digraph is the sequence a, (a, b), b, (b, c), c of alternating vertices and edges. The 
length of a walk is the number of edges in it. An n-walk is a walk of length n. 
The digraph of any web generated by the cascade model is acyclic, so no vertex 
(or species) can figure more than once in a walk in such a web. A chain is a 
walk from a basal species to a top species. A chain in this sense is identical to 
a 'maximal food chain' as defined by Cohen (1978, p. 56). An n-chain is a chain 
of length n, i.e. a chain with n links. The length of a chain is one less than the 
number of species involved in that chain. 

Let S be the number of species in a web, and let Cn be the number of n­
chains in an acyclic web, n = 1,2, ... , S - 1. Algorithms for computing Cn 

for a given web are presented in the appendix. Chains of length greater than 
S - 1 are impossible. The frequency distribution of chain length is the vector 
(Cl, ... , C 8-d == C. The total number of chains in the web will be denoted 

8-1 

C==~Cn. 
n=1 

The cascade model assumes that species in a community web are arranged 
in a hierarchy, pecking order or cascade of potential feeding relations. Whether 
a potential feeding relation becomes an actual feeding relation is determined 
randomly, independently of all other potential feeding relations. The probability 
that a potential feeding relation becomes actual is the same for every poten­
tial feeding relation within a community, and varies inversely as the number of 
species in the community. 

More formally, the cascade model assumes that the S 2: 2 species of a web 
may be labelled from 1 (at the bottom, subject to predation by all other species) 
to S (at the top, subject to predation by no other species). (In graph theory, 
this labelling is called a topological sorting (Gibbons 1985, p.122) because for 
every edge (i, j) we have i < j.) The probability that species j feeds on species 
i is 0 if j ~ i. If i < j, then j feeds on i with propabiliby p = p(S), i.e. with 
a probability between 0 and 1 that depends on S, and does not feed on i with 
probability q = 1 - p, independently for all 1 ~ i < j ~ S. Unless a contrary 
assumption is explicitly given, it will be assumed that for some finite positive 
real number c ~ S, P = ciS, where c is a constant independent of S. 

All numerical predictions of the cascade model depend on the values of the 
model's two parameters c and S. These two parameters, in turn, may be esti­
mated from only two observations: the observed number, L', of links and the 
observed number, S', of species. 
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4. Frequency Distribution of Chain Length in Finite Webs; Testing Fit 

As usual, E(.) denotes the expectation (or mean) ofthe random variable enclosed 
in parentheses. According to the cascade model, with probability p of a random 
link, the expected number of n-chains in a web with S species is 

n = 1,2, ... , S -1. 

Proof. There is an n-chain going upward from vertex (species) i to vertex j if 
aI;ld. only if: (a), 1 ::; i ::; S - n; (b), i + n ::; j ::; S; (c), all n links on one ofthe 
(3-:"11) possible walks oflength n from ito j are present; (d), i is basal, i.e. no 
li;k is present from one of the i-I vertices below i to i; and (e), j is top, i.e. 
no link is present from j to one of the S - j vertices above j. Therefore 

Now 

S-n S S-lS-k 

L: L: = L: L: if k=j-i; 
i=l j=i+n k=n i=l 

therefore 

• 
Figure 111.4.1, which we discuss in more detail below, plots E(Cn ) as a func­

tion of n for parameter values that are typical of the webs in the sample of 62 
webs analysed in Chaps. 111.2-3. 

This analysis leaves open a question concerning dependence, which we will 
answer roughly by numerical simulations of the cascade model. For typical webs, 
is there enough dependence between the number of chains of one length and the 
number of chains of another length to affect what statistical test we use to 
evaluate the goodness of fit between the observed and the predicted frequency 
distributions of chain length? In the cascade model of a web with S species, for 
any two different positive integers m and n, 1 ::; m i= n ::; S - 1, if Cm and 
Cn, the (random) numbers of chains oflength m and n, were independent, then 
we might measure the goodness of fit ofthe observed to the expected frequency 
distributions of chain lengths by Pearson's X2 statistic. However, if Cm and Cn, 
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Figure 111.4.1. Theoretically expected number (-) of chains of length 1 to 9 in a web of 
S = 17 species, according to the cascade model with c = 3.75, sample mean number (0) of 
chains of each length in 100 simulations of the cascade model, and sample mean plus one 
sample standard deviation (0) in the number of chains of each length. No chains with more 
than nine links occurred in the simulations; the expected total number of such chains per 
simulation is 0.003 

m :/: n, were not independent, then the tabulated probability distribution of X2 

would bear no relation to the actual probability distribution of the computed 
X2 statistic. In the case of dependence, it would be necessary to compute the 
correct probability distribution or find another way to measure goodness of fit. 

To answer this question, we chose S = 17 as a typical number of species, 
because the mean number of species per web in the 62 webs analysed in Chaps. 
111.2-3 is 16.7. We chose c = 3.75, near the observed estimate of 3.71, so that the 
expected number of links per web would be 30, near the observed mean in the 
62 webs of 30.95 links per web. Given these two parameters, we generated 100 
random webs according to the cascade model and recorded various statistics. 

The mean number, averaged over the 100 simulated webs, of chains of each 
length is plotted in Fig.IIIA.l along with the theoretically expected number 
derived above. The excellent agreement serves as a check both on the simulation 
and on the theoretical derivation. Also plotted in Fig. 11104.1 is the mean number 
plus one sample standard deviation in the number of chains of each length. 

To investigate dependence among the numbers of chains of each length, we 
computed the dispersion matrix or variance-covariance matrix of the simulated 
random variables {en, n = 1, 2, ... , 9}. (No chains of length greater than nine 
occurred.) 
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Table 111.4.1. Dispersion or variance-covariance matrix of the numbers of chains of each 
length 1,2, ... ,9 in 100 simulations of the cascade model with S = 17 and c = 3.75. (For 
example, the sample covariance of 0 3 and 0 4 was 19.85. No chains of length greater than 9 
occurred) 

chain chain length 
length 1 2 3 4 5 6 7 8 9 

1 8.08 2.42 -5.74 -8.08 -5.83 -3.85 -1.61 ~.58 ~.10 

2 2.42 11.87 1.87 -1.90 -3.07 -3.39 -2.42 -1.14 ~.28 

3 -5.74 1.87 26.82 19.85 16.19 7.96 1.28 ~.26 ~.14 

4 -8.08 -1.90 19.85 32.64 28.02 16.16 5.29 1.12 0.06 
5 -5.83 -3.07 16.19 28.02 32.13 20.00 8.31 2.49 0.37 
6 -3.85 -3.39 7.96 16.16 20.00 17.70 10.26 4.14 0.72 
7 -1.61 -2.42 1.28 5.29 8.31 10.26 8.52 3.98 0.80 
8 ~.58 -1.14 ~.26 1.12 2.49 4.14 3.98 2.12 0.44 
9 ~.10 ~.28 ~.14 0.06 0.37 0.72 0.80 0.44 0.10 

Table 111.4.1 gives the dispersion matrix. In general, the numbers of chains 
of similar length appear to be positively correlated, while the numbers of very 
short chains are negatively correlated with the numbers of very long chains. 

To test whether {Cn , n = 1,2, ... , 9} could be treated as independent, we 
applied a test for independence given by Kendall & Stuart (1968, p. 271). If the 
p X P dispersion matrix D (for p random variables) has diagonal elements dii 
and determinant det D and is based on a sample of N observations, then the 
test statistic 

p IN 

-2(1- [2p+ 1l]/[6nDln (detD/p diiy 
1=1 

has approximately the distribution of X2 with p(p - 1)/2 degrees of freedom. 
For the dispersion matrix in Table 111.4.1, p = 9, N = 100, and we obtain a 
test statistic of nearly 1050 with 36 degrees of freedom. The test statistic is so 
large that it decisively rejects the null hypothesis that {en, n = 1, 2, ... , 9} are 
independent. 

We therefore measure the goodness offit of the predicted frequencies E(Cn ) to 
the observed frequencies, for each web separately, by a Monte Carlo procedure. 
For brevity, let En = E( en) be the expected number of chains of length n 
according to the cascade model and Dn the observed number in a given web. 
(We reserve en for the random variable that denotes the number of n-chains 
in the cascade model.) If M (for maximum) is the length of the longest chain 
observed in the given web, we take as data the vector 

D = (Dt, ... ,DM,O) , 

where the final ° is the total observed frequency of chains of all lengths greater 
than M (namely, none). We take as our theoretical predictions the vector of 
expectations computed using the values of Sand c estimated by the iterative 
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procedure in the appendix of Chap. 111.3: 

( 8-1) 
E = E1,···,EM, L: Eh . 

h=M+1 

Table 111.4.2 gives D and E for all 113 webs analysed here; and shows that the 
sum of the expected number of chains of each length, i.e. the expected total 
number of chains, does not, in general, equal the sum of the observed number of 
chains of each length, i.e. the observed total number of chains. The values of the 
parameters c and S used to compute E match the expected with the observed 
numbers of links, but these links can be arranged to yield widely varying numbers 
of chains. 

Table m.4.2. Species, links, and numbers of chains of each length observed in 113 webs, 
and the cascade model's estimated parameters 8, c, and expected numbers of chains of each 
length. Web numbers are identified in Chap. IV. 

(Under' 8', the upper number for each web is the observed number of species, the lower number 
the estimated value of the parameter 8. Under' L', the upper number is the observed number 
of links, the lower number the estimated value of the parameter c. Under the number of chains 
of each length, the upper number is the observed number, while the lower number is the 
predicted number. The laat positive predicted number is the number predicted for all chains 
of that length and longer) 

web number of chains of length 
number S L 1 2 3 4 5 6 7 8 9 10 >10 

1 8 14 0 2 3 3 0 0 0 0 0 0 0 
1 8.1 4.0 1.9 4.0 3.8 2.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 
2 14 22 0 4 10 0 0 0 0 0 0 0 0 
2 14.5 3.3 3.7 6.1 5.3 4.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
3 24 34 1 19 10 0 0 0 0 0 0 0 0 
3 25.5 2.8 7.1 9.4 7.4 6.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
4 13 26 0 7 10 2 0 0 0 0 0 0 0 
4 13.1 4.3 2.9 7.1 8.7 6.7 5.5 0.0 0.0 0.0 0.0 0.0 0.0 
5 6 5 0 3 0 0 0 0 0 0 0 0 0 
5 8.1 1.4 2.4 1.1 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
6 25 43 1 12 8 18 18 3 0 0 0 0 0 
6 25.7 3.5 6.3 11.7 12.1 8.7 4.7 2.0 0.9 0.0 0.0 0.0 0.0 
7 18 30 1 5 16 2 0 0 0 0 0 0 0 
7 18.5 3.4 4.6 8.2 8.0 5.3 3.8 0.0 0.0 0.0 0.0 0.0 0.0 
8 15 25 5 6 12 2 0 0 0 0 0 0 0 
8 15.4 3.5 3.9 6.9 6.7 4.2 2.7 0.0 0.0 0.0 0.0 0.0 0.0 
9 9 13 0 1 6 0 0 0 0 0 0 0 0 
9 9.3 3.1 2.5 3.7 2.7 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

10 3 2 0 1 0 0 0 0 0 0 0 0 0 
10 3.0 2.0 1.1 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
11 5 4 0 2 0 0 0 0 0 0 0 0 0 
11 6.9 1.4 1.8 0.7 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
12 9 13 0 6 2 0 0 0 0 0 0 0 0 
12 9.3 3.1 2.5 3.7 2.7 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0 
13 9 14 0 4 4 0 0 0 0 0 0 0 0 
13 9.2 3.4 2.4 4.0 3.3 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
14 8 10 1 1 3 0 0 0 0 0 0 0 0 
14 8.5 2.7 2.4 2.7 1.5 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Table 10.4.2. (Continued) 

web nwnber of chains of length 
nwnber S L 1 2 3 4 5 6 7 8 9 10 >10 

15 7 7 0 2 1 0 0 0 0 0 0 0 0 
15 8.1 2.0 2.5 1.8 0.7 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
16 14 20 1 10 3 0 0 0 0 0 0 0 0 
16 14.7 2.9 3.9 5.4 4.1 3.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
17 14 23 0 2 9 9 3 0 0 0 0 0 0 
17 14.4 3.4 3.6 6.4 6.0 3.7 1.6 0.6 0.0 0.0 0.0 0.0 0.0 
18 23 35 13 10 5 4 0 0 0 0 0 0 0 
18 24.1 3.0 6.5 9.9 8.6 5.2 3.6 0.0 0.0 0.0 0.0 0.0 0.0 
19 17 32 0 4 17 4 0 0 0 0 0 0 0 
19 17.3 3.9 4.0 8.7 10.1 7.7 6.7 0.0 0.0 0.0 0.0 0.0 0.0 
20 19 30 0 5 9 7 2 0 0 0 0 0 0 
20 19.7 3.2 5.1 8.2 7.4 4.6 2.1 1.0 0.0 0.0 0.0 0.0 0.0 
21 9 20 0 2 8 15 16 10 3 0 0 0 0 
21 9.0 5.0 1.8 5.4 7.4 5.7 2.7 0.8 0.1 0.0 0.0 0.0 0.0 
22 28 58 4 13 34 36 19 6 2 0 0 0 0 
22 28.3 4.2 6.2 15.3 20.6 18.9 13.0 7.0 3.1 1.6 0.0 0.0 0.0 
23 15 27 1 11 7 1 0 0 0 0 0 0 0 
23 15.3 3.8 3.7 7.4 8.0 5.6 4.2 0.0 0.0 0.0 0.0 0.0 0.0 
24 12 18 3 5 12 4 0 0 0 0 0 0 0 
24 12.4 3.1 3.3 5.0 4.0 2.1 1.0 0.0 0.0 0.0 0.0 0.0 0.0 
25 24 37 3 16 5 1 0 0 0 0 0 0 0 
25 25.1 3.1 6.8 10.4 9.3 5.8 4.1 0.0 0.0 0.0 0.0 0.0 0.0 
26 32 56 7 16 16 10 5 2 0 0 0 0 0 
26 32.9 3.5 8.0 15.1 16.2 12.2 6.9 3.2 1.7 0.0 0.0 0.0 0.0 
27 22 39 0 12 28 7 0 0 0 0 0 0 0 
27 22.5 3.6 5.5 10.6 11.4 8.4 7.4 0.0 0.0 0.0 0.0 0.0 0.0 
28 32 35 6 15 5 0 0 0 0 0 0 0 0 
28 37.5 1.9 11.2 9.2 4.9 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
29 16 22 1 5 8 6 2 0 0 0 0 0 0 
29 17.0 2.7 4.9 6.3 4.6 2.3 0.8 0.3 0.0 0.0 0.0 0.0 0.0 
30 14 32 0 0 5 21 39 25 4 0 0 0 0 
30 14.1 4.9 2.8 8.4 12.4 11.6 7.5 3.5 1.2 0.4 0.0 0.0 0.0 
31 14 51 0 9 39 51 29 7 0 0 0 0 0 
31 14.0 7.8 1.8 10.4 28.4 47.2 53.5 43.4 41.8 0.0 0.0 0.0 0.0 
32 14 52 0 11 40 51 29 7 0 0 0 0 0 
32 14.0 8.0 1.7 10.5 29.2 49.9 57.8 48.0 47.8 0.0 0.0 0.0 0.0 
33 29 48 14 20 7 2 0 0 0 0 0 0 0 
33 30.0 3.3 7.8 13.4 13.3 9.3 7.9 0.0 0.0 0.0 0.0 0.0 0.0 
34 12 27 1 22 18 4 0 0 0 0 0 0 0 
34 12.0 4.9 2.4 7.1 10.2 9.0 8.3 0.0 0.0 0.0 0.0 0.0 0.0 
35 13 36 1 33 36 12 0 0 0 0 0 0 0 
35 13.0 6.0 2.2 8.7 16.5 19.2 28.5 0.0 0.0 0.0 0.0 0.0 0.0 
36 19 35 14 13 11 3 0 0 0 0 0 0 0 
36 19.3 3.8 4.6 9.5 10.7 8.1 7.2 0.0 0.0 0.0 0.0 0.0 0.0 
37 23 38 0 21 23 8 0 0 0 0 0 0 0 
37 23.8 3.3 6.0 10.3 10.1 6.8 5.3 0.0 0.0 0.0 0.0 0.0 0.0 
38 31 95 20 55 34 0 0 0 0 0 0 0 0 
38 31.0 6.3 4.9 21.2 47.6 314.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
39 33 70 19 34 7 0 0 0 0 0 0 0 0 
39 33.4 4.3 7.2 18.3 25.5 59.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
40 11 15 4 10 2 0 0 0 0 0 0 0 0 
40 11.6 2.8 3.2 4.1 2.8 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
41 18 49 0 0 5 18 55 86 59 14 0 0 0 
41 18.0 5.8 3.1 11.8 22.3 27.1 23.5 15.4 7.8 3.1 1.3 0.0 0.0 
42 15 36 2 3 17 37 56 43 15 2 0 0 0 
42 15.0 5.1 2.9 9.2 14.6 14.7 10.4 5.4 2.1 0.6 0.2 0.0 0.0 
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Table m.4.2. (Continued) 

web number of chains of length 
number S L 1 2 3 4 5 6 7 8 9 10 >10 

43 20 38 0 16 27 16 4 0 0 0 0 0 0 
43 20.3 3.9 4.7 10.3 12.1 9.6 5.6 3.7 0.0 0.0 0.0 0.0 0.0 
44 12 29 0 3 19 19 7 0 0 0 0 0 0 
44 12.0 5.3 2.3 7.5 11.8 11.3 7.3 4.6 0.0 0.0 0.0 0.0 0.0 
45 11 20 1 10 3 0 0 0 0 0 0 0 0 
45 11.1 3.9 2.6 5.6 5.9 6.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
46 19 68 3 12 59 85 84 45 13 2 0 0 0 
46 19.0 7.6 2.5 14.0 37.5 64.2 77.8 70.9 50.1 28.0 18.8 0.0 0.0 
47 27 50 0 1 10 22 25 0 0 0 0 0 0 
47 27.6 3.8 6.5 13.5 15.5 12.3 7.4 5.4 0.0 0.0 0.0 0.0 0.0 
48 13 20 0 2 7 8 2 0 0 0 0 0 0 
48 13.4 3.2 3.5 5.5 4.7 2.6 1.0 0.3 0.0 0.0 0.0 0.0 0.0 
49 12 20 0 8 7 1 0 0 0 0 0 0 0 
49 12.3 3.6 3.1 5.6 5.3 3.1 1.7 0.0 0.0 0.0 0.0 0.0 0.0 
50 14 23 0 10 8 0 0 0 0 0 0 0 0 
50 14.4 3.4 3.6 6.4 6.0 5.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
51 25 46 0 4 17 9 2 0 0 0 0 0 0 
51 25.5 3.8 6.0 12.4 14.2 11.1 6.5 4.5 0.0 0.0 0.0 0.0 0.0 
52 20 32 2 19 4 0 0 0 0 0 0 0 0 
52 20.7 3.2 5.3 8.7 8.1 8.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
53 22 31 1 19 0 0 0 0 0 0 0 0 0 
53 23.4 2.8 6.5 8.6 12.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
54 14 20 1 4 6 1 0 0 0 0 0 0 0 
54 14.7 2.9 3.9 5.4 4.1 2.1 1.0 0.0 0.0 0.0 0.0 0.0 0.0 
55 12 18 0 7 6 0 0 0 0 0 0 0 0 
55 12.4 3.1 3.3 5.0 4.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
56 10 14 0 7 2 0 0 0 0 0 0 0 0 
56 10.4 3.0 2.9 3.9 2.7 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
57 9 19 0 5 14 10 2 0 0 0 0 0 0 
57 9.0 4.7 1.9 5.2 6.6 4.8 2.1 0.7 0.0 0.0 0.0 0.0 0.0 
58 17 21 1 3 3 2 3 4 2 0 0 0 0 
58 18.7 2.4 5.4 5.7 3.5 1.5 0.5 0.1 0.0 0.0 0.0 0.0 0.0 
59 29 61 0 34 17 1 0 0 0 0 0 0 0 
59 29.3 4.3 6.3 16.0 22.0 20.6 28.2 0.0 0.0 0.0 0.0 0.0 0.0 
60 33 69 1 54 33 0 0 0 0 0 0 0 0 
60 33.4 4.3 7.3 18.1 24.7 56.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
61 8 10 2 3 2 0 0 0 0 0 0 0 0 
61 8.5 2.7 2.4 2.7 1.5 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
62 11 12 1 0 3 2 0 0 0 0 0 0 0 
62 12.6 2.1 3.7 3.1 1.5 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 
63 18 75 2 50 131 100 0 0 0 0 0 0 0 
63 18.0 8.8 2.0 13.9 45.1 91.9 516.8 0.0 0.0 0.0 0.0 0.0 0.0 
64 19 28 7 14 0 0 0 0 0 0 0 0 0 
64 20.0 3.0 5.3 7.6 11.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
65 13 25 3 17 0 0 0 0 0 0 0 0 0 
65 13.1 4.1 3.0 6.9 18.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
66 10 18 0 4 8 3 0 0 0 0 0 0 0 
66 10.1 4.0 2.4 5.1 5.2 3.2 1.7 0.0 0.0 0.0 0.0 0.0 0.0 
67 21 62 1 8 30 48 30 6 0 0 0 0 0 
67 21.0 6.2 3.4 14.2 30.1 41.3 40.9 30.9 32.2 0.0 0.0 0.0 0.0 
68 22 32 4 8 20 3 0 0 0 0 0 0 0 
68 23.2 2.9 6.4 9.0 7.3 4.1 2.6 0.0 0.0 0.0 0.0 0.0 0.0 
69 29 73 6 4 37 36 19 2 0 0 0 0 0 
69 29.1 5.2 5.5 18.0 31.3 36.6 31.9 21.8 20.8 0.0 0.0 0.0 0.0 
70 14 28 0 19 18 0 0 0 0 0 0 0 0 
70 14.1 4.3 3.1 7.6 9.4 13.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Table IIl.4.2. (Continued) 

web number of chains of length 
number S L 1 2 3 4 5 6 7 8 9 10 >10 

71 16 32 0 1 7 17 28 25 11 0 0 0 0 
71 16.2 4.2 3.6 8.6 10.8 8.8 5.1 2.2 0.7 0.2 0.0 0.0 0.0 
72 17 32 0 3 6 19 10 0 0 0 0 0 0 
72 17.3 3.9 4.0 8.7 10.1 7.7 4.2 2.5 0.0 0.0 0.0 0.0 0.0 
73 10 15 2 6 8 0 0 0 0 0 0 0 0 
73 10.3 3.2 2.7 4.2 3.3 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
74 21 36 2 14 8 2 0 0 0 0 0 0 0 
74 21.6 3.5 5.3 9.8 10.1 7.0 5.7 0.0 0.0 0.0 0.0 0.0 0.0 
75 9 14 1 3 6 2 0 0 0 0 0 0 0 
75 9.2 3.4 2.4 4.0 3.3 1.6 0.6 0.0 0.0 0.0 0.0 0.0 0.0 
76 14 17 1 4 5 2 0 0 0 0 0 0 0 
76 15.4 2.4 4.5 4.6 2.8 1.1 0.4 0.0 0.0 0.0 0.0 0.0 0.0 
77 13 24 1 3 9 13 6 0 0 0 0 0 0 
77 13.2 3.9 3.1 6.6 7.3 5.1 2.5 1.1 0.0 0.0 0.0 0.0 0.0 
78 16 27 0 5 8 6 1 0 0 0 0 0 0 
78 16.4 3.5 4.1 7.4 7.3 4.8 2.2 1.1 0.0 0.0 0.0 0.0 0.0 
79 21 29 0 4 8 7 3 0 0 0 0 0 0 
79 22.4 2.7 6.3 8.0 6.1 3.2 1.2 0.5 0.0 0.0 0.0 0.0 0.0 
80 27 70 3 16 18 33 8 0 0 0 0 0 0 
80 27.1 5.4 4.9 17.0 30.7 37.0 33.0 45.3 0.0 0.0 0.0 0.0 0.0 
81 12 19 0 6 7 2 0 0 0 0 0 0 0 
81 12.3 3.4 3.2 5.3 4.6 2.6 1.3 0.0 0.0 0.0 0.0 0.0 0.0 
82 10 14 0 0 3 3 1 0 0 0 0 0 0 
82 10.4 3.0 2.9 3.9 2.7 1.2 0.3 0.1 0.0 0.0 0.0 0.0 0.0 
83 25 67 2 31 25 2 0 0 0 0 0 0 0 
83 25.1 5.6 4.4 16.1 30.2 37.6 82.9 0.0 0.0 0.0 0.0 0.0 0.0 
84 12 23 0 4 10 11 6 0 0 0 0 0 0 
84 12.1 4.1 2.8 6.4 7.3 5.2 2.5 1.1 0.0 0.0 0.0 0.0 0.0 
85 27 49 2 6 27 35 13 0 0 0 0 0 0 
85 27.6 3.7 6.6 13.2 14.9 11.5 6.7 4.7 0.0 0.0 0.0 0.0 0.0 
86 16 37 0 0 13 43 16 2 0 0 0 0 0 
86 16.1 4.9 3.2 9.6 14.5 14.2 9.8 5.0 2.7 0.0 0.0 0.0 0.0 
87 11 17 1 5 11 5 0 0 0 0 0 0 0 
87 11.3 3.3 3.0 4.8 4.0 2.1 0.9 0.0 0.0 0.0 0.0 0.0 0.0 
88 16 42 3 59 0 0 0 0 0 0 0 0 0 
88 16.0 5.6 2.8 10.3 73.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
89 18 32 0 6 18 3 0 0 0 0 0 0 0 
89 18.4 3.7 4.4 8.8 9.4 6.7 5.4 0.0 0.0 0.0 0.0 0.0 0.0 
90 22 39 6 32 0 0 0 0 0 0 0 0 0 
90 22.5 3.6 5.5 10.6 27.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
91 10 13 0 2 4 2 0 0 0 0 0 0 0 
91 10.6 2.7 3.0 3.5 2.2 0.9 0.3 0.0 0.0 0.0 0.0 0.0 0.0 
92 18 18 3 5 3 0 0 0 0 0 0 0 0 
92 22.0 1.7 6.7 4.6 2.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
93 26 70 1 51 8 0 0 0 0 0 0 0 0 
93 26.1 5.6 4.6 16.8 31.7 130.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
94 12 19 1 4 8 6 4 0 0 0 0 0 0 
94 12.3 3.4 3.2 5.3 4.6 2.6 1.0 0.3 0.0 0.0 0.0 0.0 0.0 
95 10 12 1 3 3 1 0 0 0 0 0 0 0 
95 10.9 2.4 3.0 3.1 1.7 0.6 0.2 0.0 0.0 0.0 0.0 0.0 0.0 
96 9 16 1 11 0 0 0 0 0 0 0 0 0 
96 9.1 4.0 2.2 4.6 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
97 11 17 1 14 1 0 0 0 0 0 0 0 0 
97 11.3 3.3 3.0 4.8 4.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
98 17 39 1 11 21 35 10 0 0 0 0 0 0 
98 17.1 4.9 3.4 10.1 15.2 14.9 10.4 8.5 0.0 0.0 0.0 0.0 0.0 
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Table m.4.2. (Continued) 

web number of chains of length 
number S L 1 2 3 4 5 6 7 8 9 10 >10 

99 48 138 14 115 98 21 0 0 0 0 0 0 0 
99 48.1 5.9 8.1 31.8 66.1 93.7 315.8 0.0 0.0 0.0 0.0 0.0 0.0 

100 22 59 3 27 28 28 16 3 0 0 0 0 0 
100 22.0 5.6 3.9 14.2 26.6 32.7 29.2 20.0 18.2 0.0 0.0 0.0 0.0 
101 6 5 1 2 0 0 0 0 0 0 0 0 0 
101 8.1 1.4 2.4 1.1 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
102 9 27 0 7 19 24 16 6 1 0 0 0 0 
102 9.0 6.7 1.3 6.3 13.0 14.9 10.3 4.3 1.0 0.1 0.0 0.0 0.0 
103 23 133 1 46 260 602 769 856 621 285 88 12 0 
103 23.0 12.1 1.9 19.2 92.7 284.8 624.1 1036.8 1355.1 1427.1 1230.6 877.9 937.4 
104 27 62 2 21 17 22 7 0 0 0 0 0 0 
104 27.2 4.7 5.5 15.8 24.4 25.4 19.6 21.2 0.0 0.0 0.0 0.0 0.0 
105 10 22 0 3 6 11 4 0 0 0 0 0 0 
105 10.0 4.9 2.0 5.9 8.1 6.5 3.3 1.4 0.0 0.0 0.0 0.0 0.0 
106 35 73 7 44 22 6 2 0 0 0 0 0 0 
106 35.4 4.2 7.7 19.1 26.1 24.7 17.6 17.4 0.0 0.0 0.0 0.0 0.0 
107 10 14 1 2 5 0 0 0 0 0 0 0 0 
107 10.4 3.0 2.9 3.9 2.7 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
108 14 20 0 11 4 0 0 0 0 0 0 0 0 
108 14.7 2.9 3.9 5.4 4.1 3.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
109 21 57 0 18 40 10 0 0 0 0 0 0 0 
109 21.0 5.7 3.6 13.7 25.9 32.1 66.4 0.0 0.0 0.0 0.0 0.0 0.0 
110 13 23 3 7 5 0 0 0 0 0 0 0 0 
110 13.2 3.8 3.2 6.4 6.6 7.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
111 19 36 2 15 17 0 0 0 0 0 0 0 0 
111 19.3 3.9 4.5 9.8 11.4 17.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
112 14 17 3 8 1 0 0 0 0 0 0 0 0 
112 15.4 2.4 4.5 4.6 2.8 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
113 11 12 1 6 2 0 0 0 0 0 0 0 0 
113 12.6 2.1 3.7 3.1 1.5 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

We compute the difference between data and predictions by one of two mea-
sures: the sum of squared differences, 

M+1 
d1(D, E) = L (Dh - Eh)2 , 

h=l 

or a Pearson X2 measure, 

M+1 

d2(D, E) = L (Dh- Eh)2/Eh · 
h=l 

Large values of these measures of difference confound two distinct kinds of dis-
crepancies between D and E: differences in the expected and observed total 
numbers of chains, and differences in the expected and observed proportions of 
all chains that are of given lengths. However, both measures are useful in that 
low values of either measure signify good agreement between observation and 
expectation in both total numbers of chains and proportions of each length. 
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low values of either measure signify good agreement between observation and 
expectation in both total numbers of chains and proportions of each length. 

To measure how likely the difference dm , m = 1,2, is to arise by chance alone 
according to the cascade model, we generate random strictly upper triangular 
adjacency matrices according to the cascade model. For S, the size ofthe matrix, 
we use the integer part of the value of S obtained by the iterative procedure in 
the appendix of Chap. 111.3. In most but not all cases, the size of the matrix is 
identical to the observed number of species in the web. For c, we use exactly the 
value of c obtained by the iterative procedure in the appendix of Chap. 111.3. 
Rounded values of Sand c for each web are given in Table 111.4.2. For each 
randomly generated adjacency matrix, we compute the frequency distribution of 
chain lengths (see the appendix of this chapter). We then combine the frequencies 
of all chains longer than M and compute the difference between the resulting 

(M + I)-vector of simulated frequencies and E. Call this difference d!:! for the 
ith simulated web. 

We take our null hypothesis to be that the difference, dm , between the ob­
served and expected frequency distributions is greater than 95% of randomly 

chosen values of d!:!, i.e. that the cascade model provides a description of ob­
served chain lengths that is poor enough to reject at the 5% level of significance. 
If our simulations show that a sufficiently small proportion of the simulated dif-

ferences satisfy d!:! < dm , then we can reject the null hypothesis and conclude 
that the cascade model could not be rejected at the 5% level, and hence describes 
the data on chain lengths. 

For each observed web, we test the goodness of fit between E and D as 
follows. We generate 20 random webs according to the cascade model and find 

the number, X 20, of those simulated webs for which d!:! < dm . We then consult a 
table (previously calculated and stored) of the binomial cumulative distribution 
function with parameters N = 20 and pi = 0.95 to find the probability, P, 
of X20 or fewer successes. If this probability P is less than or equal to 0.01, 
we reject the null hypothesis that the difference dm between the observed and 
expected frequency distributions is greater than or equal to 95% of randomly 

chosen values of d~ and accept E as describing D. In this case, we then go on 
to the next observed web. However, if P > 0.01, we generate another 20 random 
webs according to the cascade model and find the cumulative number, X40, of 
the 40 simulated webs for which d~) < dm . We then consult the table of the 
cumulative binomial distribution with parameters N = 40 and p' = 0.95 to find 
the probability P of X 40 or fewer successes. Once again, if P :s 0.01, we stop 
and accept the cascade model. If P > 0.01, we continue to generate additional 
batches of 20 random webs, up to a total of 100 random webs, until either we 
find a P < 0.01 and accept the cascade model or we are left with XlOo/lOO as 

the estimated fraction of random webs that satisfy d~ < dm . 

For every web, we record the number, N of simulated webs generated, the 
number, X N, of 'successes' among the simulated webs, and either the probability 
P (provided P :s 0.01) of XN or fewer successes from a binomial distribution 
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new random webs for each observed web, with d2, to see whether the choice of 
difference measure affects our conclusions. 

This procedure tests the goodness of fit of E to D for an observed individual 
web without making any assumption that D for one observed web is independent 
of D for another observed web. 

5. The Original Batch of 62 Webs 

By using the sum-of-squares measure, d1 , of difference between observed and 
predicted frequency distributions, we find that 40 of 62 observed webs (65%) 
reject at the 0.01 significance level the null hypothesis that the cascade model's 
expectations fit the data worse than 95% of random webs generated by the 
cascade model. For brevity, we say that the cascade model describes the ob­
served frequency distributions of chain lengths well in 40 of 62 webs. In 11 of 
62 webs (18%), more than 95% of the generated random webs had chain length 
distributions that were closer to expectation than is the observed chain length 
distribution. For brevity, we say that the cascade model describes badly the ob­
served frequency distribution of chain lengths in 11 of 62 webs (serial numbers 
10,21,30,37,41,42,47,53,58,59,60). For the remaining 11 (= 62 - 40 - 11) 
webs, we say that the cascade model describes chain lengths moderately well 
(serial numbers 3, 5, 6, 9, 34, 35, 38, 39, 43, 52, 62). Figure 111.4.2 plots the 
frequency histogram of XN/N for the 62 webs, where (as above) N is the num­
ber of random webs generated for a given web and X N is the number of these 
random webs with a chain length distribution closer to the theoretical expec­
tations than is the observed chain length distribution. Evidently a majority of 
webs have XN/N greater than or equal to 0.6. 

According to the X2 measure, d2, of difference between observed and pre­
dicted frequency distributions, 43 of 62 observed webs (69%) have frequency 
distributions that are described well by the cascade model, and 7 have frequency 
distributions that are described moderately well (serial numbers 3, 6, 9, 27, 47, 
52,59). The cascade model describes badly the observed frequency distribution 
of chain lengths in 12 of 62 webs (serial numbers 10, 21, 30, 35, 37, 38, 39, 41, 
42, 53, 58, 60). In this batch of webs, the measure of difference chosen makes 
very little difference to the overall performance of the cascade model. 

The frequency distributions of chain lengths that are described badly by the 
cascade model are of at least three kinds. First, in some webs, the number of 
chains is so small that it is not clear whether to take seriously any measure of 
fit (e.g. web 10 has only one chain of length 2). Second, in some webs, most of 
the observed chains are shorter than most of the predicted chains (e.g. webs 53, 
60). Third, in some webs, most of the observed chains are longer than most of 
the predicted chains (e.g. webs 21, 30, 41, 42, 58). 

We conclude that, when webs are considered one at a time, the cascade model 
predicts the observed frequency distributions of chain length well or moderately 
well in 50 or 51 of the 62 webs in our original batch, although no information 
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Figure IU.4.2. Frequency histogram of X N / N for 62 webs previously studied: the number of 
webs with XN IN in the interval [O.li, O.I(i + I», for i = 0,1,2, ... ,10. Here N is the number 
of random webs generated for each real web and X N is the number of those random webs with 
chain length distributions closer (using d1 ) to that expected from the cascade model than is 
that of the real web 

about chain length was used in developing the cascade model or in estimating 
its parameters. 

6. A Fresh Batch of 51 Webs 

The finding that 11 or 12 of the 62 webs in the first batch have frequency 
distributions of chain length that the cascade model describes badly shows that 
there is no logical necessity for the cascade model to describe well, or moderately 
well, the chain lengths of an individual web. However, such bad fits do not 
exclude the possibility that the cascade model describes chain lengths, at least 
in part, because the cascade model also describes, for most webs, the other 
major features of web structure considered in Chaps. 111.2-3. One of us therefore 
assembled and edited a fresh batch of 51 community webs (described in detail in 
Chap. IV) and extracted, for each web, the observed number, 8', of species, the 
observed number, L', of links, and the observed frequencies Dn, n = 1, ... , M, 
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of chain length. These webs provide a strong test of the ability of the cascade 
model to describe new observations. 

6.1 Checking the Assumptions of the Cascade Model 

One central structural assumption of the cascade model is that species are ar­
ranged in a hierarchy so that (ignoring cannibalism, as in Chap. 111.2) cycles 
should be absent. The 51 new webs contain only one cycle of length 2 (in the web 
numbered 100 in the serial numbering of Briand) and no longer cycles. Cycles 
are rare enough that the assumption of a hierarchy is a reasonable assumption. 

A second structural assumption of the cascade model is that the probability 
of a link from one species to another above it in the hierarchy varies inversely 
as the number of species in the web. This assumption implies that the total 
number of links in a web should be directly proportional to the total number 
of species: this is the species-link scaling law. Figure 111.4.3 plots the number, 
L', of observed links as a function of the number, 8', of observed species for 
the 51 webs in the new batch. Apart from two clear outliers with 75 and 133 
links (webs numbered 63 and 103), the points appear to fall along a straight line 
through the origin. Web 63 is an extended version of the River Rheidol subweb 
depicted by Jones (1950). High connectance aside, nothing special appears to 
distinguish this web from the others. Web 103, one of three webs in the collection 
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of 113 provided by Petipa (1979), describes a tropical plankton community in 
the Pacific Ocean. This web contains the longest chain, with ten links, in the 
entire collection of 113 webs. 

The cascade model implies that the variance of the number, L, of links 
is asymptotically (for S considerably greater than c) proportional to S, and 
Fig. 111.4.3 makes it plausible that the variance of the number, L', of observed 
links is proportional to the number, S', of observed species. When this is true 
(see, for example, Snedecor & Cochran 1967, p.168), the least squares estimate 
of the slope of the line through the origin is the ratio of the total number of links 
to the total number of species. The standard error of the slope may be estimated 
by a formula, also given by Snedecor & Cochran. 

In the 51 webs of this batch, there are 1878 links and 874 species, giving 
an estimated slope of 2.1487 with an estimated standard error of 0.1220. If 
webs 63 and 103 are omitted, there remain 1670 links and 833 species, giving 
an estimated slope of 2.0048 with an estimated standard error of 0.0801. For 
comparison, Cohen & Briand (Chap. 11.3) report, in the first batch of 62 webs, 
that L' is approximately proportional to S' with slope 1.8559 and estimated 
standard error 0.0740. Figure 111.4.4 plots links, L', versus species, S', for all 113 
(= 62+51) webs. The lack of marked difference between the slopes 1.86±0.07for 
the old batch of 62 webs and 2.00 ± 0.08 for the new batch of 49 webs (51 minus 
the two outliers), and the lack of clear separation between the old and the new 
sets of data points in Fig. 111.4.4, suggest that underlying both batches of webs 
is a common direct proportionality between numbers of species and numbers of 
links, with a constant of proportionality near 2. Combining all 113 webs gives 
1908 species, 3797 links and an estimated slope of 1.9900±0.0697. Without webs 
63 and 103, the slope is 1.9223 ± 0.0546. 

Cohen & Briand (Chap. 11.3) remark that the 62 webs available to them 
do not exclude a slightly nonlinear relation, as noted by Briand (Chap. 11.5), 
between species and links, i.e. a relation of the form E( L) = aSb with b slightly 
different from 1. They find that a graph of L'3/4 against S' looks very nearly 
linear through the origin. The same caveat and observation hold here. The use 
of the ordinary linear least squares method to regress log L' on log S' for all 113 
webs gives the allometric model L = 0.6713S1.3559+e, where c is the error term, 
or (taking 1/1.3559 ::::i i) L3/ 4 proportional to S. The parameters obtained by 
this procedure are not the least squares estimates for the nonlinear allometric 
model in the original scales of Land S. Scatter plots (not shown) of the residuals 
(observed links L' minus predicted) as a function of S' show very little difference 
between the fitted allometric model and the linear model L = 1.9900S + c. 
The sum (rounded to three significant figures) of the absolute residuals of the 
allometric model, namely 897, is smaller than the corresponding sum for the 
linear model, namely 999. The sum of the squared residuals of the allometric 
model (20000) is also smaller than the sum of the squared residuals of the linear 
model (21400). The data thus suggest that a relation between E(L) and S that 
is mildly nonlinear for the observed range of species may be more precise than a 
simple proportionality. The exact relation between E(L) and S deserves further 
empirical and theoretical investigation. 
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all 113 webs 

However, taking E(L) as proportional to S does not do serious violence to 
the data. Moreover, in this paper, we estimate c independently for each web 
rather than assuming c to be constant for all webs. Hence this empirical test of 
the cascade model is less sensitive to how many links there are than to how the 
links that do occur are connected into chains. 

6.2 Testing the Predictions of Chain Length 

On the basis of the rarity of cycles and the near-proportionality shown in 
Fig. 11104.3, we conclude that the underlying assumptions of the cascade model 
are approximately satisfied by (nearly all of) the new batch of webs. As with 
the old batch, for each web in the new batch, we estimate the parameters S 
and c (given in Table 111.4.2 after rounding), compute the expected frequency 
of chains of each length, and measure the goodness of fit between observed and 
predicteq frequencies by the procedure described in section 4. 

Fro~ the sum-of-squares measure, d1, of difference between observed and 
predicted frequency distributions, we find that the cascade model describes well 
36 of 51 observed webs (71%) and moderately well 10 webs (serial numbers 63,68, 
70,72,77,85,86,93,96,103). In 5 of 51 webs (18%), the cascade model describes 
the observed frequency distribution of chain lengths badly (serial numbers 65, 71, 
88,90,97). The outlying webs 63 and 103 are not among these badly described 
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Figure UI.4.5. Frequency histogram of X N / N for 51 webs not previously studied: the number 
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of random webs generated for each real web and X N is the number of those random webs with 
chain length distributions closer (using d}) to that expected from the cascade model than that 
of the real web 

five webs. Figure III.4.5 plots the frequency histogram of XN/N for the 51 webs, 
where (as above) N is the number of random webs generated for a given web 
and XN is the number of these random webs with a chain length distribution 
closer to theoretical expectations than is the observed chain length distribution. 
As in Fig.III.4.2, a majority of the webs have X N / N greater than or equal to 
0.6. 

According to the X2 measure, d2 , of difference between observed and pre­
dicted frequency distributions, 34 of 51 observed webs (67%) have frequency 
distributions of chain length that the cascade model describes well. Twelve webs 
have frequency distributions that the cascade model describes moderately well 
(serial numbers 63, 65, 68, 70, 72, 77, 86, 87, 96, 97, 99, 106). The cascade model 
describes the observed frequency distribution of chain lengths badly in 5 of 51 
webs (serial numbers 71, 85, 88, 90, 93). In this batch of webs, as in the first, 
which measure of difference we choose makes very little difference to the overall 
performance of the cascade model. 

As in the original batch of 62 webs, in this new batch sometimes more short 
chains are observed than expected (e.g. webs 65, 88, 90) and sometimes more 
long chains are observed than expected (e.g. webs 71, 85). 

Table III.4.3 lists, for all 113 webs, the number of random webs generated 
and the number of those random webs with chain length distributions closer 
to the expected than that of the real web. For the sum-of-squares measure of 
difference, d1, all 74 real webs for which fewer than 100 random webs were 
generated fitted the cascade model's predictions well. In addition, webs 48 and 
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87, for each of which 100 random webs were generated, also fitted the cascade 
model's predictions well. 

We conclude that, considering webs one at a time, the cascade model predicts 
the observed frequency distributions of chain length well, or moderately well, in 
46 of the 51 webs in a new batch of webs not previously used to calibrate the 
model. This success rate is slightly higher than that of the cascade model with 
the original batch of 62 webs. 

Table lll.4.3. Characteristics of 113 webs (Web numbers are identified in Chap. IV, and 
are the same in all previous joint publications of Briand &; Cohen. d1 measures the difference 
between observed and predicted frequency distributions of chain length by the sum of squared 
differences; d2 , by a Pearson X2 function; see text. N is the number of random webs gener-
ated. X is the number of random webs with frequency distributions of chain length closer to 
that predicted theoretically than is the observed distribution. Variability: 0, unclassified; 1, 
fluctuating; 2, constant. Dimension: 0, unclassified; 2, two-dimensional; 3, three-dimensional. 
Productivity: 0, unclassified; 1, low productivity; 2, high productivity. Man: 0, absent from 
web; 1, present in web.) 

web dl d2 variability dimension productivity man 

number N X N X 

1 20 6 20 10 0 0 0 1 
2 40 33 40 33 1 0 0 0 
3 100 94 100 92 1 2 0 0 
4 20 5 20 11 1 0 0 0 
5 100 92 60 51 0 0 2 0 
6 100 94 100 93 1 0 0 1 
7 60 50 20 14 0 0 0 1 
8 20 6 20 13 1 0 2 1 
9 100 92 100 93 0 0 0 0 

10 100 100 100 100 1 2 0 0 
11 40 33 60 49 1 2 0 0 
12 20 12 20 12 1 2 0 0 
13 20 8 20 12 1 2 0 0 
14 20 13 20 11 0 0 0 0 
15 20 14 20 10 1 0 0 0 
16 40 30 20 14 1 0 2 0 
17 20 14 20 14 0 3 0 0 
18 20 7 40 30 0 0 0 1 
19 40 31 40 32 1 3 1 0 
20 20 13 20 15 0 3 1 0 
21 100 99 100 100 0 3 0 0 
22 20 11 20 14 1 0 0 0 
23 20 14 40 32 1 2 0 0 
24 20 14 40 31 1 3 0 0 
25 40 29 20 15 1 3 0 0 
26 20 0 20 0 1 0 0 0 
27 60 51 100 94 1 3 2 0 
28 40 30 40 33 1 0 0 0 
29 40 31 60 51 0 3 1 0 
30 100 96 100 99 0 3 1 1 
31 20 12 40 28 0 3 0 0 
32 20 13 20 13 2 3 0 0 
33 60 52 40 32 2 0 0 0 
34 100 92 40 33 2 2 0 0 
35 100 92 100 97 0 2 0 0 
36 20 13 80 69 0 0 0 0 
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Table 111.4.3. (Continued) 

web dl d2 variability dimension productivity man 

number N X N X 

37 100 98 100 96 2 0 0 0 
38 100 94 100 96 2 0 0 0 
39 100 94 100 96 2 0 0 0 
40 60 51 40 33 2 3 0 0 
41 100 100 100 100 2 3 1 0 
42 100 100 100 100 2 3 2 0 
43 100 94 80 67 2 3 0 0 
44 40 27 20 13 2 0 2 0 
45 60 49 20 15 2 2 0 0 
46 20 6 20 9 0 3 1 0 
47 100 96 100 92 2 0 0 0 
48 100 88 60 52 1 0 0 1 
49 20 8 20 13 1 0 0 1 
50 20 13 20 15 1 2 0 0 
51 20 14 20 13 0 0 0 0 
52 100 92 100 91 1 2 0 0 
53 100 99 100 96 1 2 0 0 
54 20 8 20 6 0 0 0 0 
55 20 13 40 30 1 2 2 0 
56 60 50 40 31 1 2 0 0 
57 60 52 20 15 0 0 2 0 
58 100 96 100 100 1 0 a a 
59 100 98 100 95 1 3 a a 
60 100 97 100 99 1 3 a a 
61 20 0 20 1 1 2 1 a 
62 100 93 100 84 1 2 1 0 
63 100 91 100 93 0 2 a 0 
64 60 52 60 52 0 2 0 0 
65 100 97 100 93 0 2 0 a 
66 20 7 20 6 0 2 a a 
67 40 25 20 11 0 0 0 0 
68 100 91 100 91 1 3 0 1 
69 20 14 20 8 1 0 0 0 
70 100 92 100 92 1 0 0 0 
71 100 99 100 99 1 3 0 1 
72 100 90 100 95 1 3 0 0 
73 20 13 20 15 1 3 0 0 
74 20 9 20 9 1 2 0 0 
75 20 7 20 6 1 3 0 0 
76 20 11 20 10 1 0 1 0 
77 100 90 100 89 2 0 0 1 
78 20 3 20 8 2 0 2 1 
79 40 33 60 48 1 0 0 0 
80 20 15 20 12 1 0 0 0 
81 20 11 20 9 0 0 1 0 
82 20 15 60 51 1 0 0 0 
83 60 50 60 51 1 0 1 0 
84 20 14 60 50 1 0 0 a 
85 100 95 100 97 1 0 2 0 
86 100 93 100 94 1 3 a 1 
87 100 87 100 93 0 a 1 a 
88 100 96 100 98 0 2 0 0 
89 60 51 40 30 0 3 0 0 
90 100 97 100 97 1 2 0 0 
91 20 13 40 28 1 3 0 0 
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Table 111.4.3. (Continued) 

web d1 d2 variability dimension productivity man 

number N X N X 

92 20 12 20 7 0 2 1 0 
93 100 93 100 96 1 2 1 0 
94 20 15 60 51 1 2 1 0 
95 20 7 20 7 1 2 1 0 
96 100 94 100 93 1 2 1 0 
97 100 96 100 93 1 2 1 0 
98 60 51 20 14 0 2 1 0 
99 60 52 100 93 0 2 1 0 

100 20 8 20 12 0 2 1 0 
101 20 7 20 9 1 0 0 0 
102 20 12 20 12 2 3 1 0 
103 20 12 40 33 2 3 1 0 
104 20 15 20 12 0 2 0 0 
105 20 12 20 7 1 2 0 0 
106 100 89 100 93 1 2 0 0 
107 20 15 20 10 1 2 0 0 
108 60 49 60 52 1 2 0 0 
109 20 15 40 32 1 2 0 0 
110 20 11 20 11 1 2 0 0 
111 20 14 40 32 1 2 0 0 
112 20 13 20 12 1 0 0 0 
113 40 32 20 11 1 0 0 0 

7. Does the Cascade Model Predict the Moments of Chain Length? 

After examining Table II1.4.2 in a previous draft of this chapter, S. L. Pimm 
(personal communication, 3 September 1985) suggested that the cascade model 
does not predict adequately the variance and kurtosis of the distribution of chain 
lengths. He allowed that the cascade model may predict roughly the mean chain 
length, according to Table 111.4.2. 

Direct comparisons of the mean and variance of the observed chain lengths 
with the corresponding quantities calculated from the expected numbers of 
chains of each length shown in Table 111.4.2 confirm Pimm's observations re­
garding the first two moments. However, we claim that to evaluate the cascade 
model's ability to predict the moments of chain length the expected numbers in 
Table 111.4.2 may not be the right numbers to compare with the observed. We 
will explain what calculations are required, although they remain to be done. 

In computing numerically the mean and variance from the observed and ex­
pected numbers of chains of each length, separately for each web in Table 111.4.2, 
we truncate (i.e. ignore) all predicted frequencies for chains of length 9 or greater. 
This truncation lowers the predicted mean and variance of chain length. The ef­
fect is small for all webs other than the exceptional web 103 because, for the 
remaining 112 webs, the expected number of chains of each length greater than 
or equal to 9 is less than 0.05. (We do not cumulate all predicted frequencies 
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Figure 111.4.6. 'Predicted mean' chain length, Le. mean calculated from the expected numbers 
of chains of each length according to the cascade model, as a function of the observed mean 
chain length in 113 webs. The points fall about a line of slope one through the origin. See text 
for an explanation of why the 'predicted mean' is not the mean chain length predicted by the 
cascade model 

of chains longer than the largest observed, as we did in testing goodness of fit 
between observed and predicted frequencies.) 

Temporarily, we shall call the mean calCulated from the theoretically expected 
numbers of chains of each length the 'predicted mean', and the variance calcu­
lated from the theoretically expected numbers of chains of each length the 'pre­
dicted variance'. The terminology is misleading, for reasons we shall explain. 

The scatter plot (Fig. III.4.6) of 'predicted means' against the observed means 
clusters around a line of slope one through the origin. The observed mean chain 
lengths exceed the 'predicted means' in 50 of 113 webs. The 'predicted means' 
of the cascade model do reasonably well in predicting the observed mean chain 
length, as Pimm conceded. 

In contrast to the acceptable performance of the 'predicted mean', the ob­
served variance of chain length exceeds the 'predicted variance' in only two of 
113 webs. Most points in the scatter plot (Fig. III.4.7) of 'predicted variance' 
against observed variance lie well above a line of slope one through the origin. 
This finding confirms Pimm's suggestion that chain lengths observed for a single 
web generally have a smaller variance than the 'predicted variance'. 
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Figure m.4. 7. 'Predicted variance' of chain length, i.e. variance calculated from the expected 
numbers of chains of each length, as a function of the observed variance of chain length in 113 
webs. All but two of the points fall above a line of slope one through the origin. See text for 
an explanation of why the 'predicted variance' is not the variance of chain lengths predicted 
by the cascade model 

However, this finding does not imply that the cascade model predicts the 
variance of chain lengths badly. Also, unfortunately, the acceptable performance 
of the 'predicted mean' does not imply that the cascade model predicts the 
mean of chain lengths well. It is not possible to infer the mean or variance of 
chain length in one realization of the cascade model with a finite number of 
species from the expected numbers of chains of each length, averaged over all 
realizations, which are given in Table 111.4.2. 

The 'predicted mean' and 'predicted variance' are (except for the truncation 
of chains of length 9 or greater) the mean and variance of a distribution in which 
the relative frequency of chains of length n is 

E(Cn)/E(C) , 

where, as before, Cn is the number of chains oflength nand C is the total number 
of chains. As explained in Chap. 111.5.3, for finite S this distribution does not 
describe the chain length distribution of a single web randomly generated by the 
cascade model, but rather describes the distribution of the pooled chains from 
many webs generated by the cascade model with a fixed c and S. 
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The proper theoretical mean to compare with the observed mean chain length 
is (again ignoring truncation and conditional on C > 0) 

The proper theoretical variance to compare with the observed variance is (ig­
noring truncation and assuming C > 0) 

In addition to the difference between E(Cn/C) and E(Cn)/E(C), there are 
correlations between Cm and Cn , m ::f:. ", illustrated by Table 111.4.1, which 
influence the theoretical varance of chain length but not the 'predicted vari­
ance'. This additional discrepancy may explain why the 'predicted variance' 
(Fig.III.4.7) does worse in describing the variance of observed chain lengths 
than the 'predicted mean' (Fig. 111.4.6) does in describing the mean of observed 
chain lengths. 

It follows from the results of Chap. 111.5.4 that the corresponding theoretical 
and 'predicted' moments have the same limit for large S. However, for any finite 
S, the corresponding theoretical and the 'predicted' moments need not agree. 
We are not able analytically to compute the theoretical mean or variance, or 
higher moments, of chain length according to the cascade model for finite S. It 
may be impossible to do so. Simulation, observed web by observed web, would 
make it possible to compare the observed mean and variance of chain lengths 
with the mean and variance in each of, say, 100 simulations. We have yet to 
carry out this computation. 

Because of the success of the cascadE: model according to the measures of 
goodness of fit that we have used so far, we expect that the observed moments 
should not fall far in the tail of the distributions of the simulated moments. 
The theoretical moments could not be systematically and grossly different from 
the observed if the simulated distributions of chain lengths are usually near 
the observed distributions of chain lengths. However, we have not conclusively 
demonstrated that the moments of chain lengths according to the cascade model 
correspond well to the moments of observed chain lengths in real webs. 

8. 'l'1'ying to Explain the Cascade Model's Failures 

In this section, we seek characteristics of webs that explain why the cascade 
model's predictions sometimes fit badly the observed frequency distributions of 
chain length. We find that bad fits occur far more often than expected among 
webs in which the mean length of chains is either unusually large (more than four 
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links) or unusually small (less than two links). Twenty-one other characteristics 
do not appear to be associated with bad fits. 

First, we explain why we do not use the conventional statistical tools of hy­
pothesis testing; we then present our descriptive analyses. 

Throughout, we have been sceptical of the assumption that our observed webs 
are a random sample from some statistical ensemble of webs. One reason for scep­
ticism is that webs reported by the same author sometimes share idiosyncrasies 
that differentiate them from webs reported by others. Sixty-one of our 113 webs 
were described by distinct observers or teams (two sets of observers are consid­
ered distinct here if they have no member in common). The remaining 52 webs 
were reported by 20 distinct observers or teams, each contributing between two 
and five webs; there is therefore likely to be dependence among the webs. 

A second reason for scepticism is that field ecologists with special training in 
some taxon (birds or insects or fishes) or in some habitat (lacustrine or marine 
intertidal or tropical montane) pick communities in which their special training 
can be used, rather than at random. Until it is shown that the properties of webs 
are invariant with respect to major taxa, habitats and other characteristics that 
may bias ecologists' choices of webs to study, it seems implausible a priori to 
regard any given batch of webs as a random sample of webs from the world. 

If the webs were a random sample from a cascade model ensemble, then 
the frequency histograms in Figs. 111.4.2 and 5 should approximate histograms 
sampled from the uniform distribution, which is a horizontal straight line. Un­
der the assumption of random sampling of webs, it would be valid to use the 
Kolmogorov-Smirnov test (Kendall & Stuart 1973, p. 469) to assign a probability 
value to the deviation between the sample and uniform cumulative distribution 
functions. Denoting the test statistic by D (do not be confused with our notation 
above for the observed total number of chains), with a subscript that gives the 
sample size, we compute for the first batch of webs D62 = 0.4403, for the second 
batch D51 = 0.4127 and for all webs combined DU3 = 0.4142. These values 
are all far beyond the 0.01 critical values for the corresponding sample sizes. 
Because we regard the assumption of random sampling with scepticism, we also 
regard with scepticism the 'significance' of this rejection of the fit of predicted 
to observed chain length distributions in the collection of webs as a whole. 

Nevertheless, 16 or 17 of 113 webs (11 or 12 in the first batch, 5 in the second) 
individually have chain lengths that the cascade model describes badly. We now 
seek a simple explanation for these bad fits in terms of the characteristics of 
webs. 

S. L. Pimm (personal communication, 3 September 1985) suggested that the 
cascade model describes worse the chain length distributions of webs with large 
numbers of species. To examine this suggestion, we identified the 45 webs with 
more than 17 species as 'above average' in size. (The average number of species 
per web in 113 webs is 16.9.) We also identified the 19 webs with more than 24 
species as 'large' in size. 

As Fig. 111.4.6 shows, most webs have mean chain lengths of two to four 
links. We defined the 12 webs with mean chain length less than two links (webs 
numbered 28, 33, 39, 40, 53, 64, 65, 88, 90, 96, 101, and 112) and the 10 webs 
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with mean chain length greater than four links (webs numbered 21, 30, 41, 42, 
46,47,58, 71, 86, and 103) to be webs with 'extreme mean chain length'. 

As Fig. III.4.7 shows, most webs have a variance of chain length that is less 
than 1. We defined the 22 webs with variance greater than or equal to 1 to be 
webs with 'high variance of chain length'. We also defined the 17 webs with 
variance less than 0.25 to be webs with 'low variance of chain length'. 

For all 113 webs, we determined four characteristics in addition to trophic 
structure: dimension, variability and productivity of the environment, and the 
presence of man in the web (Table III.4.3). 

A web is classified as having dimension 2 if it occurs in an environment that 
is essentially flat, such as grassland, a sea or lake bottom, a stream bed or the 
rocky intertidal zone. A web is classified as having dimension 3 if it occurs in 
a solid environment, such as the pelagic water column or forest canopy. Webs 
that could not clearly be assigned dimension 2 or 3 are shown in Table I11.4.3 
as having dimension O. 

As in Chap. I11.3, the variability of a web's environment is classified as 'fluc­
tuating' or 'constant'. The environment is 'fluctuating' if the original report 
indicates temporal variations of substantial magnitude in temperature, salinity, 
water availability or any other major physical parameter. The magnitude, and 
not the predictability, of the variations is the criterion of classification. In this 
paper we apply stricter criteria than previously for deciding whether an envi­
ronment is fluctuating or constant. Whereas previously webs 1 to 28 and 48 to 
62 were classified as from fluctuating environments, while webs 29 to 47 were 
considered to be from constant environments, we now regard a number of webs 
from each former category as unclassified. These are shown by 0 in Table III.4.3. 

In several instances, the original observers measured and reported the net 
primary productivity of the ecosystems they studied. For such cases, we classify 
the productivity of a web as low if it falls below 100 g C m-2 a-I, and as high if it 
exceeds 1000 g C m-2 a-I. When productivity is unknown or has an intermediate 
value, we treat it as unclassified (shown by 0). 

Man is present in a web if explicitly recorded as one of the species, and is 
absent otherwise. 

We then cross-classified the webs by 22 pairs of dichotomous criteria. One 
member of each pair was bad fit between predicted and observed frequency dis­
tributions of chain length (XN/N > 0.95, with the sum-of-squares measure of 
difference, d1) against not a bad fit. Another member of the pair was selected 
from this list of dichotomies: above-average number of species (more than 17 
observed species) versus average or below number of species (17 or fewer ob­
served species); large number of species (more than 24 observed species) against 
not large number of species (24 or fewer observed species); high value (greater 
than 3.6) of the parameter c against low value (c ::; 3.6); extreme mean chain 
length against not extreme; high variance of chain length against not high; low 
variance of chain length against not low; man absent against man present; di­
mension unclassified against dimension known; dimension 2 against dimension 
not 2; dimension 3 against dimension not 3; dimension 2 against dimension 3; 
environment not classified against environment fluctuating or constant; envi-
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ronment fluctuating against environment not fluctuating; environment constant 
against environment not constant; environment fluctuating against environment 
constant; productivity unclassified against productivity low or high; productiv­
ity low against productivity not low; productivity high against productivity not 
high; productivity low against productivity high; dimension 2 and fluctuating 
against dimension 3 and constant; no basal-top links against one or more basal­
top links; one or fewer basal-top links against more than one basal-top link. (The 
last two dichotomies explore the possibility that the webs with anomalously few 
basal-top links, apparent in Figs. A.3.2-3 on pp. 35-36, might also be those 
badly described here by the cascade model.) Some of these cross-classifications 
involve all 113 webs; others involve fewer (for example, only 34 webs are either 
dimension 2 and fluctuating or dimension 3 and constant). 

For each cross-classification, we compute the X2 measure of association cor­
rected for continuity (Snedecor & Cochran 1967, p. 217). If we could accept the 
doubtful assumption that the webs are a random sample, we could assign a 
level of statistical significance to the computed values of X2 with o,ne degree of 
freedom: Under this assumption, the critical value for significance at the (very 
weak) 10% level is 2.71. Only three of the 22 values of X2 exceed this level: 
X2 = 4.55 for the cross-classification with dimension not classified, X2 = 5.45 for 
the cross-classification with low variance of chain length, and X2 = 25.33 for the 
cross-classification with extreme mean chain length. The first two of these X2 
values do not exceed the one percent significance level. The third is very large. 
Table 111.4.4 shows the counts of bad and not bad fits cross-classified according 
to whether or not the mean chain length is extreme. 

Table m.4.4. Cross-classification of 113 webs ac­
cording to fit (based on dl) between observed and 
predicted frequency distributions of chain length, 
and extreme values of mean chain length. (X2 with 
one degree of freedom (corrected for continuity) 
=25.3265) 

goodness of fit 

not bad 
bad (XN/N > 0.95) 

mean chain length 
~2and:54 <2or>4 

86 
5 

11 
11 

When we carry out the same 22 cross-classifications with bad fit based on 
d2, which is the X2 measure of difference between observed and predicted chain 
length distributions, only two of the 22 values of the association X2 exceed 
the 10% critical value: X2 = 4.60 for the cross-classification with high c, and 
X2 = 16.92 for the cross-classification with extreme mean length of chains. The 
former value does not exceed the 2.5% significance level. The latter value far 
exceeds the 1% significance level. 

We conclude that a single dichotomy, extreme mean lengths of chains, explains 
at least partly why the cascade model's predictions sometimes fit badly the 
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observed frequency distributions of chain length. This finding does not exclude 
the possibility that a more elaborate stratification of webs by combinations of 
other characteristics could yield another, and perhaps better, explanation of the 
bad fits (Mantel 1982). However, we have not explored possible explanations 
based on more elaborate combinations of characteristics. Table III.4.3 provides 
raw data for a more sophisticated analysis. 

We now speculate briefly on how the deviations between the observed and 
predicted frequency distributions of chain lengths could arise. To explain the 
excess numbers of observed long chains relative to the numbers expected, suppose 
that, instead of describing all species and links in a community, as we assume, an 
observer initially samples a link at random and then follows a chain containing 
that link up to a top species and down to a basal species; and then samples 
another link at random from those not previously recorded and repeats the 
procedure. The longer a chain is, the more links it contains, and therefore the 
more likely it is to be sampled by this procedure. This sampling procedure would 
produce an observed excess of long chains compared to sampling in which each 
chain is sampled randomly. 

To explain the excess numbers of observed short chains relative to the numbers 
expected, suppose that, as above, an observer picks a link at random and finds 
some of the other (if any) links in the same chain but, wary of the bias of sampling 
chains in proportion to their length, interrupts recording the entire chain after 
a small number of links. This hypothetical procedure would selectively sample 
long chains at first and would then selectively break the long chains into short 
chains, producing an observed excess of short chains compared to sampling in 
which each chain is sampled randomly. 

A plausible model of the process of observation that would not explain an 
observed excess of either long or short chains is to suppose that an observer 
attempts to record all links, but has a probability e (for 'error'), 0 < e < 1, 
of failing to observe or record any given link, independently and identically for 
all links. The recorded web will then be identical to that of a cascade model 
in which the true probability p = cIS of an edge is replaced by the recorded 
probability p' = p(l - c). The mean length of chains will be reduced by these 
errors of omission, but conditional on the net probability, p', that a link occurs 
and is recorded, the distribution of the expected number of chains of each length 
will be as predicted by the cascade model with parameter pl. 

The original reports of webs rarely describe the sampling procedures by which 
the links are determined. Different investigators may use different sampling pro­
cedures. It is not possible to prove, from the original reports, either of the above 
explanations for deviations from the predictions of the cascade model. Still, it is 
some comfort that simple explanations exist. 

9. Discussion and Conclusion 

Here we review the accomplishments of this chapter, relate them to previous 
work, and indicate some useful further efforts. 
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9.1 Accomplishments of This Chapter 

From an exact analysis of the cascade model, we derive the expected number of 
chains of each length in a web with any finite number, S, of species. Simulations 
of the cascade model demonstrate substantial dependence among the numbers of 
chains of different lengths. Because of the dependence, we develop a Monte Carlo 
method of evaluating the goodness offit between the numbers of chains observed 
in an individual web and the numbers expected from the cascade model. 

Without fitting any free parameters, and with the use of no direct information 
about chain lengths other than that implied by the total number of species and 
the total number of links in a web, the cascade model describes acceptably the 
observed numbers of chains of each length in all but 16 or 17 of 113 real webs. 
The cascade model describes well, in the technical sense defined in section 5, the 
chain lengths of 40 or 43 of the 62 webs previously used to test the cascade model, 
and well or moderately well, again in the technical sense, the chain lengths of 
all but 11 or 12 of these webs. In a fresh batch of 51 webs, the numbers of links 
are very nearly proportional to the numbers of species (apart from two outlying 
webs). The constant of proportionality is consistent with that in the original 62 
webs. This finding independently verifies the species-link scaling law (Cohen & 
Briand 1984; Chap. II.3). The cascade model describes well the chain lengths 
of 34 or 36 of the 51 webs, and well or moderately well all but 5 of these webs. 
When the collection of webs is viewed as a whole, the cascade model describes 
adequately the mean chain lengths. 

The poor fit of the cascade model to 16 or 17 webs is associated with one 
characteristic of the webs, namely, an unusually large (more than four links) or 
an unusually small (fewer than two links) mean length of chains. 

In Chaps. III.2-3, we evaluated the cascade model's fit to the data on the pro­
portions of each kind of species and link largely by visual inspection of graphical 
displays. Even measured by that very crude procedure, the fit between predic­
tions and observations was not always good, e.g. for the proportions of basal-top 
links. Here, in Chap. III.4, we examine a much finer aspect of web structure than 
in Chaps. III.2-3, namely, the frequency distribution of chain lengths, and we 
use far more delicate measures of goodness of fit. A priori, the apparent perfor­
mance of the cascade model should be worse than in Chaps. III.2-3. We consider 
it significant that the approximation between observed and predicted frequency 
distributions of chain length, though far from perfect, is as good as it is. 

9.2 Relation to Previous Work 

This chapter offers three novelties in ecological theory. First, this chapter presents, 
to our knowledge, the first exactly derived theory of the length of food chains. 
The only previous quantitative model to predict chain length (Pimm 1982) has 
been simulated but not analysed mathematically. Secondly, this chapter repre­
sents, we believe, the first instance in which an ecological model that was initially 
developed to explain an aspect of webs different from chain length (namely the 
proportions of species and links of various kinds) is used to predict chain lengths 
quantitatively. Thirdly, this chapter gives the first quantitative predictions (ob-



§4. Predicted and Observed Lengths of Food Chains 145 

tained either by simulation or by analysis) of the entire frequency distribution 
of chain length. Pimm (1982, Chap. 6) considers only the modal trophic level of 
top species. 

Although the cascade model is the first to be analysed exactly in the detail 
given here, it is one of a family of similar models that have been proposed 
for webs. Cohen's (1978, p.60) model 5 proposes that webs be generated by 
constructing a matrix with a number of rows equal to the observed number of 
prey (basal plus intermediate species), a number of columns equal to the observed 
number of predators (intermediate plus top species), and a number of 1-elements 
equal to the observed number of links, all other elements of the matrix being 
O. According to this model 5, the positive elements of the 'predation matrix' (a 
condensed adjacency matrix) are to be distributed randomly. 

From comparisons of real food webs with simulations of model 5 and other 
similar models, Cohen (1978, p. 92) 'concluded that the high observed frequency 
of arrangements of niche overlap that can be represented in a one-dimensional 
niche space does not result from the operation, within the framework of several 
plausible models, of chance alone', i.e. that the species' feeding relations have a 
one-dimensional ordering. 

The null model of Pimm (1982, Appendix 6A) adds to Cohen's model 5 the 
constraints that each prey have a predator and each predator a prey, and that 
the intermediate species be in a strict hierarchy or cascade. Such a hierarchy 
or cascade is a natural interpretation of Cohen's finding that feeding relations 
have a one-dimensional ordering. Sugihara (1982, 1984, §3.1.2) also discusses the 
importance of a hierarchical ordering in assembly rules for food webs, but does 
not analyse the lengths of food chains. 

When we proposed the cascade model (Chap. 111.2), we had not read Ap­
pendix 6A of Pimm (1982) because we were considering questions other than 
the length of chains. Whereas Pimm's null model takes as given the numbers 
of links and of basal, intermediate and top species, the cascade model takes as 
given the total number of species and the number of links. The cascade model 
predicts the fractions of species that are basal, intermediate and top and the 
numbers of links of each of four kinds. Pimm's null model could be viewed as a 
conditional version of the cascade model: given numbers of links and of basal, 
intermediate and top species produced by the chance mechanisms of the cascade 
model, the distribution of these links among pairs of species in the cascade model 
is identical to that in Pimm's null model (ignoring the negligible probabilities in 
the cascade model that top species are not proper top and basal species are not 
proper basal). 

Cohen (1978) and Pimm (1982) propose the models just described as 'null' 
models, models that would describe how webs should look in the absence of 
interesting biological structure. Here we consider the cascade model as a 'the­
ory'. We suggest that between 'null models' and 'theories' is a continuum of 
increasingly sophisticated and successful models. The null models at one ex­
treme are models that do not describe much of nature well. 'Theories', at the 
other extreme, provide a unifying and quantitatively successful view of diverse 
phenomena. The cascade model provides explanations for some aspects of webs 
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that Cohen's {1978} and Pimm's {1982} models take as given and describes with 
moderate success the observed frequency distributions of chain lengths. Whether 
the cascade model should continue to be dignified as theory depends on its suc­
cess in describing other aspects of real webs. 

9.3 Further Work Required 

How well does the cascade model describe the variance and higher moments 
of the distribution of chain length? A key difficulty in answering this question, 
which was raised by S. L. Pimm, is the dependence among the numbers of chains 
of different lengths. Attacks via mathematical analysis and via numerical simu­
lation are both desirable. 

Why does the cascade model fail to predict 16 or 17 observed frequency dis­
tributions of chain length? One possibility is that, like a straight line tangent to 
a parabola, the predictions of the cascade model are systematically of the wrong 
shape but are locally good approximations in a certain neighbourhood. Accord­
ing to this possibility, a better model could explain all the observed frequency 
distributions of chain length, as well as explain better the other features of webs 
that are described approximately by the cascade model. As noted in Chap. II1.3, 
some assumptions underlying the cascade model are unrealistic. For example, 
the model assumes that the species at the top of the cascade is equally likely to 
prey on all other species in the community, and that the prey species a predator 
eats are chosen statistically, once and for all, independently of the abundance 
of the prey species and of the existence of other links. A better model might 
replace these assumptions by more realistic ones. However, we cannot provide 
and analyse a better model at this point. 

A second possibility is that the bad fits of the cascade model are associated 
with some combination of the characteristics of webs. According to this possi­
bility, the cascade model is acceptable for a large class of webs, e.g. those with 
mean chain length between two and four links, but for another relatively small 
class of webs a different model is required. 

A third possibility is that the original data are wrong; that links have been 
overlooked, or that inconsistent criteria have been used for reporting links, or 
that stomach contents have been misidentified and mistaken links have been 
reported, or that error has crept into the process of writing, publishing and 
transcription. 

The consequences for action of these three possible explanations are different. 
If the cascade model is only an approximation to a better global model, then one 
should try to construct a better global model. If combinations of characteristics 
could identify exactly webs for which the cascade model fails, one should try 
to discriminate the webs where the cascade model succeeds from those where 
it fails. If the reported frequency distributions of chain length are materially 
wrong, one should go back into the field and do better field work and reporting. 
There is no shortage of opportunities for diverse skills. 

The empirical successes of the cascade model are great enough to encour­
age the hope that efforts in all three directions may yield further successes. 
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The present successes of the cascade model also justify attempts to exploit the 
model further as it stands. Can the cascade model describe or explain yet other 
aspects of webs, such as the frequency of omnivory, i.e. predation on different 
trophic levels (S. L. Pimm, personal communication, 3 September 1985), however 
'trophic levels' are to be defined? Can the cascade model account for the relative 
importance of predation against competition (Schoener 1982), the occurrence of 
compartments (Pimm 1982), and the frequency of intervality (Cohen 1978)? 

Appendix: Computing Algorithms 

This appendix describes procedures for computing the frequency distributions 
of chain length and the length of the longest chain of a given acyclic web. 

The Frequency Distribution of Chain Length 

A digraph (directed graph) with S vertices (species) and L edges (links) may be 
represented by its S X S adjacency matrix, A. The elements of A are aij = 1 if 
(i,j) is an edge, aij = 0 if (i,j) is not an edge, 1::; i,j ::; S. 

An easily programmed, but inefficient, way to compute the number of n­
chains, Cn, from the adjacency matrix A of an acyclic web uses the powers An 
of A. If SB and ST are the subsets of {1, 2, ... , S} that contain the labels of, 
respectively, the basal and the top species, then 

Cn = L L (An)ij' n= 1,2, ... ,S-1. 
iESBjEST 

If each power is computed by 0(S2) multiplications, then the computation of 
the frequency distribution of chain length {Cn } requires 0(S3) multiplications. 

A much more efficient algorithm that requires 0(S2) steps (additions or mul­
tiplications) was outlined in conversation (1984) by P. H. Sellers. Assume that 
the adjacency matrix A is strictly upper triangular, so that the vertices are num­
bered from 1 at the bottom of the web to S at the top of the web, i.e. edges point 
from vertices with lower numbers to vertices with higher numbers. The following 
algorithm requires as input the adjacency matrix A and returns as output an 
(S - I)-vector, C, with nth element Cn, the number of n-chains. 

Step 1. Set I = 1 and set V to be an S X S - 1 matrix with all elements 
O. (After completion of the loop on I below, V(I, J) will hold the number of 
maximal J-walks that terminate at vertex I, i.e. the number of J-walks that 
originate at some basal species and terminate at species I.) 

Step 2. Increment I by 1. If the result exceeds S, go to step 8. 
Step 3. Set H = O. 
Step 4. Increment H by 1. If the result equals I, go to step 2. (We are going 

to compute for each J the contribution, to the number of maximal J-walks 
terminating at vertex I, of maximal (J - I)-walks terminating at vertex H, for 
every H < I.) 
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Step 5. If A(H, I) = 0, go to step 4. (If there is no edge from H to I, then 
walks terminating at H either do not pass through I at all or must pass through 
some other vertex on their way to I.) 

Step 6. If the sum of the Hth row of V is positive, then for J = 2, ... , S - 1, 
set V(I, J) = V(I, J) + V(H, J - 1). Then go to step 4. (Each maximal (J -1)­
walk that terminates at a vertex H that is connected by an edge to vertex I 
determines a maximal J-walk that terminates at vertex I.) 

Step 7. Otherwise, increment V(I, 1) by 1. Then go to step 4. (If no walks 
terminate at vertex H but H is joined to I by an edge, then there is a maximal 
I-walk terminating at I.) 

Step 8. For J = 1, ... , S - 1, set CJ equal to the sum of V(I, J) over only 
those I such that the Ith row sum of A is O. (The chains are the maximal walks 
that terminate at top vertices. Vertex I is a top vertex if and only if the Ith row 
sum of A is O. After all the maximal walks terminating at all the vertices have 
been counted, the number of J-chains is the total number of maximal J-walks 
that terminate at top vertices.) 

We programmed both the algorithm based on powers and Sellers' algorithm 
in APL, with the APL68000 interpreter running on the WICAT 150-6, a mi­
croprocessor that uses the Motorola 68000 chip. For the 14 x 14 adjacency ma­
trix of Chap. IV's web number 31, the algorithm based on powers required ap­
proximately 10 s to produce the frequency distribution of chain length, whereas 
Sellers' algorithm required approximately 5 s. For a 50 x 50 adjacency matrix 
generated according to the cascade model with c = 3.71, the powers algorithm 
required approximately 25.5 min and Sellers' algorithm required approximately 
0.6 min. 

The Length of the Longest Chain 

For a digraph with a strictly upper triangular adjacency matrix A, finding the 
height, i.e. the length M of the longest chain, is a standard problem in network 
theory. For example, Gibbons (1985, pp.121-122) gives a recursive algorithm 
for finding the longest path from a specified vertex to every other vertex. The 
following algorithm for finding the longest path from any vertex to any other, 
which requires in general 0(S2) multiplications, was outlined in conversation 
(1985) by F. R. K. Chung. The algorithm requires as input the adjacency matrix 
A and returns as output the height M. 

Step 1. Set V equal to an S-vector with all elements 0, and set I = O. (After 
completion of the loop on I below, V(I) will hold the length of the longest walk 
terminating at vertex I.) 

Step 2. Increment I by 1. If the result exceeds S, go to step 4. 
Step 3. Set V(I) = max{A(H, I)(V(H) + 1) 11 ~ H ~ I - I}. Then go to 

step 2. (The length of the longest walk terminating at vertex I is 1 greater than 
the maximum over all H < I with an edge from H to I of the length of the 
longest walk terminating at H.) 

Step 4. Set M = max{V(I) 11 ~ I ~ S}. (The longest chain is as long as the 
longest of the maximal walks.) 
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For a 50 x 50 adjacency matrix, generated according to the cascade model 
with c = 3.71, independently of the matrix used in the previous example, the 
computation of M = max{ n I Cn > O} based on Sellers' algorithm for C required 
38 s and Chung's algorithm required only 6 s. 

As S gets large, the number of positive elements in adjacency matrices gen­
erated by the cascade model increases only as O(S) rather than as 0(S2). The 
number of multiplications and the amount of memory required by the preceding 
algorithm may be reduced from 0(S2) to O(S) as S gets large by representing 
the digraph by an L x 2 matrix that lists, in some order, the initial and final 
vertex of each of its L edges. Step 3 above is then modified to pay attention only 
to those vertices H < I for which there is an edge from H to I. By using this 
modified algorithm, we simulated webs of S species where S2 far exceeded the 
words of memory available in our microprocessor. 

§5. Theory of Food Chain Lengths in Large Webs 

Charles M. Newman and Joel E. Cohen 

1. Introduction 

The purpose of this chapter is to develop a theory of the length of food chains 
that is derived from a mathematical model of community food webs called the 
cascade model. Cohen & Newman (1985, hereafter referred to as Chap. 111.2) 
and Cohen et al. (1985, hereafter referred to as Chap. 111.3) showed that the pre­
dictions of the cascade model describe, to a first approximation, several major 
characteristics of a collection of 62 real webs: the proportions of all species that 
are top, basal and intermediate, and the proportions of all links from basal to in­
termediate species, from basal to top species, from intermediate to intermediate 
species, and from intermediate to top species. Cohen et al. (1986, hereafter re­
ferred to as Chap. 111.4) showed that the cascade model describes the frequency 
distribution of the length of food chains observed in a large majority of 113 real 
webs. In the light of this empirical support for the cascade model, it is desirable 
to analyse the properties ofthe model further. This chapter determines what the 
cascade model implies for the frequency distributions of the length of a typical 
food chain and of the length of the longest chain, primarily in the limit as the 
number of species in the web becomes arbitrarily large. 

Section 2 presents terminology for chains and reviews the cascade model. 
Section 3 derives a generating function for the expected number of chains of 
each length and moments of the chain length distribution for webs with a finite 
number of species. Section 4 describes the frequency distribution of chain lengths 
in the limit as the number of species in a web gets large. Section 5 describes the 
length of the longest chain in a web with a finite number of species. Section 6 
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describes the length of the longest chain as the number of species in a web gets 
(very) large. Section 7 analyses the sensitivity of the asymptotic behaviour of 
the longest chain derived in section 6 to the assumptions of the cascade model. 
The results in sections 3-7 are obtained by mathematical analysis. Numerical 
simulations of the cascade model in section 8 confirm and amplify the prior 
analytical results concerning the length of the longest chain. Section 9 reviews 
what has been achieved in this chapter, and the concluding section 10 identifies 
some tasks that remain. 

We shall accept the mathematical convention of setting off every proof with 
Proof at the beginning and • at the end. Readers may defer or skip proofs with 
no loss of continuity. 

2. Terminology; The Cascade Model 

This section reviews and introduces terminology, then describes the cascade 
model. 

A food web is a set of kinds of organisms and a relation that shows which, 
if any, kinds of organisms each kind of organism in the set eats. A community 
food web is a food web whose vertices are obtained by picking, within a habitat 
or set of habitats, a set of kinds of organisms (hereafter called species) on the 
basis of taxonomy, size, location or other criteria, without prior regard to the 
eating relations (specified by trophic links) among the organisms (Cohen 1978, 
pp.20-21). Hereafter 'web' means 'community food web'. A basal species is a 
species that eats no other species, and a top species is a species that is eaten by 
no other species. 

In the representation of a web by a directed graph or digraph (see Chap. 
111.2.2), each vertex corresponds to a (lumped trophic) species. An edge (always 
directed) (a, b) from vertex a to vertex b corresponds to a link from species a 
to species b, meaning that species b eats species a. An example of a walk in a 
digraph is the sequence a, (a, b), b, (b, c), c of alternating vertices and edges. The 
length of a walk is the number of edges in it. An n-walk is a walk of length n. 
The digraph of any web generated by the cascade model is acyclic, so no vertex 
(or species) can figure more than once in a walk in such a web. A chain is a 
walk from a basal species to a top species. An n-chain is a chain of length n, 
i.e. a chain with n links or equivalently n + 1 species. The height of a web is the 
longest chain in it. 

Let S be the number of species in a web, and let Cn be the number of n-chains 
in an acyclic web, n = 1,2, ... , S - 1. The frequency distribution of chain length 
is the vector (Cl,"" CS-l) == C. The total number of chains in the web will 
be denoted 
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As usual, E(.) and var(.) denote the expectation (or mean) and variance, 
respectively, of the random variable enclosed in parentheses. For any function I 
of any real or integer variable t, we write I(t) = O(t) if I(t)/t stays less than some 
fixed finite positive constant as t -> 00, and /(t) = o(t) if liIDt--+oo I(t)/t = o. 

The cascade model assumes that the S ? 2 species of a web may be labelled 
from 1 (at the bottom, subject to predation by all other species) to S (at the top, 
subject to predation by no other species). The probability that species j feeds 
on species i is 0 if j ::; i. If i < j, then j feeds on i with probability p = p(S), 
i.e., with a probability between 0 and 1 that depends on S, and does not feed 
on i with a probability q = 1 - p, independently for all 1 ::; i < j ::; S. Unless a 
contrary assumption is explicitly given, it will be assumed that, for some finite 
positive real number c < S, p = ciS, where c is a constant independent of S. 
(Some results below require only the weaker assumption that Sp(S) -> 'Y, for 
some constant 'Y, as S -> 00.) 

According to the cascade model with probability p of a random link, the 
expected number of n-chains in a web with S species is (Chap. IlIA): 

n=I,2, ... ,S-I. 

3. Moments of the Frequency Distribution of Chain Length in Finite Webs 

To find an average chain length predicted by the cascade model, we need to 
compute En nln, where /n is the probability density of n-chains according to 
the cascade model. There are two, not one, natural candidates for In. The first 
corresponds to 'expected relative frequency', and the second corresponds to 'rel­
ative expected frequency'. To compute the first, which we denote 'Un, find, for 
each random web, the fraction of all chains that are n-chains, and then average 
over all webs. The expected relative frequency of chain length n is 

'Un = E(Cn/C), n = 1,2, ... , S - 1 . 

To make this well defined, Cn/C may be set to zero whenever C = O. For 
typical S and p, the probability that C = 0 is very small. To compute the 
second candidate for In, find the expected number of n-chains, averaged over all 
webs, and then express that average as a proportion of the sum of the averages 
of all lengths. The relative frequency of chain length n is 

Vn = E(Cn)/E(C), n = 1,2, ... ,S-I. 

Both 'Un and Vn depend on S. A random variable Hs with probability density 
'Un can be obtained by taking a random web and measuring the length of a single 
chain chosen at random, with all of the web's chains equally likely. A random 
variable Ls with probability density Vn can be obtained by taking (in the limit) 
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a very large collection of webs and picking a single chain randomly from the 
pooled chains of all the webs, each chain again being equally likely. 

We shall compute E(Ls) = En nVn and higher moments of Ls by means of 
a generating function, defined as 

S-1 
fs(t) = L: E(Cn/S)tn, 0 < t < 00 • 

n=1 

According to the cascade model, 

fs(t) = tSpqS-2 {[I + (p/q)(l + t)]S - 1 

- (Sp/q)(l + t) } / {(Sp/q)(l + t) } 2 
. 

Proof. Using first the formula for E(Cn) and then the identity 

S-IS-1 S-1 k 

L:L:=L:L:, 
n=1 k=n k=1 n=1 

we compute 

fs(t) = S-1 I: (pttqS-l I:(S -k) (: = ~) q-k 
n=1 k=n 

= S-1 I: t (: = ~) (pttqS-lq-k(S - k) 
k=1 n=1 

= ptqS-2 I: q-(k-1)[(S - k)/S] I: (k ~ 1) (pt)h 
k=1 h=O 
S-1 

= ptqS-2 L:(1- k/S)q-(k-1)(1 + pt)k-1 

k=1 

and letting 

r == (1 + pt)/q , 

(
S-1 S-1) 

fs(t) = ptqS-2 L: rk- l - S-1 L: krk- 1 

k=1 k=1 
= ptl-2[(1- rS- l )/(l_ r) - S-1(d/dr){(1- rS )/(l- r)}] 

which, upon further elementary calculation, becomes 

which eventually simplifies, with r = (1 + pt)/q, to the formula given. • 
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It follows from the generating function Is(t) that, setting z = 2Sp/q, 

E(Ls) = (z/2)[(1 + z/S)S-l - 1]/[(1 + z/S)s -1- z] , 

or 

and 

var(Ls) 
:\([(S -1)/ S]z2(1+z/ S)S-2 -4z(1+z/S)S-1 +6(1+z/S)s -6-2z} 

(l+z/S)S-I-z 

- [E(Ls)]2 + 3E(Ls) - 2. 

Prool. E(Ls) = 1's(1)/ls(I). The two versions of E(Ls) are equivalent be­
cause 1 + z/S = (1 + p)/(1 - p). The formula for var(Ls) follows from a very 
long, but elementary, simplification of the result of substituting 

E(tLS) = Is(t)/ls(1) 

into 

Figure 111.5.1 plots the mean of Ls and the mean plus or minus one standard 
deviation (corresponding roughly to a two-thirds confidence interval) for values 
of p = c/ Sand S typical of the observed webs analysed in Chaps. 111.2-3. With 
increasing S and fixed c, the mean and confidence interval stabilize for webs 
with more than 30 species, but change noticeably for smaller webs. 

4. Limiting Frequency Distribution of Chain Length in Large Webs 

We now describe the behaviour of en/S, predicted according to the cascade 
model, as S gets large, assuming that, for large S, p(S) declines like I/S or 
more precisely that lims->oo Sp(S) = I' When p(S) = ciS, then 1= c. 

Define the generating function (which does not depend on S) for 0 < 1< 00: 

The coefficients Kn-I. n = 1,2, ... of the (convergent) power series expansion 

g(t) = Kot + K1t2 + ... 
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have the meaning 

lim E(Cn)/S = Kn-1, n = 1,2, ... , 
5-+00 

provided 0 < 'Y < 00. K n-1 may be computed explicitly from 

or from 

The limit of the mean total number, E(C), of chains satisfies 

00 

lim E(C)/S = g(1) = ~ Kn-1 . 
5-+00 n=l 
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Hence 

lim Vn == lim E(Cn)/E(C) 
S-+oo S-+oo 

00 

= Kn-t! L Kh-l 
h=1 

= b n- 1(d/d')'t-l[(e'Y -1-')'h-2n 
/[(n - 1)! (e2'Y - 1- 2,),)(2,),)-2] . 
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The moments and factorial moments of the length of chains, according to the 
random variable Ls with probabilily density {vn }r-1 , approach the limits 

lim E(Ls(Ls - 1) ... (Ls - (k - 1))) = g(k)(l)/g(l), k = 1,2, ... 
S-+oo 

lim E(L~) = (d/du)k[g(eu)lIu=o/g(l), k = 1,2, ... 
S-+oo 

In particular, 

lim E(Ls) = ')'(e2'Y - 1)/(e2'Y - 1 - 2')') 
S-+oo 

and, letting 

h(t) = (e t - 1 - t)/t2 , 

lim var(Ls) = ')' - ! + [4h(2')')]-1[3 - 2')' - 1/h(2')')] . 
S-+oo 

It follows that 

lim [ lim E(Ls) - ')'] = 0 
'Y-+oo S-+oo 

lim [ lim var(Ls) - (')' - !)] = 0 . 
'Y-+oo S-+oo 

Proof To establish all the above limits, it suffices to prove that Is(t) and 
its derivatives converge to g(t) and its corresponding derivatives for t E [0,1]. 
Because Sp --+ ,)" qS --+ e-'Y and so on, Is converges to 9 on (-00,+00). To 
show that the derivatives of Is converge to those of g, it suffices, by standard 
arguments in the theory of analytic functions, to show that Is(w) is uniformly 
bounded in some neighbourhood of [0, 1] in the complex plane, as S --+ 00. But 
that follows because, for complex w, 

This last inequality may be established by comparing the power series expan­
sions of both sides term by term. Given convergence of the generating function 
and its derivatives, limE(Ls) = g'(l)/g(l) and limvar(Ls) = g"(l)/g(l) + 
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Figure m.5.2. Asymptotic relative expected frequency of chains of each length, in webs with 
an arbitrarily large number of species, according to the cascade model with 'Y = 3.71 (-) and 
with 'Y = 10 (- - -). When peS) = cIS, then'Y = c 

g'(l)/g(l) - [g'(1)/g(1)]2. The formulae given then follow by long but elemen­
tary calculations. • 

Figure II1.5.2 plots lims-+oo Vn, the limiting relative expected frequency of 
chains of length n, as a function of n, for "'I = 3.71, a value suggested by the 
data of Chaps. III.2-3, and for "'I = 10. The graph for "'I = 3.71 is very similar 
to the theoretical and simulated graphs for "'I = c = 3.75 and finite S = 17 
given in Fig. III.4.!. In effect, for this value of "'I, S = 17 is 'large'. The graph 
in Fig. III.5.2 for "'I = 10 illustrates the general numerical observation that, for 
large values of "'I, lims-+oo Vn increases monotonically up to a value of n very near 
"'I and then decreases very nearly symmetrically, in a shape closely resembling 
a normal distribution. We conjecture that lims-+oo Vn is maximal for n equal 
to the largest integer less than "'I or one less than the largest integer less than 
"'I. We have numerical examples in which either of these two values of n makes 
lims-+oo Vn maximal. The approximate normality, for large "'I, of this limiting 
distribution (with mean approximately "'I and variance approximately "'I-!) can 
be proved mathematically. We do not present the proof, since typical values of 
"'I (e.g. 3.71 or 4) are too small for the approximate normality to hold, and we 
have no significant application of the result for larger values of "'I. 

Figure III.5.3 plots lims-+oo E(Ls) and lims-+oo E(Ls) plus or minus 
~ims-+oo var(Ls)]1/2 (corresponding roughly to a two-thirds confidence inter­
val) as function of "'I, for a range of "'I likely to include that suggested by the 
largest observed webs in Chaps. III.2-3. Figure III.5.3 shows that lims-+oo E(Ls) 
approaches the asymptotic (for large "'I) limit "'I quite rapidly, even within the 
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range estimated from the data in Chaps 111.2-3. The cascade model thus im­
plies a simple rule of thumb: in webs with a large number of species, the mean 
length of a chain roughly equals the mean of the numbers of predators and prey 
of any species in the web (i.e. the mean total number of links that enter and 
leave any vertex or, in graph theoretic jargon, the mean in-degree plus the mean 
out-degree) . 

For any fixed length n, the standard deviation of the number Cn of n-chains 
vanishes relative to SasS gets large. Equivalently, for fixed length n in large 
webs the variance of Cn/S vanishes as S gets large. That is, for fixed n ~ 1, 

lim var(Cn/S) = 0 if lim Sp(S) = 'Y < 00 . 
S~OO S-oo 

Proof. For 1 ~ io < il < .,. < in ~ S, let Wi denote the indicator random 
variable of the event that i == io, (io, il), il, ... , (in-I, in), in is a chain. Thus 
Wi = 1 if i is a chain, and Wi = 0 if not. Then Cn = Li Wi, where the 
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summation covers all possible n-chains. Then 

.,.,( en) ~ .,., ( ~ Wi) 
= EEcov(Wi, Wj), 

i 

where the covariances are summed over all n-chains i and j. If the chains i and 
j share exactly m links, 0 ::; m ::; n, then 

If m = 0, Le. i and j share no links, and if in addition none of io, ... , in coincides 
with any of io, ... ,in, then Wi and Wi are independent so COV(Wi, Wi) = O. 
Let Qm be the number of ordered pairs (i, j) such that i and j share exactly m 
links. Let Q be the number of pairs (i,j) such that at least one species (vertex) 
of the chain i is a vertex of the chain j. Then 

n 
var(Cn) ::; E Qmp2n-m + Qp2n . 

m=1 

Now Qn is just the number of possible n-chains, so 

Qn = (n! 1) ::; sn+1 . 

For m < n, if i and j share m links, they will share at least m + 1 species; but i 
and j could share m + 1 species without necessarily sharing m + 1 links; so Qm 
does not exceed the number of pairs (i, j) in which i and j have m + 1 species 
in common. Therefore Qm ::; gm+1 s2(n+l-(m+1» = s2n+1-m . Similarly Q ::; 
s2n+1 . Therefore 

n 
var(Cn ) ::; L s2n+1-mp2n-m 

m=O 
n 

= E 0(s2n+1-m 8-(2n-m)) = O(S) 
m=O 

and thus var(Cn /8) = 0(1/8), which tends to zero as 8 tends to 00. • 

It follows that, for any fixed n = 1,2, ... , 

00 

Cn/C -+ Kn-l / L Kh-l = g(n)(O)/[n! g(I)] 
h=1 

in probability as S -+ 00 , 
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00 

lim E(CnIC) --+ Kn-1 / ~ Kh-1 . 
5-+00 

h=1 

As in section 3, CnlC is set to zero when C = O. 
Proof. We have already proved that E(CnIS) --+ Kn-1 and var(CnIS) --+ O. 

It follows that, for each fixed n, Cnl S --+ Kn-1 in mean square (Le. in £2) and 
hence in probability, and therefore that, for any fixed positive integer M, 

M M 
~ CnlS --+ ~ Kn-1 in probability. 
n=1 n=1 

Our next goal is to prove that this implies 

Since 

we have 

00 

CIS --+ ~ Kn-1 in probability. 
n=1 

P ( E Cnl S - CIS ~ c) = P ( E Cnl S ~ c) 
n=1 n=M+1 

5-1 

~ c-1 ~ E(Cn)IS 
n=M+1 

= <-I (E(C)/S - t. E(C.) IS) 
00 

--+ c-1 ~ K n -1 as S --+ 00 , 

n=M+1 

P ( CIS - t. K._I '" :Ie) :5 P ( CIS - t. C.IS '" <) 

+P (t.C.IS- ~K'-l "'<) 
+ P ( E Kn -1 - f: Kn- 1 ~ c) 

n=1 n=1 
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Taking limsups-+oo of this last inequality and choosing M large enough, we 
have 

limsupP (C/B - f Kn -1 ~ 3c) $ c-1 f Kn -1 + 0 + o. 
s-+oo n=l n=M+1 

Letting M - 00 establishes that 

00 

C/B - L Kn-1 in probability. 
n=l 

Hence 

00 

Cn/C = (Cn/B)/(C/B) - Kn-1 / L Kh-1 in probability. 
h=l 

Since ICn/CI $ 1, all moments of Cn/C converge. In particular, 

00 

E(Cn/C) - Kn-1 / L Kh-1 . • 
h=l 

Since Un and Vn converge to the same limit for large B, it makes no differ­
ence, for large enough B, which probability density is used to describe typical 
chain lengths. Of course, for finite B (and all observed webs have finite B), the 
two probability densities {un} and {vn} are different; we have obtained exact 
formulae only for the latter. 

5. The Longest Chain in Finite Webs 

We now show that the cascade model explains remarkably well the qualita­
tive observation, frequently made (see, for example, Hutchinson 1959), that the 
length of the longest chain, and hence the height, of a web is small compared to 
the number of species in the web. 

In a web with B species, define Ms to be the height. For random webs gener­
ated by the cascade model, Ms is a random variable. For brevity, we henceforth 
drop the subscript B, bearing in mind that the distribution of M does depend 
on B. 

To investigate the distribution of M, given Band p = c/B, we find, for a 
positive integer m, upper bounds for P(M ~ m) and P(M < m). 

First, for any positive integer m $ B-1 with p = c/ B, 
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::; L2{8, m) == (m: 1) pm 

::; L3{8,m) == cm8/{m+ 1)!. 

161 

Proof Let Bn be the number of n-walks, n = 1,2, ... ,8 - 1. Such walks may 
or may not be chains, which are walks from basal to top species. For 1 ::; io < 
i1 < ... < in ::; 8, let Vi denote the indicator random variable of the event that 
there is a walk i == io, (io, i1), i1, ... , (in-I, in), in. Then Bn = Li Vi, where the 
summation covers all possible n-walks. The Vi's are non-decreasing functions of 
the independent random variables that determine whether individual links are 
present and hence are associated random variables (Harris 1960; Esary et al. 
1967). This justifies the inequality in the computation (where we set n = m) 

P{M ? m) = P{Bm > 0) = 1 - P{Bm = 0) 

= 1 - P (for every i of length m, Vi = 0) 

::; 1 - II P(Vi = 0) 

[the product taken over all m-walks i] 

= 1 - IT (1 - pm) 

The last step holds because there are exactly (m~l) possible m-walks in the 
cascade model. 

For any positive integer n and any x E (0,1), 1 - {1 - xt ::; nx, as it is 
easy to show by comparing derivatives with respect to x. Setting x = pm and 
n = (m~l) gives L1 ::; L2. Finally, 

(m! 1) {c/8)m = [em 8/{m + 1)!][{8 - 1)!/{(8 - 1 - m)!sm}] 

• 
On the other side of M, 

P(M < m)" U,(S, m) =' (m!S' [~(m-k+1) (S,:~~l) (P-'-l) 

+ E ( 7) (! ~ ~ ~ D (P -, - 1) 1 
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:5 U,(S, m) ;: [( m! 1) pm r [E(m-1+ 1) (Sp) ..... I(m - k)! 

+ E (7)b""->-tr >] 
S U3(S, m) == [cmS(I-I/S) .. . (1- m/S)/(m + 1)!]-1 

X l~(i+ l)(SpY I j! + s-t ~ ( 7) (SP);] , 

and if !m(m + 1) < S, 

s U4(S, m) == [cmS(I- m(m + 1)/(2S»/(m + 1)!r1 

X [eSp + SpeSp + S-1(1 + Sp)m] 

= 2(m + 1)![(1 + c)eC + (1 + c)m /SJ/[cm (2S - m(m + 1»] 

Proof. In the notation used in the previous proof, 

P(M < m) = P(Bm = 0) S P[lBm - E(Bm)1 ~ E(Bm)] , 

and now, from Chebychev's inequality, 

We now seek an upper bound for var(Bm) = Li Li cov(Vi, Vi), where the 
summations cover all m-walks. If i and i have exactly Ie links in common, then 

cov(Vi, Vi) = P(Vi = 1 and Vi = 1) - P(Vi = I)P(Vj = 1) 
= p2m-k _ p2m . 

Let Qk be the number of ordered pairs (i,i) of m-walks (not chains now) such 
that i and i have exactly Ie links in common. Then 

m 

var(Bm) = I: Qk(p2m-k _ p2m) 
k=O 
m 

= I: Qk(p2m-k - p2m) . 
k=1 

Define Q~ to be the number of ordered pairs (i,i) of m-walks with exactly Ie 

links in common in which the Ie common links form a Ie-walk. Define Q~ to be 
the number of ordered pairs (i,i) of m-walks with exactly Ie links in common in 
which the Ie common links do not form a single Ie-walk. Clearly, Q~ = ~-1 = 0 
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and 

Moreover, 

( 8 ) (8-k-l) Qk ~ m + 1 (m - k + 1) m - k ' k=l, ... ,m 

because there are (m~l) ways to choose the m-walk i, there are m - k + 1 ways 
to choose a subwalk of i of length k, the links of which will be the links in 
common with j, and since each common subwalk of length k determines k + 1 

. f' h h ( S-(k+1») (S-k-l) t h vertices OJ, t ere are not more t an (m+l)-(k+l) = m-k ways a c oose 
the remaining (m + 1) - (k + 1) vertices of j. Also, 

(3 ( 8 ) (m) (8-k-2) 
Qk ~ m + 1 k m - k -1 ' k=1, ... ,m-2 

because (again) there are (m~l) ways to choose i, there are at most (I:) to 
choose the k links of i that will be the links in common with j, and since these 
links form at least two subwalks which determine not less than k + 2 vertices 
of j, leaving at most ~m + 1) - (k - 2) = m - k - 1 vertices to be determined, 
there are at most C!='k=.D ways to choose the remaining vertices of j. This last 

step depends on the observation that (m~l~h) is a non-increasing function of 
h = 0, .. . ,m+ 1. 

Since E(Bm) = (m~l)pm, collecting all the inequalities gives 

P(M < m) ~ E(QI: + Q~)(p2m-k - p2m) / [( m ~ 1) pm] 2 

< ( S )-1 [~(m_k+1)(S-k-1)( -k_1) 
m+1 L..J m-k p 

k=1 

+ E (7) (!:: ~:: ~) (p-k -1)]. 
This establishes P(M < m) ~ Ul (8, m). The remaining approximations follow 
by elementary calculations. • 

These inequalities imply bounds on any quantile of the distribution of the 
height M. For example, to bound the median of M, we determine numerically 
ml, the smallest integer m such that L2(8, m) < !, and m2, the largest integer 
m such that Ul(8, m) < !. Then 

m2 ~ median of M ~ ml - 1 . 
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(Why do we use L2(S, m) to determine ml rather than Ll(S, m), which is a 
sharper bound? For moderately large values of Sand m, when pm becomes very 
small, e.g. less than 10-15 , a computer approximates 1 - pm by 1 and the re­
sults become nonsense. L2(S, m) and L3(S, m) avoid the problem of subtracting 
numbers of very different orders of magnitude.) 

For a fixed value of c typical of observed webs and a broad range of values of 
S, Table III.5.1 gives the lower and upper bounds on the median height. In other 
examples, in a web of 20 species with c = 3.71, the median height is between 
2 and 7 links. In a web with 250 times as many, or 5000, species, the median 
height is between 8 and 13 links. The upper bound on the median has increased 
by less than a factor or two. 

Table III.S.1. The length of the longest chain in large 
webs according to the cascade model (c = 3.71) 

number bounds on the median limiting asymptotic 
of value, value 
species lower upper m· lnS/ln(lnS) 

102 4 10 11 3.0 
1O{ 8 14 14 4.1 
106 12 17 17 5.3 
108 15 19 20 6.3 
1010 18 22 22 7.3 
1012 21 24 25 8.3 

6. Asymptotic Behaviour of the Length of the Longest Chain in Large Webs 

In the cascade model with a fixed c > 0, as the number of species, S, gets 
very large (as we shall see, far larger than the number of species on Earth), 
the limiting behaviour of the height, the length of the longest chain, is simple. 
For each S, there is a positive integer m* (which depends on S, but we drop 
the subscript S for brevity), such that the probability that the height is m* or 
m* - 1 approaches one as S gets large. Thus in a web generated by the cascade 
model the height is either m* or m* - 1, with probability approaching one for 
large S. 

A qualitatively similar phenomenon has been observed elsewhere in the theory 
of random graphs. Bollobas & Erdos (1976) and, according to them, D. W. Matula 
independently proved that the size of the maximal complete subgraph (clique) 
in a random graph takes one of at most two values (that depend on the size of 
the random graph) with a probability that approaches 1 as the random graph 
gets large, when the edge probability is held fixed, independent of the number 
of vertices. 

For very, very large numbers, S, of species, m* grows at a rate that is es­
sentially independent of c or p = ciS (provided c > 0) and depends only on 
S. For extremely large S, m* is approximately In SI In (In S) in the sense that 
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their ratio approaches 1. By contrast, according to Bollobcis & Erdos (1976), 
the asymptotic behaviour of the (at most two) possible values for the size of the 
largest clique does depend on the fixed probability that there is an edge between 
any two given vertices. 

We now describe more precisely the height M in very large webs according 
to the cascade model. Define m* to be the smallest positive integer m such that 

Then, for large enough S, m* is a non-decreasing sequence such that 

and 

lim m* /[In S/ In (In S)] = 1 
8-+00 

lim P(M = m* or M = m* - 1) = 1 . 
8-+00 

However, the estimated rate of convergence of P(M = m* or M = m* -1) to 1 
is very slow, namely, 

1- P(M = m* or M = m* -1) = 0(m*-1/2) . 

Proof We begin by establishing that, for every positive integer S and every 
c > 0, there is a positive integer m such that cm+tS/(m + 2)! < (m + 2)-1/2 

or equivalently (m + 2)1/2cm+tS/(m + 2)! ::; 1. (If m exists, then m* exists.) 
Stirling's approximation may be written 

Substituting into (m + 2)1/2cm+1S/(m+2)! shows that this quantity approaches 
o as m ---+ 00, so the desired m exists. The least such m, namely m*, satisfies 

S ::; (m* + 2)!/[cm ·+t(m* + 2)1/2] and must not decrease as S increases. The 
next question is: how fast does m* increase? 

Pick any c > O. If 

then 

so 

m( S) "" (1 + c) In S / In (In S) , 

In m(S) = In (In S) -In (In (In S)) + 0(1) 

"" In (In S) 

-m(S)lnm(S) "" -(1 +c)lnS. 
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Now, by using Stirling formula and dropping ineffectual constants, 

In[m(Sl/2em (S) S/m(S)!] - m(S) In e + In S -In[m(S)!] + ! In m(S) 

-InS - m(S) In m(S) 

-InS - (1 + c)lnS 

- -clnS -+ -00 as S -+ 00. 

Consequently 

m(S)I/2em (S)S/m(S)! -+ 0 as S -+ 00 , 

so m* < (1 + c) InS/In (InS) for large enough S. On the other hand, if 

m(S) - (1- c) InS/In (InS) , 

then the same argument shows that 

m(S)I/2em (S)S/m(S)! -+ 00 as S -+ 00 , 

so m* > (1 - c) In S / In (In S) for large S. This establishes that 

m* -InS/In (InS) . 

So m* increases without bound (but very slowly) as S -+ 00. 

We can now prove lims_oo P(M = m* or m* - 1) = 1. By the inequalities 
established for P(M ~ m) and P(M < m) for finite S, with S large enough that 
m*(m* + 1)/2 < S, 

P(M ~ m* + 1) $ em -+1S/(m* + 2)! 

$ (m* +2)-1/2 -+ 0 as S -+ 00, 

P(M < m* - 1) $ 2m*![(1 + e)eC + (1 + e)m--l/SJ 

/[em --1(2S - m*(m* - 1))] 

- (1 + e)ecm*!/[Sem --1] 

- -1 = (1 + e)eC[em S/(m* + I)!] e/(m* + 1) . 

But m* is the smallest m such that em+1S/(m + 2)! < (m + 2)-1/2. Therefore 

em- S/(m* + I)! > (m* + 1)-1/2 and hence [em-S/(m* + l)!rl < (m* + ll/2. 
As S -+ 00, P(M < m* - 1) is therefore of order of magnitude not greater than 
(1 + e)eeC(m* + 1)-1/2, which approaches 0 as O(m*-1/2). • 

For each value, m, of m*, there is a range of values of S such that m* for that 
S is m. When S is large and at the upper end of this range of values, then the 
height equals m* with a probability that approaches 1. When S is large and at 
the lower end of this range of values, the height equals m* - 1 with a probability 
that approaches 1. When S is in the middle of this range, it can happen that 
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both the event that the height equals m* and the event that the height equals 
m* - 1 occur with non-negligible probabilities. 

Proof. For any positive integer m, let S~ be the greatest integer less than 
or equal to (m + 2)!/[em +I(m + 2)1/2] and let S~ = S;t-l + 1 (with Sri = 0). 
Then S~ ,..., m1/ 2(m + 1)!/em +I, S~/S~ ,..., e/m and the range of values of S 
such that m* = m is precisely {S~, S~ + 1, ... , S~}. Suppose Sm is a sequence 
satisfying Sm ~ S~ and ml/2SmjS~ -+ 00; then with S = Sm, we find by using 
U4(S, m) that 

P(M = m - 1) ~ P(M < m) = O[(m + 1)!/(emsm)] 

= O[S;t/(m1/ 2 Sm)] -+ 0 as m -+ 00 , 

so that P(M = m*) -+ 1 for such a sequence Sm. Similarly if Sm satisfies 
Sm ~ S~ and Sm/(ml/2S~) -+ 0, or equivalently ml/2Sm/S~ -+ 0, then with 
S = Sm, we find, by using L3(S, m), that 

P(M = m) ~ P(M ~ m) = O[emSm/(m+ 1)!] 

= O[Sm/(ml/2 S;)] -+ 0 as m -+ 00 , 

so that P(M = m* - 1) -+ 1 for such a sequence Sm. 
We now consider ~ in the middle of the range from S~ to S~. Define ~ 

to be the greatest integer less than or equal to 2(1 + c)eC(m + 1)!/em . Then for 
large m, S~ < ~ < S~ and for S = ~ we have m* = m. In this case, 

P(M = m - 1) ~ P(M < m) 

and Ll(S, m) gives 

~ [em S(1 + 0(1»/(m + 1)!rl[(1 + c)eC + 0(1)] 

-+ [2(1 + e)eC]-1(1 + e)eC <! as m -+ 00 , 

P(M = m) ~ P(M 2: m) ~ 1- (1- (cjs)m)(m!l) 

-+ 1 - exp[-2(1 + e)eC] < 1 as m -+ 00 . 

Since P(M = m or m - 1) -+ 1 as m and S = ~ increase without bound, we 
conclude that 

liminfP(M = m -1) > 0, 
m--+oo 

liminfP(M = m) > 0 
m--+oo 

forS=~. • 
To find m* numerically for various numbers, S, of species, we find the smallest 

integer m such that 
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For a range of values of S, Table 111.5.1 gives the calculated values of m* as well 
as the values of the asymptotic expression for m*, In Sf In (In S). For three values 
of S (102 , 108 , 1012), the calculated value of m* exceeds the upper bound given 
for the median height. This is consistent with the understanding that the height 
will be concentrated on m* or m* - 1 only in the limit as S becomes extremely 
large. In Table 111.5.1, for finite S as large as 1012 , evidently m* is larger than the 
range of possible values for the median height. Simulations described below for 
(for example) S = 1000 give an estimated median height of 9 links; this height 
falls between the lower and upper bounds of 6 and 12, respectively, although the 
calculated value of m* is 13 (see Table 111.5.2). 

The values of In S/ In (In S), which fall far below m*, emphasize further that 
m* is dependent on c and converges (in ratio) to the c-independent quantity 
In Sf In (In S) only for very large S. For values of S in the range considered 
in Table 111.5.1, second and higher order terms in the asymptotic expansion 
for m* are evidently influential in addition to the leading term In S/ In (In S). 
Calculations similar to those used above to prove that 

m* = VnS/ln (InS)](1 + 0(1» 

establish that, to second order, 

m* = [lnS/ In (InS)]{1 + Vn (In (In S»/ In (InS)](1 + 0(1»} . 

For S = 1012, In (In (In S»/ In (In S) = 0.36, a non-negligible correction. It is 
interesting that even the second-order term in the expansion of m*, like the 
first, depends only on S and is independent of c. 

7. Sensitivity Analysis: Anisotropic Cascade Models 

If the assumptions of the cascade model are relaxed, what happens? This ques­
tion arises first from the scepticism expressed in Chap. 111.3 about the exact 
truth of these assumptions. For example, would the ability of the cascade model 
to explain, qualitatively, the slow growth of the height be destroyed by a small 
change in the parameter c? No, because for very large webs the height grows 
very slowly regardless of the value of the parameter c. 

If one retained the assumption that the probability Pij of a random link from 
species i to species j were 0 for j :5 i (this is the 'cascade' assumption) but 
permitted values for Pij to depend on i and j when i < j (we propose to call all 
such models anisotropic cascade models), the webs can be qualitatively different 
from those generated by the (isotropic) cascade model (with Pij = P > 0, for all 
i < j). Consider three examples. 

First, suppose that the webs were partitioned into what some ecologists call 
'compartments', meaning that the adjacency matrix of the web is block diagonal 
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(see Pimm [1982, Chap. 8] for a review). Suppose that each compartment or block 
contained at most S* species, where S* is some fixed finite positive integer. As 
the total number, S, of species in the web increased, suppose that more and 
more blocks of size at most S* were added. Obviously the height will not exceed 
S* - 1, regardless of S. 

Second, consider an anisotropic cascade model with block diagonal (strictly 
upper) triangular matrix {Pij} of edge probabilities and blocks (or compart­
ments) of size S1, ... , Sn, where S1 + ... + Sn = S. Suppose in the block h, of 
size Sh, that Pij = Ch/Sh > 0 for i < j. Then the height, M, satisfies 

Proof Let M(h) be the maximum chain length in the hth block. Then, 
since different blocks are independent and M = sUPh M(h), it follows, by using 
L1(S, m) for each block, that 

P(M ~ m) = 1 - P(M < m) 
n 

= 1- II P(M(h) < m) 
h=1 

n s 
~ 1- II (1- (Ch/Sh)m)(m~l) 

h=1 

~ t (mS! 1) (Ch/Sh)m ~ t (Ch)m Sh/(m + 1)! 
h=1 h=1 

where the next to last inequality follows from TIi(1 - Zi) ~ 1 - Ei Zi· • 
Now if S1 = ... = Sn ,..., InS so that the number, n, of blocks grows as 

S / In S while Ch = C independent of S for h = 1, ... ,n, then, within each block, 
Pij ,..., c/ In S. The expected number of links to and from each species, i.e. the 
expected number of predators plus the expected number of prey, is asymptoti­
cally C = ShPij"'" In S(c/ln S). Since here P(M ~ m) ~ cmS/(m+ 1)!, exactly 
as in the isotropic cascade model, M cannot grow asymptotically faster than 
In S/ In (In S). 

Third and finally, consider an anisotropic cascade model chosen, not for its 
realism, but to illustrate that without some special structure in the matrix Pij 
of edge probabilities the height could be asymptotically proportional to S (even 
when the expected number of links per species is kept fixed), contrary to obser­
vation. This example is taken from a study of one-dimensional percolation by 
Newman & Schulman (1985) and incidentally illustrates that there are interest­
ing connections between percolation models and cascade models. 
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Suppose, for j = 2,3, ... , that {Yj} is a fixed sequence of probabilities, inde­
pendent of 8, such that, for some s < 2, 

lip1infjS Yj > 0 , 
)--00 

e.g. suppose Yj '" Krs as j -+ 00, for some K > 0 and s < 2. For any p such 
that 0 < p < 1, there is an e, 0 < e < 1, such that if 

then 

Pi,i+1 ~ 1 - e for all 8 and i = 1, ... ,8 - 1 , 

Pij ~ Yj-i, for i + 2 :5 j :5 8 , 
Pij = 0 for j :5 i , 

lim P(M ~ p8) = 1 . 
5--00 

To give a concrete instance of this example, pick some c > 2 and define {Pij} 
by 

Pi; = (c- 2) / [2 (E 1-3/') (j - ;)3/']' j ~ i+2 

= l-e, j = i+ 1 

= 0, j:5 i . 

Taking, say, p = 0.999, there is a small enough e that 

lim P(M ~ 0.9998) = 1 
5-+00 

even though 

sup E(number of predators and prey of species i) 
1:5i:55 

The example demonstrates that even when the expected number of links per 
species is kept below a fixed c, not every anisotropic cascade model will explain 
the observed slow increase in the height of real webs. 
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8. Simulations of the Cascade Model 

The preceding analysis leaves open the question: how good are our theoretical 
bounds for the median height? We set c = 3.71 based on the sample of 62 webs, 
then generated webs according to the cascade model for each of S = 50, 100, 150 
and 1000 and found the height of each simulated web (by using an algorithm 
described in the appendix of Chap. I1I.4). Table II1.5.2 presents the simulated 
frequency distributions of height, and beneath each simulated distribution the 
numerical values of our theoretical bounds on the median height. Evidently the 
bounds on the median do contain the sample median height. The concentration 
of height on at most two values established above in the limit of unrealistically 
large S does not occur for the values of S used in these simulations. There is 
however a suggestion of more concentration for S = 1000 than for S = 50. 

Table 111.5.2. Frequency distributions of the 
length of the longest chains in webs of vari-
ous sizes, and theoretical estimates of the me-
dian (Web sizes were simulated according to 
the cascade model with c = 3.71) 

longest number of species 
chain 50 100 150 1000 

relative frequency 

4 0.03 0.00 0.01 0.00 
5 0.17 0.24 0.07 0.00 
6 0.32 0.31 0.27 0.00 
7 0.24 0.24 0.33 0.05 
8 0.15 0.14 0.18 0.25 
9 0.08 0.05 0.08 0.40 

10 0.02 0.02 0.05 0.20 
11 0.01 0.00 0.01 0.10 

number of simulations 
200 100 100 20 

theoretical estimates 
of median longest chain 

lower bound 3 4 4 6 
upper bound 9 10 10 12 
m· 10 11 11 13 
In 81 In (In 8) 2.87 3.02 3.11 3.57 

9. Achievements of This Theory 

This chapter presents the first, to our knowledge, exactly derived theory of the 
length of food chains in webs with a large number of species. This theory suggests 
for the first time a (simple) quantitative relation between the mean length of 
chains and the mean number of predators plus prey per species. The analysis 
also provides the first quantitative explanation, derived from an explicit model 
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that is not invented ad hoc for the purpose, of why the longest chains are very 
short relative to the number of species in a web even when the number of species 
is large. 

From a generating function for the expected numbers of chains of each length, 
we derive the mean and variance of the length of chains by using the relative 
expected frequency as the probability density function of chain length. For webs 
in which S becomes arbitrarily large, we show that the limiting relative expected 
frequency and the limiting expected relative frequency of chain lengths are the 
same, so that either may be used to describe the distribution of chain lengths. 
We compute the asymptotic distribution and all moments of chain length, giving 
explicit closed-form formulas for the asymptotic mean and variance. We show 
that the relative frequency of chains of any given length converges in probability 
to its expectation as S gets large. The cascade model implies a simple 'rule of 
thumb' for large webs: the mean length of chains equals the mean number of 
predators plus prey of any species in the web. 

We also derive, from the cascade model, upper bounds on the upper and lower 
tails of the probability distribution of the height, or length of the longest chain, 
of a web. From these, we compute bounds on the median height in webs with 
a finite number of species. These bounds show that the median height is a very 
slowly increasing function of the number of species in a web, remaining below 
20 up to 108 species. For webs in which S becomes unrealistically large, the 
height equals one of two adjacent integers (that depend on S) with a probability 
that approaches 1. For very large S, these integers approximate In S / In (In S), 
a function that grows very slowly with S. 

By considering variations on the assumptions of the cascade model, we show 
that the ability of the cascade model to explain the slow growth of the height is 
robust with respect to changes in the probability that one species eats another. 
However, if the probability that one species eats another is permitted to depend 
on the pair of species concerned, then the height may increase either not at all 
or linearly with the total number of species. Hence not every variation on the 
cascade model will explain the observed short height, relative to the number of 
species, of real webs. 

Simulations of the cascade model show that the concentration of the height 
on just two integer values, predicted by the asymptotic theory, occurs only in 
webs with an unrealistically large number of species. 

10. Some Remaining Tasks 

Although the cascade model yields to mathematical analysis, the acyclic model 
(model 2 in Chap. 111.2) resists analysis. We do not know, for example, whether 
the median height in the acyclic model grows slowly with S, as demonstrated 
here for the cascade model. A solution to this problem might reveal whether 
the asymptotic behaviour of the height could be used to discriminate between 
different models of webs. 
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The cascade model and its kin are static models. They describe data that 
are snapshots, sketches of webs at a single moment. Static models and static 
data ignore the reality that the species and links of webs may change with the 
seasons and over longer intervals. It would be highly desirable to develop and 
test dynamic models of communities that are consistent with the static empirical 
regularities on which the cascade model is based. 

The cascade model and the data it is intended to interpret ignore the numbers 
of individuals or biomass of each species and the quantities of flows in each link. 
Far fewer observed webs give quantitative measurements than give, like the webs 
studied here, all-or-none information about species and links. Thus the whole 
line of work from Cohen (1978) to this book is only a first step towards a real 
understanding of webs, because it deals entirely with combinatorial structure 
rather than with quantities of stocks and flows in webs. However, gross anatomy 
precedes physiology. This line of work at least offers a coherent theoretical and 
empirical approach to some aspects of the gross anatomy of webs. 

What might be offered by better data and models that will, we hope, replace 
those we analyse here? Quantitative, predictive models of webs could assist in 
foreseeing the paths and concentrations of natural and artificial toxins in the 
environment, and the consequences of the removal and introduction of species. 
Such models could assist in the design of nature reserves on Earth and closed 
regenerative ecosystems for supporting humans during prolonged stays in space; 
the cascade model suggests already that certain proportions of top, intermedi­
ate and basal species (or physico-chemical equivalents) need to be provided or 
else will evolve. Finally, since the webs containing the species man are not no­
tably different in structure from those without man, such models may provide 
some understanding of man's place in nature. These grand opportunities are an 
incentive to pursue the hard scientific work that may bring them within reach. 

§6. Intervality and Triangulation in the Trophic Niche 
Overlap Graph 

Joel E. Cohen and Zbigniew J. Palka 

1. Introduction 

When the diets of different organisms overlap in natural communities, the pos­
sibility arises that the different consumers may compete for food (Grant 1986) 
or may interact mutualistically (Kawanabe 1986, 1987). Competitive or mutu­
alistic interactions over food may influence the evolution of the competing or 
cooperating consumers. Hence overlaps in the diets of different organisms are of 
both ecological and evolutionary interest. 
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The diets of organisms, and the relations among the diets of different kinds 
of organisms, vary greatly from one ecological community to another. The min­
imum number of variables required to describe or represent the overlaps among 
consumers' diets has been called the dimension of trophic niche space (Cohen 
1978). A priori the dimension of trophic niche space would be expected to vary 
among communities. If, in a particular community,. this dimension were one, 
then intervals of some single variable, perhaps food size, would be necessary and 
sufficient to describe when the diet of one species overlaps with another. If the 
dimension were greater than one, then intervals of no single variable, such as 
food size alone, would suffice to describe when the diets of consumers overlap. 
That is, if the dimension exceeded one, then it would be necessary to consider 
at least two variables, perhaps food size and time of day, to account for or de­
scribe the presence or absence of overlaps in the diets of different organisms. 
The dimension of trophic niche space is one measure of how complex the dietary 
relations among consumers are in a given community. 

This chapter reports new theoretical and empirical information about the 
overlaps among the diets of organisms in natural communities. On the basis 
of mathematical calculations, computer simulations and new analyses of 113 
community food webs, we shall show that, in nature and in theory, the larger 
the number of trophic species in a web, the larger the probability that the 
dimension of a community's trophic niche space exceeds one. Equivalently, the 
larger the number of species in a web, the smaller the probability that the web 
is interval. 

In addition to intervality, the overlaps among the diets or among the con­
sumers of organisms in natural communities may possess another property (de­
fined below) called triangulation (Sugihara 1982). Again on the basis of mathe­
matical calculations, computer simulations and new analyses of 113 community 
food webs, we shall show that the larger the number of trophic species in a web, 
the smaller the probability that either the overlap graph or the resource graph 
of the web is triangulated. 

The mathematical calculations and computer simulations use a stochastic 
model of community food webs called the cascade model (Cohen and Newman 
1985; Chap. 111.2). 

The remainder of this introduction gives further details on the background 
to this work. The terms used in this chapter are defined, including consumer or 
niche overlap graph, resource or common enemy graph, interval graph, interval 
web, and triangulated web. None of these terms is new; readers familiar with 
theoretical developments in food webs over the last decade could jump directly 
to the section on intervality. There the data and theory on the frequency of 
intervality are described and compared. The description of theoretical results 
is meant to be intelligible to those who are willing to deal with quantitative 
concepts but are not interested in the details of proofs, which are provided 
in an Appendix. The following section compares the observed and predicted 
frequency of webs with triangulated overlap graphs and triangulated resource 
graphs. The final section summarizes the results and relates them to previous 
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work. An Appendix analyzes mathematically the cascade model's implications 
for overlap and resource graphs. 

Background 

The ecological niche of a species has been defined (Hutchinson 1944) as "a re­
gion of n-dimensional hyper-space, comparable to the phase-space of statistical 
mechanics," that represents all the environmental, including biotic, factors that 
influence individuals of that species. "Dimension" as used here refers to the 
minimum number of variables needed to describe the niche, and should not be 
confused with the physical dimension (e.g., flat or 2-dimensional vs. solid or 3-
dimensional) of a habitat (Silvert 1984, pp. 158-161; Chaps. II.6, IlIA). Hutchin­
son's definition raises several questions. What is the (Hutchinsonian) dimension 
of the niches in a particular community? Equivalently, what is the minimum 
number of variables required to describe the factors that influence species in a 
community? Is the dimension the same or different in different communities? 

Food webs offer information about the number of trophic dimensions in the 
niches of species in a community (Cohen 1978; Chap. 1104). If two species eat a 
common food species, then their niches must overlap along the trophic dimen­
sions: otherwise, the two consumers would not have access to the same food. If 
the dietary overlaps among consumers in a community can be described by the 
overlaps among intervals of a single variable, the web of the community is said 
to be an "interval" web. If intervals of more than one variable are required to 
describe the dietary overlaps among consumers in a community, the web is said 
to be "non-interval". 

In the first collection of webs assembled to investigate the trophic dimension of 
ecological niches, 22 or 23 of 30 webs were found to be interval (Chap. IIA). The 
exact number (22 or 23) depended on how the data in the web were edited. The 
observed numbers of interval webs exceeded markedly the numbers of interval 
webs predicted by seven simple models offood webs (Cohen 1978; Cohen, Koml6s 
and Mueller 1979). These findings provoked further analyses ofthe available data 
(e.g., Critchlow and Stearns 1982; MacDonald 1979; Pimm 1982; Sugihara 1982; 
Yodzis 1982, 1984). We shall discuss these analyses later. 

Two recent changes now make it opportune to re-examine the question of 
intervality. First, more data are available. Second, a better food web model is 
available, and can be analyzed. 

As for data, the number of webs studied in Chap. 1104 is small. Sugihara (1982) 
analyzed Briand's 40 webs (Chap. 11.5, including 13 of those assembled by Cohen 
[1978]) and reached conclusions consistent with those of Chap. 1104. Briand has 
now informed us which of the 113 community food webs listed in Chap. IV of 
this book are interval. 

As for modeling, the models Cohen (1977, 1978) considered were constructed 
ad hoc to match the mean number of dietary overlaps. Some of those models also 
matched the variance of the number of dietary overlaps. Recently, a better food 
web model, called the cascade model, has been discovered. The cascade model 
describes qualitatively and quantitatively the numbers of top, intermediate and 
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basal trophic species and numbers of basal-intermediate, basal-top, intermediate­
intermediate and intermediate-top trophic links, when all food webs are con­
sidered together (Chap. I11.2) or individually (Chap. I1I.3). The cascade model 
also describes the numbers of food chains of each length (Chap. IlIA) and ex­
plains Hutchinson's (1959) observation that food chains are typically very much 
shorter than the number of species in a web (Chap.III.5). It is natural to ask 
(as in Chap. 111.2 and Chap. IlIA) whether the cascade model can account for 
the observed frequency of intervality, and likewise for triangulation. 

For further background on food webs, see Pimm (1982), DeAngelis et al. 
(1983) and MacDonald (1983). 

Terminology 

The dietary overlaps of the consumers in a web are described by an overlap 
graph, short for "trophic niche overlap graph," which is constructed as follows 
(Chap. 11.4). Given the web W (whether W is represented as a digraph or a 
predation matrix), the vertices of the overlap graph G(W) are the same as those 
of W, i.e., one vertex for each species in the community. In G(W), there is 
an undirected edge between distinct vertices i and j (representing an overlap 
between the diets of species i and species j) if and only if there exists some third 
vertex k such that, in W, i eats k and j eats k. Thus, two vertices are joined by 
an edge in G(W) if there are arrows in W from k to i and from k to j, for at 
least one kj or if at least one row of A has elements equal to 1 in both column i 
and column j. The overlap graph of a web was originally called the competition 
graph (Cohen 1968), a name still used by graph theorists, and has also been 
called the consumer graph (MacDonald 1983, p. 32). 

The resource graph, in the terminology of Sugihara (1982), describes which 
prey share a common predator. The vertices of the resource graph H(W) are 
the same as those ofthe web W. In H(W), there is an undirected edge between 
distinct vertices i and j if and only if there exists some third vertex k such that, 
in W, keats i and keats j. Thus, two vertices are joined by an edge in H(W) 
if there are arrows in W from i to k and from j to k, for at least one kj or if at 
least one column of A has elements equal to 1 in both row i and row j. 

The resource graph of a web W is the dual of the overlap graph of W, in the 
sense that the resource graph equals the overlap graph of the web W* obtained 
from W by reversing the direction of every link in W, i.e., H(W) = G(W*). 
The resource graph was simultaneously and independently invented by Sugihara 
(1982) and by Lundgren and Maybee (1985, in a paper prepared for a 1982 
conference), who called it the common enemy graph. Independently, and prior to 
either of these graph theoretic constructions, Holt (1977) introduced the notion 
that two species are in "apparent competition" if there is a consumer that preys 
on both of them and if a change in the abundance of one species induces a 
numerical response in the other. The resource graph presents necessary but not 
sufficient conditions for the relation of "apparent competition" in a community. 
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Many other graphs can be constructed from a web (Sugihara 1982; Roberts 
1988; Cable et al. 1988). We shall discuss primarily the overlap graph and, to a 
lesser extent, the resource graph. 

A graph (with undirected edges) is said to be an interval graph if, for each 
vertex of the graph, there exists an open interval of the real line such that there 
is an edge between any two vertices if and only if the two corresponding intervals 
intersect, that is, overlap. In an interval graph, it is possible to find an interval 
of the real line corresponding to each vertex of the graph, and the connections 
among the vertices are exactly represented by the overlaps among the intervals 
of the line. 

A web W is said to be interval if its overlap graph G(W) is an interval 
graph (Cohen 1978; Chap. 11.4). In a web that is interval, the dimension of 
trophic niche space could be 1, because the range of variation of the diet of 
each consumer could be identified with an interval of the real line (for example, 
the range of sizes of food eaten by a consumer), and overlaps among diets of 
consumers in the web would correspond to overlaps of the intervals on the real 
line. Lumping trophically equivalent kinds of organisms into trophic species has 
no effect on whether a web is interval: an unlumped web is interval if and only 
if the corresponding lumped web is interval. 

2. Intervality 

Data 

The sources and principal characteristics of the 113 webs analyzed here have 
been presented already (Chap. 11.6 and Chap. IlIA). A few minor corrections of 
previously published numbers of species and links are required. The numbers 
of species and links for web number 37 given in Chap.III.4 are corrected in 
Chap. 11.6; the latter values will be used here. In webs numbered 6, 7, 24,45,51, 
65, and 93, Briand and Cohen (1987; Chap. 11.6) overlooked the possibility of 
lumping two consumers into a single trophic species. Hence the correct number 
of trophic species for these webs is one less than the number given by Briand and 
Cohen (1987; Chap. 11.6) and the correct number of trophic links is, respectively, 
2, 3, 2, 3, 3, 5 and 7 less than published by Briand and Cohen (1987; Chap. 11.6). 
In calculating these values of species and links in the webs taken from Cohen 
(1978), matrix elements Cohen (1978) reported as -1 are replaced by 1 and 
matrix elements reported as -2 are replaced by O. 

According to F. Briand (personal communication, 18 August 1985), all but 
16 of the 113 webs are interval, that is, have interval overlap graphs. The non­
interval webs have serial numbers 3, 6, 18, 20, 22, 26, 27, 33, 39, 41, 60, 67, 98, 
99, 100, and 106. We have not repeated his calculation. 

The proportion of all webs that are interval webs is 97/113 = 0.86. This 
proportion is higher than the proportion of interval webs among the community 
webs in Chap. 11.4, namely, 9/14 = 0.64 or 8/14 = 0.57, depending on the version 
of the webs used. Using the same 40 webs as Chap. 11.5, Sugihara (1982, Chap. 4) 
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identified 73 connected components with more than one species, and found that 
only 10 of these 73 had overlap graphs that were not interval. The proportion 
of interval webs in Sugihara's collection of components is 63/73 = 0.86. Those 
40 webs are among the 113 webs analyzed here, and a web is interval if and 
only if its components are interval, so Sugihara's proportion of intervality and 
the proportion just found here are not independent. However, excluding the first 
40 webs of Briand's collection (those in Chap. 11.5 and Sugihara (1982)), only 
seven of the remaining 73 = 113 - 40 complete webs (not components, as in 
Sugihara (1982)) fail to be interval. The proportion of intervality among these 
73 webs, namely, 66/73 = 0.90 is independent of the proportion of intervality 
among the 73 components studied by Sugihara (1982). Thus, in this collection of 
113 webs, the proportion of webs that are interval is as high as, or higher than, 
the proportion of interval webs observed previously. 

Thanks to the large number of webs now available, it is possible to examine 
how the proportion of intervality covaries with other characteristics of webs. 
The most fundamental characteristic, which is examined here, is the number S 
of species. All webs with S ~ 16 are interval. Of the five webs with the largest 
numbers of species (ranging from 32 to 48 species), none is interval. When the 
observed range of variation of S, from 3 to 48, is divided into four nearly equal 
intervals, the fraction of interval webs declines steadily from one among webs 
with 3 to 14 species to zero among webs with 35 to 48 species (Table 111.6.1). 
However, there are only two webs with 35 to 48 species. When the frequency 
distribution of S is divided into quartiles, so that each group contains, as nearly 
as possible, one quarter of all the webs, the fraction of interval webs again 
declines steadily from one among webs with 3 to 11 species to 0.59 among webs 
with 22 to 48 species (Table 111.6.1). In summary, the fraction of webs that are 
interval is strongly associated with the number of species in the webs, declining 
from one for small webs toward zero for large webs. 

Though quantitative documentation of this finding seems to be new, hints of 
it appeared earlier. Cohen (1978, p.40) observed that webs which incorporated 
multiple habitats were much less likely to be interval than webs from single 
habitats; multiple-habitat webs also tend to have more species. More explicitly, 
MacDonald (1979, p.586) remarked that "[t]he non-interval community webs 
... are the webs with the largest" numbers of species. Neither Cohen (1978) nor 
MacDonald (1979) analyzed the relation between species number and intervality 
any further, empirically or theoretically. 

Our empirical finding that intervality is less frequent among larger webs is 
consistent with data presented by Sugihara (1982, his Table 4.1, pp. 73-74). The 
numbers of consumers in his 73 components of overlap graphs range from 2 to 
34 species. According to our tabulation of his data, of the 52 component webs 
with 2 to 10 species, 50 are interval (96%); of the 14 component webs with 11 
to 14 species, 12 are interval (86%); and of the seven component webs with 15 
to 34 species, one is interval (14%). 
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Table 111.6.1. Observed relative frequency of interval overlap graphs and of triangulated 
overlap and resource graphs in 113 community food webs as a function of the number of 
species. Presence or absence of intervality was computed by F. Briand. We computed the 
presence or absence of triangulation in the overlap and resource graphs from the predation 
matrices in Chap. IV 

Number of 
species 

Number of 
webs 

Fraction of 
webs that are 

interval 

Fraction of 
overlap graphs 

that are 
triangulated 

(a) Species divided into four intervals of nearly equal length 

3-14 
15-24 
25-34 
35--48 

56 
40 
15 

2 

1 
0.775 
0.667 

o 

(b) Species divided into four intervals of nearly equal frequency 

3-11 
11-14 
15-21 
22--48 

Theory 

28 
28 
28 
29 

1 
1 

0.857 
0.586 

1 
0.975 
0.800 

o 

1 
1 
1 

0.793 

Fraction of 
resource graphs 

that are 
triangulated 

1 
0.875 
0.800 
0.500 

1 
1 

0.929 
0.759 

This section describes the cascade model and its predictions regarding the prob­
ability that a web is intervaL 

The cascade model assumes that species in a community are ordered in a 
cascade such that any species can consume only those species below it and can 
be consumed only by those species above it in the ordering. Operationally, if 
there are S species in the web, the cascade model assumes a labeling of the 
species from 1 to S in such a way that whenever a species labeled i is eaten 
by a species labeled j, then i < j. This assumption excludes the possibility of 
trophic cycles, e.g., cases where i eats j and j eats i. Moreover, the cascade 
model assumes that for any two species i and j with i < j, the probability that 
j actually eats i is p, and whether j eats i is statistically independent of all 
other eating relations in the web. The positive probability p is independent of 
the particular pair of species i and j. When webs with different total numbers 
S of species are compared, the cascade model assumes that p depends inversely 
on S according to p = c/ S, where c is a positive constant that is independent of 
S. 

Under these assumptions, the probability p of a link is just the expected 
or average value of the connectance defined by Rejmanek and Stary (1979): 
p = E{L/[S(S - 1)/2]}. 

We calculated explicit formulas for the probability P that a web W is interval, 
i.e., the probability that the overlap graph G(W) of W is an interval graph, for 
extremely small S and extremely large S (Appendix, Theorem 5). The proba-
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bility P that a web is interval depends on, and should not be confused with, the 
probability p of a link between any two species i, j with i < j in the web. 

If S = 3, 4, or 5, then P = 1. If S = 6 and S = 7, a lower bound on P is the 
difference between 1 and a sum of high powers of p (the link probability) times 
high powers of 1 - p (see Appendix). As the product of high powers of p times 
high powers of 1 - p must be small, one expects (and numerical results below 
will confirm) that this lower bound on P will be very close to one. Thus for low 
values of S, the probability P that a web is interval is one or close to one. 

At the other extreme, the larger S gets, the closer P gets to exp( -A) where 
A = 0.002527(2L/[S - 1])9S (see Appendix, Theorem 5). According to the cas­
cade model, the expected number of links in a web is pS(S -1)/2 = c(S -1)/2, 
so the average of 2L/[S - 1] is just c. The best current estimate of c, based on 
aggregate data for all webs, is approximately 4. If we replace 2L/[S - 1] by 4 
in the expression for A, we obtain approximately A = 660S. Thus, for average 
webs according to the cascade model, P is expected to decline exponentially fast 
with increasing S, and the coefficient of S in the exponent is large, in excess of 
660. Thus for large S, the cascade model predicts a frequency of intervality near 
zero. 

These are the principal results of the Appendix about the probability that a 
web is interval. In addition, the Appendix establishes other important structural 
properties predicted by the cascade model for the overlap graphs of large webs. 
The cascade model predicts that the overlap graph should contain a complete 
sub graph on n vertices, for any finite n, with probability one as S becomes large. 
The cascade model predicts that the overlap graph should contain an induced 
tree on n vertices, for any finite n, with probability one as S becomes large. The 
probability that the overlap graph is a unit interval graph approaches zero as S 
becomes large. 

Table 111.6.2 below reports simulations that establish an upper bound on the 
probability that a web is interval when S is 10, 20, 30, 40 and 50 species. These 
simulations establish that the probability of intervality predicted by the cascade 
model is essentially 0 by the time S is as large as 40. 

Because of the duality between the overlap graph and the resource graph, 
with a corresponding duality in the probability distribution of edges according 
to the cascade model (see Appendix), all the preceding analytical and numerical 
results in this section remain valid if "overlap graph" is replaced by "resource 
graph." 

Confronting Data and Theory 

This section compares the data on intervality with the cascade model's quanti­
tative predictions about the probability that a web is interval. 

To do so, it is necessary first to estimate either of the parameters p = c/ S or 
c = pS of the cascade model. The parameters may be estimated in two different 
ways: using data on all webs simultaneously (Chap. 111.2, Chap. IlIA), and using 
data from each web separately (Chap. 111.3, Chap. IlIA). 
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Using data on all webs simultaneously, c is twice the estimated slope of a 
straight line through the origin fitted to the data points (8, L), where L is the 
number of links in a web with 8 species. In the 113 webs analyzed here, that 
slope is 1.99 ± 0.07 (standard error), so c is very nearly 4 (Chap. IlIA). With 
this value of c, the cascade model makes sense only for webs with 8 ~ 4, since 
by definition p :5 1. 

Using data from a single web with 8 species and L links, a reasonable es­
timate of pis L/[8(8 - 1)/2], which is the connectancej the numerator is the 
observed number of feeding relations, and the denominator is the number ofpos­
sible feeding relations given the assumption of ordering. (Estimating p by the 
connectance L/[S(S - 1)/2] overlooks the omission of isolated species from the 
data. A more complex estimate (Chap. III.3) allows for the omission of isolated 
species. Since the number of isolated species is small, the error introduced by 
estimating p from connectance is also small.) 

As a preliminary, we now check the cascade model's assumption that the 
link probability p depends on the number S of species according to c/ S. This 
assumption implies that if the connectance or p is estimated separately for each 
web, then the points (S,l/p) should fall around the straight line Sic = S/4 
derived from the aggregated data. The agreement in Fig.III.6.1 between the 
individual points and the predicted straight line justifies further testing of the 
cascade model. Each web in Fig. 111.6.1 is represented by the symbol "1" (for one­
dimensional) if the web is interval, or by the symbol "2" (for ~ 2-dimensional) 
if the web is not interval. 

When the link probability p is estimated separately for each web, the cascade 
model predicts a probability of intervality P = 1 for S = 3, 4, 5, as already 
mentioned, P ~ 0.9999 for S = 6, and P ~ 0.9986 for 8 = 7. All webs with 
S :5 16 (the webs plotted in the left third of Fig.III.6.1) are interval. Thus 
for very small numbers of species S, the data are consistent with the predicted 
probability P that a web is interval. 

For intermediate numbers of species, the observed fraction of webs that are 
interval declines as shown in Table 111.6.1. An upper bound on the predicted 
probability that a web is interval is given by the predicted probability that a 
web is triangulated (see next section). Table 111.6.2 reports estimates of the prob­
ability of triangulation for S = 10,20, 30,40 and 50, based on 100 simulations 
for each value of S. The predicted probability of triangulation (Table 111.6.2), 
and therefore the predicted probability of intervality, appears to decline with in­
creasing S more rapidly than the observed frequency of intervality. That is, there 
is still an excess frequency of intervality not explained by the cascade model. 
But the cascade model does predict correctly the existence and the location of a 
range of S over which the probability of intervality declines smoothly from near 
1 to near O. 

For very large S, the cascade model predicts asymptotically a probability 
of intervality P lying between exp( -39) and exp( -3.2 x 108), according to the 
theory developed in the Appendix. In these calculations, the link probability p is 
estimated separately for each web. The simulations in Table 111.6.2 suggest that 
the asymptotic theory becomes relevant when the number of species is between 
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Figure 111.6.1. Reciprocal of the link probability or reciprocal of connectance as a function 
of the number of species in 113 community food webs. If 8 is the number of trophic species 
and L is the number of trophic links in a web, the ordinate is (8[8 -1]/[2L]) and the abscissa 
is 8. "1" signifies that the web is interval, "2" that the web is not interval. The solid line plots 
8/4 as a function of 8 

30 and 40. Consistent with these analytical and computational predictions, the 
five largest webs, with S ranging from 32 to 48, are all non-interval. 

Overall, there is good qualitative agreement, and reasonable quantitative 
agreement, between the observed frequency of interval webs and the frequency 
of interval webs predicted by the cascade model. For intermediate numbers of 
species, more interval webs are observed than are predicted by the simulations 
of the cascade model. It remains to be determined whether this excess identifies 
a deficiency of the cascade model or a deficiency of the data on trophic links or 
both. 

An upper bound on the fraction of webs with interval resource graphs is 
given by the fraction of webs with triangulated resource graphs. The relative 
frequencies of triangulated resource graphs are given in Table 111.6.1 and are 
discussed in the next section. 

3. 'lii.angulation 

A web is said to be triangulated if its overlap graph is triangulated. A graph is 
triangulated if it has no induced cycles of four or more edges; that is, whenever 
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four or more vertices in the overlap graph make a cycle, there is an edge that cuts 
across the cycle, reducing the cycle to a composition of triangles. Lekkerkerker 
and Boland (1962) showed that a graph is interval if and only if it is triangu­
lated and it contains no asteroidal triples. Thus the probability that a graph is 
triangulated is an upper bound on the probability that it is interval. 

Sugihara (1982) showed that the frequency of intervality in simulated webs 
could largely be accounted for by requiring the overlap graphs to be triangulated. 
As part of a more extensive theory that will not be reviewed here, he proposed 
that triangulation was a more fundamental property of webs than intervality. 

Sugihara (1982, p.1l8) simulated a dynamical Lotka-Volterra model with 
random interaction coefficients, and allowed species to go extinct until the hy­
pothetical community was "feasible." His model communities started with 15 
species and the final number of species ranged from six to nine. In 18 of 20 
simulations, the final communities had triangulated niche overlap graphs. Sugi­
hara noted that "the high frequency ofrigidity [equivalent to triangulation] may 
simply be an artifact of generating relatively small final communities," i.e., com­
munities with a small number of species. Though it was not Sugihara's preferred 
interpretation of the high frequency of triangulation, this possibility is consistent 
with the following analyses of data and the cascade model. 

Data 

We determined the triangulation of the overlap graph and the resource graph 
of each of the 113 webs in Chap. IV by constructing these graphs from the 
predation matrices. The most efficient algorithms to determine whether a graph 
is triangulated are LEX P and FILL of Rose, Tarjan and Lueker (1976), based 
on lexicographic breadth-first search. We programmed their algorithms using a 
description by Booth (1975, p. 126) and verified the performance of our program 
in numerous examples. 

All of the webs with non-triangulated overlap graphs (numbers 6, 18, 33, 
39, 60, 99, 100 and 106) are also non-interval, as is logically required by the 
theorem of Lekkerkerker and Boland (1962). This consistency provides a check, 
albeit weak, on our independent computations. Nine webs have non-triangulated 
resource graphs (numbers 6, 18, 33, 60, 63, 67, 69, 99 and 100). 

George Sugihara (personal communication, 25 October 1988) provided pro­
posed corrections to several of Briand's predation matrices. When these correc­
tions are made, webs 6 and 18 have triangulated overlap graphs. This change 
does not alter the general trends in the data. For consistency, we shall use the 
predation matrices as furnished by Briand (Chap. IV). 

Table 111.6.1 shows the relative frequency of triangulated overlap graphs and 
triangulated resource graphs in 113 community food webs as a function of the 
number of species. For both overlap and resource graphs, the frequency of trian­
gulation declines from 1 for the smallest observed webs to much smaller values 
for the largest observed webs. All four webs of more than 32 species have non­
triangulated overlap graphs and two of those four webs have non-triangulated 
resource graphs. 
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Theory 

The predictions of the cascade model regarding triangulation are obtained by 
mathematical analysis (see Appendix) and simulation. Analytically, the prob­
ability that an overlap or resource graph is triangulated is one whenever the 
number of species in the web is five or smaller, and is very close to one for 
six and for seven species. For large numbers of species and a link probability 
p = 4/S, the cascade model predicts asymptotically that the probability that a 
resource or overlap graph is triangulated is very near zero (Appendix Theorem 
7). For intermediate numbers of species (Table III.6.2), the simulated probability 
of triangulation according to the cascade model declines rapidly with increasing 
S. 

Table m.6.2. Simulated relative frequency of triangulated overlaps graphs or resource graphs 
predicted by the cascade model, according to 100 simulations for each number of species. 
The 95% confidence interval incorporates the correction for continuity, and negative lower 
confidence limits for 30, 40 and 50 species were set to 0 

Number of species Fraction of triangulated Lower 95% Upper 95% 
overlap or resource graphs confidence limit confidence limit 

10 0.91 0.85 0.97 
20 0.26 0.11 0.35 
30 0.03 0 0.07 
40 0 0 0.005 
50 0 0 0.005 

Confronting Data and Theory 

The cascade model's predictions are consistent with observation for very small 
numbers of species and for large numbers of species. For intermediate numbers 
of species, the simulated probability of triangulation appears to decline with 
increasing numbers of species more rapidly than the observed relative frequency 
of triangulation. But the cascade model does predict correctly the existence and 
location of a range of S over which the probability of triangulation declines 
smoothly from near one to near zero. The difference between the observed and 
simulated relative frequency of triangulation for intermediate numbers of species 
may be due to imperfections of the data or of the cascade model or both. 

4. Discussion and Conclusions 

Major Findings 

The main accomplishments of this chapter are three. First, while confirming em­
pirically the overall high relative frequencies of interval and triangulated overlap 
graphs found previously, we observe that the relative frequencies of interval and 
triangulated webs are strongly associated with web size, as measured by the 
number of species. All overlap graphs of webs with small numbers of species 
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(16 or fewer in our data) are observed to be interval and triangulated, while 
no overlap graphs of webs with large numbers of species (33 or greater in our 
data) are observed to be interval or triangulated. Between these extremes, a 
steady downward trend is observed in the fraction of interval and triangulated 
overlap graphs. The pattern of triangulated resource graphs is similar. Broadly, 
the larger the number of species in a community, the less likely it is that a single 
dimension suffices to describe the community's trophic niche space, and the less 
likely it is that there are no "holes" in the overlap graph or resource graph. 

There are two ways to look at this finding. One possibility is that webs with 
small numbers of species come from specially simple communities; the simplicity 
gives the communities a small number of species as well as a very small number 
of dimensions of trophic niche space, namely, just one. Another possibility, which 
we favor, is that most webs with small numbers of species are very incomplete 
descriptions of real communities. When communities are described in detail, 
reported webs contain larger numbers of species and are less likely to be interval 
and triangulated. 

This interpretation is consistent with the empirical finding of Schoener (1974) 
that the "separation [of species in niche space] appears generally to be multidi­
mensional" (p. 29), although he recognized that "the dimensions that ecologists 
recognize are rarely independent" (p.32). In 81 studies of niche relations in 
groups of three or more species, when the dimensions originally reported are 
classified into the broad categories of food, space and time, most niches are sep­
arated by two dimensions (Schoener 1974). Other studies of the dimension of 
ecological niches are reviewed by Cohen (1978, pp. 97-100). 

This interpretation leads to a concrete prediction. If webs reported in the fu­
ture are consistent with the trends in the existing data and if they are reported 
in greater detail than most present webs, they will display much lower relative 
frequencies of intervality and triangulation than do the existing webs with small 
numbers of species, even in the communities with webs presently reported as 
interval or triangulated. As the fidelity and detail of the description of commu­
nities improve and the numbers of species in reported webs increase, we expect 
the relative frequencies of intervality and triangulation to decline. 

Second, we calculate the predictions of the cascade model about the probabil­
ities that the overlap graph and resource graph are interval and triangulated, for 
both very small and very large numbers of species. For very small webs, the pre­
dicted probability that either graph is interval or triangulated approximates one. 
For a web with a very large number S of species, and with approximately twice 
as many links as species (in accordance with the empirical link-species scaling 
law), the predicted probability that either graph is interval falls as approximately 
exp( -660S), i.e., extremely rapidly with increasing S. The predicted probability 
that either graph is triangulated also falls exponentially fast. 

We do not know of any previous analytical (as opposed to numerical) calcu­
lations of the probability of interval or triangulated overlap or resource graphs 
starting from a model of webs. The calculations constitute nontrivial new math­
ematics. 
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Third, comparing data and theory, we show that the predictions of the cas­
cade model account quantitatively for the observed relative frequencies of inter­
val and triangulated overlap graphs and triangulated resource graphs for webs 
with seven or fewer and 33 or more species. The cascade model also predicts cor­
rectly the existence and location of a range of numbers of species over which the 
relative frequencies of interval and triangulated overlap and resource graphs de­
cline smoothly from near one to near zero. Our simulations of the cascade model 
reveal, however, that there are more interval and triangulated overlap graphs 
and more triangulated resource graphs observed than expected in webs with in­
termediate numbers of species. This difference may be due to imperfections of 
the data or of the model or both. 

The cascade model's successful prediction of the existence and location (though 
not the exact rate) of declines in the relative frequencies of intervality and trian­
gulation with increasing numbers of species suggests that the relative common­
ness or rarity of interval and triangulated webs may be a statistical consequence 
of the general ecological processes posited in the hypotheses of the cascade model, 
rather than a consequence of special constraints (of whatever origin) acting di­
rectly on the dimension of trophic niche space or the homological structure of 
the overlap graph or the resource graph. 

Related Prior Work 

There have been several previous attempts to explain the relative frequency of 
intervality. Cohen (1978) simulated six simple web models and found that they 
predicted fewer interval overlap graphs than were observed. Cohen, Koml6s and 
Mueller (1979) calculated the probability that a random graph is interval when 
the random graph is constructed with an edge probability that is the same 
for every pair of vertices, i.e., according to the classical model of Erdos and 
Renyi (1960). That model also failed to account for the observed frequency of 
intervality. (By contrast with the model of Erdos and Renyi, when the overlap 
graph is derived from the cascade model, the probability of a dietary overlap 
between two species, or of an edge between the corresponding vertices in the 
overlap graph, is much higher for two species high in the ordering than for two 
species low in the ordering.) 

Critchlow and Stearns (1982) showed that the predation matrices of the real 
webs analyzed by Cohen (1978) were divided into block submatrices much more 
than were the simulated predation matrices generated by Cohen's model 5, and 
that in general the real webs had fewer dietary overlaps (or edges in the overlap 
graph) than webs simulated according to model 5 with the same number of 
predators, prey and links. Critchlow and Stearns showed that both the deficit of 
block submatrices and excess of dietary overlaps in the simulated webs helped 
to explain why model 5 underpredicted the observed frequency of intervality. 

Yodzis (1984) formulated assembly rules, based on energetic constraints, for 
the hypothetical construction of an ecosystem from species that arrive sequen­
tially. These assembly rules generate model webs that describe well many struc­
tural features of 25 of the 28 webs from fluctuating environments in Briand's 
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(1983; Chap. 11.5) collection of 40 webs, and 3 of the 12 webs from constant en­
vironments in Briand's collection. In particular, when Yodzis's model describes 
well most other structural features of a real web, it also describes well the pres­
ence or absence of an interval overlap graph. 

Yodzis reported his model's expected intervality for the 28 webs well de­
scribed by his assembly rules (Yodzis 1984, p. 122, his Table 1). For these webs, 
we graphed his expected intervality as a function of the observed number of 
trophic species for all the webs (graph not shown). We found Yodzis's expected 
intervality near one for the webs with the smallest number of species; a hint, 
amid much scatter, of a declining trend in Yodzis's expected intervality with an 
increasing number of species; and the smallest values of Yodzis's expected inter­
vality for the webs with the largest number of species. Yodzis did not remark 
this association between his expected intervality and the number of species in a 
web. 

Yodzis's assembly rules provide an alternative explanation for the trend we 
have reported here in the frequency of intervality as a function of number of 
species. But this explanation may be limited to webs from fluctuating envi­
ronments. By contrast, the cascade model deals equally well with webs from 
fluctuating and constant environments. Whereas Yodzis's assembly rules so far 
have been analyzed only by computer simulation, the cascade model is tractable 
to explicit analysis. In spite of (what we view as) the advantages of the cascade 
model, the parallels between its predictions and those ofYodzis's assembly rules 
suggest that it would be worthwhile in the future to determine whether there 
are deeper connections between the two models. 

Sugihara (1982, Chap. 4, p. 65) explained the high frequency of interval graphs 
in terms of different assembly rules that prevent the appearance of "homological 
holes" in communities. He considered the highly frequent, but not universal, 
appearance of intervality in real webs to be a consequence of a more fundamental 
requirement that real webs be triangulated. The data (Table 111.6.1) indicate 
that larger webs are less likely to be interval and triangulated. If these trends are 
not an artifact offaulty data, then the absence of homological holes in the overlap 
graph is not a universal feature of food webs. An independent theory, such as 
the cascade model, is required to explain the frequencies of both intervality and 
triangulation. 

The history of data and theory on the intervality and triangulation of the 
niche overlap graph may be caricatured simply. Initially, the high average pro­
portion of interval webs came as a surprise, and could not be explained by the 
available models (Cohen 1977 [Chap. 11.4], 1978). Subsequently, various expla­
nations were offered for the high average proportion of intervality, including 
compartmentalization (Critchlow and Stearns), energetic constraints on com­
munity assembly (Yodzis), and triangularity (Sugihara). Though, in retrospect, 
the data then available and some of these explanations hinted at a decline in the 
frequency of intervality with an increasing number of species, it seems fair to 
say that any such decline remained unremarked. The data presented here pro­
vide unambiguous evidence of a decline in the relative frequency of intervality 
and triangulation with increasing numbers of species. These data seem to us to 
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weaken or obliterate the claim that trophic niche overlap graphs and resource 
graphs are interval or triangulated (always or at a constant high frequency) 
regardless of the number of species in a web. The cascade model predicts accu­
rately the existence of this decline in intervality and triangulation. The cascade 
model also predicts the range in numbers of species where this decline occurs. 
However, the cascade model predicts that the relative frequencies of intervality 
and triangulation will decline more rapidly, with increasing numbers of species, 
than they actually do. Excess proportions of interval and triangulated overlap 
and resource graphs remain to be explained. 

5. Summary 

We report new empirical and theoretical information about the intervality and 
triangulation of overlap graphs and resource graphs in community food webs. 
In 113 community food webs, the overall proportion of webs that are interval is 
as high as, or higher than, the proportion of interval webs observed previously. 
However, the fraction of webs that are interval is strongly associated with the 
number of species in the webs. The fraction of interval webs declines from one for 
small webs (16 or fewer species) toward zero for large webs (33 or more species). 
According to new mathematical and numerical calculations presented here, the 
cascade model predicts, as observed, that the probability that a web is interval 
is near one for webs with under 10 species, declines as the number of species 
increases from 10 to 30 or 40, and is very near zero for larger numbers of species. 
However, in the range from 10 to 40 species, the cascade model predicts a more 
rapid decline in the relative frequency of intervality than is observed. 

Using the predation matrices of the same 113 webs, we determined which 
webs have triangulated overlap graphs and triangulated resource graphs. The 
empirical, mathematical and computational results on the relative frequency of 
triangulation parallel those on intervality. 

The broad ecological interpretation of our findings is that the larger the num­
ber of species in a community, the less likely it is that a single dimension suffices 
to describe the community's trophic niche space, and the less likely it is that 
there are no "homological holes" (in the sense of Sugihara 1982) in the overlap 
graph and resource graph. Most reported webs with small numbers of species 
are very incomplete descriptions of real communities. If future webs have larger 
numbers of species and are described in greater detail, we predict that those 
webs will have smaller relative frequencies of being interval and triangulated. 

6. Appendix: Mathematical Analysis 

Basic Concepts 

The cascade model Wp assumes that S ~ 2 species (vertices) of a web may be 
labeled from 1 to S. If i < j, then j feeds on i (there is a link from ito j) with 
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probability p and j does not feed on i with probability q = 1 - p, independently 
for all 1 ~ i < j ~ S. The probability that species j feeds on species i is 0 if 
j ~ i. The probability p is assumed to depend on S so that p = p(S) -+ 0 as 
S -+ 00. 

By replacing each link of Wp by an undirected edge, one obtains the usual 
random graph model Gp , i.e., an undirected simple graph on the vertex set 
{I, 2, ... , S} in which each edge appears with probability p, independently of all 
other edges. A simple graph is one that has neither loops nor multiple edges. 
The structure of Gp when p changes from 0 to 1 has been studied extensively 
since the fundamental paper of Erdos and Renyi appeared in 1960 (see e.g., 
Bollobas 1985). The greatest discovery of Erdos and Renyi (1960) was that 
many important properties of graphs appear quite suddenly. We shall use such 
facts about Gp here. 

We shall say that almost every Gp has property 7r if the probability that Gp 

has 7r tends to 1 as S -+ 00. If we pick a function p = p(S) then, in many 
cases, either almost every graph Gp has property 7r or else almost every graph 
fails to have property 7r. More precisely, for many properties there is a threshold 
function p* = p*(S) such that 

{ 0 if plp* -+ 0 , 
lim P(Gp has property 7r) = 1 

8-+00 if plp* -+ 00 . 

As examples, here are two facts from Erdos and Renyi (1960) which we shall 
use later. 

Fact 1. The threshold function that Gp contains a complete subgraph Kn on 
n vertices is p* = s-2/(n-1). 

Fact 2. The threshold function that Gp contains a cycle on n vertices is 
p* = S-l for any fixed n ~ 3. 

If G is a simple graph on the vertices V = V (G) and F is another simple 
graph on the vertices V(F), we say that F is an induced subgraph of G if 
V(F) C V(G), and the edges of F contain all the possible edges from the edges 
of G, i.e., if Vi, Vj E V(F) and {Vi,Vj} is an edge ofG, then {Vi,Vj} is an edge 
of F. 

There are some properties of a random graph Gp that suddenly appear, then 
hold when p increases and at some point suddenly disappear. For example, con­
sider the property that Gp contains an induced cycle on a fixed number of 
vertices. By Fact 2, such a cycle appears with probability 1 when p = w(S)S-l, 
where w(S) -+ 00 (arbitrarily slowly) as S -+ 00. However, when p is very close 
to 1, then the cycle is no longer induced. Thus in our investigations we focus 
on the appearance function of a given subgraph of Gp , which describes when 
such a subgraph first appears as p increases. Of course, when one considers sub­
graphs (but not induced subgraphs) of Gp , then the appearance function and 
the threshold function coincide. 

The concepts of threshold and appearance functions also apply to the cascade 
model Wp and to the overlap graph G(Wp), defined as follows (Cohen 1978; 
Chap. 11.4). 
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The trophic niche overlap graph G(Wp) is defined as an undirected simple 
graph on the vertices of Wp. Two consumers are joined by an undirected edge 
when there is at least one prey that both consumers eat. That is, {vi, Vk} is an 
edge in G(Wp) if and only if there exists some Vi in Wp such that both (Vi, Vi) 
and (Vi, Vk) are links in Wp. 

Let G be a simple graph on the set of vertices V = {VI, V2, ••• , vn }. G is an 
interval graph when there is a collection It, 12, ... ,In of open, closed, or mixed 
intervals of the real line such that there is an edge between Vi and vi, i =F j, if 
and only if Ii and Ii overlap, that is Ii n Ii =F 0. Thus G is an interval graph 
if and only if G is the intersection graph of some family of intervals of the line. 
If each interval It, ... ,In has length equal to 1, then G is called a unit interval 
graph. 

Existence of Some Induced Subgraphs in G(Wp) 

We now establish the appearance functions of induced subgraphs of various 
types in a random overlap graph G(Wp). We will find the appearance functions 
of the properties that G(Wp) contains an induced tree, an induced cycle and an 
induced asteroid3.11-triangle (see Fig. III.6.Al). These subgraphs determine the 
intervality of G(Wp ) when S is large, which we examine in the following section. 

Figure 11I.6.Al. An asteroidal k-triangle 
with k + 5 vertices. (An asteroidall-tria.ngle 
contains a single central triangle, each ver­
tex of which is joined by an edge to one 
outlying vertex) 

We begin with the existence of a complete subgraph in a random overlap 
graph G(Wp ). There are two reasons for this. First, the threshold function for 
having a complete subgraph in G(Wp) (which in this case is also the appearance 
function) is quite different from that in the usual random graph model Gp (see 
Fact 1). Second, all the proofs in this section rely on the so-called "second­
moment method". It is easiest to present this method in the case of complete 
subgraphs. Thus we present first a rather detailed proof of the threshold function 
for the existence of a complete subgraph of G(Wp) and then state the remaining 
results, indicating only the crucial points in their proofs. 

Theorem 1 (complete subgraphs). Let n ~ 3 be fixed. The threshold function of 
the property that G(Wp) contains a complete subgraph Kn on any n vertices is 
s-l-l/n, i.e., 

lim P(G(w.p):::> Kn) = {01 if psHl/n -+ 0, 
5-+00 if psHl/n -+ 00 . 

Proof. Denote by Xn the number of all configurations in the cascade model 
Wp that produce complete subgraphs on n vertices in G(Wp). As an example, 
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a io b c 

Figure UI.6.A2. Three web configurations that produce the complete graph K3 in the overlap 
graph 

Fig.1I1.6.A2 presents three types of configurations of Wp that correspond to K3 
in G(Wp ). 

The graph in Fig.1I1.6.A2(a) is called a 3-star with root io. Generally, a 
sub graph of Wp on n + 1 vertices io, it, i2, ... , in where 1 ~ io < it < i2 < 
... < in ~ S such that (io, ik) is a link for every k = 1,2, ... , n will be called 
an n-star with root io. Let Yn stand for the number of all n-stars in Wp. Then 
Xn = Yn + Zn where Zn is the number of configurations other than n-stars that 
produce a Kn in the overlap graph. (If we forget about the orientation of links, 
then all those configurations contain at least one cycle.) Elementary calculation 
shows that 

and 

E(Z3) = L (i1 - 1)(i1 - 2)p6 
2$;1 <;2<;3$8 

+ L (it - 1)(it - 2)(i2 - 4)p6 
2$;1 <;2<;3$8 

= O(S5p6) + O(SSp6) 

= o (SSp6) . 

The first sum in E(Z3) enumerates the expected number of graphs of the form 
shown in Fig.1I1.6.A2(b)j the second sum refers to Fig. III.6.A2(c). Similarly, for 
n~4 

and it is not hard to see that in a formula for the expectation of Zn, the exponent 
of p is always greater than the exponent of S (only if n ~ 4). Consequently, 
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for some m > n + 2 and Ie > m. 
Now let p-= peS) be such that pSHl/n -+ 0 as S -+ 00. Then clearly 

E(Xn) = E(Yn) + E(Zn) = 0(1) . 

(We could have proved E(Zn) = 0(1) from the threshold function for cycles in 
Gp , because each of these configurations contains a cycle (if we ignore orienta­
tion) and from Fact 2 we know that there are no cycles in Gp when pS -+ 0 
as S -+ 00, which is satisfied under our assumption on p.) Since P(Xn ~ 1) :5 
E(Xn), it follows that, with probability approaching 1 as S -+ 00, the cascade 
model Wp contains no configurations producing a complete subgraph Kn In 

G(Wp), i.e., 

P(G(Wp) :J Kn) = P(Xn ~ 1) -+ 0 as S -+ 00 . 

Now assume that psH1/n -+ 00 as S -+ 00. We shall show that under this 
assumption 

P(Yn ~ 1) -+ 1 as S -+ 00 • (1) 

Since 

it will then follow that, with probability tending to 1, a random overlap graph 
G(Wp) contains at least one complete subgraph Kn. For 1 :5 io < i1 < ... < 
in :5 S, let Si denote the indicator random variable of the event that there is in 
Wp an n-star i on the vertices {io, i1, ... , in} with io as the root. Then 

var(Yn) = LLcov(Si,Sj) 
j 

where the summations are over all n-stars specified by i and j, respectively. If 
the stars i and j share exactly m links, 0:5 m:5 n, then 

Ifm = 0 and none ofio,i1, ... ,in coincides with any of jo,il, ... ,jn, then Si 
and Sj are independent so COV(Si,Sj) = O. Let Qm be the number of ordered 
pairs (i,j) such that i and j share m links and at least one vertex. Then for 
m ~ 1, clearly the roots io and jo coincide and Qm :5 s2n+1-m while for m = 0, 
io #: jo and Qo :5 s2n+1 . Consequently, 

n 

var (Yn):5 L (Sp)2n-m S . 
m=O 
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Thus, from Chebyshev's inequality, 

P(Yn = 0) 5 var (Yn)/ E(Yn)2 

= 0 (to (Sp)-m S-1) 

= 0(1) 

since under the assumption on p, Sp can be expressed as Sp = w(s)s-1/n where 
w(S) is a sequence tending to infinity as S -+ 00. Thus we proved (1). • 

Theorem 2 (induced trees). Let Ie 2: 2 be fix.ed. The appearance function of an 
induced tree on Ie vertices in G(Wp) is S-(2k-1)/(2k-2). 

Proof. IfG(Wp) contains an induced tree on vertices (consumers) it,i2, ... ,ik, 
where 2 5 i1 < i2 < ... < ik 5 S, then there must exist Ie - 1 vertices 
(prey species) h,h, ... ,ik-1 where h < i1 and ik-1 < ik such that for every 
im(m = 1,2, ... , Ie -1) there are exactly two links from im to two appropriately 
chosen vertices from {iI,i2, ... ,ik}. See Fig.III.6.A3(a). It may happen that 
some of the consumers are at the same time prey species; see Fig.III.6.A3(b). 
Figure II1.6.A3 presents two examples of configurations in Wp that produce a 
tree in G(Wp) as shown in Fig. III.6.A4. 

is 

a b 

Figure III.6.A3. Two web configurations that produce the tree shown in Fig. III.6.A4 in the 
overlap graph 

i4 

i3 

i2 

i1 

is 

Figure III.6.A4. Tree in the overlap graph produced by the web 
configurations shown in Fig. III.6.A3 
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Each configuration of the web Wp that produces an induced tree on k vertices 
in the overlap graph G(Wp) must have exactly 2(k - 1) links. The configura­
tions are of two types. In configurations of the first type, {it, i2, .. " ik-2} n 
{it,h, ... ,ik-d = 0; this means that none ofthe vertices {ib i2, ... , ik-2} is a 
prey for two consumers from {i2,"" ik}' In configurations of the second type, 
some of the vertices iI, i2, ... ,ik-2 are at the same time consumers and prey. 
In the latter case, if we ignore the orientation of links, there is always a cycle in 
the configuration. 

Assume that p = p( S) is such that 

2/C-1 
pS 2/C-2 - 0 as S - 00 • (2) 

Since our p is of smaller order than S-l, by Fact 2 almost every Gp has no cycles 
and consequently almost every Wp has no configurations of the second type. 
Moreover, each configuration of the first type forms an induced tree of Wp and 
there is no vertex lying below ik and different from {ib i2, ... , ik-1, it, h, ... , 
ik-d that is connected with exactly two vertices from {iI, i2, ... , ik}, for such 
a vertex would destroy the property that the tree in G(Wp ) is induced. Thus if 
Tk denotes the number of configurations of the first type then 

E(Tk) = 0 ( I: (ik - l)k-1 p2(k-1») 
291 <i2< ... <i/c~S 

= O(S2k-1p2(k-1» 

= 0(1) . 

Consequently, under the assumption (2), the overlap graph G(Wp) contains no 
induced tree on k vertices. 

On the other hand, if the first limit in (2) is 00 instead of 0, then E(Tk) - 00 

as S - 00. Applying the same approach as in the previous proof, it can be 
shown that 

P(Tk ~ 1) - 1 as S - 00 , 

i.e., with probability tending to 1, G(Wp) contains an induced tree on k vertices . 

• The next result shows that the appearance function of an induced cycle on 
m vertices in G(Wp) is the same as the threshold function for an m-cycle in the 
usual random graph model Gp if m ~ 4. 

Theorem 3 (induced cycles). Let m ~ 4 be fixed. The appearance function of an 
induced m-cycle in G(Wp) is S-l. 

Proof. Each configuration of Wp producing an induced m-cycle of G(Wp) must 
contain exactly 2m links. As in the case of induced trees, configurations in which 
none of vertices it, i2,"" im -2 is used in Wp as a prey for any two consumers 
from {i2,"" im } are most likely to occur. Therefore, the expected number of 
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configurations of Wp giving induced m-cycles in G(Wp) is of the order of mag­
nitude o(s2mp2m). Now the same ideas as in the proof of Theorem 1 imply our 
result. • 

The asteroidal I-triangle plays a special role in the asymptotic probability as 
S ~ 00 that a random overlap graph G(Wp ) is an interval graph. 

Theorem 4 (asteroidal I-triangle). The appearance function of an induced aster­
oidal i-triangle in G(Wp) is S-10/9. 

Proof Consider a configuration (see Fig. III.6.A5) in Wp that gives an asteroidal 
I-triangle in G(Wp ). The expected number of such configurations is O(SlOp9). It 
is easy to check that the expected number of all other configurations of Wp that 
produce an asteroidal I-triangle subgraph of.G(Wp) is of an order of magnitude 
less than O(SI0p9). Thus the same argument as before applies. • 

d 

c 

Intervality of G(Wp) 

9 

Figure III.6.AS. A web configuration that 
produces an asteroidal I-triangle in the overlap 
graph 

Lekkerkerker and Boland (1962) showed that a graph G is an interval graph if and 
only if it contains no induced sub graph of the forms pictured in Figs. III.6.A1 and 
III.6.A6. This characterization of interval graphs differs from, but is consistent 
with, the characterization in terms of triangulation and asteroidal triples, which 
is mentioned in the text. 

We now describe the probability that a random overlap graph G(Wp ) is an 
interval graph for S = 3,4,5,6,7, and S ~ 00. For S = 3,4 and 5, P(G(Wp) 
is interval) = 1, since the web Wp contains no configurations that could de­
stroy the intervality of G(Wp). If Wp has the vertex set {I, 2, 3, 4, 5, 6}, then the 
only possible forbidden subgraph of G(Wp ) is an induced 4-cycle, which may 
appear on vertices {3, 4, 5, 6} in four different configurations of Wp as shown in 
Fig. III.6.A7. 

Let X4 be the number of configurations in Wp on S = 6 vertices that produce 
an induced 4-cycle in G(Wp). Then 

P(G(Wp) is not interval) = P(X4 ~ 1) ~ E(X4 ) . 
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G, 

~ 
" / " " ................. _----", 

Figure 1I1.6.A6. Forbidden subgraphs of an interval graph: a graph is an interval graph if 
and only if it contains none of the subgraphs shown here and in Fig. IlI.6.AI. G3 contains k 
vertices, k ~ 4. G, contains k + 5 vertices, k ~ 1 

6 6 

6 

Figure m.6.A 7. Four configurations of a web on six vertices that produce an induced 4-cycle 
in the overlap graph 

Since each configuration in Fig. III.6.A 7 contains 8 arcs and must exclude 5 arcs, 
and since there are exactly 4 such configurations, 
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so 

P(G(Wp) is interval) ~ 1- 4p8(1- p)s, for S = 6. 

When S = 7, the subgraphs of G(Wp) that destroy intervality are induced 
4-cycles and induced 5-cycles. There are many different configurations of Wp 
that produce induced 4-cycles or induced 5-cycles of G(Wp ). If Y4 and Ys stand 
for the number of configurations (of Wp on S = 7 vertices) that produce induced 
4-cycles and induced 5-cycles, respectively, then a lengthy enumeration of the 
possibilities yields, with q = 1 - p, 

E(Y4) = 36p8l (1 - p2) + 12p8q6(2 _ 2qp2 _ p2 _ p3) 

+ 4p8qS(6 + 6q4 + 24q3p + 24q2p2 _ 3qp2 _ p2 _ 2p3) (3) 

and 

(4) 

We leave the proofs of (3) and (4) to an eager reader as additional entertainment. 
Consequently, when S = 7 

P(G(Wp) is not interval) = P(Y4 ~ 1 or Y5 ~ 1) 

= P(Y4 ~ 1)+P(Y5 ~ 1) 
-P(Y4 ~ 1 and Y5 ~ 1) 

~ E(Y4) + E(Ys) . 

Note that P(Y4 ~ 1 and Y5 ~ 1) = O. Thus 

P(G(Wp) is interval) ~ 1 - E(Y4) - E(Y5) 

where E(Y4) and E(Y5) are given by (3) and (4), respectively. 
We shall not even try to estimate P(G(Wp) is interval) when S = 8, since the 

calculation looks hopeless. Perhaps surprisingly, the calculation becomes much 
easier when S is large. 

Theorem 5 (interval graphs). Let p = p(S) -+ 0 so that pSl0/9 = d. Then 

lim P(G(Wp) is interval) = e-A if 0 < d < 00 { 
1 if d = d(S) -+ 0 

8-+00 0 if d = d(S) -+ 00 

where 
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Proof. Let 

pSlO/9 _ 0 as S - 00 . (5) 

By Theorems 2, 3 and 4, it follows immediately that a random graph G(Wp) 
contains no induced subgraphs of the forms of Gl, G3 and asteroidaI1-triangles. 
For example, in the case of Gl, if 

pS13/l2 _ 0 as S _ 00 , (6) 

then by Theorem 2, P(G(Wp) :::) Gl) - O. Clearly (5) implies (6). Next, it is 
not hard to see that asteroidal k-triangles for k ~ 2 as well as G2 and G4 are 
unlikely to occur when p satisfies (5). One need simply estimate the expected 
numbers of configurations in Wp that produce those subgraphs in G(Wp) and 
check that under the assumption on p given by (5) these expected values tend 
to 0 as S - 00. Consequently, by the Lekkerkerker-Boland characterization of 
interval graphs, if p satisfies (5) then 

lim P(G(Wp) is interval) = 1 . 
S-+oo 

Now assume that pSlO/9 _ 00 as S - 00. Then by Theorem 4, with proba­
bility tending to 1 as S - 00, a random overlap graph G(Wp) contains at least 
one induced asteroidal1-triangle that destroys the intervality of G(Wp). 

Finally, let pSlO/9 _ d, 0 < d < 00. The same argument as in the first part 
of our proof shows that in this case the only induced subgraphs that destroy 
the intervality of G(Wp ) are induced asteroidal 1-triangles. Let X denote the 
number of such subgraphs in G(Wp). We shall show that 

Ak -~ 
lim P(X = k) = -ke, ' k = 0,1,2, ... 

S-+oo . 
(7) 

where A = 9fJ!o~, i.e., X has asymptotically the Poisson distribution with pa­
rameter A. Define a configuration of type C to be a configuration of the type 
presented in Fig. III.6.A5. Let Y be the number of configurations of type C that 
may appear in Wp as an induced subgraph such that none of the vertices ly­
ing below {a, b, c, d, e,/, g, h, i, j} is connected with exactly two vertices from 
{b, d, e, g, h,j}. Then (compare the proof of Theorem 4) the probability distri­
bution of X is asymptotically the same as the distribution of Y. Replace for a 
moment each link of Wp by an undirected edge. Clearly, the configuration in 
Fig. II1.6.A5 becomes an ordinary tree on 10 vertices. It is well-known (see e.g., 
Bollobas 1985) that if pSlO/9 _ d then the number of such trees in Gp has 
asymptotically the Poisson distribution with parameter JJ = ~ / A, where A is 
the order of the automorphism group of a tree on 10 vertices, i.e., A = 1O!/108. 

Now if we return to the model Wp then (applying the same approach as in e.g. 
Bollobas 1985) it can be shown that the number of configurations of type C also 
has a Poisson distribution but with a parameter "y = ~ / B, where B = 10!/e and 
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Figure m.B.A8. A redraw­
ing of the web configuration in 
Fig. III.6.AS 
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e is the number of different ways of labeling 10 given vertices of a configuration 
of type C. Let us redraw the graph from Fig.III.6.A5 in a different but more 
useful form (see Fig.III.6.A8). 

Since there are at least three vertices lying above vertex a in Wp , we must 
have 1 ~ a ~ 7. Furthermore, b is above a (i.e., a + 1 ~ b ~ 10) and c is below b 
(i.e., 1 ~ c ~ b -1) but different from a. Also, d is above c (i.e., c + 1 ~ d ~ 10) 
but different from a and b. Continuing this process up to vertex j, we obtain, 

7 10 b-1 10 10 e-1 10 10 h-1 10 

a=lb=a+1c=ld=c+1e=a+1!=lg=!+lh=a+1i=lj=i+1 

where c =F a, d r;. {a,b}, e r;. {b,c,d}, / r;. {a,b,c,d}, 9 r;. {a,b,c,d,e}, h r;. 
{b,c,d,e,j,g}, i r;. {a,b,c,d,e,j,g} and j r;. {a,b,c,d,e,/,g,h}. Each author 
independently wrote a computer program in BASIC to compute e and each 
obtained independently e = 55020/3! = 9170. 

The probability that a configuration of type C is an induced subgraph of 
Wp and that none of the vertices lying below C is connected with two vertices 
from {b,d,e,g,h,j} tends to 1 as S - 00 (since if pS10/9 - d then almost 
every Gp has no cycle - see Fact 2). Consequently the random variable Y has 
asymptotically the Poisson distribution with parameter " = 9fcit° ~ and (7) is 
proved. Under the assumption on p, 

lim P(G(Wp) is interval) = lim P(X = 0) = e-.x . 
5_00 5-00 • 

The numerical value of" in Theorem 5 may be estimated for an observed web 
with £ links (or arcs) and S species. The maximum likelihood estimate of pis 
p = £/[S(S -1)/2] = 2£/[S(S -1)]. Hence d = pS10/9 = 2£Sl/9/(S -1); hence 
~ = (2£/[S-1])9S. As 9170/1O! = 0.002527, we get" = 0.002527(2£/[S-1])9S 
and, for sufficiently large S, the probability that the overlap graph G(Wp) is 
interval is arbitrarily close to e-.x. 

Finally, we describe the behavior of the probability that an overlap graph 
G(Wp) is a unit interval graph. Roberts (1969) proved that a graph is unit 
interval if and only if it is an interval graph and does not contain the bipartite 
complete graph K1,3 as an induced subgraph. 
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Theorem 6 (unit interval graphs). Let p = p(8) _ 0 so that p87/6 = d. Then 

{
Ii/ d = d(8) - 0, 

lim P(G(Wp) is unit interval) =. e-P. i/O < d < 00, 
8_00 0 i/d=d(8)-00, 

where I' = ~~. 

Proof. The proof follows the same lines as the proof of Theorem 5. A subgraph 
of Wp that produces an induced Kl,3 in G(Wp) is of the form presented in 
Fig. III.6.A9. If p87/6 _ d for some d such that 0 < d < 00, then the number of 
trees on 7 vertices in Gp has asymptotically the Poisson distribution with para­
meter 75~ /7!. Similarly, the number of configurations of the form in Fig. III.6.A9 
in the cascade model Wp has also the Poisson distribution but with parameter 
e~ /7!, where 

7 a-I 7 a-I 7 a-I 7 

a=4b=lc=b+ld=le=d+l!=lg=!+1 

and c =F a, d ¢ {b,c}, e ¢ {a,b,c}, / ¢ {b,c,d,e} and 9 ¢ {a,b,c,d,e}. Again, 
using computer programs, we obtained e = 48. • 

e 

d 

9 a b 

Figure m.6.A9. A subweb that produces an in­
duced K 1,3 in the overlap graph. This configuration 
prevents a web from having a unit interval overlap 

c graph 

As before, the numerical value of I' in Theorem 6 may be estimated for an 
observed web with £ links and 8 species. Here d = p87/6 = 2£81/ 6/(8 - 1); 
hence ~ = (2£/[8 -1])68. As 48/7! == 0.0095238, we get I' == 0.0095238(2£/[8-
1])68. For sufficiently large 8, the probability that the overlap graph G(Wp) is 
a unit interval graph is arbitrarily close to e-p.. 

Triangulation of Wp 

We say that the cascade digraph Wp is triangulated if its overlap graph G(Wp) 
contains no induced k-cycles for all k ~ 4. As in the case of the intervality of 
G(Wp), for 8 = 3, 4 and 5 the probability that Wp is triangulated equals 1, 
whereas 

( . . { 1 - 4p8q5 for 8 = 6 
P Wp 18 trlangulated) ~ 1 _ E(Y4) _ E(Y5) for 8 = 7 
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where E(Y4) and E(Y5) are given by (3) and (4), respectively. Now suppose that 
S is large. 

Theorem 7 (triangulated graphs). Let p = peS) - 0 so that pS = d. Then 

{
I if d = d( S) - 0 

lim P(Wp is triangulated) = e--r if 0 < d < 1, 
S-oo 0 if d '? 1 

where 

00 d4( 4)k/2 k-1 
'Y = L ~! L (-I)mm!S(k -1,m)2-2- m 

k=8 m=l 
k even 

and S(k, m) are Stirling's numbers of the second kind. 

Proof. If d = deS) - 0 as S - 00, then by Theorem 3 there is no induced k-cycle 
for all k '? 4 in G(Wp), so Wp is triangulated with probability approaching to 1. 
Keeping in mind the remarks made in the proof of Theorem 3, we can focus our 
attention only on the very special subgraphs of Wp that form induced k-cycles 
in G(Wp ). Those subgraphs (denote their number by Zk) have 2k vertices, 2k 
links (appropriately joining those vertices) and are such that after removing the 
orientation of links they form induced (2k)-cycles in the usual random graph 
model Gp • Assume that d is a constant, 0 < d < 1. It is well-known (Bollobas 
1985) that in this case almost every random graph Gp is a union of tree compo­
nents and unicyclic components. Thus each cycle that may appear in Gp is an 
induced cycle. Let Xk be the number of k-cycles of Gp • Then (Bollobas 1985, 
p.79) X3, X4, ... , Xk are asymptotically independent Poisson random variables 
with means Ai = di /(2i), i = 3,4, ... , k. No cycle of odd length contributes 
to forming an induced cycle of G(Wp). The only cycles of even length in Wp 
that contribute to forming an induced k-cycle of G(Wp) are (2k)-cycles with 
the property that for each vertex i its neighbors are either both smaller or both 
larger than i. Rucinski (1988) observed that the number of such cycles that may 
be formed on a given set of vertices is 

2k-l 

a2k = (_4)k L (-I)mm! S(2k - 1, m)2-2- m , k = 2,3, .... 
m=1 

Furthermore, the same approach as in e.g., Bollobas (1985) shows that the ran­
dom variable 

z= L Zk 
k=8 

k even 
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has asymptotically a Poisson distribution with parameter 

Thus 

1 = L (~) akpk 
k=8 

k even 

lim P(Wp is triangulated) = lim P(Z = 0) = e-"( . 
8-+00 8-+00 

Finally, when d ;::: 1, almost every graph Gp with p = diS -+ 0 contains a 
long induced cycle (see e.g., Bollobas 1985) which can form an induced cycle of 
G(Wp). • 

The Resource Graph 

The resource graph H(Wp) is defined as an undirected simple graph, with the 
same vertex set as Wp, such that {Vj, Vk} is an edge in H(Wp) if and only if there 
exists some Vi in Wp such that both (Vj, Vi) and (Vk' Vi) are links in Wp. For 
1 ~ i < j ~ S, define Pij to be the probability of an edge between i and j in the 
overlap graph G(Wp); then Pij = 1- (1-p2)i-l. Similarly, for k < I, define Qkl 
to be the probability of an edge' between k and I in the resource graph H(Wp); 
then Qkl = 1- (1- p2)8-1. Now define 11" to be the permutation 1I"(i) = S + 1- i, 
for i = 1, ... , S. Then Pij = Q,..(j),7r(i) for all 1 ~ i < j ~ S. This means that 
the probability of any configuration of edges is the same in G(Wp) as in H(Wp), 
after relabeling the vertices by '11". Hence all the results in this Appendix apply 
equally to overlap graphs and to resource graphs. 



Chapter IV. Data on 113 Community Food Webs 

This appendix presents the references to the original sources, the predation ma­
trices, and the lists of organisms in the 113 webs used in the empirical studies 
in this book. 

The first 40 webs have appeared previously, in slightly different versions 
(J. E. Cohen, 1978, Food Webs and Niche Space, Princeton: Princeton University 
Press; and F. Briand, 1983, Environmental control offood web structure, Ecology 
64, 253-263). A compilation of the remaining 73 webs has not been published 
before. 

The references are arranged according to the serial numbering of the webs 
adopted by F. Briand. Webs that appeared in Cohen (1978) with a different 
number are also identified by that number. Except for the webs with a number 
assigned by Cohen (1978), these webs were compiled by F. Briand. 

The element in the first row and first column of each predation matrix gives 
the serial number of the web. The other numbers in the first row identify the 
kinds of organisms that correspond to each column. The numbers, other than 
the first, in the first column identify the kinds of organisms that correspond 
to each row. The key to these identifying numbers is the list of organisms that 
accompanies each predation matrix. The groupings of organisms in the list and in 
the predation matrix are not necessarily trophic species (defined in Chap. 11.2); 
that is, these are unlumped food webs. 

Except for the first row and the first column of each predation matrix, an entry 
of 1 in the predation matrix means that the kind of organism corresponding to 
that column eats the kind of organism corresponding to that row. An entry of 
o means that the kind of organism corresponding to that column does not eat 
the kind of organism corresponding to that row. An- entry of -1 or -2 results 
from a coding scheme of Cohen (1978). All -1 entries should be interpreted as 
1 and all -2 entries should be interpreted as O. 

Statistical summaries (such as numbers of trophic species or trophic links, 
defined in the text) that may be calculated from the following predation matrices 
will differ slightly for a few webs from those that appear in the chapters of this 
book (except the last chapter, which is based on this form of the data). The 
reason is that after preparing these webs in machine-readable form, it became 
possible to check calculations that had previously been done by hand, and a 
few errors in the hand calculations were identified. The form of the predation 
matrices given here represents our best joint effort at the time of publication. 
Readers are invited to inform us of errors. 
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Because the original sources of these webs are inconsistent in reporting can­
nibalism, we have usually suppressed reports of cannibalism from the predation 
matrices. These webs should not be used to investigate cannibalism or properties 
of webs that are sensitive to the presence or absence of cannibalism. 

A machine-readable form of these and additional food webs is available to 
qualified academic researchers for purposes of scientific research. Contact Joel 
E. Cohen, Rockefeller University, 1230 York Avenue, Box 20, New York, NY 
10021-6399, U.s.A .. 

Sources of the Community Food Webs 

Web 1 Cochin backwater, India: S. Z. Qazim, Some problems related to the food chain in 
a tropical estuary. In: Marine Food Chains, J. H. Steele, Ed. (Oliver and Boyd, Edinburgh, 
1970), pp. 46-51. 

Web 2 Knysna estuary, South Africa: J. H. Day, The biology of Knysna estuary, South 
Africa. In: Estuaries, G. H. Lauff, Ed. (AAAS Publication 83, Washington, DC, 1967), pp. 
397-407. 

Web 3 Salt marsh, Long Island, USA: G. M. Woodwell, Toxic substances and ecological 
cycles, Sci. Am. 216:24-31 (March 1967). 

Web 4 Salt marsh, California: R. F. Johnston, Predation by short-eared owls on a Sal­
icornia salt-marsh, Wilson Bull. 68:91-102 (1956). 

Web 5 Salt marsh, Georgia: J. M. Teal, Energy 80w in the saltmarsh ecosystem of Georgia, 
Ecology 43:614-624 (1962). Prior number: Cohen (1978) 24 

Web 6 Tidal fiat, California: G. E. MacGinitie, Ecological aspects of a California marine 
estuary, Am. MidI. Nat. 16:629-765 (1935). 

Web 7 Narragansett Bay, Rhode Island: J. N. Kremer and S. W. Nixon, A Coastal 
Marine Ecosystem: Simulation and Analysis, Vol. 24 of Ecol. Studies (Springer-Verlag, 
Berlin, 1978). 

Web 8 Salt marsh, Rhode Island: S. W. Nixon and C. A. Oviatt, Ecology of a New 
England salt marsh, Ecol. Monogr. 43:463-498 (1973). 

Web 9 Lough Ine rapids, Ireland: J. A. Kitching and F. J. Ebling, Ecological studies at 
Lough Ine, Adv. Ecol. Res. 4:197-291 (1967). 

Web 10 Exposed rocky shore, New England, USA: B. A. Menge and J. P. Sutherland, 
Species diversity gradients: synthesis of the roles of predation, competition and temporal 
heterogeneity, Am. Nat. 110:351-369 (1976). 

Web 11 Protected rocky shore, New England, USA: B. A. Menge and J. P. Sutherland, 
Species diversity gradients: synthesis of the roles of predation, competition and temporal 
heterogeneity, Am. Nat. 110:351-369 (1976). 

Web 12 Exposed rocky shore, Washington: B. A. Menge and J. P. Sutherland, Species 
diversity gradients: synthesis of the roles of predation, competition and temporal hetero­
geneity, Am. Nat. 110:351-369 (1976). 

Web 13 Protected rocky shore, Washington: B. A. Menge and J. P. Sutherland, Species 
diversity gradients: synthesis of the roles of predation, competition and temporal hetero­
geneity, Am. Nat. 110:351-369 (1976). 

Web 14 Mangrove swamp 1, Hawaii: G. E. Walsh, An ecological study of a Hawaiian 
mangrove swamp. In: Estuaries, G. H. Lauff, Ed. (AAAS Publication 83, Washington, DC, 
1967), pp. 420-431. 

Web 15 Mangrove swamp 3, Hawaii: G. E. Walsh, An ecological study of a Hawaiian 
mangrove swamp. In: Estuaries, G. H. Lauff, Ed. (AAAS Publication 83, Washington, DC, 
1967), pp. 420-431. 

Web 16 Pamlico estuary, North Carolina: B. J. Copeland, K. R. Tenore, D. B. Horton, 
Oligohaline regime. In: Coastal Ecological Systems of the United States, H. T. Odum, B. 
J. Copeland, E. A. McMahan, Eds. (Conservation Foundation, Washington, DC, 1974) 
2:315-357. 
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Web 17 Coral reefs, Marshall Islands: R. Hiatt and D. W. Strasburg, Ecological rela­
tionships of the fish fauna on coral reefs of the Marshall Islands, Ecol. Monogr. 30:65-127 
(1960). 

Web 18 Kapingamarangi Atoll, Polynesia: W. A. Niering, Terrestrial ecology of Kapinga­
marangi Atoll, Caroline Islands, Ecol. Monogr. 33:131-160 (1963). Prior number: Cohen 
(1978) 11 

Web 19 Moosehead Lake, Maine: J. L. Brooks and E. S. Deevey, New England. In: 
Limnology in North America, D. G. Frey, Ed. (Univ. ot Wisconsin Press, Madison, 1963), 
pp.117-162. 

Web 20 Antarctic pack ice zone: G. A. Knox, Antarctic marine ecosystems. In: Antarctic 
Ecology, M. W. Holdgate, Ed. (Academic Press, New York, 1970) 1:69-96. 

Web 21 Ross Sea: B. C. Patten and J. T. Finn, Systems approach to continental shelf 
ecosystems. In: Theoretical Systems Ecology, E. Halfon, Ed. (Academic Press, New York, 
1979) pp. 184-212. 

Web 22 Bear Island, Spitsbergen: V. S. Summerbayes and C. S. Elton, Contributions 
to the ecology of Spitsbergen and Bear Island, J. Ecol. 11:214-286 (1923). Prior number: 
Cohen (1978) 15 

Web 23 Prairie, Manitoba: R. D. Bird, Biotic communities of the Aspen Parkland of 
central Canada, Ecology, 11:356-442 (1930). Prior number: Cohen (1978) 1.1 

Web 24 Willow forest, Manitoba: R. D. Bird, Biotic communities of the Aspen Parkland 
of central Canada, Ecology, 11:356-442 (1930). Prior number: Cohen (1978) 1.2 

Web 25 Aspen communities, Manitoba: R. D. Bird, Biotic communities of the Aspen 
Parkland of central Canada, Ecology, 11:356-442 (1930). Prior number: Cohen (1978) 1.3 

Web 26 Aspen forest, Manitoba: R. D. Bird, Biotic communities of the Aspen Parkland 
of central Canada, Ecology, 11:356-442 (1930). Prior number: Cohen (1978) 1.4 

Web 27 Wytham Wood, England: G. C. Varley, The concept of energy applied to a 
woodland community. In: Animal Populations in Relation to Their Food Resources, A. 
Watson, Ed. (Blackwell Scientific, Oxford, England, 1970), pp. 389-401. 

Web 28 Salt meadow, New Zealand: K. Paviour-Smith, The biotic community of a salt 
meadow in New Zealand, 'frans. R. Soc. N.Z. 83:525-554 (1956). 

Web 29 Arctic seas: M. J. Dunbar, Arctic and subarctic marine ecology: immediate prob­
lems, Arctic 7:213-228 (1954). 

Web 30 Antarctic seas: N. A. Mackintosh, A survey of antarctic biology up to 1945. In: 
Biologie antarctique, R. Carrick, M. Holdgate, J. Prevost, Eds. (Hermann, Paris, 1964), 
pp.3-38. 

Web 31 Epiplankton communities, Black Sea: T. S. Petipa, E. V. Pavlova, G. N. 
Mironov, The food web structure, utilization transport of energy by trophic levels in 
the planktonic communities. In: Marine Food Chains, J. H. Steele, Ed. (Oliver and Boyd, 
Edinburgh, 1970), 142-167. 

Web 32 Bathyplankton communities, Black Sea: T. S. Petipa, E. V. Pavlova, G. N. 
Mironov, The food web structure, utilization transport of energy by trophic levels in the 
planktonic communities. In: Marine Food Chains, J. H. Steele, Ed. (Oliver and Boyd, 
Edinburgh, 1970), 142-167. 

Web 33 Crocodile Creek, Malawi: G. Fryer, The trophic interrelationships and ecology 
of some littoral communities of Lake Nyasa, Proc. London Zool. Soc. 132:153-281 (1959). 
Prior number: Cohen (1978) 28.3 

Web 34 River Clydach, Wales: J. R. Jones, A further ecological study of calcareous streams 
in the "Black Mountain" district of South Wales, J. Anim. Ecol. 18:142-159 (1949). 

Web 35 Morgan's Creek, Kentucky: G. W. Minshall, Role of allochthonous detritus in 
the trophic structure of a woodland springbrook community, Ecology 48:139-149 (1967). 
Prior number: Cohen (1978) 18 

Web 36 Mangrove swamp 6, Hawaii: G. E. Walsh, An ecological study of a Hawaiian 
mangrove swamp. In: Estuaries, G. H. Lauff, Ed. (AAAS Publication 83, Washington, DC, 
1967), pp. 420-431. 

Web 37 Marine sublittoral, southern California: T. A. Clarke, A. o. Flechsig, R. W. 
Grigg, Ecological studies during Project Sealab II, Science 157:1381-1389 (1967). Prior 
number: Cohen (1978) 2 

Web 38 Lake Nyasa, rocky shore, Malawi: G. Fryer, The trophic interrelationships and 
ecology of some littoral communities of Lake Nyasa, Proc. London Zool. Soc. 132:153-281 
(1959). Prior number: Cohen (1978) 28.1 



206 Chapter IV. Data on 113 Community Food Webs 

Web 39 Lake Nyasa, sandy shore, Malawi: G. Fryer, The trophic interrelationships and 
ecology of some littoral communities of Lake Nyasa, Proc. London Zool. Soc. 132:153-281 
(1959). Prior number: Cohen (1978) 28.2 

Web 40 Rain forest, Malaysia: J. L. Harrison, The distribution of feeding habits among 
animals in a tropical rain forest, J. Anim. Ecol. 31:53-63 (1962). Prior number: Cohen 
(1978) 25 

Web 41 Tropical seas, epipelagic zone: N. V. Parin, Ichthyofauna of the Epipelagic Zone 
(Israel Program for Scientific Translations, Jerusalem, 1970). 

Web 42 Upwelling areas, Pacific Ocean: M. E. Vinogradovand E. A. Shushkina, Some 
development patterns of plankton communities in the upwelling areas of the Pacific Ocean. 
Mar. BioI. 48:357-366 (1978). 

Web 43 Kelp bed community, South California: R. J. Rosenthal, W. D. Clarke, P. K. 
Dayton, Ecology and natural history of a stand of giant kelp, Macrocystis pyrifera, off Del 
Mar, California. Fish. Bull. (Dublin) 72:670-684 (1974). 

Web 44 Marine coastal lagoons, Guerrero, Mexico: A. Yanez-Arancibia, Taxonomia, 
ecologia y estructura de las comunidades de peces en lagunas costeras con bocas efimeras 
del Pacifico de Mexico. Cent. Cienc. del Mar y Limnol. Univ. Nal. Auton. Mex. Publ. 
Espec. 2:1-306 (1978). 

Web 45 Cone Spring, Iowa: L. J. Tilly, The structure and dynamics of Cone Spring. Ecol. 
Monogr. 38:169-197 (1968). 

Web 46 Lake Texoma, Texas: B. C. Patten and 40 co-authors, Total ecosystem model for 
a cove in Lake Texoma. In: Systems Analysis and Simulation in Ecology, B. C. Patten, 
Ed. (Academic Press, New York, 1975) 3:205-421-

Web 47 Swamps, south Florida: L. D. Harris and G. B. Bowman, Vertebrate predator 
subsystem. In: Grasslands, Systems Analysis and Man, A. I. Breymeyer and G. M. Van 
Dyne, Eds. (International Biological Programme Series, no. 19, Cambridge Univ. Press, 
Cambridge, England, 1980), pp. 591-607. 

Web 48 Nearshore marine 1, Aleutian Islands: C. A. Simenstad, J. A. Estes, K. W. 
Kenyon, Aleuts, sea otters, and alternate stable-state communities, Science 200:403-411 
(1978). 

Web 49 Nearshore marine 2, Aleutian Islands: C. A. Simenstad, J. A. Estes, K. W. 
Kenyon, Aleuts, sea otters, and alternate stable-state communities, Science 200:403-411 
(1978). 

Web 50 Sand beach, California: J. W. Nybakken, Marine Biology: An Ecological Approach 
(Harper and Row, New York, 1982). 

Web 51 Shallow sublittoral, Cape Ann, Massachusetts: R. W. Dexter, The marine 
communities of a tidal inlet at Cape Ann, Massachusetts: a study in bio-ecology, Ecol. 
Monogr. 17:263-294 (1947). 

Web 52 Rocky shore, Torch Bay, Alaska: R. T. Paine, Food webs: linkage, interaction 
strength and community infrastructure, J. Anim. Ecol. 49:667-685 (1980). 

Web 53 Rocky shore, Cape Flattery, Washington: R. T. Paine, Food webs: linkage, 
interaction strength and community infrastructure, J. Anim. Ecol. 49:667-685 (1980). 
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1 Cochill backwater, India 

1 3 4 5 6 7 8 9 

1 1 1 1 I 0 0 0 
2 1 1 1 1 0 0 0 
3 0 0 0 0 1 1 1 
4 0 0 0 0 1 0 0 
5 0 0 0 0 1 1 0 
6 0 0 0 0 0 1 1 
7 0 0 0 0 0 1 0 
8 0 0 0 0 0 0 1 

1 basic food 5 zooplankton herbivores 
2 detritus 6 fish herbivores 
3 brawns and shrimps 7 other carnivores 
4 enthos(micro, meio 8 fish carnivores 

and macro) 9 man 

2 Knysna estuary, South Africa 

2 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 0 0 0 1 1 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 1 0 
3 1 0 1 1 1 1 1 1 0 0 0 0 
4 0 1 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 0 0 0 0 1 
6 0 0 0 0 0 0 0 0 1 0 0 1 
7 0 0 0 0 0 0 0 0 1 1 0 0 
8 0 0 0 0 0 0 0 0 0 1 1 0 
9 0 0 0 0 0 0 0 0 0 1 1 0 

10 0 0 0 0 0 0 0 0 0 1 0 0 
11 0 0 0 0 0 0 0 0 0 1 1 0 
13 0 0 0 0 0 0 0 0 0 0 0 1 
14 0 0 0 0 0 0 0 0 0 0 0 1 

1 phytoplankton 6 Mugil 11 Hymenosoma 
2 attached plants 7 Upogebia 12 Johnius 
3 detritus 8 Lamya 13 Lithognathus 
4 zooplankton 9 Solen 14 Rhabdosa:rgus 
5 Hyporhamphus 10 Arenicola 15 Hypacanthus 



212 Chapter N. Data on 113 Community Food Webs 

3 Salt marsh, Long Island, USA 

3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
2 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 
3 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 
4 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
6 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 
7 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
11 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 
12 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 

1 organic debris 9 mosquito 17tem 
2 water plant 10 cricket 18 Osprey 
3 plailkton . 11 billfish 19 Green Heron 
4 marsh J?lants 12 eel 20 merganser 
5 bay shrimp 13 fluke 21 cormorant 
6 silversides 14 blowfish 22~ 
7 mud snail 15 minnow 1 23 . twher 
8 clam 16 minnow 2 24 Re -winged Blackbird 

4 Salt marsh, California 

4 3 4 5 6 7 8 9 10 11 12 13 

1 1 0 0 0 0 1 0 1 1 1 0 
2 0 1 1 0 0 0 1 0 0 0 0 
3 0 0 0 1 0 1 0 1 1 1 0 
4 0 0 1 0 1 1 1 1 0 0 0 
5 0 0 0 0 1 0 0 0 0 0 0 
6 0 0 0 0 0 0 0 0 0 0 1 
8 0 0 0 0 0 0 0 0 0 1 1 
9 0 0 0 0 0 0 0 0 0 0 1 

10 0 0 0 0 0 0 0 0 0 0 1 
11 0 0 0 0 0 0 0 0 0 0 1 
12 0 0 0 0 0 0 0 0 0 0 1 

1 terrestrial plants 8 Rallus, Anas 
2 marine plants 9 migrant shorebirds and waterfowl 
3 terrestnal invertebrates 10 passerines 
4 intertidal and marine invertebrates 11 Microtus, Reithrodontomys, Mus 
5 fishes 12 Rattus 
6Sorex 13 Circus, Asio 
7 herons 
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5 Salt marsh, Georgia 

5 2 3 6 7 

1 1 0 1 0 
2 0 1 0 0 
4 0 0 1 0 
5 0 0 1 0 
6 0 0 0 1 

lSpartina 
2 Prokelisia, Orchelimum, other herbivorous insects 
3 spiders, passerines, dragonflies 
4 algae 
5 bacteria 
6 Uca and Sesanna, Modiolus, Littorina, Oligochaete, Streblospio, Capitella, Manayunkia 
7 Eurytium, clapper rail, raccoon 
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7 Narragansett Bay, Rhode Island 

7 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 
2 1 1 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 
3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
6 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
8 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 
11 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

1 flagellates, diatoms 8 ctenophores 15 bluefish 
2 particulate detritus 9 meciifclankton, fish larvae 16 mackerel 
3 macroalgae, eelgrass 10 Pa . c menhaden 17 demersal species 
4Acartia, other copepods 11 bivalves 18 starfish 
5 sponges 12 crabs, lobsters 19 flounder 
6 benthic macrofauna 13 butterfish 20 man 
7 clams 14 striped bass 

8 Salt marsh, Rhode Island 

8 5 6 7 8 9 10 11 12 13 14 15 

1 0 0 0 0 0 0 0 0 1 1 0 
2 0 0 0 0 0 0 0 0 1 0 0 
3 1 1 0 1 1 1 1 0 0 0 0 
4 0 0 1 1 0 0 0 0 0 0 0 
5 0 0 0 0 0 1 0 0 0 0 0 
6 0 0 0 0 1 1 0 1 0 0 0 
7 0 0 0 0 0 0 0 1 0 0 0 
9 0 0 0 0 0 0 1 1 1 1 0 

10 0 0 0 0 0 0 0 0 1 1 1 
11 0 0 0 0 0 0 0 0 0 1 0 
12 0 0 0 0 0 0 0 0 0 1 0 

1 Ruppia 9 shrimps 
2 U/va, Enteromorpha 10 common mummichog 
3 detritus 11 striped mummichog 
4 phytoplankton 12 other fish 
5 nematodes, copepods, ostracods 13 ducks 
6 ampbipods 14 eel 
7 zooplankton 15 man 
8 juvenile menhaden 
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9 Lough Ine rapids, Ireland 10 Exposed rocky shore, New England, USA 

9 3 4 5 6 7 8 9 10 10 3 4 5 

1 0 1 1 0 0 0 0 0 1 1 1 0 
2 1 0 0 0 0 0 0 0 2 1 1 0 
3 0 0 0 0 0 0 1 0 3 0 0 1 
4 0 0 0 1 1 1 1 1 4 0 0 1 
5 0 0 0 1 1 0 1 0 
6 0 0 0 0 0 0 0 1 1 detritus 4 Mytilus edulis 
7 0 0 0 0 0 0 0 1 2 plankton 5 Thais lapillus 
8 0 0 0 0 0 0 0 1 3 Balanus balanoides 
9 0 0 0 0 0 0 0 1 

1 attached algae 6 Cancer 
2 plankton 7 Portunus puber 
3 Anomia 8 Carcinus 
4 Paracentrotus 9 M arthasterias 
5 Gibbula eineraria 10 birds 

11 Protected rocky shore, New England, USA 

11 4 5 6 7 8 

1 0 0 1 1 0 
2 0 0 1 1 0 
3 1 1 0 0 0 
4 0 0 0 0 1 
5 0 0 0 0 1 
6 0 0 0 0 1 
7 0 0 0 0 1 

1 detritus 5 Littorina 
2 plankton 6 Mytilus edulis 
3 algae 7 Balanus balanoides 
4Acmaea testudinalis 8 Thais lapillus 

12 Exposed rocky shore, Washington 

12 4 5 6 7 8 9 10 11 12 13 

1 1 0 0 1 1 0 0 0 0 0 
2 1 0 0 1 1 0 0 0 0 0 
3 0 1 1 0 0 1 1 0 0 0 
4 0 0 0 0 0 0 0 1 1 1 
5 0 0 0 0 0 0 0 0 1 1 
6 0 0 0 0 0 0 0 0 1 1 
7 0 0 0 0 0 0 0 1 1 1 
8 0 0 0 0 0 0 0 0 1 0 
9 0 0 0 0 0 0 0 0 1 1 

10 0 0 0 0 0 0 0 0 0 1 
11 0 0 0 0 0 0 0 0 1 1 

1 detritus 8 Pollicipes 
2 plankton 9 chitons 
3 algae 10 Littorina 
4 acorn barnacles 11 Thais 
5 limpets 12 Pisaster 
6 Tegula 13 Leptasterias 
7 Mytilus califomianus 
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13 Protected rocky shore, Washington 

13 4 5 6 7 8 9 10 11 12 13 

1 1 0 0 1 0 0 0 0 0 0 
2 1 0 0 1 0 0 0 0 0 0 
3 0 1 1 0 1 1 0 0 0 0 
4 0 0 0 0 0 0 1 1 1 1 
5 0 0 0 0 0 0 0 1 1 1 
6 0 0 0 0 0 0 0 0 1 1 
7 0 0 0 0 0 0 1 0 1 1 
8 0 0 0 0 0 0 0 1 1 1 
9 0 0 0 0 0 0 0 0 1 1 

10 0 0 0 0 0 0 0 0 1 1 
11 0 0 0 0 0 0 0 0 1 1 

1 detritus 8 chitons 
2 plankton 9 Littorina 
3 algae 10 Thais 
4 acorn barnacles 11 S eariesia 
5limpets 12Pisaster 
6 other herbivorous gastropods 13 Leptasterias 
7 Mytilus edulis 

14 Mangrove swamp 1, Hawaii 

14 2 3 4 5 6 7 8 

1 1 1 1 0 1 0 0 
2 0 0 0 1 1 0 0 
4 0 0 0 0 0 1 0 
5 0 0 0 0 0 0 1 
6 0 0 0 0 0 0 1 
7 0 0 0 0 0 0 1 

1 detritus 5 Xiphophorous helleri 
2 Tendipes larvae 
3 Procambarus clarkii 

6 Melania indefinita 
7 Lebistes reticu/atus 

4 mosquito larvae 8 Eleotris sandwicensis 

15 Mangrove swamp 3, Hawaii 

15 2 3 4 5 6 7 8 9 

1 1 1 1 1 1 0 0 0 
2 0 0 0 0 0 1 0 0 
3 0 0 0 0 0 0 0 1 
4 0 0 0 0 0 0 0 1 
5 0 0 0 0 0 0 0 1 
6 0 0 0 0 0 0 1 0 
8 0 0 0 0 0 0 0 1 

1 detritus 6 mosquito farvae 
2copepods 7 Chonophorous genivittatus 
31fk,hophorous he/leri 8 Lebistes reticulatus 
4 eritina tahitiensis 9 Kuhlia sandvicensis 
5 Metopograpsis messor 
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16 Pamlico estuary, North Carolina 

16 5 6 7 S 9 10 11 12 13 14 

1 0 1 0 1 0 0 0 0 0 0 
2 1 1 0 1 0 0 0 0 0 0 
3 0 1 1 1 0 0 0 0 0 0 
4 0 0 0 0 0 0 0 1 0 0 
5 0 0 0 0 1 1 1 0 1 0 
6 0 0 0 0 0 0 0 1 0 0 
7 0 0 0 0 1 0 1 1 0 0 
S 0 0 0 0 0 0 0 0 0 1 

10 0 0 0 0 0 0 0 0 0 1 
11 0 0 0 0 0 0 0 0 0 1 

1 detritus SMugi/ 
2 dinoflagellates 9 smaJl ParaIichthys 
3 benthic diatoms 10 Brevoortia 
4 Ruppia 11 small Leiostomus, Micropogon 
5 Acartia tonsa, harpacticoids 12 CaIlinectes 
6 Rangia 13 Ctenophora 
7 GammtllUS, Paleomonetes 14Roccus, Cynoscion 

17 Coral reefs, Marshall Islands 

17 4 5 6 7 S 9 10 11 12 13 14 

1 0 1 0 0 0 1 0 0 0 0 0 
2 1 0 0 0 0 0 0 0 0 0 0 
3 0 0 1 0 0 1 0 0 0 0 0 
4 0 0 0 1 1 1 0 0 0 0 0 
5 0 0 0 0 0 1 1 0 0 0 0 
6 0 0 0 0 0 1 1 0 0 0 0 
7 0 0 0 0 0 0 0 1 0 0 1 
S 0 0 0 0 0 1 0 0 1 0 0 
9 0 0 0 0 0 0 0 0 0 1 1 

10 0 0 0 0 0 1 0 0 0 1 1 
11 0 0 0 0 0 0 0 0 0 0 1 
13 0 0 0 0 0 0 0 0 0 0 1 

1 detritus 8 corals 
2 ~ytoplankton 9 omnivores 
3 nthic algae 10 small benthic carnivores 
4 zooplankton 11 large midwater carnivores 
5 detritus feeders 12 coraJ feeders 
6 algal feeders 
7 small midwater plankton feeders 

13 large benthic carnivores 
14 transient carnivores 
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18 Kapingamarangi atoll, Polynesia 

18 3 4 5 6 7 8 9 11 12 14 15 16 21 22 23 24 25 26 27 

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 1 1 1 1 0 0 0 0 0 0 0 -1 0 0 0 0 

10 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
11 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
12 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 
15 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
16 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
17 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 0 
18 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 
19 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 
20 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 
21 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

1 algae 10 turtle grass 19Pantianus 
2 phytoplankton 11 sea turtles 20 breadfruit 
3 zooplankton 12 pig 21 insects 
4 invertebrates 13 coconut 22 skinks 
5 fish 14 rat 23 reef heron 
6 terns 15 coconut crabs 24 starlings 
7 frigate birds 16 fowl 25 land crustacea 
8 boobies 17 land vegetation 26 funrc snails, annelids 
9 man 18 Cyrtospemla 27 gec os 

19 Moosehead Lake, Maine 

19 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 
4 0 0 0 0 0 0 1 1 0 1 1 0 1 0 0 
5 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
8 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 
9 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

10 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 
11 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 
12 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

1 phyt0blankton 7 Leptodora 13 Prosopium 
2 ooze, acteria 80smerus 14Salmo 
3 zooplankton 9 Catostomus 15 Salvelinus 
4 chironomids 10 Gasterosteus 16 Lota 
5 littoral browsers 11 cyprinids 17 Cristivomer 
6 Chaoborus 12 Cottus 
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20 Antarctic pack ice zone 

20 4 5 6 7 8 9 10 11 12 l3 14 15 16 17 18 19 

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
2 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 
3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
4 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
6 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 
7 0 0 0 0 0 1 0 1 1 1 0 0 1 0 1 0 
8 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 
9 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 

10 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
11 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
l3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
15 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 

1 ef:ontic micro algae 11 predatory cephalopods 
2 p anktonic microalgae 12 whales, crabeater seals 
3 detritus 13 penguins, petrels 
4 copepods, Orchomonopsis 14 pycnogonids. polychaetes, Glyptonotus, 
5 bottom notothenids, fry of Trematomus Lineus, Odonaster 
6 phytoplankton filter feeders 15 ~edaiory fishes 
7 Euphausia sujJerba, E. crystallorophias 16 eddell seals 
8 benthic filter feeding invertebrates 17 toothed whales 
9 Trematomus borchgrevinki, Pleurogramma antarctica 18 leopard seals 

10 predatory planktonic invertebrates 19 predatory benthic fishes 

21 Ross Sea 

21 4 5 6 7 8 9 10 

1 1 1 0 0 0 0 0 
2 0 1 0 0 0 0 0 
3 0 1 0 0 0 0 0 
4 0 1 1 0 0 0 0 
5 1 0 1 1 1 1 1 
6 0 0 0 1 1 1 1 
7 0 0 0 0 1 1 1 
8 0 0 0 0 0 1 0 
9 0 0 0 0 0 0 1 

1 ice algae 6 fish 
2 phytoplankton 7 cephalopods 
3 detritus 8 penguins 
4 ice invertebrates 9 sealS 
5 zooplankton 10 whales 
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23 Prairie, Manitoba 

23 1 2 3 4 5 6 7 9 10 

1 0 1 1 0 0 0 0 0 0 
4 0 1 0 0 1 0 1 0 0 
5 0 1 1 0 0 0 0 0 0 
6 0 1 0 0 0 0 0 0 0 
8 1 0 0 1 1 1 0 1 0 
9 0 0 0 0 1 0 0 0 1 

10 0 0 0 0 0 0 0 0 0 
11 0 0 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 1 0 0 
14 0 0 0 0 0 0 0 0 0 

1 Richardson spermophile (ground squirrel) 
2 marsh hawk, coyote, red·tailed hawk, weasel 
3 badger 
4 vole (Microtus) 
5 13-striped spermophile (ground squirrel) 
6 pocket gopher (Thomomys) 
7 great homed owl 

11 12 13 14 15 

0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
1 -1 -1 0 0 
0 1 1 1 1 
0 0 0 1 0 
0 1 1 0 0 
0 0 0 0 0 
0 0 0 0 1 

8Agropyron, Stipa, Helianthus 
9 insects in herb aild surface stratum, Diptera, Hemiptera, grasshoppers, etc. 

10 spiders 
11 insects in soil stratum, wire worms, cutworms, white grubs, etc. 
12 meadow lark, chipping sparrow, clay-colored sparrow, vesper sparrow, homed lark, upland plover 
13 crow 
14 frog 
15 garter snake 

24 Willow forest, Manitoba 

24 2 3 4 7 8 9 10 12 

1 1 0 0 0 0 ·1 0 0 
5 1 0 0 0 1 ·1 0 0 
6 1 0 0 0 0 1 0 0 
7 0 1 1 0 0 0 ·1 0 
8 0 ·1 0 1 0 0 1 0 
9 0 0 1 1 0 0 1 0 

10 0 0 0 0 0 0 0 1 
11 0 0 0 0 0 0 1 0 

1 Salix discolor 
2 Galerucella decor a 
3 redwinged blackbird, bronze grackle, song sparrow 
4 Maryland yellowthroat, yellow warbler, song sparrow 
5 Salix petiolaris 
6 Salix longifolia 
7 spiders 
8 insects, Pontonia petiolaridis, Collembola 
9 insects, Disyonicha quinquevitata, CollemboIa 

10 Rona pipiens 
11 snaiIs 
12 garter snake 
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25 Aspen co=unities, Manitoba 

25 1 2 3 4 5 6 7 9 10 11 12 13 15 16 17 18 19 21 22 23 24 25 

1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
5 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
6 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
7 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
8 0 1 0 0 1 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 

10 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
14 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
15 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
16 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
18 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 
19 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
20 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0 0 
21 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
22 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

1 Baltimore oriole, chickadee, least flycatcher, warbling vireo, rosebreasted grossbeak, willow thrush 
2 canker, fomes 
3 hairy and downy woodpeckers 
4 spiders (mature forest) 
5 insects (mature forest) 
6 Dicera, Saperda 
7 red squirrel 
8 Populus, Comus, Corylus, Pyrola, Aralia 
9 goshawk 

10 redbacked vole (Evolomys) 
11 Cooper's and sharpshinned hawks 
12 great horned owl 
13 ruffed grouse 
14 flicker 
15 crow 
16 house wren 
17 ticks 
18 snowshoe rabbit 
19 red-eyed vireo, yellow warbler, gold finch, catbird, brown thrasher, towhee, robin 
20 PlUIUS, rvthon: Corylus, Prunus, Amelanchier 
21 r backe vole, Fr . ground squirrel 
22 insects (forest e~e) 
23 spiders (forest e gel 
24 snails 
25 frogs 
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27 Wytham Wood, England 

27 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
2 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 
3 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 
5 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 
6 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 1 1 
7 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 
9 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 

10 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
11 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 
12 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
14 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
16 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 

1 herbs 9 earthworms 17 parasites 
2 trees and bushes 10 fungi . 18 owls 
3 oak trees 11 voles, DlIce 19 weasels 
4 total litter 12 spiders 20 hyperparasites 
5 insects 13 tItmice 21 shrews 
6 winter moth 14 Cyzenis 22 moles 
7 Tartrix 15 Philanthus, Abax, Feronia 
8 leaf feeders 16 soil insects, mites 
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28 Salt meadow, New Zealand 

28 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 
·2 0 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
5 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
6 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
7 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
16 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 humus 13 other hemiptera 25 bumblebees 
2 leaves 14 rabbits 26 adult f&enopterans 
3 flowers 15 Uromyces scaevolae 27redpo 
4 seeds 16 fungi 28 carnivorous nematodes 
5 roots 17 collembola 29 tartigrades 
6 algae 18 harpacticoids 30 parasitic hymenopterous larvae 
7 bacteria 19 staphy1inids 31 Trichostrongylus retortaeJonnis 
8 protozoa, rotifers 20 dipterous larvae 32 Graphidium strigosum 
9 phyt:tfJhagous nematodes 21 ha~lotaxid worms 33 Passalurus ambiguus 

10 wee . larvae 22 on atids 34 stoats 
11 coccids 23 mites 35 harrier hawks 
12lepidopterous larvae 24 amphipods 36 trombidiform mites 

29 Arctic seas 

29 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 0 0 
6 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 

11 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
13 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

1 phytoplankton 9 rorquals 17 walrus 
20etritus 10 arctIc char 18 h:bseal 
3 smaller zooklankton 11 caplin 19 har our seal 
4 larger zoop ankton 12 cod 

20 kYtfeed seal 5 bacteria 13 benthonic vertebrates 21 . erwhale 
6 benthonic invertebrates 14 bearded seals 22 Greenland shark 
7 right whales 15 beluga 
8 clupeid fishes 16 narwhal 
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(Web 28 cont.) 

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 

37 spiders 
38 ants 
39 starlings 
40 Dotterel 
41 hymenolepidid cestodes 
42 nematode Echinuria 
43 analgesid mites 
44 other mites 
45 lice 

30 Antarctic seas 

30 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 1 1 0 0 0 0 0 0 0 0 0 0 0 
2 0 0 1 1 1 1 0 1 0 0 0 0 0 
3 0 0 1 0 1 1 1 0 0 0 0 0 0 
4 0 0 0 0 1 1 1 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 0 0 0 0 0 1 
6 0 0 0 0 0 0 0 0 1 0 1 0 0 
7 0 0 0 0 1 0 1 0 1 1 0 0 0 
8 0 0 0 0 1 1 0 0 1 1 1 1 0 
9 0 0 0 0 0 0 0 0 0 0 1 0 0 

10 0 0 0 0 0 0 0 0 0 0 1 0 0 
11 0 0 0 0 0 0 0 0 0 0 1 0 1 
13 0 0 0 0 0 0 0 0 0 0 0 0 1 

1 phytoplankton 8 squid 
2 Euphausia superba 9 crabeater seal 
3 other herbivorous plankton 10 leopard seal 
4 carnivorous plankton 11 elephant seal 
5 baleen whales 12 smaller toothed whales 
6 birds 13 sperm whale 
7 fIsh 14 man 
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31 Epiplankton communities, Black Sea 

31 3 4 5 6 7 8 9 10 11 12 13 14 

1 1 1 1 1 1 1 1 1 1 1 0 0 
2 0 0 1 1 1 1 1 1 1 0 0 0 
3 0 0 1 1 0 1 1 1 1 0 0 0 
4 0 0 0 1 0 1 1 1 1 0 0 0 
5 0 0 0 0 0 0 0 0 1 1 1 0 
6 0 0 0 0 0 0 0 0 1 1 1 1 
7 0 0 0 0 0 0 0 0 0 1 1 1 
8 0 0 0 0 0 0 0 0 1 0 1 0 
9 0 0 0 0 0 0 0 0 1 1 1 0 

10 0 0 0 0 0 0 0 0 0 0 1 1 
11 0 0 0 0 0 0 0 0 0 1 1 1 
12 0 0 0 0 0 0 0 0 0 0 1 1 
13 0 0 0 0 0 0 0 0 0 0 0 1 

1 detritus 8 larvae of molluscs and polychaetes 
2 phytoplankton 9 naupliuses 
3 saprophagous plankton 10 IV-VI copepodites of Calanus and Pseudocalanus 
4 large-sized phytoplankton 11 mixed-food consumers 
5 Oikol/eura U primary carnivores 
6 II-II copepodites 13 secondary carnivores 
7 IV-VI copepodites of Paraca/anus 14 tertiary carnivores 

32 Bathyplankton communities, Black Sea 

32 3 4 5 6 7 8 9 10 11 12 13 14 

1 1 1 1 1 1 1 1 1 1 1 0 0 
2 0 0 1 1 1 1 1 1 1 0 0 0 
3 0 0 1 1 0 1 1 1 1 0 0 0 
4 0 0 0 1 0 1 1 1 1 0 0 0 
5 0 0 0 0 0 0 0 0 1 1 1 1 
6 0 0 0 0 0 0 0 0 1 1 1 1 
7 0 0 0 0 0 0 0 0 0 1 1 1 
8 0 0 0 0 0 0 0 0 1 0 1 0 
9 0 0 0 0 0 0 0 0 1 1 1 0 

10 0 0 0 0 0 0 0 0 0 0 1 1 
11 0 0 0 0 0 0 0 0 0 1 1 1 
12 0 0 0 0 0 0 0 0 0 0 1 1 
13 0 0 0 0 0 0 0 0 0 0 0 1 

1 detritus 8 larvae of molluscs and polychaetes 
2 phytoplankton 9 naupliuses 
3 saprophagous plankton 10 IV-VI copepodites of Calanus and Pseudocalanus 
4 large-sized phytoplankton 11 mixed-food consumers 
5 Oi'Df,/eura 12 prim:ta carnivores 
6 II - copepodites 13 secon ary carnivores 
7 IV-VI copepodites of Paracalanus 14 tertiary carnivores 



33
 C

ro
co

di
le

 C
re

ek
, 

M
al

aw
i 

33
 

1 
2 

3 
4 

5 
6 

7 
9 

10
 

11
 

1
2

 
13

 
14

 
15

 
16

 

7 
1 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

8 
1 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

9 
0 

0 
0 

0 
1 

1 
0 

0 
0 

0 
0 

0 
0 

0 
0 

1
2

 
0 

0 
0 

1 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

13
 

0 
0 

1 
1 

0 
0 

0 
1 

0 
0 

0 
0 

0 
0 

0 
15

 
0 

1 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

18
 

0 
0 

0 
0 

1 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
19

 
0 

1 
1 

1 
0 

0 
0 

0 
0 

0 
0 

1 
0 

0 
0 

20
 

0 
1 

1 
1 

0 
0 

0 
1 

0 
0 

0 
0 

1 
0 

0 
21

 
0 

0 
0 

1 
0 

0 
0 

0 
1 

0 
0 

0 
0 

0 
0 

22
 

0 
0 

0 
1 

0 
0 

0 
0 

0 
0 

0 
0 

1 
0 

1 
27

 
0 

1 
1 

0 
0 

0 
1 

0 
1 

0 
1 

1 
0 

1 
0 

29
 

0 
0 

0 
0 

0 
0 

0 
0 

1 
0 

0 
0 

0 
0 

0 
31

 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

33
 

0 
0 

0 
0 

0 
0 

0 
0 

0 
1 

0 
0 

0 
0 

1 

1 
C

ro
co

di
lu

s 
ni

lo
ti

cu
s 

12
 m

os
qu

it
o 

la
rv

ae
 

2 
ju

ve
ni

le
 C

ic
hl

id
ae

 
13

 C
yc

lo
po

id
 c

op
ep

od
s 

3 
B

ar
bu

s 
in

ll
oc

el
ls

 
14

 Z
yg

op
te

ri
d 

la
rv

ae
 

4 
Se

rr
an

oc
hr

om
is

 r
ob

us
tu

s 
15

 C
ar

id
il

la
 n

il
ot

ic
a 

5 
N

au
co

ri
s 

sp
. 

16
 B

ar
il

iu
s 

m
ic

ro
ce

ph
al

us
 

6 
C

la
ri

as
 m

el
la

ll
di

 
17

 T
il

ap
ia

 s
hi

ra
na

, 
T.

 s
ak

a-
sq

ua
m

ip
in

ll
is

 
7 

fr
og

s 
18

 G
r:

au
1u

s 
co

st
ul

at
us

 
8 

D
yt

is
ci

d 
be

et
le

s 
19

 C
 a

do
ce

ra
 

9 
A

ni
so

pt
er

id
 la

rv
ae

 
20

 C
hi

ro
no

m
id

 la
rv

ae
 

10
 B

ar
bu

s p
al

ud
in

os
us

 
21

 c
ad

di
s 

la
rv

ae
 

11
 A

le
st

es
 im

be
ri

 
22

 B
ae

ti
d 

ny
m

ph
s 

17
 

18
 

19
 

20
 

21
 

22
 

23
 

24
 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

1 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

1 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

1 
1 

1 
1 

1 
1 

1 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
1 

23
 M

ic
ro

ne
ct

a 
24

 B
ar

bu
s 

sp
. 

25
 S

eg
m

en
lo

rb
is

 a
ng

us
tu

s 
26

 L
im

n
a

ea
 s

p.
 

27
 b

ot
to

m
 a

lg
ae

 a
n

d
 d

et
ri

tu
s 

28
 H

ih
lO

C
hr

om
is

 s
im

il
is

 
29

 h
i 

er
 p

la
nt

s 
30

 C
la

ri
as

 m
o

ss
a

m
b

ic
u

s 
31

 i
nd

et
. f

is
he

s 
3

2
 G

er
ri

d
s 

33
 t

er
re

st
ri

al
 in

se
ct

s 

25
 

26
 

28
 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
1 

1 
1 

0 
0 

1 
0 

0 
0 

0 
0 

0 

30
 

32
 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

1 
0 

1 
0 

1 
1 

0 I:T
 

.g ~
 

~ :< t::
l co ~
 '" 0 I:l
 .... .... (.

0)
 

0 0 ~ §. ~ '<
 61 0 A
- ~ 0
- '" ~
 

~
 

10
 



230 Chapter IV. Data on 113 Community Food Webs 

34 River Clydach, Wales 

34 5 6 7 8 9 10 11 12 

1 1 1 0 1 1 0 0 0 
2 0 1 0 0 1 0 1 0 
3 0 1 1 1 0 0 0 0 
4 0 1 1 1 1 0 0 0 
5 0 0 0 0 0 0 1 0 
6 0 0 0 0 1 1 1 1 
7 0 0 0 0 0 0 1 1 
8 0 0 0 0 0 1 0 1 
9 0 0 0 0 0 1 1 1 

10 0 0 0 0 0 0 0 1 

1 leaf fragments 7 Philopotamus 
2 Ulothrix and other green algae 8 Ecdyonurus 
3 detritus 9 Hydropsyche 
4 diatoms 10 Rhyacophila 
5 Protonemura 11 Perla 
6 Leuctra, Baetis, Ephemerella, 12 Dinocras 

Simulium chironomids 

35 Morgan's Creek, Kentucky 

35 1 2 3 4 5 6 7 8 9 10 

6 1 0 0 1 1 0 0 0 0 0 
7 0 0 1 1 1 1 0 0 0 0 
8 1 0 1 1 1 1 0 0 0 0 
9 0 1 1 0 0 1 1 0 0 0 

10 0 1 1 1 0 0 0 0 0 0 
11 0 1 1 0 1 1 1 0 0 0 
12 0 1 0 0 0 1 1 1 1 1 
13 0 0 0 0 0 0 1 1 1 1 

1 Phagocata 
2 Decapoda - Orcollectes, Cambarus 
3 Plecoptera - [sopena, Isogellus 
4 Megaloptera - Nigronia, Sialis 
5 Pisces - Rhinichthys, Semotilus 
6 Gammarus 
7 Trichoptera - Diplectrona, Rhyacophila 
8 Asellus 

11 

0 
0 
0 
0 
0 
0 
1 
1 

9 Ephemeroptera - Baetis, Celltroptilurn, Epeorus, Paraleptophlebia, Pseudocloeon 
10 Trichoptera - Neophylax, Glossosoma 
11 Diptera - Tendipedidae, Simulium 
12 detritus 
13 diatoms 
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36 Mangrove swamp 6, Hawaii 

36 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 
2 1 1 1 1 1 1 1 0 1 0 0 0 1 1 
3 0 0 1 1 0 1 0 0 0 0 0 0 0 0 
4 0 0 0 1 1 1 1 0 1 0 0 0 0 0 
5 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
6 0 0 0 0 0 1 1 0 0 0 1 0 0 0 
7 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
8 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

11 0 0 0 0 0 1 1 1 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 0 1 1 1 0 0 0 
15 0 0 0 0 0 0 0 0 1 1 0 0 0 0 
16 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
17 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

1 detritus 9 Tilapia mossambica 17 Charybdis orientalis 
2 diatoms 10 Podophthalmus vigil 18 Scylla seTTata 
3 Chlamydomonas 11 copepods 19 Eleotris sandwicensis 
4 Ulothrix 12 Metopograpsis messor 20 Conger marginatus 
5 nematodes 13 Macrobrachium 21 Mugil cephalus 
6 ostracods 14 Oxyurichthyes lonchotus 22 Chonophorous genivittatus 
7 Melampus parvulus 15 Palaemonetes 
8 Littorina scabra 16 Kuhlia sandvicensis 
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40 Rain forest, Malaysia 

40 2 3 4 5 7 8 9 10 11 

1 1 0 1 1 0 0 0 0 0 
4 1 1 0 0 1 1 0 1 0 
6 0 0 0 0 1 0 0 0 0 
7 0 0 0 0 0 1 0 0 0 
9 0 0 1 1 0 0 0 1 1 

11 0 0 0 0 0 0 0 1 0 

1 canopy - leaves, fruits, flowers 
2 canopy animals - birds, fruit bats and other mammals 
3 upper air animals - birds and bats, insectivorous, carnivorous 
4 insects 
5 large ground animals - large mammals and birds 
6 trunk, fruit, flowers 
7 middle zone scansorial animals - mammals in both canopy and ground zones 
8 middle zone flying animals - birds and insectivorous bats 
9 ground - roots, fallen fruit, leaves and trunks 

10 small ground animals - birds and small mammals 
11 fungi 

41 Tropical seas, epipelagic zone 

41 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 
4 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 
6 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 
7 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 
8 0 0 0 0 1 0 1 0 1 0 0 0 1 1 0 0 
9 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
11 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 
12 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 
13 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 
15 0 0 0 0 0 0 0 0 0 0 0 0 0 a 1 1 
16 0 0 a 0 0 0 0 a a a a 0 1 0 1 1 
17 0 0 0 0 0 0 0 0 0 0 0 0 a a 0 0 
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 coccoIithJrahores 11 other mesopelagic fIShes 
2 dinoflage ates 12 snake mackerel 
3 euphausiids 13 squid 
4 copepods 14 dolphin Coryphaena 
5 shrimps 15 tuna 
6 vertically migrating mesopelagic fIShes 161ancetfish 
7 flying fishes 17 marlin 
8 hyperiid ampbipods 18 medium-sized sharks 
9 lantemfish 19 large sharks 

10 ocean sunfISh 

235 

19 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
1 
1 
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42 Upwelling areas, Pacific Ocean 

42 6 7 8 9 10 11 12 13 14 15 16 

1 0 0 1 1 1 1 1 0 0 0 0 
2 0 0 0 0 0 1 1 0 0 0 1 
3 0 0 0 0 0 0 1 0 0 0 1 
4 1 0 0 0 0 0 0 0 0 0 0 
5 1 1 0 0 0 0 0 0 0 0 0 
6 0 1 1 1 1 0 0 0 0 0 0 
7 0 0 1 1 1 0 0 0 0 0 0 
8 0 0 0 1 1 1 1 1 1 0 0 
9 0 0 0 0 0 0 0 1 1 1 1 

10 0 0 0 0 0 0 0 1 1 1 1 
11 0 0 0 0 0 0 0 0 1 1 1 
12 0 0 0 0 0 0 0 0 0 1 0 
13 0 0 0 0 0 0 0 0 1 1 1 
14 0 0 0 0 0 0 0 0 0 1 1 
15 0 0 0 0 0 0 0 0 0 0 1 

1 small phytoplankton 9 meroplankton, appendicularians, doliolids 
2 medium phytoplankton 10 small calanoids 
3 large phytoplankton 11 medium-sized calanoids 
4 detritus 12 juvenile euphausiids 
5 dissolved organic matter 13 cyclopoids 
6 bacteria 14 calanoids, small tomopterids, small coelenterates 
7 zooflagellates 15 chaetognaths, polychaetes 
8 ciliates 16 anchovy 

43 Kelp bed community, south California 

43 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

1 1 0 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 
2 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 
3 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 
4 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 
6 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 
7 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 1 
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
9 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
11 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
13 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 
14 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
15 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

1 detritus 12 Tethya aurantia 
2 fiytoplankton 13 Diopatra ornata 
3 acrocystis pyrifera 14 Paguristes ulreyi 
4 Pte~ora cali/arnica 15 K.ellena lcelleni 
5 zoop on 16 Astrometis sertult:ra 
6 Astraea undosa 17 Octopus bimacu atus 
7 Strongylocentrotus IJUlpuratus 18 Pisaster giganteus 
8 Strongylocentrotus [ranciscanus 19 Pimelometopon pulchrum 
9 Styela montereyensis 20 Pisaster brevis.pinus 

10 Tealia coriacea 21 Dennasterias unbricata 
11 Parapholas cali/ornica 
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44 Marine coastal lagoons, Guerrero, Mexico 

44 4 5 6 7 8 9 10 11 12 

1 1 1 0 0 1 1 0 0 0 
2 1 1 1 1 0 1 1 1 0 
3 0 1 1 1 0 0 1 0 0 
4 0 0 0 0 1 1 1 0 0 
5 0 0 0 0 1 0 1 1 0 
6 0 0 0 0 0 0 1 0 0 
7 0 0 0 0 0 0 1 1 0 
8 0 0 0 0 0 0 1 0 0 
9 0 0 0 0 0 0 1 0 0 

10 0 0 0 0 0 0 0 1 1 
11 0 0 0 0 0 0 0 0 1 

1 benthic algae 7 insects 
2 detritus 8 CaIlinectes 
3 phytoplankton 9Penaeus 
4 micro- and meio-benthos 10 fishes ~type 1~ 
5 mollusks 11 fishes type 2 
6 zooplankton 12 fishes type 3 

45 Cone Spring, Iowa 

45 2 3 4 5 6 7 8 9 10 11 

1 1 1 1 1 1 1 0 0 1 0 
2 0 0 0 0 0 0 1 1 0 0 
3 0 0 0 0 0 0 1 1 1 1 
4 0 0 0 0 0 0 0 0 1 1 
6 0 0 0 0 0 0 1 0 0 1 
7 0 0 0 0 0 0 0 0 1 1 

10 0 0 0 0 0 0 0 0 0 1 

1 detritus 7 Tubifex 
2 Frenesia 8 Rhantus 
3 GammtllUs 9 Chauliodes 
4 tendipedid 10 Pentaneura 
5Physa 11 Phagocata 
6 Cardiocladius 
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46 Lake Texoma, Texas 

46 8 9 10 11 12 13 14 15 16 17 18 19 

1 1 0 0 0 1 1 0 1 1 1 0 0 
2 0 0 0 1 0 1 0 1 1 1 0 0 
3 0 0 0 0 0 1 0 1 1 1 0 0 
4 0 1 1 0 0 1 0 1 1 1 1 0 
5 0 1 1 0 0 1 0 1 0 1 1 0 
6 0 1 1 0 0 0 0 0 0 0 0 0 
7 0 0 1 0 0 0 0 0 0 0 0 0 
8 0 0 0 1 1 1 1 1 1 1 1 0 

10 0 0 0 0 0 0 0 0 0 0 1 0 
11 0 0 0 0 0 1 1 1 1 1 0 0 
12 0 0 0 0 0 0 0 1 1 1 1 1 
13 0 0 0 0 0 0 1 1 1 1 1 0 
14 0 0 0 0 0 0 0 1 1 1 1 1 
15 0 0 0 0 0 0 0 0 1 1 1 0 
16 0 0 0 0 0 0 0 0 0 0 1 1 
17 0 0 0 0 0 0 0 0 0 0 1 1 
18 0 0 0 0 0 0 0 0 0 0 0 1 

1 small phytoplankton 11 medium zorelankton 
2 medium phytoplankton 12 suspension- eeding invertebrates 
3 large phytoplankton 13 fish larvae 
4 ~81 mats, crusts 14 invertebrate ~redators 
5 su mergent vascular plants 15 finger!ing fis es 
6 emergent vascular plants 16 fiIter-re= minnow-like fishes 
7 animal carcasses 17 bottom-~ fishes 
8 small zooplankton 18 carnivorous tis es 
9 herbivorous vertebrate harvesters 19 carnivorous vertebrate harvesters 

10 turtles 
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48 Nearshore marine 1, Aleutian Islands 

48 4 5 6 7 8 9 10 11 12 13 

1 0 0 1 1 0 1 0 0 0 0 
2 0 1 1 0 0 0 0 0 0 0 
3 1 0 1 0 0 0 0 0 0 0 
4 0 0 0 0 1 1 0 0 0 0 
5 0 0 0 0 1 0 1 0 0 0 
6 0 0 0 0 0 0 0 0 1 0 
7 0 0 0 0 0 0 1 0 0 0 
9 0 0 0 0 0 0 1 0 1 0 

10 0 0 0 0 0 0 0 1 1 1 
11 0 0 0 0 0 0 0 0 0 1 
12 0 0 0 0 0 0 0 0 0 1 

1 detritus 8 asteroids 
2 macroalgae 9decapods 
3 nearshore phytoplankton 10 nearshore fishes 
4 mussels 11 harbor seals 
5 chitons, gastropods, limpets 12 sea otters 
6 sea urchins 13 prehistoric Aleut man 
7 epibenthic crustacea 

49 Nearshore marine 2, Aleutian Islands 

49 4 5 6 7 8 9 10 11 12 

1 0 0 1 1 0 1 0 0 0 
2 0 1 1 0 0 0 0 0 0 
3 1 0 1 0 0 0 0 0 0 
4 0 0 0 0 1 1 0 0 1 
5 0 0 0 0 1 0 1 0 1 
6 0 0 0 0, 0 0 1 0 1 
7 0 0 0 0 0 0 1 0 0 
9 0 0 0 0 0 0 0 1 1 

10 0 0 0 0 0 0 0 0 1 
11 " 0 0 0 0 0 0 0 0 1 

1 detritus 7 epibenthic crustacea 
2 macroalgae 8 asteroids 
3 nearshore phytoplankton 9 decalhcds 
4 mussels 10 near ore fishes 
5 chitons, gastropods, limpets 
6 sea urchins 

11 octol'uses 
12 prehistoric Aleut man 
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50 Sand beach, California 

50 3 4 5 6 7 8 9 10 11 12 13 14 

1 1 1 1 a a a 1 1 a a a a 
2 a 1 1 1 1 1 a a a a a a 
3 a a a a a a 0 a a a 1 0 
4 a a a a a a a 1 a a a a 
5 a a a a a a 0 a a a 1 1 
6 a a a a a a a a 1 1 a a 
7 a a a a a a a a 1 a a a 
8 a a a a a a a a 0 0 a 1 
9 a a a a a a a a a a a 1 

10 a 0 a a a a a a a a 1 1 
11 a a a a a a a a a 1 a 1 

1 debris 80livella 
2 plankton 9 Thoracophelia 
3 amphipods 10 Nepthys 
4 Blepharipoda 11 Policines 
5 Emerita analoga 12 sea otter 
6 Tivela stultorum 13 birds 
7 Donax 14 fIshes 

51 Shallow sublittoral, Cape Ann, Massachusetts 

51 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

1 1 1 1 1 1 a a a a a 1 a a a a a a a a a a 
2 a a a a a 1 a a 0 a a a 1 a 0 0 a a a 0 a 
3 a a a a a 1 1 1 a a a a a a 0 a a a 0 a a 
4 a a a a a a a a 1 1 a a a a 0 a a a 0 a a 
5 a a a a a a a 0 a a 1 1 a a a 1 a 1 0 a 1 
6 a a a a a a a a a a a a 1 0 0 a a a 1 a a 
7 a a a a a a 0 a a a a a 1 1 0 a 1 0 1 a a 
8 a a a a a a a 0 a a a a 1 a a a a a 1 a a 
9 a a a a a a 0 a a a a a 1 a 0 a a a a a a 

10 a 0 a a a a 0 a a a a a a a 0 a a 1 1 a a 
11 a a a a a a a a a a a 0 a 1 a 0 a a 1 a 0 
12 a a a a a a a a a a a a a a 0 0 0 a 1 0 0 
13 a a a a a a 0 a a a a a a a 0 a a 1 1 a a 
14 a a a a a a 0 a a a 0 a a a 1 a a 0 1 a a 
15 a a a 0 0 0 0 0 0 0 0 a 0 0 0 0 0 1 0 1 0 
16 a a 0 0 0 0 a a a a a a a a a 1 0 1 0 0 a 
17 a a a a a a a a 0 a a a a a a 0 a a 1 0 0' 
18 a a a a a a a a a a a a a a 0 a 1 a 1 a a 
21 a 0 a a a a 0 a a a a a a a 0 a a 1 a a a 
22 a 0 a a a a a a a 0 0 a a a 0 a 0 0 a 1 a 
23 0 a a 0 a a 0 0 a a a 0 0 a 0 0 0 a 0 0 1 

1 plankton and detritus 10 isopods, Gammarus, Caprella 19 Limulus 
2 organic debris 11 Littorina littorea 20 Raja 
3 macroalgae 12 Strongylocentrotus 21 Asterias 
4 organic matter in mud 13 Crago 22 Pomatomus, Poronatus 
5 Fundulus, fish fry 14 annelids 23 Myoxocephalus 
6 Chalina 15 Scomber, Qupea 24Phoca 
7 Mytilus, Gemma 16 Loligo 25Stema 
8Abietinaria, Sertularia, Metridium 17 Pagurus, Cancer 
9 Lichenophora 18 Polinices 
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52 Rocky shore, Torch Bay, Alaska 

52 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 
6 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 
7 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 1 
8 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0 
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 
11 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 
14 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 

1 benthic algae 9 anemones, tunicates 17 Dennasterias 
2 plankton, oetritus 10 bryozoa 18Pisaster 
3 Tonicella, Acmaea mitra 11 Halichondria 19 Thais canaliculata 
4 urchins 12 Katharina 20 Emplectonema 
5 limpets 13 Searlesia 21 Leptasterias 
6 Littorina 14 Thais sp. 22 Thais lima 
7 barnacles 15 flcnopodia 
8 Mytilus edulis 16 enricia, Archidoris 

53 Rocky shore, Cape Flattery, Washington 

53 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 
4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 
6 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
12 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

1 benthic algae 9 anemones 17 Thais sp, Emplectonema, Ceratostoma 
2 ~ankton, detritus 10 Mytilus califomianus 18 Leptasterias 
3 onicella, Acmaea mitra 11 Halichondria 19 Thais canaliculata 
4 urchins 12 Katharina 20 Dennasterias 
5 limpets 13 Tegula 21 Henricia, Archidoris 
6 Littorina 14 fJ;!:rbis 22Pisaster 
7 barnacles 15 opodia 
8 Mytilus edulis 16 Searlesia 
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54 Western rocky shore, Barbados 

54 5 6 7 8 9 10 11 12 13 14 15 

1 0 0 0 0 0 0 0 1 0 0 0 

2 1 1 1 0 0 0 0 1 0 0 0 

3 0 0 1 0 0 0 0 0 1 0 0 

4 0 0 0 1 1 1 1 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 1 0 

7 0 0 0 0 0 0 0 0 0 0 1 

8 0 0 0 0 0 0 0 1 1 0 1 

9 0 0 0 0 0 0 0 0 1 0 0 
10 0 0 0 0 0 0 0 0 0 1 0 
11 0 0 0 0 0 0 0 0 1 0 0 

12 0 0 0 0 0 0 0 0 0 1 0 

13 0 0 0 0 0 0 0 0 0 0 1 

14 0 0 0 0 0 0 0 0 0 0 1 

1 Porolithon, Lilhophyllum 9 Spirobranchus giganleus 
2 ChaetomoXha, Enleromorpha, Cladophora, diatoms 10 Tetraclila squamosa 
3 organic de ris 11 bryozoans 
4 plankton, detritus 12 Acanthopleura granulata 
5 Nodolittorina tuberculata, Littorina sp. 13 Grapsus grapsus 
6 Fissurella barbadellSis, Acmaea jamaicensis 14 Pu~ura patula 
7 Enchinometra lucunler 15 ree fishes 
8 sponges 

55 Mudflat, Ythan estuary, Scotland 

55 2 3 4 5 6 7 8 9 10 11 12 

1 1 1 1 1 0 0 0 0 0 0 0 
2 0 0 0 0 1 1 1 1 0 0 0 
3 0 0 0 0 0 0 0 0 1 0 0 
4 0 0 0 0 0 0 0 1 1 0 0 
5 0 0 0 0 0 1 1 1 1 0 0 
7 0 0 0 0 0 0 0 0 0 1 1 
8 0 0 0 0 0 0 0 0 0 0 1 

1 detritus 7 flounder 
2 Corophium, Hydrobia, Littorilla 8 shelduck 
3 Arenicola 9 redshank, dunlin, knot 
4 Macoma, Cardium 10 oystercatcher 
5 nereids 11 cormorant, heron, merganser 
6goby 12 gulls 
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56 Mussel bed, ythan estuary, Scotland 

56 2 3 4 5 6 7 8 9 10 11 12 

1 1 1 1 1 0 0 0 0 0 0 0 
2 0 0 0 0 1 1 0 0 0 0 1 
3 0 0 0 0 0 1 1 0 0 0 1 
4 0 0 0 0 0 0 1 0 0 0 0 
5 0 0 0 0 0 0 1 1 1 1 0 
7 0 0 0 0 0 0 0 0 0 0 1 

1 detritus 7 eider 
2 Mytilus 8 turnstone 
3 Carcinus 9 butterfish 
4Corophium lOblenny 
5 gammarids l1goby 
6 oystercatcher 12guIls 

57 Brackish lagoons, Guerrero, Mexico 

57 4 5 6 7 8 9 

1 1 0 1 0 0 0 
2 1 1 1 1 1 0 
3 0 1 0 1 0 0 
4 0 0 1 1 0 0 
5 0 0 0 1 1 0 
6 0 0 0 1 1 1 
7 0 0 0 0 1 1 
8 0 0 0 0 0 1 

1 benthic algae 6 Macrobranchium 
2 detritus 7 fishes ~type 1~ 3 phytoplankton 8 fishes type 2 
4 micro- and meio-benthos 9 fishes type 3 
5 zooplankton, insects 
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58 Sphagnum bog, Russia, USSR 

58 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 1 0 0 0 0 0 0 0 0 0 0 0 0 
2 1 0 0 0 0 0 0 0 0 0 0 0 0 
3 0 1 0 0 0 0 0 0 0 0 0 0 0 
4 0 0 1 0 0 1 0 0 0 0 0 0 0 
5 0 0 0 1 0 0 0 0 0 0 0 1 0 
6 0 0 0 0 0 0 1 1 0 0 0 0 0 
7 0 0 0 0 1 0 1 1 0 0 0 0 0 
8 0 0 0 0 0 1 0 0 0 1 0 0 0 
9 0 0 0 0 0 0 0 0 0 0 0 1 0 

12 0 0 0 0 0 0 0 1 0 0 0 0 0 
13 0 0 0 0 0 0 0 0 1 1 1 0 0 
15 0 0 0 0 0 0 0 0 0 0 1 0 0 
16 0 0 0 0 0 0 0 0 0 0 0 1 0 
17 0 0 0 0 0 0 0 0 0 0 0 0 1 

1 ~hagnUm riparium 10 Utricularia 
2 ae 11 collembola 
3 detritus U OUWbOTUS, Odonata larvae, Hemiptera, Coleoptera 
4 decomposing sphagnum 13 Nematocera imagines 
5 angiosperms 14 Drosera 
6 Psectrocladius larvae 15 ants 
7 chironomid larvae, cIadocerans, rotifers 16 spiders 
8 fungi . 17 fro~, lizards, birds 
9 caterpillars 18 bir of prey 
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61 Barren regions, Spitsbergen 62 Reindeer pasture, Spitsbergen 

61 3 4 5 6 7 8 9 62 4 5 6 7 8 9 10 11 12 

1 1 1 1 0 0 1 0 1 1 1 1 1 0 0 0 0 0 
2 0 0 0 1 0 0 0 2 0 0 0 0 1 0 0 0 0 
5 0 0 0 0 1 1 1 3 0 0 0 0 0 1 0 0 0 
6 0 0 0 0 0 0 1 6 0 0 0 0 0 0 0 1 0 
7 0 0 0 0 0 1 1 7 0 0 0 0 0 0 1 1 0 

8 0 0 0 0 0 0 1 0 0 
1 lichens, mosses 6 worm (Lumbricillus) 9 0 0 0 0 0 0 0 1 0 
2 detritus 7 spider 10 0 0 0 0 0 0 0 1 0 
3 scarlet mite 8 snow bunting 11 0 0 0 0 0 0 0 0 1 
4 reindeer 9 purple sandpiper 
5 landflies, adult 

chironomids, 1 lichens, mosses, phanerogams 
Achorutes 2 reindeer dung 

3 ~ae, detritus 
4 remdeer 
5 pink-footed goose 
6 worm ~Hen/ea) 
7 mites, andflies, adult chironomids, springtails 
8 dung fly 
9 bog and intertidal invertebrates 

10 spiders 
11 pllrJ?le sandpiper 
12 arctic fox 

63 River Rheido~ Wales 

63 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 0 0 1 0 1 1 1 1 1 0 0 0 0 
2 1 0 1 1 0 1 1 1 1 0 0 0 0 
3 1 1 1 1 1 1 1 1 1 0 0 0 0 
4 1 1 1 1 0 0 0 1 1 0 0 1 0 
5 1 1 1 1 1 0 1 1 1 0 0 1 0 
6 0 0 0 0 0 0 0 1 0 1 1 1 1 
7 0 0 0 0 0 0 0 1 1 1 1 1 1 
8 0 0 0 0 0 0 0 1 0 0 1 1 1 
9 0 0 0 0 0 0 0 1 0 0 0 1 0 

10 0 0 0 0 0 0 0 1 1 0 0 0 0 
11 0 0 0 0 0 0 0 0 1 1 1 0 1 
12 0 0 0 0 0 0 0 1 1 1 1 0 1 
13 0 0 0 0 0 0 0 0 0 0 1 1 1 
14 0 0 0 0 0 0 0 0 0 0 1 0 1 
15 0 0 0 0 0 0 0 0 0 0 1 0 1 
16 0 0 0 0 0 0 0 0 0 0 0 1 1 

1 r;;een algae 10 CoperwcIa, Cladocera 
2 agmented leaf, stem tissue, moss llSimu ·urn 
3 diatoms 12 Chironomidae 
4 Batrachospermum, Lemanea 13 Ch/oroperla 
5 detritus 14 Hydropsyche 
6 Rhithrogena 15 Dystiscidae (Deronectes, Oreonectes) 
7 Baetis 16 Polycentropus 
8 Leuctra, Protonemeura, Amphinemura 17 Isoper/a 
90ligochaeta 18Perlodes 
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64 Linesville Creek, Pennsylvania 

64 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 0 
2 0 0 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
4 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
6 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 
9 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 
12 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 

1 diatoms 10 Pycnopsyche, 1ipula sp. 2 
2 detritus 11 Brillia, Microlendipes 
3 Cenlroptilum, Slellonema, Olimarra, 1ipula sp. 1 12 Tanytorrus 
4 Habrophleboides, Prosimulium 13 Hydropsyche 
5 Coryllolleura, Psychomyia 14 COllus 
6 Polypedilum 15 Phasganophora, Nigronia 
7 Ephemera 16 Alllherix, Euca/ia 
8 Agapetus, Psi/olrela, Stelle/mis, [sonychia, Geora, 17 Cymel/us 
Antocha, He/icopsyche, Psephenus 18 Chenmalopsyche 

9 Eukie/feriella 19 Penlaneura 

65 Yoshino River rapids, Japan 

65 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
3 0 0 0 0 0 0 0 0 0 1 0 1 1 1 
4 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
5 0 0 0 0 0 0 0 0 0 1 1 1 1 1 
6 0 0 0 0 0 0 0 0 0 1 1 1 1 1 
7 0 0 0 0 0 0 0 0 0 1 1 1 1 1 
8 0 0 0 0 0 0 0 0 0 1 1 1 1 1 
9 0 0 0 0 0 0 0 0 0 1 0 1 0 1 

10 0 0 0 0 0 0 0 0 0 1 0 1 1 1 

1 algae 
2 surface bait 

9 Hydropsyche 
10 Micrasema 

3 Diptera 11 P/ecoQ/ossus altive/is 
4 Ephemerella 12 Cobins biwae, Rhinogobius ftumineus 
5 Baetidae 13 Liobagrns reini 
6 Ecdyonuridae 14 COllus pollux 
7 Plecoptera 15 Maraco jouyi 
8 Slenopsyche 16 Oncorhynchus rhodurus 
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66 River Thames, England 

66 4 5 6 7 8 9 10 

1 1 1 0 1 0 0 0 
2 0 0 1 0 1 1 0 
3 0 0 0 0 1 1 0 
4 0 0 0 1 1 1 0 
5 0 0 0 0 1 1 0 
6 0 0 0 0 0 1 0 
7 0 0 0 0 0 1 0 
8 0 0 0 0 0 1 1 
9 0 0 0 0 0 0 1 

1 phyt0tankton, suspended detritus 6 gastropods, crustacea, tubificids 
2 perip ~on, benthic algae 7 mollusks, sponges 
3 aIlocht onous matter 8 roach 
4 zooplankton 9 bleak 
5 chironomids 10 pike, large perch 

67 Mudflats, Mississippi River, Iowa 

67 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 
2 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 
3 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 
4 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 
5 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 
6 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 
7 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 
8 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 
9 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 
11 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 
12 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 
13 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
15 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

1 detritus 8 Amnicolidae 15 carnivorous Diptera 
2 ~hytoplankton 9 herbivorous insects 16 Gomphus 
3 urrowing ephemerids 10 Pelecypoda 17 ducks (Lesser Scaup) 
40~ochaeta llPotamya 18 benthos-ea~ fish 
5 Chironomidae 12 macrocrustacea 19~vorous 
6 Gastropoda 13 Oecetis 20 . dinea 
7 zooplaDkton 14SiaJis 21 mammals 
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68 Loch Leven, Scotland 

68 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
2 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 
4 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 
7 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 
8 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 

10 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 
12 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

1 detritus 9 AntUionta 17 insect emergence 2 benthic :llae 10 Daphnia 
3 phytopI ton 18 Cyclops 

11 pochard, swan, coot 19 trout 4 Phragmites, Potamogeton 12 rotifers 20 perch 5 bacteria 13 oligochaetes 21 pike 6 Asellus 14 nematodes, ciliates 22 man 
7 Valvata 15 fry 
8 herb, chironomids 16 tufted duck 
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70 Crystal River estuary, Florida 

70 3 4 5 6 7 8 9 10 11 12 13 14 

1 1 0 1 1 1 0 0 0 1 0 0 0 
2 1 1 1 1 1 0 0 0 0 0 0 0 
3 0 0 0 0 1 0 0 0 0 0 0 0 
4 0 0 0 0 0 0 0 0 0 1 0 1 
5 0 0 0 0 0 0 0 0 0 1 1 1 
6 0 0 0 0 1 1 1 1 1 0 1 0 
7 0 0 0 0 0 0 0 0 0 1 1 1 
8 0 0 0 0 0 0 0 0 0 0 1 0 
9 0 0 0 0 0 0 0 0 0 0 0 1 

11 0 0 0 0 0 0 0 0 0 0 0 1 

1 producers 8 blue crabs 
2 detritus 9 rays 
3 zooplankton 10 black drum 
4 juvenile penaeid shrimp 11 sheepshead 
5 mullet 12 trout, jack 
6 benthic invertebrates 13 red drum 
7 small fish 14 porpoise shark 

71 Lake Rybinsk, Russia, USSR 

71 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 1 1 0 0 0 0 0 0 0 0 0 0 0 
2 1 1 1 1 1 0 0 1 0 1 0 0 0 
3 0 1 0 0 0 0 0 0 0 0 0 0 0 
4 0 0 1 1 0 0 0 0 0 0 0 0 0 
5 0 0 0 0 1 0 0 0 0 1 0 0 0 
6 0 0 0 0 0 1 0 1 0 0 0 0 0 
7 0 0 0 0 0 1 0 1 1 0 0 0 0 
8 0 0 0 0 0 0 1 0 0 1 0 0 0 
9 0 0 0 0 0 0 0 1 1 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 1 0 0 0 
11 0 0 0 0 0 0 0 0 0 0 1 0 0 
12 0 0 0 0 0 0 0 0 0 0 1 0 1 
13 0 0 0 0 0 0 0 0 0 0 1 0 1 
14 0 0 0 0 0 0 0 0 0 0 0 1 1 
15 0 0 0 0 0 0 0 0 0 0 0 0 1 

1 allochthonous organic matter 9 predatory zooplankton 
2 phytoplankton 10 Eredatory benthos 
3 macrophytes 11 ISh larvae 
4 bactenoglankton 12 ~Ianktivorous fishes 
5 benthic acteria 13 enthos-feeding fishes 
6 planktonic protozoa 14 predatory fishes 
7 Rotatoria, Calanoida, Cladocera 15 other predatory fishes 
8 macrobenthos 16 man 
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72 Heney Lake, pelagic zone, Quebec 

72 6 7 8 9 10 11 12 13 14 15 16 17 

1 0 0 0 1 0 0 0 0 0 0 0 0 
2 0 1 0 1 1 0 0 0 0 0 0 0 
3 0 0 1 1 1 1 0 0 0 0 0 0 
4 1 0 1 0 0 1 0 0 0 0 0 0 
5 1 0 0 0 0 0 0 0 0 0 0 0 
6 0 0 1 0 0 1 0 0 0 0 0 0 
7 0 0 0 0 0 0 1 1 0 1 1 0 
8 0 0 0 0 0 0 1 1 1 1 0 0 
9 0 0 0 0 0 0 0 1 0 0 1 0 

10 0 0 0 0 0 0 0 1 1 0 0 0 
11 0 0 0 0 0 0 0 1 1 0 0 0 
12 0 0 0 0 0 0 0 0 0 0 1 0 
13 0 0 0 0 0 0 0 0 0 0 1 0 
14 0 0 0 0 0 0 0 0 0 0 1 0 
16 0 0 0 0 0 0 0 0 0 0 0 1 

1 phytoplankton cells above 30 micrometer 
2 phytoplankton cells 10-30 micrometer 
3 phytoplankton cells below 10 micrometer 
4 particulate organic matter 
5 dissolved organic matter 
6 bacteria 
7 Daphnia, Diaphanosoma, Ceriodaphnia 
8 Bosmina, Chydcrus, Tropocyclops 
9 Diaptomus 

10 copepodites 
11 rotifers and copepod nauplii 
12 Leptodcra kindtii 
13 Chaoborus 
14 Epischura, Mesocyclops, Acanthocyc/ops 
15 Piona constricta 
16 Osmerus eperlanus mordax 
17 Salvelinus namaycush, Espx lucius 

73 Hafner Lake, Austria 

73 5 6 7 8 9 10 

1 1 1 1 0 0 0 
2 0 0 1 0 0 0 
3 0 0 0 0 1 0 
4 0 0 0 0 0 1 
5 0 0 0 1 0 0 
6 0 0 0 1 1 1 
7 0 0 0 1 1 1 
8 0 0 0 0 1 1 

1 nannoplankton 6 Bosmina /ongirostris 
2 phytoplankton 7 copepods 
3 terrestrial insects 8 Chaoborus flavicans 
4 littoral food items 9 Albumus albumus (bleak) 
5 rotifers 10 Blica bjorkna (silver bream) 
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74 Sand beach, South Africa 

74 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 0 
2 0 1 0 0 1 0 1 1 1 1 1 0 0 0 1 0 0 0 0 
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
4 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
7 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
11 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 
13 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

1 detritus 8 Bathyporeia 15 Curlew sandpiper 
2 organic macrodebris 9 Bullia 16 Sanderling 
3 Gastrosaccus, Callianassa, DOllox 10 Talorchestia 170valipes 
4 bacteria 11 errant polychaeta 18 sedentary polychaeta 
5 Cumacea 12Larus 19 nematode worms 
6 Turbellaria 13 isopods 20 elasmobranch fishes 
7 Nemertea 14 protozoa 21 predatory fishes 

75 Vorderer Fmstertaler Lake, Austria 

75 4 5 6 7 8 9 

1 1 1 1 1 0 0 
2 0 0 0 1 0 0 
3 0 0 0 1 0 1 
4 0 0 1 1 0 0 
5 0 0 0 0 1 0 
6 0 0 0 0 1 0 
7 0 0 0 0 1 1 
8 0 0 0 0 0 1 

1 phyt0blankton 
2 phyto enthos 
3 terrestrial insects 
4 bacterioplankton 
5 Polyathra, SYllchaeta 
6 Keratella, young Cyclops 
7 zoobenthos 
8 adult ?saIOPS 
9 fishes Sabno trutta, Salvelillus alpinus) 
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76 Neusiedler Lake, Austria 

76 4 5 6 7 8 9 10 11 12 13 14 

1 1 0 0 0 0 0 0 0 0 0 0 
2 0 1 0 0 0 1 0 0 0 0 0 
3 0 0 1 1 1 0 0 0 0 0 0 
4 0 0 0 0 0 0 0 1 0 0 0 
5 0 0 0 0 0 1 1 0 0 1 0 
7 0 0 0 0 0 0 0 0 1 0 1 
8 0 0 0 0 0 0 0 0 0 0 1 
9 0 0 0 0 0 0 0 0 1 0 0 

10 0 0 0 0 0 0 0 0 0 1 0 
12 0 0 0 0 0 0 0 0 0 1 1 

1 organic matter 
2 bhytoplankton 
3 enthic algae 
4 bacteria 
5 zooplankton 
6 Hypsibius augum (tartigrade) 
7 Tanypus punctipennis 
8 BUcca bjorkna 
9 Procladius 

10 Pe/ecus cu/tratus 
11 Limnocythere, Parap/ec/onema, tubificidae 
12Acerina cemua (pope) 
13 Lucioperca 
14Angull/a anguilla 

77 Lake Abaya, Ethiopia 

77 4 5 6 7 8 9 10 11 12 13 

1 1 0 0 0 1 0 0 0 0 0 
2 0 1 0 0 1 0 0 0 0 1 
3 0 0 1 0 0 0 0 0 0 0 
4 0 0 0 1 1 0 0 0 0 0 
5 0 0 0 0 0 0 0 0 0 1 
6 0 0 0 0 1 1 0 0 0 0 
7 0 0 0 0 0 0 1 0 0 0 
8 0 0 0 0 0 0 1 1 1 1 
9 0 0 0 0 0 0 0 1 1 1 

10 0 0 0 0 0 0 0 0 1 1 
11 0 0 0 0 0 0 0 0 1 1 
12 0 0 0 0 0 0 0 0 0 1 

1 phytoplankton 8 Tilapia zilli 
2 aquatic plants 9 Barbus, Mormyrus 
3 ooze 10 carnivorous fiShes 
4 zooplankton 11 piscivorous birds 
5 hip~opotamus 12 crocodile 
6zoo enthos 13 man 
7 fish fry 
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78 Lake George, Uganda 

78 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 1 0 1 0 0 0 0 0 0 
3 0 0 0 0 0 0 1 0 0 1 1 0 0 0 
4 0 0 0 0 0 0 0 1 0 0 0 1 0 0 
5 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
6 0 0 0 0 0 0 0 0 1 0 0 0 1 1 
7 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
9 0 0 0 0 0 0 0 0 0 1 1 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
12 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
13 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
15 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

1 algae 
2 detritus 

9 Mesocyclops, Asp/anchna 
10 bottom-feeding fishes 

3 zoo&lankton 11 man 
4 her ivorous ~era 12 carnivorous Diptera 
5 mid-water fe g fishes 13 surface feeding fishes 
6 TIl:ihia /eucosticta, T. nilotica 14 insectivorous birds 
7 mo usks 15 piscivorous fishes 
8 worms 16 piscivorous birds 
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79 Lake Paajarvi, offshore, Fmland 

79 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 
2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
6 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 
9 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 0 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
12 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

1 phytoplankton 
2 allochthonous organic matter 
3 bottom organic matter 
4 bacteria, protozoa, fungi 
5 Turbellana, Halacaridae, Tartigrada, Copepoda (Diacyclops, Bryocamptus), 

Cladocera (Alona, flyocryptus), Chironomidae (Mesocricotopus, Micropsectra), Cytheridea 
6 Nematoda ([ronus, Tobrilus), 01igochaeta (Psammoryctes, Tubifex, Peloscolex, Stylodrilus) 
7 Pisidium 
8Pallasea 
9 Daphnia, Bosmina, Polyarthra, Conochilus, Eudiaptomus, Synchaeta 

10 Chironomidae (Procladius, Pentaneurin~ Protanypus) 
11Acanthocycloft' Paracladopelma, Monodiamesa 
12Asplanchna, eterocope, Thermocyclops, Leptodora 
13 Gammaracanthus 
14 Chaoborus 
15 Mysis 
16 Coregonus albula 
17 young smelt 
18 ruff 
19burbot 
20 smelt 
21 walleye 
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80 Lake Paajarvi, littoral zone, Finland 

80 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
4 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
6 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 0 0 
9 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 1 1 0 0 
11 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 1 1 1 0 
12 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 1 0 
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

1 phytoplankton 
2 allochthonous organic matter 
3 Potamogeton, Lobelia, lsoetes, Sparganiwn 
4 bottom organic matter, benthic macroaIgae 
5 terrestrial adult insects 
6 bacterioplankton 
7 Anodonta 
8 Copepoda ~Attheyel/a, Paracycllf:' Paracaml/us, ... ), Ostracoda (Candona, Darwinula, ~12ris, Cypridopsis) 
9 Nematoda lTonus, Tobrilus),O ochaeta ( imnodrilus, Psammoryctes, Peloscolex, Lum ric dae, Naididae) 

10 Asel/us, Pallasea, Cladocera (Eurycercus, Alona, Alonella) 
11 Chironomidae (Microtendipes, Tanytarsus, Pseudochironomus, Limnochironomus) 
12 Ephemeroptera (Caellis, Ephemera, Qoeon, ... ) 
13 Trichoptera (Ath1fc:sodes, Oxyethira), Mollusca (Pisidium, Lymnaea Valvata, Gyrauius, Sphaerium) 
14Sida, Eurycereus, osmina, Diaphanosoma, Rotatoria 
15Acanthocyclops, Macrocyclops, Demicryptochironomus, Monodiameda 
16 Chironomidae (PTocladius, Cryptochironomus, Leptochironomus, Ablabesmyia) 
17 Hirudinea (Erpobdella, Helobdella) 
18 Mermithidae 
19 Tricho~tera (Cymus, Oecetis, Molanna) 
20 Turbe aria 
21Asplanchna, Polyphemus 
22 Co~nus lavaretus 
23 sal a 
24 Perea f/uviatilis 
25 ruff (Gymnocephalus cemus) 
26 Rutilus rutilus 
27 pike, adult yellow perch (Perea) 
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81 Sendai Bay, mesopelagic zone, Japan 

81 2 3 4 5 6 7 8 9 10 11 12 

1 1 1 1 1 1 0 0 0 0 0 0 
2 0 0 0 0 0 0 1 0 1 0 0 
3 0 0 0 0 0 0 1 1 1 0 0 
4 0 0 0 1 1 1 0 0 0 0 0 
5 0 0 0 0 0 0 1 0 0 0 0 
6 0 0 0 0 0 0 0 1 1 0 0 
7 0 0 0 0 0 0 0 0 0 1 0 
9 0 0 0 0 0 0 0 0 0 1 1 

1 suspended or deposited organic matter 
2 bivalves 
3 sedentary polychaetes 
4 benthic invertebrates 
5 Pinnixa rathbuni 
6 errant polychaetes 
7 Crangon ajJinis, Metapenaeopsis dalei 
8 Erynnis japonica 
9 Limanda herzensteini, L yokohamae 

10 Chaeturichthys hexanema 
11 Liptuis tanakai 
12 Lophius litu/on 

82 Permanent freshwater rockpoo~ France 

82 3 4 5 6 7 8 9 10 

1 1 1 0 0 0 0 0 0 
2 0 0 1 0 0 0 0 0 
3 0 0 0 1 0 0 1 0 
4 0 0 0 1 1 0 1 0 
5 0 0 0 0 0 0 1 0 
6 0 0 0 0 0 0 1 0 
7 0 0 0 0 0 1 1 0 
8 0 0 0 0 0 0 1 0 
9 0 0 0 0 0 0 0 1 

1 organic material 
2 small algae 
3 Culex 
4 Chironomus 
5 Sigara, Discoglossus larvae 
6 Tanypodinae 
7 C/oeon 
8 Plactynemis 
9 Notonecta, Stictotarsus, Meladema, SympetlUm, Gomphus 

10 Hydrometra 
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83 Lake Pyhajarvi, littoral zone, Finland 

83 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
6 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 
8 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 1 
11 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
12 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 1 
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 
15 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

1 phytoplankton 14 Nematoda, Harpacticoida, Cyclopoida, Ostracoda 
2 suspended detritus 15 Asellus 
3 aquatic plants 16 Polycentropus, Molanna 
4 sedimented detritus 17 Ablabesmyia 
5 Keratella, Kellicottia 18 E1pobdella, Helobdella 
6 Codonella, Vorticella 19 Coregonus albula 
7 Daphnia, Bosmina 20 Coregonus lavaretus 
8 Sida, Eurycercus 21 Rutilus rutilus 
9 ~naea, Planorbis, Goera 22 Gymnocephalus cemus 

10 ·onomids 23 Cyclopoida 
11 Stylodrilus 24 young fish 
12Ephemera, Caenis, Heptagenia 25 Perea fluviatilis 
13 Pisidium, Sphaerium 
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84 Temporary pond, Michigan 

84 3 4 5 6 7 8 9 10 11 12 

1 1 1 1 0 0 0 0 0 0 0 

2 0 1 1 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 1 1 0 0 

4 0 0 0 1 1 1 0 0 1 0 

5 0 0 0 0 0 1 0 1 1 0 

6 0 0 0 0 0 1 1 0 1 0 

7 0 0 0 0 0 0 1 0 0 0 

8 0 0 0 0 0 0 0 1 0 1 

9 0 0 0 0 0 0 0 1 1 0 
10 0 0 0 0 0 0 0 0 0 1 

1 detritus 7 Hydracarina, Odonata, R(JJIatra, Belostoma 
2 periphyton, phytoplankton 8 Ambystoma latera/eo A. macu/atum A. tremblayi 
3 R(JJIa sy/vatiea 9Dytiscus 
4 Daphnia pulex, Tendipes, amphipods, lOAmbystoma tigrinum 

ostracods, corixids 11 Notophthalmus virideseens 
5 gastropods, pelecypods 12 Batracobdella pieta (leech) 
6 ChaoboTUS, Aci/ius 

85 Tasek Bera swamp, Malaysia 

85 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
6 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 
7 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
9 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 
11 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 
12 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 
13 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
16 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 
17 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 
18 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 
19 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
20 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

1 suspended detritus 10 zooplankton 20 carnivorous invertebrates 
2 phytoc,tankton 11 eme!l~ent herbivorous insects 21 emergent carnivorous insects 
3 perip yton 12 benthic herbivores 22 carnivorous fishes 
4 Utricularia 13 herbivorous fishes 23 spiders 
5 submerged macrophytes 14 invertebrate defoliators 24 £Togs 

(Blyca, Oyptocoryne, Nitella) 15 vertebrate herbivores 25 sWlillows 
6 sedimented detritus 16 shrimps 26 snakes, gharia!, turtles 
7 P(JJItianus, Lepironia 17 detriuvorous invertebrates 27 Kingfisher, Teal 
8 swamp forest 18 detritivorous fishes 
9 bacteria, fungi 19 benthic carnivores 
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86 Suruga Bay, epipelagic zone, Japan 

86 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 
3 0 0 0 0 1 0 0 1 0 0 1 0 0 0 
4 0 0 0 1 1 1 1 0 1 0 0 0 0 0 
5 0 0 0 1 1 1 1 0 0 0 0 0 0 0 
6 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
7 0 0 0 0 0 0 0 1 1 0 1 1 0 1 
8 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
9 0 0 0 0 0 0 0 0 1 1 1 1 0 1 

10 0 0 0 0 0 0 0 0 0 0 1 0 1 0 
11 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
12 0 0 0 0 0 0 0 0 0 0 0 1 0 1 
13 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
15 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

1 detritus I) Engraulis japonica (post-larva) 
2 phytoplankton 10 Diaphus coeruleus, D. elucens, other myctophids 
3 Euphausia similis, E. pacijica 11 Trachiurusjaponica (adult) 
4 Calanus pacijicus 12 Engraulis japonica (adult) 
5 Paracalanus gracilis 13 Todarodes pacijicus, other cephalopods 
6 Sagitta nagae 14 Scomber japonicus (adult) 
7 Sergia lucens 15 SteneIIa spp. 
8 P arathemisto gracilis 16 man 

87 Ice edge community, high Arctic, Canada 

87 3 4 5 6 7 8 9 10 11 12 

1 1 1 1 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 1 0 
3 0 0 1 1 0 0 0 1 1 0 
4 0 0 0 0 1 1 0 0 0 1 
5 0 0 0 1 1 1 0 0 0 0 
6 0 0 0 0 1 1 1 1 1 1 

1 diatoms 7murres 
2 marine mammal carcasses 8 ringed seals 
3 calanoid copepods 9 narwhals 
4 epontic copepods 10 kittiwakes 
5 Parathemisto spp. (amphipods) 11 fulmars 
6 arctic cod 12 guilIemots 
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88 Lestijoki River rapids, Finland 

88 5 6 7 8 9 10 11 12 13 14 15 16 

1 1 1 1 1 0 1 0 1 1 0 0 1 
2 0 0 1 1 0 1 0 0 0 0 0 0 
3 1 1 1 1 1 0 0 0 0 0 0 0 
4 0 1 1 1 0 0 1 0 0 0 0 0 
5 0 0 0 0 0 0 0 1 1 1 1 1 
6 0 0 0 0 0 0 0 1 0 0 1 1 
7 0 0 0 0 0 0 0 1 0 0 1 1 
8 0 0 0 0 0 0 0 1 1 1 1 1 
9 0 0 0 0 0 0 0 0 0 0 1 1 

10 0 0 0 0 0 0 0 0 1 0 1 0 
11 0 0 0 0 0 0 0 0 0 1 1 0 

1 detritus 9 Agroylea multipunctata, Hydroptila tineoides 
2 mosses 10 Micrasema 
3 filamentous algae 11 Cricotopus bicinctus 
4 diatoms 12 Isoperla obscura 
5 Baetis rhodan~ B. vemus 13 Athripsodes 
6 Rheotanytarrus, Eukiefferiella tshemovskii 14 Erpobdella octolucata 
7 Amphinemura, Ephemerella, Heptagenia 15 Rhyacophila nubila, Pentaneurini spp. 
8 Simulidae, Cricotopus, triannulatus, Orthocladius 16 Hydropsyche pellucidula 

89 River Cam, England 

89 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
3 1 1 1 1 0 0 0 0 0 0 0 1 0 0 
4 0 1 1 1 1 1 0 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 0 0 1 1 1 0 1 
6 0 0 0 0 0 0 1 1 1 0 1 0 0 0 
7 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
8 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
9 0 0 0 0 0 0 0 0 1 0 1 0 0 0 

10 0 0 0 0 0 0 0 1 0 1 0 0 0 0 
12 0 0 0 0 0 0 0 0 0 0 0 1 0 1 
13 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
14 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
15 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
16 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

1 Ulothrix 10 Ephemera nymph 

2~1iro~a 11 brown trout, dace 
3 p ant agments 12 gudgeon 
4 ~edra, Coscinodiscus, other diatoms 13 minnow 
5 . onomid larvae 14 roach 
6 Simulium larvae (black fly) 15loach 
7 Trichoptera larvae 16 three-spined stickleback 
8 Limnophilus, Ephemeropteran nymph 17 eel 
9Baetis 18 pike 
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90 Old field, New Jersey 

90 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
2 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 
3 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 
4 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
6 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 
7 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 
8 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

1 Raphanus (wild radish) 12 Chlamydatus, Plagiognathus, Smicronyx 
2Ambrosia (ragweed) 13 Trigollorhinus 
3 radish debris 14 Nemobius 
4 ragweed debris 15 Gryllus 
5 Macrosteles, Phy!lotreta chalbeipenllis 16 isopods, millipeds 
6 Hyadaphis, Myzus 17 Chauliognathus, Coccinella 
7 Melalloplus 18 Harpalus 
8 Lepidoptera larvae 19 Nabis 
9Lygus 20 web spiders 

10 Empoasca, Oecanthus 21 ground spiders 
11 Philaenus, Scaphytopius, Reuteroscopus 22 Coleomegil/a, Sillea 

91 Shigayama coniferous forest, Japan 

91 3 4 5 6 7 8 9 10 

1 1 0 1 0 0 0 0 0 
2 0 1 0 0 0 0 0 0 
3 0 0 1 1 0 0 0 0 
4 0 0 0 0 1 0 1 0 
5 0 0 0 0 0 1 0 1 
6 0 0 0 0 0 1 0 1 
7 0 0 0 0 0 0 1 0 
8 0 0 0 0 0 0 0 1 

1 soil organic matter 
2 leaves 
3 bacteria, fungi 
4 defoliatin& invertebrates, small rodents 
5 decomposmg soil fauna 
6 bacterial and fun~al feeders 
7 predatory inverte rates 
8 redatory soil invertebrates 
9 irds 

10 insectivores 
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92 High Himalayas community, Tibet 

92 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
2 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 
6 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
7 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
8 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 
9 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

1 wind-blown organic debris, pollen 10 bumblebees, butterflies, ashids, weevils 
2 flowering plants 1lIammer~eier, yellow-bilJe chough 
3 dead carcasses 12 springtails 
4 Machilanus (flea) 13 anthomyiid fly 
5fun . 14 Mustela altaica (weasel) gI • 
6 snow partndge 15 wolf, fox 
7 Ochotona ladacensis (pika), mice 16 snow leopard 
8 Pseudois nahura (bharal sheep) 17 mites, cen~edes 
9 yak 18 salticid spi er 
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94 Wet coastal tundra, Barrow, Alaska 95 Tundra, Prudhoe, Alaska 

94 4 5 6 7 8 9 10 11 12 95 3 4 5 6 7 8 9 10 

1 1 0 0 0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 
2 0 0 0 0 0 1 0 0 0 2 1 0 0 0 1 0 0 0 
3 0 1 1 0 0 0 0 0 0 3 0 0 0 0 1 0 0 0 
4 0 0 0 0 0 0 1 1 1 4 0 0 0 0 0 0 1 1 
6 0 0 0 1 1 1 0 0 0 5 0 0 0 0 0 1 0 0 
7 0 0 0 0 1 1 0 0 0 7 0 0 0 0 0 0 1 1 
8 0 0 0 0 0 0 1 0 1 9 0 0 0 0 0 0 0 1 
9 0 0 0 0 0 0 1 0 1 

10 0 0 0 0 0 0 0 1 1 1 fasses, sedges, willows 
2 ecaying organic matter 

Imonocots 3 bacteria, fuDgi 
2dicots 4 adult flies 
3 detritus, organic matter 5 waterfow~ lemmings, squirrels 
4 lemmings 6 caribou 
5 microorganisms 7 fly larvae 
6 saprovores 8 owls, jaegers, fox, weasels 
7 carnivorous arthropods 9 beetles, spiders 
8 shorebirds 10 sandpipers 
9 longspurs 

10 weasels 
11 owls 
12jaegers 

96 Tundra, Yamal Peninsula, Siberia 97 Tundra, South Y am~ Siberia 

96 2 3 4 5 6 7 8 9 97 3 4 5 6 7 8 9 10 11 

1 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 
2 0 0 0 0 1 1 1 1 2 0 0 1 0 0 0 0 1 0 
3 0 0 0 0 1 1 0 0 3 0 0 0 0 0 0 1 0 0 
4 0 0 0 0 1 1 0 1 4 0 0 0 1 1 1 1 1 1 
5 0 0 0 0 1 0 0 1 5 0 0 0 0 0 1 1 1 1 

6 0 0 0 0 0 0 0 0 1 

1 tundra vegetation, berries 
1 tundra vegetation 2 Dicrostonyx, Passeres 

3 insects 2~crop 
4 Lago}'us, Lemnus 3cari u 
5 Limicolae, Anseres, Microtus (2 sp.), Arvicola . 4 microtine mammals 
6 Stercorarius longicaudus Gaeger) 5 tarmigan 
7 Stercorarius parasiticus 6Ctweasel 
8 Falco colunibarius 7 arctic fox, red fox, ermine, merlin 
9 Buteo lagopus, Falco peregrinus 8 peregrine 

9 White-tailed eagle 
10 long-tailed jaera!' parasitic jaeger, herring gull 
11 rough-legged aWK 
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98 Sand dunes, Namib Desert, Namibia 

98 5 6 7 8 9 10 11 12 13 14 15 16 17 

1 1 1 0 0 0 1 0 0 0 0 0 0 0 
2 1 0 1 0 0 1 0 0 0 0 0 0 0 
3 0 0 0 1 0 0 0 0 1 0 0 0 0 
4 0 0 0 0 1 0 0 0 0 0 0 0 0 
5 0 0 0 0 0 1 1 1 0 1 0 1 1 
7 0 0 0 0 0 0 1 1 0 0 0 0 0 
8 0 0 0 0 0 0 1 1 1 1 0 1 1 
9 0 0 0 0 0 0 1 0 0 1 0 0 1 

10 0 0 0 0 0 0 0 0 0 0 0 0 1 
11 0 0 0 0 0 0 0 1 1 1 0 0 0 
12 0 0 0 0 0 0 0 0 0 0 0 1 1 
13 0 0 0 0 0 0 0 0 0 0 1 1 1 
14 0 0 0 0 0 0 0 0 0 0 1 1 1 
15 0 0 0 0 0 0 0 0 0 0 0 0 1 

1 annuals fOIlSOllia, Stipagrostis, Eragrostis) 
2 perenni 
3 wind-blown detritus 
4 animal dun~ 
5 Tenebrioni ae, Orthoptera, Curculionidae 
6 oryx, hare 
7 Aclerda 
8 Thysanura, Isoptera, other Tenebrionidae 
9 scarabs 

10 Gerbillus 
11 spiders, solpugids, scorpions 
12 mole 
13 Aporosaura 
14 Typhlosaurus, lizards 
15 snakes 
16 tackal, hyena 
17 irds 
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99 Sonora Desert, Arizona 

99 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 

1 1 1 1 1 _ 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 
3 1 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 
4 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 
6 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
7 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 
8 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 grass Schismus baroatus 
2 cacti (including seeds and fruits) 
3 seeds of other plants 
4 creosote bush 
5 Palo Verde 
6 mistletoe (berries) 
7 leaves 
8 nectar 
9 animal carcasses 

10 pocket mouse 
11 doves, Palmer's thrasher, sage sparrow, Lark bunting, House finch, goldfinch, Gambel sparrow 
12 white-tailed deer 
13 harvester ants 
14 crickets~asshoppers, caterpillars 
15 cottont . 
16 ground squirrels 
17 wood rats 
18 kangaroo rats 
19 cactus beetles, cactus weevils 
20 Palo Verde weevil 
21Ieaf-cu~ ants 
22 hummingbirds 
23 honeybees 
24 butterlIies, moths 
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(Web 99 cont.) 

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 
1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 1 
1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0 
0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 
0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 
1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 
1 0 0 1 0 0 0 0 0 0 1 1 1 0 0 1 0 1 1 
1 0 0 1 0 0 1 0 0 0 1 1 1 0 0 1 0 1 1 
0 1 1 0 1 1 0 1 1 0 0 1 0 0 0 1 0 0 0 
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

25 flies 
26 black vulture, turkey vulture, raven 
27 uta, homed lizard, gecko 
28 sage thrasher, robin 
29 cactus woodpecker 
30 badger 
31 cactus wren 
32 flycatcher 
33 Homed owl 
34 backbirds, mockingbird, oriole, cardinal 
35 Blue bird 
36 Sparrow hawk 
37 sWift 
38 scorpion, spiders 
39 Race runner 
40 Bull snake, Red racer, rattlesnakes 
41 Gray fox 
42 skunk 
43 ~ass~per mice 
44 ed-t· ed hawk 
45 Road runner 
46 Coral snake 
47 bobcat 
48 coyote 
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100 Rajasthan Desert, India 

100 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

1 1 1 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 
2 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 
3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 
5 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
6 0 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 
7 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
9 o. 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 

11 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0 
12 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 
13 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 
14 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
16 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 
17 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

1 Cyperus, Cenchrus, Eleucine 12 rodents 
2 Ootalaria, Zizyphus 13 partridge, peafow~ babbler 
3 Prosopis cineraria 14 snakes, varanids 
4 animal carcasses 15 tackal Canis aureaus 
5 animal dung 16 edgehog 
6 hoppers, ants, termites, beetles 17 buItuJ, shrike, Indian robin 
7 gerbils, hares 18 desert cat Felis libyca 
8 antelopes, gazelle, backbuck, nilgai 19 fox Vulpes vulpes 
9 doves, larks, sandgrouse 20 shikra 

10 vultures, crows 21 wolf Canis lupus 
11 spiders, wasps, tiger beetles, carpenter ants 22 stray dog Canis familiaris 

101 Temporary freshwater rockpoo~ France 102 Plankton, oligotrophic tropical Pacific 

101 3 4 5 6 102 3 4 5 6 7 8 9 

1 1 1 0 0 1 1 1 1 1 0 0 0 
2 0 0 1 0 2 0 0 1 1 1 1 0 
4 0 0 0 1 3 0 1 1 1 1 0 0 
5 0 0 0 1 4 0 0 1 1 1 1 1 

5 0 0 0 1 1 1 1 
1 organic material 6 0 0 0 0 1 1 1 
2 small algae 7 0 0 0 0 0 1 1 3 Heterocypris, Herpetocypris 

8 0 0 0 0 0 0 1 4 Chironomus, Anopheles, Culex, Theobaldia 
5 Sigara, Haliplus 

1 detritus 6 Meladema, Graptodytes, Bidessus, Notonecta 
2 bhytoplankton 
3 acteria 
4 protozoa 
5 nauplii, small sized Euphausiacea, 

Mysidacea, Hyperiidea, Ostracoda 
6 large sized Euphausiaeea, Mysidacea, 

Hyperiidea, Ostracoda 
7 Cyclopoida 
8 carnivorous Calanoida 
9 Chaetognatha, Polychaeta 
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103 Tropical plankton community, Pacific 

103 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 
2 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 
3 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 
4 0 1 0 0 0 0 1 0 0 1 0 1 1 1 1 1 0 0 0 
5 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 1 
6 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 
7 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 0 1 0 0 
8 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 
9 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 

10 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 0 
11 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 
12 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 
13 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 1 0 
14 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 
16 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
17 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

1 detritus 9 Infusoria 17 large-size 'Calanus type' 
2 small-size phytoplankton 10 Radiolaria 18 'Euchaeta type' 
3 medium-size phytoplankton 11 co~odites 19 'Centro pages type' 
4 large-size phytoplankton 12 sm -size 'Ca/anus type' 20 'Amphipoda type' 
5 bacteria 13 small-size 'Acartia type' 21 'Euphausia type' 
6 large-size Appendicularia 14 small-size 'Oithona-Oncaea type' 22 Chaetognatha 
7 na~lii of Copepoda 15 large-size 'Oithona-Oncaea type' 23 Medusae, Ctenophora 
8 sm -size Appendicularia 16 large-size 'Acartia type' 

Note: For technical reasons the sequence of food webs 104-107 has been changed. 
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106 Rocky shore, Monterey Bay, California 

106 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 
2 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
4 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 
5 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 0 0 
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
18 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

'25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 detritus, blankton 11 Acmaea pella 
2 diatoms, lue1een algae 12Acmaea scabra 
3 Gigartina agar. ii 13 Cyanoplar dientens 
4 Endocladia muricata 14 Dynamenella 8.labra 
5 other phytoplankton 15 AJlochertes ptilocerus, Hyaie sp. 
6 Suidasia sp. 16 Diaulota densissima 
7 Tegula funebralis 17 PagulUS samuelis 
8 Littorina planaxis 18 ZO<>J:,lankton 
9 Littorina scutu/ata 19 Ch amaJus dalli, C. microtretus 

10 Acmaea digitalis 20 Lasaea cistula 

107 Bay pilings community, New Jersey 

107 3 4 5 6 7 8 9 10 

1 1 1 1 0 1 0 0 0 
2 0 0 0 1 0 0 0 0 
3 0 0 0 0 0 1 0 0 
4 0 0 0 0 0 1 1 1 
5 0 0 0 0 0 0 1 0 
6 0 0 0 0 0 1 0 ~ 
8 0 0 0 0 0 0 Q 1 
9 0 0 0 0 0 0 0 1 

1 p1ankton, suspended detritus 6 Littorina littorea 
2 seaweeds 7 SchizoJ:brella, Hydroides, Haliplanella, Bugula 
3 Balanus balanoides, B. ebumeus 8 Uros ~in.r cinerea 
4 Modiolus demissus 9 NeCpe texana sayi 
5 Molgula manhattensis 10 Cal, es sapidus 
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(Web 106 cont.) 

25 26 27 28 29 30 31 32 33 34 35 36 37 

0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 1 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 0 1 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 1 0 1 0 0 1 
0 1 1 0 0 0 0 0 0 1 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 0 1 
0 0 1 0 0 0 0 0 0 1 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 Q 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
1 0 0 0 1 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 1 1 0 0 0 1 1 
0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 1 0 0 
0 0 0 0 0 0 0 0 0 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 

21 Mytilus califomianus 31 Thais emarginata 
22 Balanus glandula 32Acanthina spirata 
23 Filicrisia franciscana, Musculus 33 ASauopsis sp., Rhombognathus 
24 Perinereis monterea 34 Tlpulidae 
25 Nereis grubei 35 Pachygrapsus crassipes Guv.) 
26 Notoplana acticola 36 Emplectonema gracilis 
27 Oyster catcher 37 Black Turnstone 
28 Syllis vittata 
29 Nemenopsis gracilis 
30 Syllis spenceri 

105 Rocky shore, Gulf of Maine, USA 

105 3 4 5 6 7 8 9 10 

1 1 1 0 0 0 0 0 0 
2 0 0 1 1 0 0 0 0 
3 0 0 0 0 1 1 1 1 
4 0 0 0 0 1 1 1 0 
5 0 0 0 0 1 1 1 1 
6 0 0 0 0 1 0 0 1 
7 0 0 0 0 0 1 1 0 
8 0 0 0 0 0 0 1 1 
9 0 0 0 0 0 0 0 1 

1 plankton, detritus 6 Acmaea 
2 algae 7 Thais 
3 Mytilus 8 Carcinus 
4 Balanus 9 TautoQolabrus 
5 Littorina 10 fish, bIrds, mammals 
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108 Rocky shore, Cabrillo Point, California 

108 5 6 7 8 9 10 11 12 13 14 

1 1 0 0 0 0 1 1 0 0 0 
2 0 1 1 0 0 0 0 0 0 0 

3 0 0 0 0 1 0 0 0 0 0 
4 0 0 0 1 0 0 0 0 0 0 

5 0 0 0 0 0 1 1 0 0 0 

6 0 0 0 0 0 0 0 1 1 1 

7 0 0 0 0 0 0 0 0 1 1 

8 0 0 0 0 0 0 0 0 0 1 

9 0 0 0 0 0 0 0 0 0 1 
10 0 0 0 0 0 0 0 0 0 1 

11 0 0 0 0 0 0 0 1 1 1 

1 phytoplankton, suspended detritus 9 Pugettia 
2 encrusting and mat-forming algae 10 Petrolisthes, Crepidula, Spirorois 
3 seaweeds 11 Baianus 
4 detritus 12 Acanthina 
5 zooplankton 13 Leptasterias 
6 Li/lorina, Tegula 14 Cribina, fishes 
7 Acmaea, Amphissa, Columbella 
8 Pagurus, Pachygrapsus, Haiosydna, 

Cirolana, Pachycheles, Hemigrapsus 

109 Rocky shore, central Chile 

109 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
2 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 
4 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 
5 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 
6 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
7 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 
8 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 
9 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 
11 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 
12 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 
13 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 
15 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 
16 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

1 £lankton, suspended detritus 8limbets 15 Concholepas concholepas 
2 enthic algae 9 her ivorous snails 16Acanthocyclus spp. 
3 detritus 10 chitons 17 Sicyases S~ineus 
4musseIs 11 sea urchins 18 Heliaster he anthus 
5 barnacles 12 crabs 19 Lams dominicanus 
6 ascidians 13 polychaetes, isopods 20 Hf1m1atopus ater 
7 keyhole limpets 14 Crassilabrum crassilabrum 21 LutrQ fe/ma 
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110 Rocky shore, Cape Ann, Massachusetts 

110 4 5 6 7 8 9 10 11 12 13 

1 1 1 0 0 0 0 0 0 0 0 
2 1 0 1 1 0 0 0 0 0 1 
3 0 0 0 0 1 1 1 0 1 1 
4 0 0 0 0 0 0 0 0 0 1 
5 0 0 0 0 0 0 0 0 0 1 
6 0 0 0 0 0 0 0 1 1 1 
7 0 0 0 0 0 0 0 0 1 1 
8 0 0 0 0 0 0 0 0 1 0 

10 0 0 0 ·0 0 0 0 0 1 1 
11 0 0 0 0 0 0 0 0 0 1 
12 0 0 0 0 0 0 0 0 0 1 

1 As::t.hyllum, Fucus, Ulva, other algae 8 SpirorlJis 
2 pI ton, sus'pended detritus 9 Anurida 
3 organic debns 10 GammatuS, Orchestia 
4 Acmaea, Oepidula 11 Thais, Asterias 
5 Littorina littorea, L. obtusata, L saxatilis 12 Carcinides, Cancer 
6 MytiJus, Baltmus 
7 Sertularia, Metridium, Obelia, Qava 

13 Myoxocephalus, Tautogolabrus, Fundulus 

111 Mudflat, Cape Ann, Massachusetts 

111 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
2 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 
3 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 
4 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 
7 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 
8 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 
9 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 

10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
11 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 
12 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 
13 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 
15 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 

1 organic matter 11 Littorina littorea, Onoba 
2 organic debris 12Oago 
3 plankton and detritus 13 Glycera, Nereis, Cerebratulus 
4 Chaetomorpha, Ulva, other algae 14 Megaceryie, Sterna 
5 Lumbrinereis, Clymenella 15 Polmices, Nassarius 
6Anurida 16 Limulus 
7 GammatuS, Talorchestia 17 Pagurus, Cancer, Carcinides, Myoxocephalus 
8 Mya, Ensis, Macoma, Solemya 18 Tautogolabrus, Pseudopleuronectes 
9 Gemma 19Asterias 

10 Fundulus, fish fry 
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112 Low salt marsh, Cape Ann, Massachusetts 

112 5 6 7 8 9 10 11 12 13 14 

1 1 0 0 0 0 0 0 0 0 0 

2 0 1 0 0 0 0 0 0 0 0 

3 0 0 1 1 0 0 1 1 0 0 

4 0 0 0 0 1 0 0 0 1 0 

5 0 0 0 0 0 1 0 0 0 0 

6 0 0 0 0 0 0 1 0 0 1 

7 0 0 0 0 0 0 1 0 0 0 

9 0 0 0 0 0 0 1 1 1 1 

13 0 0 0 0 0 0 0 0 0 1 

1 Spanina glabra 
2AS~hYllUm, Fucus, other algae 
3 pI ton, detritus 
4 organic debris 
5 marsh insects 
6 Littorina littorea, L. obtusata, L. saxatilis 
7 Mytilus, Balanus 
8 Brachidontes 
9 Anurido, Orchestia, Gammarus 

10 spiders, song birds 
11 Fundulus 
12 fIsh fry 
13 Carcinides, Cancer 
14 Butorides, Corvus 

113 High salt marsh, Cape Ann, Massachusetts 

113 5 6 7 8 9 10 11 

1 1 0 0 0 0 0 0 
2 0 1 0 0 0 0 0 
3 0 0 0 0 1 0 0 
4 1 0 1 0 0 0 0 
5 0 0 0 1 0 0 1 
6 0 0 0 0 1 1 0 
7 0 0 0 0 1 1 0 
8 0 0 0 0 0 0 1 

1 ~anilla patella 
2 gae 
3 plankton, detritus 
4 organic debris 
5 marsh insects 
6 Melampus, Littorilla littorea, L. saxatilis 
7 Orchestia, Philoscia, Anurido, Cylisticus 
8 marsh spiders 
9 Fundulus, fIsh fry 

10 CONUS, Pisobia 
11 song birds 
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Russia 61,206-207,245,253; see also USSR 

salinity 27,32,51,56,74,141 

salt marsh 50,54,60,62,204,209, 

212-213,215,279 

salt meadow 28,60,205,226 

sample 

mean 73 

size 20 

sampling 

effort 45, 46 

procedure 143 

scaling law, link scaling law, 

species scaling law 

Scotland 61,206-207,243-244,251; 

see also Britain 

sea 

Antarctic 50, 60, 205, 227 

Arctic 50,60,205,226 

Black 50-51,61,205,228 

bottom 55, 141 

deep 32,45 

otter 206 

Ross 50,60, 205, 220 

tropical 61,206,235 

seasonality 32,65 

second-moment method 190 

seed hardness 47 

semicircle law 66 
SendruBay 61,208,260 

sensitivity analysis 90, 168 

sequential addition of species 73 

shallow sublittoral 206 

Shigayama coniferous forest 62, 208, 265 

Siberia 62, 208, 268; see also USSR 

significance test 28 

simulation 82-83,88,98,100, 116, 119-121, 

127, 139, 144, 168, 172, 174, 180, 

183-184, 187 

of cascade model 171 

sink web 16-18,23,42,44,46,72 

size 21,46,70-71,100,117 

offood 174,177 

class 24, 26, 42, 49 

hypothesis 115 



Subject Index 

skink 4 

snail 47 

social science 18 

solar system 22 

Sonora Desert 62, 208, 270 

source 72 

web 17,23,42 

South Africa 60-61,204,207,211,255 

South Yamal 62, 208, 268 

space 173 

species-area curve II, 70 

species 

chemical 63 

number of 53, 70, 71 

number and intervality 178 

scaling law 73,76-77,86,87,93 
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hierarchy 84, 110 

interaction 4, 53, 63, 112 

potential 118 

niche 10,41 

niche overlap 18,46-47 

graph 69,176,188,190 

niche space 47,185,188 

connectance 40 

triangular matrix 13,70 

upwelling 61,206,236 

USSR 61; see also Russia, Siberia 

variability, variation 9, 16, 18,21,55-60, 

75, 134, 141 

among observers 48, 111 

biological 1 

environmental 51 

periodic or stochastic 2 

range of 75 

variance in proportion of top species 88 

vegetation 16 

Wales 61,205,207,230,248 

Washington 60-61,204,206,216-217,242 

water availability 27,32,51,56,74,141 

weak component 78-79,92 

position 70 weakly connected web 78 

species 3-6,13,19,26,28,32,42,55-56, web 1,4,18,115 

60-62,69,71,73,100,177,187,203 

trophic ally equivalent 3, 19 

tropical sea 61,206,235 

tropics 32 

tundra 55,62,208,268 

Uganda 61,207,257 

wildlife management 23 

willow forest 60, 205, 222 

Wytham Wood 50,60,205,225 

Yamal Peninsula 62, 208, 268 

Yoshino River rapids 61,207,249 

zooplankton 4 
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