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Preface

Food webs hold a central place in ecology. They describe which organisms feed
on which others in natural habitats. This book describes some recently discovered
empirical regularities in real food webs. It proposes a novel theory that unifies
many of these regularities. It offers researchers the most extensive available
collection of edited data on community food webs.

The book is intended for graduate students, teachers and researchers primarily
in ecology, especially community ecologists with a quantitative orientation. The
theoretical portions of the book provide materials that could be useful to teachers
of applied combinatorics, in particular random graphs. Researchers in the theory
of random graphs will find some unsolved mathematical problems here.

The first portion of the book, a general introduction, reviews the empirical
and theoretical discoveries about food webs presented here.

The second portion of the book shows that community food webs obey several
striking phenomenological regularities. Some of these regularities unify; they
apply to all webs, regardless of the kind of habitat in which they are observed.
For example, the ratio of number of trophic links (feeding connections between
a living consumer and a living resource) to the number of kinds of organisms
is approximately independent of the total number of kinds of organisms in the
web. Other regularities differentiate; they show that the habitat of a web
significantly influences the structure of the food web. For example, food chains
in habitats that are three-dimensional on the human scale, such as the open
ocean or forest canopy, are longer than those in two-dimensional habitats, such
as a rocky ocean shore.

The third portion of the book presents a theoretical analysis of some of the
unifying empirical regularities. Several simple models, based on random directed
graphs, are considered. All but one of the models are clearly rejected by the
data. The sole survivor, called the cascade model, explains the major empirical
regularities qualitatively and quantitatively. The cascade model predicts the
proportions of top, intermediate and basal species in a web. The model gives
the first exactly derived predictions of the frequency distribution of the length
of food chains, and these predictions are in acceptable agreement with observa-
tions. The model explains the newest observations of the frequency of intervality
in webs.



VI Preface

The second and third portions of the book are preceded by introductions that
review the background of the following chapters.

The fourth portion of the book presents 113 community food webs. Collected
from scattered sources and carefully edited, these webs are the empirical basis
for the results in this volume. We believe they are the largest available set of
data on community food webs. We hope they will provide a valuable foundation
for future studies of community food webs. We welcome corrections of errors
in these data and additions to the stock of webs. We hope that, by making the
data easily and widely available, we can attract other scientists to the study of
food webs and thereby accelerate the obsolescence of this book.

New York, N.Y., November 1989 Joel E. Cohen



Synopses of the Chapters

Chapter I. General Introduction

§ 0. Food Webs and Community Structure
Joel E. Cohen

A central problem of biology is to develop helpful concepts (e. g., genes) and
tested quantitative models (e. g., Mendel’s laws) to describe, explain and predict
biological variation. This book describes recent discoveries, descriptive and
explanatory, about variation in the food webs of ecological communities.

Chapter II. Empirical Regularities

§ 0. Untangling an Entangled Bank
Joel E. Cohen

Darwin wrote about food webs in a literary way. The systematic attempt to
record all the feeding relations in a natural community apparently began in the
twentieth century. Now many webs have been reported. The great variability
of these webs invites description and explanation. Descriptions can unify (all
webs share certain properties) or differentiate (certain webs differ systematically
from other webs). The chapters in this section present some examples of both
kinds of descriptions. These empirical generalizations raise questions about the
quality of the underlying data and the appropriateness of the data for the analyses
that are made of them. Suggestions for improving the quality and quantity of
future food web data are offered.

A. General Regularities

§ 1. Ratio of Prey to Predators in Community Food Webs
Joel E. Cohen

In community food webs, the ratio of the number of kinds of prey (or living
resources) to the number of kinds of predators (or consumers) displays no
increasing or decreasing trend, over the observed range of numbers of kinds
of organisms.
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§ 2. Community Food Webs Have Scale-Invariant Structure
Frédéric Briand and Joel E. Cohen

In community food webs, the proportions of top, intermediate and basal trophic
species are, on average, independent of the total number of trophic species.
This scale-invariance explains the direct proportionality between the numbers
of prey and predator trophic species.

§ 3. Trophic Links of Community Food Webs
Joel E. Cohen and Frédéric Briand

In community food webs, the mean number of trophic links is proportional to
the total number of trophic species. The numbers of trophic links of each kind
(e.g. from basal to intermediate species, or from intermediate to top species)
are also roughly proportional to the total number of trophic species.

§ 4. Food Webs and the Dimensionality of Trophic Niche Space
Joel E. Cohen

If the trophic niche of a kind of organism is a connected region in niche space,
then it is possible for trophic niche overlaps to be described in a one-dimensional
niche space if and only if the trophic niche overlap graph is an interval graph.
An analysis of 30 food webs, using the combinatorial theory of interval graphs,
suggests that a niche space of dimension one suffices, with unexpectedly high
frequency, to describe the trophic niche overlaps implied by real food webs in
single habitats.

B. Differential Regularities

§ 5. Environmental Control of Food Web Structure
Frédéric Briand

In community food webs, the trophic connectance is lower in habitats with
marked fluctuations of the physical environment than in webs with relatively
constant physical habitats.

§ 6. Environmental Correlates of Food Chain Length
Frédéric Briand and Joel E. Cohen

In community food webs, the average lengths and the maximal lengths of food
chains are independent of primary productivity, contrary to the hypothesis that
longer food chains should arise when more energy is available at their base.
Environmental variability alone also does not appear to constrain mean or
maximal chain length. However, habitats that are three-dimensional or solid,
like the forest canopy or the water column of the open ocean, have distinctly
longer food chains than habitats that are two-dimensional or flat on the human
scale, like a grassland or lake bottom.
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Chapter III. A Stochastic Theory of Community Food Webs

§ 1. Theory: Circles of Complexity, Spherical Horses
Joel E. Cohen

Theories of food web structure have been strongly influenced by the tradition
in physics of modeling dynamic processes by systems of differential equations.
Such models may be linear or non-linear, and may have fixed or random para-
meters. All such models necessarily posit dynamic processes, and such processes
cannot be tested against static food web data. The theoretical approach taken
in the following chapters is tuned to the nature of most food web data, which
are static and phenomenological. The aim is to find the simplest assumptions,
with the least theoretical superstructure, that can unify the observed empirical
regularities. Any phenomenological model, no matter how successful, remains
only a partial, cross-sectional description of dynamic ecological processes. In spite
of its apparent limitations, the cascade model presented in the following chapters
offers the first quantitative description of some important features of food webs.

§ 2. Models and Aggregated Data
Joel E. Cohen and Charles M. Newman

Several simple models, based on random directed graphs, are proposed to
explain the structure of food webs. Several are rejected for qualitative or
quantitative failures to describe the data. A model called the cascade model is
shown to predict the form and parameters of the observed scale-invariance in
the numbers of kinds of species and kinds of links as a consequence of the
observed scale-invariance in the ratio of links to species.

§ 3. Individual Webs
Joel E. Cohen, Charles M. Newman and Frédéric Briand

The cascade model is tested against data from individual webs. It shows a
higher ratio of links to species for webs in constant habitats than for webs in
fluctuating habitats.

§ 4. Predicted and Observed Lengths of Food Chains
Joel E. Cohen, Frédéric Briand, and Charles M. Newman

An exact quantitative theory for the expected numbers of chains of each length,
the first such theory, is derived from the cascade model of community food
webs, and is tested with considerable success against the observed numbers of
chains in 113 webs.

§ 5. Theory of Food Chain Lengths in Large Webs
Charles M. Newman and Joel E. Cohen

The cascade model provides the first exact explanation of why the lengths of
food chains are much less than the number of species in a community. According
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to the cascade model, the median value of the longest chain increases very
slowly with the number of trophic species, remaining below 17 for up to one million
trophic species. When the number of trophic species in a web becomes extremely
large, the cascade model predicts that the mean length of chains approximately
equals the mean number of predators plus prey of any species in the web; this
prediction is apparently new, and is testable.

§ 6. Intervality and Triangulation in the Trophic Niche Overlap Graph
Joel E. Cohen and Zbigniew J. Palka

In 113 community food webs, the fraction of webs that are interval is strongly
associated with the number of species in the webs, declining from one for small
webs (16 or fewer species) toward zero for large webs (33 or more species).
The cascade model predicts that, for small numbers of species, the probability
that a web is interval is near one, while for large numbers of species, the
probability that a web is interval declines extremely rapidly toward zero. The
quantitative and qualitative agreement between the observed and predicted
relative frequencies of interval webs is reasonable. The broad ecological inter-
pretation is that the larger the number of species in a community, the less
likely it is that a single dimension suffices to describe the community’s trophic
niche space.

Chapter IV. Data on 113 Community Food Webs
Assembled and edited by Frédéric Briand and Joel E. Cohen
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Chapter I. General Introduction

§0. Food Webs and Community Structure
Joel E. Cohen

1. Introduction

A central problem of biology is to devise helpful concepts (such as genes) and
tested quantitative models (such as Mendel’s laws) to describe, explain and
predict biological variation. The problem of characterizing variation arises in
different guises in population genetics (genetic variation), demography (varia-
tion by age, sex, or location), epidemiology (variation by risk factors and disease
status), and ecology (variation in species composition and interactions in com-
munities). In each field, there is variation over time, in space, and among units
of observation (individuals, populations, or comparable habitats).

This introduction reviews some recent efforts to describe, explain and predict
variation in the food webs of ecological communities. There are many notions of
an ecological community and many approaches to describing and understanding
community ecology. Panoramic reviews of community ecology are available (such
as Diamond and Case 1986; Kikkawa and Anderson 1986; National Research
Council 1986; May 1986). For present purposes, a community is whatever lives
in a habitat (lake, forest, sea floor) that some ecologist wants to study.

Once the physical boundaries of a habitat are defined, it is natural to study
flows of matter and energy across and within the boundaries. A partial descrip-
tion of these flows is provided by food webs, which used to be called food-cycles
(Elton 1927).

A food web describes which kind of organisms in a community eat which
other kinds, if any. A community food web (hereafter simply “web”) describes
the feeding habits of a set of organisms chosen on the basis of taxonomy, location
or other criteria without prior regard to the feeding habits among the organisms.
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Webs were invented in the natural-historical approach to community ecology as
a descriptive summary of which species were observed to eat which others.

If an ecological community is like a city, a web is like a street map of the
city: it shows where road traffic can and does go. A street map usually omits
many important details, such as the flow of pedestrian and bicycle traffic, how
much traffic flows along the available streets, what kind of vehicular traffic it is,
the reasons for the traffic, the laws governing traffic flow, rush hours, and the
origin of the vehicles. By analogy, a web often omits small flows of food or pre-
dation on minor species, the quantities of food or energy consumed, the chemical
composition of food flows, the behavioral and physical constraints on predation,
temporal variations (periodic or stochastic) in eating, and the population dy-
namics of species involved. Thus a web gives at best very sketchy information
about the functioning of a community. But just as a map provides a helpful
framework for organizing more detailed information, a web helps picture how a
community works.

Many approaches to studying webs are available. I will not attempt here a
comprehensive review of food webs, since such reviews are available (see Pimm
1982 and in press; DeAngelis et al. 1983; Lawton in press). A difference of tem-
perament, training, and language seems to divide those who prefer to study webs
in physical and chemical terms (such as Lotka 1925; Lindemann 1942; Wiegert
1976; Budyko 1980; Margalef 1984; Remmert 1984) from those who prefer to
study webs in terms of the natural history of species of living organisms (such as
many authors in the collection by Hazen 1964). Here “natural history” comprises
morphological, genetic, physiological, behavioral, and demographic characteris-
tics of species. Recent natural-historical approaches have focused on combina-
torial aspects of web structure (Cohen 1978; Sugihara 1982, 1983, 1984), on the
theory of interactions between web structure and the stability of dynamic mod-
els (May 1973; Pimm and Lawton 1977; Pimm 1982, 1984; Sugihara 1982), and
on empirical generalizations (Paine 1980; Briand 1983; Beaver 1983, 1985).

Fortunately, nature is serenely indifferent to the prejudices ecologists bring
her. It will eventually be necessary to integrate the physico-chemical and natural-
historical approaches to community ecology. I hope that the food web models
reviewed here will help bring about that integration.

This introduction reviews some recent discoveries about webs, suggests op-
portunities for further empirical and theoretical study, and sketches some uses
for actual and potential knowledge about webs. I attempt to give here an in-
formal description of the discoveries that are presented more technically in the
following chapters.

So far as I know, webs were first described in scientific detail at the beginning
of this century. Simplifications that they were, the webs appeared forbiddingly
complex relative to the concepts available for understanding them. The webs
differed strikingly from one habitat to another. Now enough webs have been
patiently observed and recorded to demonstrate that ensembles or collections
of webs display simple general properties that are not evident from any single
web. Building on a collection of webs that I initiated (Cohen 1978), F. Briand
assembled and edited 113 community webs from 89 distinct published studies.
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Thus many field ecologists contributed to the discoveries reviewed here. Most of
the world’s biomes are represented among these webs. There are 55 continental
(23 terrestrial and 32 aquatic), 45 coastal, and 13 oceanic webs, ranging from
arctic to antarctic regions. The sources and major characteristics of these webs
are listed in Chap. I1.6. The webs are fully documented in Chapter IV of this
book.

In what follows, I will illustrate what a web is and how a web is described.
I will present some recent quantitative empirical generalizations about webs.
Then I will present a simple model, called the cascade model, that unifies the
quantitative generalizations. Though this model does not purport to represent
everything field ecologists know is happening in webs, no other model at present
connects and explains quantitatively what is observed. The cascade model also
makes novel predictions that can be tested. Then I will describe problems from
other parts of ecology that can be analyzed using the cascade model and the
facts on which it is based. Finally, I will sketch some potential uses of facts and
theories about webs.

2. Terms

Let me introduce some terms and illustrate them with an example. A trophic
species is a collection of organisms that have the same diets and the same preda-
tors. This definition combines Sugihara’s definitions (1982, p. 19) that resources
are trophically equivalent if they have identical consumers and that consumers
are trophically equivalent if they have identical resources. A trophic species will
sometimes, but not always, be a biological species in the usual sense of biological
species: a collection of organisms with shared genetics. A trophic species may
be a biological species of plant or animal, or several species, or a stage in the
life cycle of one biological species. Hereafter the word “species” without further
specification means “trophic species”.

Independently of Sugihara (1982, p. 19), Briand and I (Chap. I1.2) introduced
the concept of trophic species to find out if there was merit in a criticism that
Pimm (1982, p. 168) made of my earlier finding (Chap. I1.1) that webs generally
had about 4 (biological) species of predators for every 3 (biological) species
of prey. Pimm suggested that ecologists distinguish among species with fur or
feathers, which are likely to be consumers, more often than among species with
more difficult taxonomy, such as many plants, microorganisms and insects, which
are likely to be consumed. The excess of predators, he suggested, could be an
artifact of the interests and knowledge of ecologists.

To test that possibility, Briand and I devised an automated lumping procedure
that puts together those biological species or other biological units of a web that
eat the same kinds of prey and have the same kinds of predators. We call each
equivalence class that results from such lumping a trophic species. Our intent was
to apply a uniform rule to distinguishing among the units of a web in order to see
if this uniform rule altered the ratio of predators to prey. Indeed it did! A slight
excess of predators remains, but the ratio of predators to prey counting lumped
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or trophic species is much nearer 1:1 than the ratio based on the original data
(Chap. I1.2). Pimm’s criticism had merit. We believe that using trophic species,
as we shall do henceforth in this introduction, corrects a bias of ecologists and
gives a more realistic picture of the trophic structure of communities.

A web is a collection of trophic species, together with their feeding relations.
Each arrow in a web goes from food to eater, or from prey to predator. I call
each arrow a “link”, short for “trophic link”.

Rat
X r\\ /A
Coconut crabs
7
/
Terns Frigate birds Coconut
IS . _, Starlings
Boobies Breadfruit
Annelids
Algae A Pand ™~ 7
(flamentous, S andanus Organic P
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P AN <«— Cyrtosperma ——> ~— Fungi
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A \
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\~I
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Fig. 1.0.1. Food web in the Kapingamarangi Atoll. Redrawn from p. 157 of Niering 1963. As
reported by Niering, the biological units in this figure range taxonomically from individual bio-
logical species (man, pig) to very large aggregates of species (phytoplankton, land vegetation),
and do not necessarily correspond to trophic species

Fig.1.0.1 (redrawn from Niering 1963) pictures the unlumped web on an island
in the Pacific Ocean. Some species are top, meaning that no other species in the
web eats them, such as reef heron, starlings. Some species are intermediate,
meaning that at least one species eats them, and they eat at least one species,
such as insects, skinks, fish. Some species are basal, meaning that they eat no
other species, such as algae, phytoplankton. The web omits decomposers. A
crude way to quantify the structure of webs is to count the numbers of species
that are top, intermediate and basal.

These three kinds of species specify four kinds of links: basal-intermediate
links, such as phytoplankton to zooplankton; basal-top links, such as coconut
to man; intermediate-intermediate links, such as zooplankton to fish; and inter-
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mediate-top links, such as fish to frigate birds. Additional information about
structure is given by the numbers of links of each of these four kinds.

A chain is a path of links from a basal species to a top species, such as from
phytoplankton to fish to terns. The length of a chain is the number of links in
it. In Fig.1.0.1, the longest chain has only four links, and there is only one chain
of length four.

A cycle is a directed sequence of one or more links starting from, and ending
at, the same species. A cycle of length 1 describes cannibalism, in which a species
eats itself. Cannibalism is common in nature. But ecologists report cannibalism
so unreliably that we have suppressed it from all the data even where it is
reported. A cycle of length 2 means that A eats B and B eats A. In this example,
as in most webs, there are no cycles of length 2 or more.

In summary, the terms just defined are trophic species, including top, inter-
mediate and basal; links, including basal-intermediate, basal-top, intermediate-
intermediate and intermediate-top; and chains, length (the number of links) and
cycles.

In what follows, the terms “observed web” or “real web” mean a web edited
to eliminate obvious errors, inconsistencies and oversights, in which the original
ecologist’s biological units are replaced by trophic species, and in which canni-
balism and isolated species (species without feeding relations to any others) are
excluded. It is useful to ask in what sense such webs are “real”.

Clearly the processed data are more constrained by reality than, for example,
webs constructed a priori as model ecosystems. As a relative term, “real” means,
not that the data are perfect, but that they are not invented.

I think it may eventually be possible to claim much more for edited webs based
on trophic species. By analogy, chemists have learned that it is more useful and
economical to describe chemical “reality” in terms of chemical elements, which
were once considered hypothetical, than in terms of gross phenomenology like
color, taste and density. Geneticists have learned that it is more useful and
economical to describe the factors affecting inheritance in terms of genes, which
were once considered hypothetical, than in terms of the gross phenomenology
of certain macroscopic characters. I suggest that a web in which the units are
trophic species may prove to be a more useful and economical description of the
trophic organization of ecological communities than a description in terms of
taxonomic phenomenology. Whether trophic species are closer to reality than the
full glory of a naturalist’s notebook will have to be determined by the eventual
usefulness of the empirical and theoretical generalizations that develop using
trophic species.

3. Laws

Here are five laws or empirical generalizations about webs.

First, excluding cannibalism, cycles are rare. This generalization, without
detailed supporting data, has been known for a long time (Gallopin 1972). Of
113 webs, three webs each contain a single cycle of length 2, and there are no
other cycles (Chaps. II1.2, IIL.4).
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The rarity of cycles is not an artifact of using trophic species instead of the
original units of observation, such as biological species, size classes, or aggregates
of species. The reason is that the lumping procedure does not alter the connec-
tivity of the web: the trophic species containing unit A is trophically linked to
the trophic species containing unit B if and only if A was originally trophically
linked to B. It follows that any cycle present in the original web must be rep-
resented by a cycle of the same length in the lumped web. Therefore, excluding
cannibalism, if 110 of 113 lumped webs have no cycles, then 110 of the origi-
nal webs had no cycles. The remaining three of the original webs had no cycles
longer than length 2. There is no evidence that cycles occur in more webs if
biological species are used instead of trophic species.

Second, chains are short (Hutchinson 1959). If one finds the maximum chain
length within each web, then the median of this maximum in the 113 webs is four
links and the upper quartile of the maximum chain length is five links (Chap.
II1.4). The longest chains in all 113 webs had ten links, and only one web had
chains that long.

The last three laws deal with scale invariance (Chaps. I1.1-3). Scale invariance
means that webs of different size have constant shape, in some sense.

Our third law is scale invariance in the proportions of all species that are
top species, intermediate species and basal species (see Fig. A.2.2a—c). There is
evidently no increasing or decreasing trend in these proportions as the number
of species increases (Chap. I1.2). Here scale invariance describes the observation
that as the number of species in 62 webs varies from 0 to 33, the proportions
of top, intermediate and basal species apparently remain invariant. This scale
invariance explains my earlier observation (Chap. II.1) that the ratio of num-
ber of predators to number of prey has no systematic increasing or decreasing
trend when webs with different numbers of species are compared. The number
of predators is the sum of the numbers of top plus intermediate species, while
the number of prey is the sum of the numbers of intermediate plus basal species.
Mithen and Lawton (1986) and Tilman (1986) have developed other explana-
tions for the same finding.

Our fourth law is scale invariance in the proportions of the different kinds of
links. In Fig. A.3.2a, for example, the abscissa is the number of species and the
ordinate is the proportion of basal-intermediate links among all links. There is no
clear evidence of an increasing or decreasing trend. The proportions of different
kinds of links, like the proportions of species, are approximately scale-invariant.

The fifth law is that the ratio of links to species is scale-invariant. In Chap.
II1.4, Fig. 4 plots the observed number of links in each web against the observed
number of species, for 113 webs. The data are approximated well by a straight
line with slope about 2. That means that a web of 25 species has on average
about 50 links. We first came across this generalization with 62 webs (Chap. I1.3).
Then Briand collected an additional 51 webs, and we found that the new data
superimpose beautifully on the old data (Chap. II1.4). Several other investigators
independently arrived at equivalent conclusions (Chap. I1.0). So far, this scale-
invariant ratio of links to species is a consistent feature of nature.
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In summary, I have reviewed evidence for five “laws”of webs. Qualitatively,
these laws state that cycles are rare, chains are short, and there is scale-invariance
in the proportions of different kinds of species, in the proportions of different
kinds of links, and in the ratio of links to species. Each of these laws may be
stated quantitatively.

By constructing hypothetical examples, it is not too hard to see that each
of .these laws may fail to hold while the remaining laws continue to hold. This
means that the laws are logically independent. That all five laws characterize
observed webs suggests that the laws are not empirically independent, and that
it might be possible to find fewer than five assumptions which could explain and
unify the five laws.

I make no claim that these are the only important empirical “laws” of webs.
For example, I have omitted my finding (Chap. I1.4) that the trophic niches of
predators in webs may be usually represented by intervals of a line (see also Chap.
I11.6), and Sugihara’s findings (1982, 1983, 1984) on the rarity of homological
holes and the high frequency of rigid circuits. I selected the five “laws” reviewed
above because they are phenomenologically important and because a simple
model can connect them qualitatively and quantitatively.

4. Models

I turn now to a model that shows how the five empirical regularities described
in the preceding section are related.

Let S denote the number of trophic species and L the number of links. List all
the species along both the rows and columns of a “predation matrix,” a square
table of numbers with S rows and S columns. Name the matrix A. Put a 1 in the
intersection of row i and column j (element a;; of the matrix A) if the species
labeled j eats the species labeled 7, and a 0 if species j does not eat species i.
Since cannibalism is excluded from the data, all the diagonal elements (where
i = j) are set equal to 0. In terms of this predation matrix, the total number
of links is the sum of the elements of A. The sum picks up a 1 if there is a link
from prey ¢ to predator j and a 0 if there is no link.

The predation matrix also tells whether a species is top. If a species is top,
then nobody eats it. That means that the row of that species should be all 0’s.
So a 0-row corresponds to a top species. Similarly, a 0-column corresponds to
a basal species because the species eats nothing. A species that has neither a
0-row nor a 0-column is intermediate.

I now describe the cascade model, but not the calculations required to squeeze
results out of it. Some limnologists (such as Carpenter et al. 1985) use the
term “cascade” with a different meaning, to describe the dynamics of limiting
nutrients in webs. When the term “cascade” appears, it seems advisable to look
for a definition. In this book, “cascade” refers only to the model in the next
paragraph.

First, the cascade model supposes that nature numbers the S species in the
community from 1 to S (without showing us the numbering), and that the
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numbering specifies a pecking order for feeding, as follows. Any species j in this
hierarchy or cascade can feed on any species i with a lower number i < j (which
doesn’t mean that j does feed on 7, only that j can feed on 7). However, species
j cannot feed on any species with a number k at least as large, k£ > j. Second,
the cascade model assumes that each species actually eats any species below it
according to this numbering with probability d/S, independently of whatever
else is going on in the web. Thus the probability that species j does not eat
species i1 < jis 1 —d/S.

The assumptions of an ordering of species, of a probability of feeding pro-
portional to 1/S that is the same for all possible feeding relations, and of in-
dependence among feeding relations, are all there is to the cascade model. In
the predation matrix A, a;; is 0 always if i > j. The predation matrix in the
cascade model is strictly upper triangular, i.e., every element on or below the
main diagonal is 0. An element above the diagonal (i < j) is 1 with probability
d/S and is 0 with probability 1 — d/S, and all elements are independent.

As is conventional, I use E to denote the average or expected number. I now
show how to compute E(L), the expected number of links, according to the
cascade model. The expected number of links is the expectation of the sum of
the predation matrix elements. There are S? elements in the predation matrix A
and the probability is d/S that an element a;; (i < j) above the main diagonal
equals 1. All other elements of A are 0 by construction. Since there are S(S—1)/2
elements above the main diagonal, the expected sum of the elements of A is
S(S-1)/2xd/S =d(S—1)/2 = E(L). Thus E(L) is a linear function of S
with slope d/2.

Since at present I have no theory to predict the slope, I have to estimate
the slope from the data in Fig.4 of Chap. III.4. The slope of the line there is
approximately 2, so I take d = 4 approximately. That’s the only curve-fitting in
this model. Everything else is derived. Thus E(L) = 2(S — 1) = 25 — 2. Among
webs with 26 species, the average number of links is predicted to be 50. Since the
number of species ranges from 3 to 48 in our data, the constant term —2 in this
equation is negligible compared to the term 25 proportional to S. Qualitatively,
the cascade model reflects the observation that the expected number of links
is nearly proportional to the number of species. Quantitatively, the link-species
scaling law fits because I made it fit by taking d = 4.

Roughly speaking d/2 (more exactly, d(S—1)/(2S5)) is the average number of
predators per species and roughly d/2 is the average number of prey per species.
Here the average is taken over all webs with a given number of species and, more
importantly, over all species within a web. Obviously, a species at the top of the
cascade has no predators, while a species at the bottom of the cascade has no
prey. However, averaged over all positions in the cascade, an average species has
about 2 predators and about 2 prey.

As the number of species becomes large, the cascade model predicts 26 per-
cent top species, 48 percent intermediate species and 26 percent basal species.
Thus the model predicts a 1:1 ratio of predators to prey. We observe 29 per-
cent top species, 53 percent intermediate and 19 percent basal (see Fig. A.2.2),
giving roughly a 1.1:1 ratio of predators to prey. The model predicts the follow-~
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ing percentages of basal-intermediate, basal-top, intermediate-intermediate and
intermediate-top links: 27, 13, 33, and 27. We observe, correspondingly, 27, 8,
30, and 35 (see Fig. A.3.2).

It is nice that the cascade model reproduces all the laws of scale-invariance
qualitatively, but far more striking that the cascade model gives a remarkable
quantitative agreement between observed and predicted proportions. We put one
number d into the cascade model and get out five independent numbers (because
the three species proportions have to add up to 1 and the four link proportions
have to add up to 1). I emphasize that these predictions use only the observed
ratio of links to species.

For a finite number of species, we calculated from the cascade model the ex-
pected fraction of top species and the predicted variance. In Chap. I11.2, Fig. 1
shows that the cascade model predicts not only the means but also the variabil-
ity in the proportion of top species. I don’t know whether the cascade model
can predict the variability in proportions of links because I don’t know how to
calculate analytically what variability the cascade model predicts and have yet
to do appropriate numerical simulations.

The cascade model was built to, and does, explain qualitatively and quan-
titatively the mean proportions of different kinds of species and links. Can the
cascade model describe the number of chains of each length, counting all the
possible routes from any basal species to any top species?

@ ©

o
o

Fig. 1.0.2. Hypothetical food web to illustrate how the frequency distribution of chain lengths
is counted. There is one chain length 1 (from species 1 to species 2) and there are two chains
of length 2 (from species 1 to species 4 and from species 1 to species 5)

Let me illustrate with an artificial example (Fig..0.2) how to get a frequency
histogram of chain length from a web. The link from 1 to 2 is a chain of length
1. The path 1, 3, 4 is a chain of length 2, and the path 1, 3, 5 is another chain
of length 2. A numerical summary of the chain length distribution of the web
in Fig.1.0.2 is that it has one chain of length 1, two chains of length 2 and no
longer chains.

In Chap. II1.4, Fig. 1 shows the expected number of chains of each length,
according to the cascade model, using parameters of a typical web, namely 17
species and d near 4. The same figure also shows the results of one hundred
computer simulations of the model using the same parameters. The sample mean
numbers of chains of each length agree well with the theoretically expected
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number calculated from the model. That agreement is evidence that both the
calculations and the simulations are right.

How well does the cascade model predict the observed distribution of chain
length of a real web? To find out, we generated random webs according to the
cascade model with the parameters of the observed web. We measured how of-
ten the chain length distribution of a random web was further from the chain
length distribution predicted by the cascade model than the real observed chain
length distribution was from the predicted distribution. We used two measures
of goodness of fit: the sum of squares of differences and a measure like Pearson’s
chi-squared. If the discrepancy between the observed and the expected frequency
distributions was not larger than most of the discrepancies between webs ran-
domly generated according to the cascade model and the mean frequency dis-
tribution expected from the model, we said the fit was good. If the discrepancy
between observed and predicted chain length distributions was bigger than most
simulated discrepancies, we said the fit was bad.

Have no illusions about what a good fit means. In Chap. II1.4, Table 2, food
web 18 illustrates a good fit while food web 37 illustrates a poor fit. Food web 18
is the Kapingamarangi Atoll food web (see Fig.1.0.1 above) of Niering (1963).
For food web 18, Table 2 of Chap. II1.4 shows four chains of length 4 while
Fig.1.0.1 has one chain of 4 links. The reason for this discrepancy is that Cohen
(1978) added to the predation matrix for this web links that Niering (1963)
described in his text but omitted from his figure.

Of 62 webs in Briand’s original collection, the chain length distributions of 11
or 12 (depending on the measure of goodness of fit used) were badly described by
the cascade model. The model’s success with the chain length distributions of 50
or 51 of these webs made us afraid that we had overfitted the model to the data.
Perhaps by constructing the cascade model to explain the mean proportions
of top, intermediate and basal species and the proportions of different kinds
of links, we had used so much information from the data that there was no
possibility for the fits to the chain length distribution to be bad, even though
they were not used to build the model. This worried us. So Briand found and
edited 51 additional webs which we had never analyzed before. The ratio of links
to species was roughly the same for these new webs as for the old webs, as I
mentioned already. With these fresh data, we found only five webs with poor
fits to the cascade model’s predicted frequency distribution of chain length. The
proportion of poor fits, 5 of 51 webs, was smaller among the new webs than it
had been among the original webs (Chap. II1.4).

The cascade model uses no information about chain length to predict the
frequency distributions of chain length. The predictions derive solely from the
number of species and the number of links. No other parameters are free.

Apparently, the niche overlap graph of most webs is an interval graph, i.e.,
the overlaps of trophic niches revealed by most webs are consistent with the
trophic niches being 1-dimensional (Chaps. II.4, IT1.6). Unexpectedly, the cas-
cade model predicts the conditions under which intervality is common or rare.
This prediction uses no fitted parameters.
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The cascade model needs to be tested further, tested until it fails, as it surely
will. How well can the cascade model predict the moments of chain length (as
Stuart Pimm has asked), or patterns of omnivory? Can the cascade model relate
to the combinatorial web models of Sugihara (1982, 1983, 1984)? Much testing
remains to be done.

The cascade model makes new predictions. In large webs (S > 17), the cascade
model implies a novel rule of thumb: The mean length of a chain should equal the
mean number of prey species plus the mean number of predators of an average
species (Chap. II1.5). Both should equal a number near 4. This purported rule
is open to empirical test.

The cascade model explains qualitatively why the longest chains in webs
are typically short. Newman and I (Chap. II1.5) derived the relative expected
frequency of various chain lengths as the number of species goes to infinity,
according to the cascade model, and found that, with a realistic value of d,
practically no chains have length 8, 9, or 10. The cascade model predicts that,
in very large webs, the length of the longest chain grows like (log S)/(loglog S).
That is very slow growth. In a web with 108 species, which is probably an upper
bound for the world, the cascade model predicts that the longest chain will
almost never have more than 20 links.

5. Connections

The cascade model connects with quantitative questions and theories elsewhere
in ecology. I will sketch the connection of the cascade model with three topics:
the species-area curve, the relative importance of predation and competition in
communities, and allometric equations for the effects of body size.

First, one of the best known quantitative empirical generalizations of ecology
is the species-area curve (MacArthur and Wilson 1967; Schoener 1976, 1986;
Diamond and May 1981). In its simplest form, the species-area curve asserts that
the number of biological species on an island is proportional to the area of the
island raised to some power near 1/4. (When examined in detail [Schoener 1986],
species-area curves are vastly more complicated.) The cascade model predicts,
among other things, how the mean or maximal length of chains depends on the
number of trophic species in a community. If the number of trophic species can
be assumed or demonstrated (by a future empirical study of actual webs) to
be proportional to the number of biological species, then a combination of the
species-area curve and the cascade model predicts how chain length should vary
on islands of different areas.

Without going into the details of the formulas, it is evident that if the number
of species on an island increases very slowly with area, and if the maximal or
mean chain length in a web increases very slowly with the number of species in
a community, then the maximal or mean chain length should increase extremely
slowly, or be practically constant, with increasing island area. The combination
of the species-area curve and the cascade model explains, qualitatively at least,
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why there is not a known relation between the area a community occupies and
the mean or maximal chain length of its web. v

An alternative explanation, suggested by Robert T. Paine, is that there is no
known relation between the area of a community and the mean or maximal chain
length of its web because nobody has looked for such a relation. If the cascade
model provokes an ecologist to examine the relation empirically, the model will
have served a useful purpose.

Second, the cascade model relates to the roles of competition and predation
in ecological communities. Hairston, Smith and Slobodkin (1960), as described
succinctly by Schoener (1982, p. 590), “argued that competition should prevail
among top predators, whereas predation should prevail among organisms of in-
termediate trophic status, mainly herbivores. Because the herbivores are held
down by competing top carnivores, competition should prevail again among the
herbivore’s [sic] food species, green plants.” Menge and Sutherland (1976, p. 353)
proposed, by contrast, that as trophic position goes from high to low within a
community, the relative importance of predation should increase monotonically
while the relative importance of competition should decline monotonically. Con-
nell (1983) and Schoener (1983) reviewed at length field experiments on inter-
specific competition which bear on these generalizations, and Schoener (1985)
analyzed the points of agreement and disagreement in the two reviews.

Predation and competition can be interpreted in terms of quantities com-
putable from the cascade model. It is then possible to examine whether these
quantities behave according to the generalizations of Hairston et al. (1960) or
Menge and Sutherland (1976). For example, a natural measure of the amount of
predation on trophic species 7 in the cascade model is the expected (or average)
number of predators on trophic species #, which is easily seen to be d(S —1)/S.
There are S — ¢ species above species ¢ in the trophic pecking order, and the
probability that any one of them will feed on species i is d/S, so the expected
number of predators on species i is the product d(S —4)/S. Since i = 1 is the
lowest trophic position in the cascade model and 7 = S is the highest, the cas-
cade model implies that this measure of predation should increase linearly as
trophic position goes from high to low within a community, exactly as proposed
by Menge and Sutherland (1976). As the generalizations of Hairston et al. and
Menge and Sutherland pertain to the relative importance of competition and
predation, the behavior of a measure of predation needs to be related to the
behavior of a measure of competition, such as one used by Briand (Chap. IL5).

Third, physical interpretations of the ordering of trophic species assumed in
the cascade model may make it possible to connect the study of webs with
the study of allometry and physiological ecology. The combination might be
called “ecological allometry”. For example, extending to entire webs a qualitative
suggestion of Elton (1927, pp.68-70) for individual chains, suppose that each
trophic species consists of individuals more or less homogeneous with respect
to size or mass, and that the larger the species’ label i = 1,2,...,S in the
cascade model (i.e., the higher the trophic position), the larger the mass of
each individual in that species. (Food chains of parasites generally follow the
opposite rule: parasites are much smaller than their hosts [Elton 1927, Chap. 6].)
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The assumption that body mass increases with a species’ label ¢ in the cascade
model can be tested empirically, since it implies that no (nonparasitic) trophic
species can eat a species larger than itself. When trophic species in real webs
are ordered by body mass, is the predation matrix generally upper triangular,
as assumed by the cascade model? [Since this introduction was written, the
identical question occurred independently to Warren and Lawton (1987). In the
food web of an acid pond community, when trophic links were determined by
laboratory tests (not in the field), the predation matrix was largely, but not
entirely, upper triangular.]

If size-ranked predation matrices are generally upper triangular, the cascade
model can connect facts about food webs with quantitative empirical general-
izations that physiological ecologists have discovered about body size (Peters
1983; Calder 1984; Peterson et al. 1984; Peters and Raelson 1984; Vézina 1985;
May and Rubinstein 1985). From preliminary calculations, it appears that sev-
eral empirical ecological generalizations, which have previously lacked a physical
explanation, may be derived from a combination of the cascade model with
assumptions or facts about body size.

6. Applications

This work may eventually contribute to human well-being in four ways.

First, environmental toxins cumulate along food chains. “Eating 0.5 kg of Lake
Erie fish can cause as much PCB [polychlorinated biphenyl] intake as drinking
1.5 x 106 L of Lake Erie water”(National Research Council 1986). An under-
standing of the distribution of the length of food chains is necessary, though not
sufficient, for understanding how toxins are concentrated by living organisms.

Second, people have not been very successful at anticipating all the con-
sequences of introducing or eliminating species. Such perturbations of natural
ecosystems are being practiced with increasing frequency in programs of biolog-
ical control. An understanding of the invariant properties of webs is essential for
anticipating the consequences of species’ removals and introductions. For exam-
ple, a perturbation that eliminated most of the top trophic species, or most of
the basal trophic species, could be expected to be followed by major changes in
the structure of the web if the community adjusts to reestablish invariant propor-
tions of top, intermediate and basal species. The cascade model or its successors
may eventually make it possible to derive more quantitative predictions.

Third, an understanding of webs will help in the design of nature reserves and
of those future ecosystems that will be required for long-term manned spaceflight
and extra-terrestrial colonies. A nature reserve with all top species would be
expected to have trouble, according to the cascade model. For humans to survive
and to be fed in space, we need to know more about the care and feeding of webs.

Fourth, and finally, since some webs include man, an understanding of webs
may give us a better understanding of man’s place in nature, here on earth.
We have not detected any consistent differences between webs that contain man
and webs that do not. Of course, we have not looked yet at webs of agricultural
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ecosystems strongly influenced by man. When we look at new classes of webs,
we may expect to see new patterns.



Chapter II. Empirical Regularities

§0. Untangling an Entangled Bank
Joel E. Cohen

... plants and animals, most remote in the scale of nature,
are bound together by a web of complex relations.
Darwin (1859, p. 73)

The chapters in the empirical portion of this book are part of a funny story.
At least, the story is funny if viewed from sufficient distance. In cartoon form,
the story has three panels. In the first panel, country folks (the field ecologists)
happily record the glories of nature in their notebooks and publish summaries
in the form of food webs. In the second panel, naive city folks (the theoretical
ecologists) assemble and analyze the food webs. They trumpet to the world
general patterns that emerge from the collected food webs. (That’s what this
empirical part of the book is about.) In the third panel, the field ecologists,
some puzzled, some aroused, rear back and dig in their heels: “Wait a minute!
We didn’t expect anybody to use our food webs as data.” Meanwhile, in the
background, a few mice busily build a scaffolding of theory to hold together the
general patterns found in panel two. (That’s what the theoretical portion of the
book, Chap. III, is about.)

1. Natural History

Let us return to the first panel. Food webs figure, in literary garb, in one of
the most famous paragraphs in biology, the last paragraph of Darwin’s On the
Origin of Species (1859). That paragraph begins:

It is interesting to contemplate an entangled bank, clothed with many plants of many kinds,
with birds singing on the bushes, with various insects flitting about, and with worms crawling
through the damp earth, and to reflect that these elaborately constructed forms, so different

from each other, and dependent on each other in so complex a manner, have all been produced
by laws acting around us.
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Darwin summarizes his theory of evolution and resumes:

Thus, from the war of nature, from famine and death, the most exalted object which we
[Darwin speaks anthropocentrically here] are capable of conceiving, namely, the production of
the higher animals, directly follows.

The study of food webs is the study of that war of nature, and of the laws acting
around us which govern it.

Darwin’s literary account of food webs presaged and soon motivated empirical
studies. In papers published from 1876 onward, Forbes (1977 reprint) described
in detail the diets of birds, fishes and insects. These papers may contain the first
sink food webs. In his 1878 paper on the food of Illinois fishes, Forbes explained
the purposes of his investigations, and emphasized that “We ought also to gain,
by this means, some addition to our knowledge of the causes of variation, of the
origin and increase, the decline and extinction of species ... What groups crowd
upon each other in the struggle for subsistence? Do closely allied species, living
side by side, ever compete for food?” Forbes did not cite Darwin explicitly here,
but Darwin’s ideas appeared clearly.

Camerano (1880), in a paper generously sent me by Stuart Pimm, initiated
more abstract descriptions of the entangled bank. His hypothetical tree-like
diagrams show feeding relations among different classes of organisms. Unlike
Forbes’s sink webs, Camerano’s sketch was intended as a description of an en-
tire community. The diagrams are remarkably similar in form to Darwin’s illus-
tration of divergence of character (1859, lithograph inserted between pages 116
and 117), though with different labels. In function, Camerano’s diagrams closely
resemble schematic webs seen in elementary textbooks of ecology today. Camer-
ano distinguished vegetation, herbivores, and carnivores. Among carnivores, he
distinguished predators, parasites and endoparasites. He even initiated a math-
ematical formalism to describe or explain equilibrium in complex communities.

The earliest food web graphs in English that I know of are Shelford’s (1913)
hypothetical descriptions of communities. It remained for British empiricism to
produce a real description of a whole community. Summerhayes and Elton (1923)
reported a detailed food web of Bear Island. Another detailed food web centered
on the herring and plankton community (Hardy 1924) and a web of the animals
that live on pine (Richards 1926) quickly followed. An industry was born. The
industry continues to this day, with considerable improvements in technology
and product.

As for the technology of 1nferrmg the existence of trophic links, Forbes col-
lected consumers and examined macroscopically the contents of their stomachs.
Many observers determined trophic links simply by macroscopic observation of
one living organism eating another. The techniques of natural history have not
lost their value, but have recently been joined by more sophisticated techniques.
The stomachs of certain marine organisms contain a gray-green paste from which
it is not easy, or even possible, visually to identify the diet. Recently, antibodies
have been applied to that paste to identify proteins that are specific to individ-
ual prey species. In addition, the isotopic composition of the tissue of organisms
living around hot-water vents in the deep ocean floor has been carefully analyzed
to determine whether the tissue was based on sun-based detritus chains or on
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chains that derived energy and nutrients from the earth’s core (Van Dover et al.
1988). (See also Hart 1989.)

As for product, only recently have accounts of food webs improved on the
reporting, more than a century ago, of Forbes (1977 reprint). Forbes gave de-
tailed matrices, listing consumers by species in column headings and prey often
by species in row labels, with actual numbers of specimens of each consumer and
each prey item. Some of his predation matrices were classified by month of obser-
vation to bring out seasonal changes in feeding habits. Unfortunately, Forbes’s
high standard was not maintained. In the hands of many later reporters, a food
web became little more than an error-prone diagram with boxes and arrows.
By happy contrast, a recent tropical rocky intertidal web is presented as a large
matrix accompanied by the number of individuals of each kind observed feeding,
the mean wet weight of each kind of consumer, various exclosure experiments
to determine the regulatory role, if any, played by consumers, percent cover of
certain sessile species, rates of biomass accumulation and change in abundance
of various species in the web (Menge et al. 1986). In another recent collection of
webs, the detailed variations in time and space of feeding relations in tree holes
of various sizes are accompanied by the abundance of each species (Kitching
1987). ‘

Chapter IV of this book presents 113 community food webs in the form of pre-
dation matrices, with a simple identification of each species. In many cases, the
original sources provide additional information. Based on the numerous other
smaller collections of webs assembled by other investigators, I guess that proba-
bly over a thousand community food webs, and perhaps equal numbers of source
webs and sink webs (Cohen 1978), have been observed, though many remain un-
published.

Just as molecular biology has benefited from computerized banks of protein
sequences and nucleic acid sequences, ecology needs to establish an ecobank, in
which investigators could share their best estimates of natural webs. An ecobank
could serve as a depository for the many webs which may not merit indepen-
dent publication but which are, nevertheless, highly useful as a basis for fur-
ther analysis. Establishment of an ecobank with the advice and governance of
active ecologists might encourage the development of common standards or lan-
guage for presenting webs. Descriptions of a web could be refined as successive
investigators contributed additional information about body sizes, population
abundances or temporal variations, for example. Data could be distributed via
telecommunications or standard computer media.

An ecobank is a long way from the entangled bank Darwin (1859) described.

As he was an assiduous gatherer of data, I like to believe he would have approved
the idea.
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2. Empirical Laws

In the second panel of the cartoon, order emerges from the replication of chaos.

When I was a graduate student two decades ago, food webs were presented
like (pre-Darwinian) butterflies, as works of natural beauty, to be admired for
all their inscrutable complexity. The patent variation between one food web and
the next web was taken as clear evidence (by my friends who were molecular
biologists) that the structure of webs was not a fit subject of science, or (by my
friends who were ecologists) that webs could only be understood one at a time,
through detailed study of the population dynamics and natural histories of each
kind of organism in the web.

The primitive theoretical concept behind all the work in this book is that
it is worth looking at an ensemble (of webs, in this case) for order that may
not be apparent in isolated individuals. Students of statistical mechanics could
recognize this primitive theoretical concept as their own, but it is not uniquely
their own; statistical mechanics owes it, I believe, to the social and biological
sciences of the first two-thirds of the nineteenth century, and it probably goes
further back.

Based on the first collection of food webs (Cohen 1978), I observed a few
empirical regularities that had not been noticed before. The trophic niche overlap
graphs were interval graphs surprisingly often (Chap. I1.4); and the ratio of the
number of kinds of prey to the number of kinds of predators seemed to be
independent of the total number of kinds of organisms in the web (though the
ratio was higher for sink webs as a group than for community webs as a group)
(Chap. IL5).

The easy availability of data and the possibility of unsuspected order at-
tracted attention from people who like to look for order. Based on the same
data, MacDonald (1979) promptly observed that the ratio, which he called 3, of
the number L of trophic links to the number S of kinds of organisms in the 30
webs had a mean 1.88 and a fractional root mean square deviation of 0.27, with
no notable difference between sink webs and community webs. For all 30 webs
of Cohen (1978), the ratio lay between 1 and 3.

Simultaneously, Rejmanek and Stary (1979) plotted L/[S(S—1)/2], a quantity
they called the connectance C, as a function of S for 31 plant-insect-parasitoid
webs, one data point for each web. It appears likely that their webs were con-
structed as source webs, in the terminology of Cohen (1978). The data points for
nearly all 31 webs fell between the two hyperbolic curves C = 2/S and C' = 6/S.
The curve C = 4/S ran through the center of this band and through the center
of the data, though Rejmanek and Stary (1979) preferred C = 3/S as a descrip-
tion of central tendency. MacDonald (1979), in a note added in proof, pointed
out that the hyperbolic relationship of Rejmanek and Stary (1979) between con-
nectance and number of species is equivalent to the constancy of 8 = L/S when
(S —1)/S approximates 1. If C = 4/S, then 8 = 2 approximately.

The hyperbolic relation between connectance and number of species was con-
firmed by Pimm (1982) and Auerbach (1984), with some additional data includ-
ing Cohen’s (1978).
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Without reference to MacDonald (1979) or Rejmanek and Stary (1979), Briand
(Chap. I1.5) revised some of Cohen’s (1978) community food webs and collected
an additional 27. (Warning: Briand’s connectance C' is twice the connectance
C of Rejmanek and Stary (1979), Pimm (1982), and Auerbach (1984).) Briand
found that the number of trophic links “increases as a nearly linear function of
S” and, based on a straight line fitted by the method of least squares to the
logarithms of S and L, suggested that L = 1.351.

Cohen and Briand (Chap. I1.3) examined the relation of L to S with 62
community food webs. Without presuming to distinguish a power law relation
with an exponent of 1.1 from simple linearity (corresponding to an exponent of
1.0), we found approximate proportionality between L and S. The coefficient of
proportionality was roughly 1.9 with a standard deviation of 0.1. Still unaware
of MacDonald’s (1979) work, we at least noted the equivalence of our linear
relation to the hyperbolic relation between connectance and number of species.

Cohen and Newman (Chap. II1.2) gave the name “link-species scaling law”
to the linear relation between links and species. Cohen, Briand and Newman
(Chap. II1.4) confirmed the relation with all 113 webs collected by Briand and
estimated a coefficient of proportionality (the slope of the regression through
the origin) of 2.0 with a standard deviation of 0.1.

Only in preparing this book did I realize that MacDonald (1979) was the first
to remark that 8 = L/S varies little from one web to another. Thus the “link-
species scaling law” has been discovered independently three times, in slightly
different but mathematically equivalent forms: first by MacDonald (1979), as the
near-invariance of 3; second by Rejmanek and Stary (1979) as the hyperbolic
relation between connectance and the number of species; and third by Briand
(Chap. IL.5) and Cohen and Briand (Chap. II.3) as a linear relation between
trophic links and species. One hundred of the 113 webs studied by Cohen, Briand
and Newman (Chap. II1.4) are independent of the webs used by MacDonald, and
the webs studied by Rejmanek and Stary are independent of all the others. The
link-species scaling law appears as a robust fact about food webs.

The story of the link-species scaling law is not the only case of simultaneous
or independent discovery in the chapters that follow. Sugihara (1982) observed
that it was natural to consider kinds of organisms that had identical predators
and identical prey as a single unit. He called two kinds of organisms with the
same diets and predators “trophically equivalent.” At the same time, without
giving an exact definition, Yodzis (1982) suggested that organisms with “simi-
lar” diets and predators could be considered as “trophic species”. Unaware of
these proposals, Briand and Cohen (Chap. I1.2) introduced the “lumping” of
trophically identical species, i.e., species that were trophically equivalent in the
sense of Sugihara (1982), and began referring to the resulting equivalence classes
as “trophic species” (Chap. IL.3).

Based on this experience with the “link-species scaling law” and the concept
of “trophic species”, I would not be surprised if other empirical generalizations
and concepts reported in this section of the book have also been anticipated in
one form or another.
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The empirical papers in this portion of the book do not pretend to be encyclo-
pedic. Other students of food webs and community ecology have reported many
other empirical generalizations. These generalizations concern food chain length
(see Chaps. II1.3-4), the shape of trophic pyramids, element recycling, niche
overlaps (Cohen 1978) and niche packing (Sugihara 1982). Moreover, I would be
surprised if no further empirical generalizations emerge from data such as those
assembled in Chap. IV.

However, some caution is necessary about forming generalizations. May (1983)
pointed out that webs from different classes of habitats, e.g., terrestrial vs. ma-
rine, may differ because of the difference in training and interests of the classes
of people who study those habitats, rather than because of differences in nature.
This valid caution does not apply to generalizations based on all food webs.

3. Facts or Artifacts?

In the third panel, the field ecologists react to the theoretical ecologists who
muck about in their food webs.

Paine (1988) pointed out numerous dangers and pitfalls in the use of existing
webs as a foundation for ecological generalizations and theory. Some of his cau-
tions apply to generalizations based on all food webs, not just to generalizations
about differences among classes of webs. For example, to explain the hyperbolic
relation between connectivity and number of species, Paine (1988) proposed the
hypothesis of “artistic convenience”: “When S [the number of species] is small,
more links can be portrayed; when S is substantially higher, only those deemed
to be most meaningful are drawn and connectance is correspondingly reduced.
Necessity for graphical clarity, then, results in the omission of some links.”

The merit of this criticism of graphical food webs cannot be denied, but it
does not apply to webs reported in matrix form. Here is a student research
project: separate the 111 published webs in Chap. IV according to whether the
original web was published as a picture or as a matrix or as both, and see whether
the points (species, links) fall into separate clouds according to the format of
reporting. Send me the results, please.

Put positively, the possible bias introduced by artistic convenience argues
for the use of the venerable predation matrix in reporting webs. The predation
matrix has advantages besides avoiding the siren of “artistic convenience.” The
elements of the matrix can indicate the magnitudes of flows. If an observer puts
every observed feeding relation in the matrix, as Forbes did more than a century
ago, then the analyst can experiment with different threshold levels in deciding
which trophic links are important and which are not. The margins of the matrix
can easily accommodate reports of observation effort (e.g., hours spent, traps
set), sample sizes, means and variances of body weights, estimates of population
abundance or biomass, and other useful descriptors that will bind food webs
to the rest of population biology and ecology. Finally, matrices are machine
readable, and therefore easily shared as data.
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Unfortunately, large, detailed matrices are not easily read by people who, after
all, are the final consumers of food webs. Hence, an artistically done graph of a
web, even if incomplete, retains its value for conveying the ecologist’s impression
of a community.

In addition to the problem of communicating results, Paine (1988) raises
fundamental problems of gathering the data. Some species are harder to see
than others. Some species, while easily seen, are more mobile than others and
therefore less readily incorporated in a web. Transient species, as is their custom,
come and go. How should the ecologist deal with them? The trophic relations
of individuals within a biological species sometimes (e.g., Hardy 1924) depend
strongly on the individual’s age, stage or size. Summaries at the species level
should not overlook these ontogenetic differences.

All these problems (differential ease of obervation, transient species, and age-
stage effects) also affect other studies of community ecology, such as studies
of species-abundance distributions, energy flow, or island biogeography. Paine’s
criticisms should stimulate empirical webologists to be more explicit about how
they deal with the problems he raised. In many papers that report food webs,
the existence of these problems is less troubling than the absence of any mention
in the report that the observer was aware of them and had an explicit, consistent
procedure for dealing with them.

There are other problems with web data besides the ones that troubled Paine
(1988). For example, “dimension” has different clear definitions in different con-
texts, but caution is required in each context. Schoener (1974), while not focusing
on webs, used “dimension” to refer to any measurable variable useful in describ-
ing a species’ niche, including feeding and distribution in time and space. Cohen
(1978) considered only trophic, or feeding, dimensions. Cohen, Briand and New-
man (Chap. II1.4) and Briand and Cohen (Chap. I1.6) consider the apparent
flatness or solidity of the physical setting of the food web, at the scale of the
human observer. L. Dyck, M.J. Sibbald and P.R. Sibbald (personal communi-
cation, December 1987) pointed out that a forest that looks three-dimensional
on the scale of a human observer might look flat on the scale of an insect who
lives on a leaf. Other organisms of intermediate size might perceive a mixture of
apparent physical dimensions. They suggested that fractal “dimension” might
be useful in characterizing habitats. The suggestion remains to be explored. The
important point is that “dimension” is not a unitary concept in ecology, and
alertness is needed in using it to characterize food webs.

Like “dimension”, the term “variability” figures importantly in Chap. II.6.
This term, too, is used in different senses in different contexts. Even within
mathematical statistics, there are many measures of variability. In ecology, each
formal measure can be multiplied by a variety of empirical interpretations. Al-
though the classification of food web environments in Chap. 11.6 as “constant”
or “fuctuating” is subjective to some extent, it preceded our analysis of the in-
fluence of variability on food chain length, and therefore was not biased by that
analysis. | hope that less subjective measures of variability, comparable among
food webs, will be systematically used by future reporters of food webs.
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The criticisms that the empirical webologists have leveled at theoretical anal-
yses of their data return to them as a challenge. Their data are valuable, perhaps
more valuable than they knew. The methods by which the data are gathered and
reported need to be made more explicit, more consistent, and more trustworthy.
The many imperfections of the data assembled in this book, and the likely im-
perfections of the theory based on those data, should provoke field ecologists to
render the data obsolete by replacing them with more food webs more system-
atically observed and more carefully reported. At the same time, flawed data
are not necessarily worthless data. Further analyses of the assembled data on
community food webs are welcome.

All the preceding criticisms of generalizing from existing webs are reasonable,
however valid they may be. I suspect that the energy that sometimes accom-
panies such criticisms may arise from an irrational source, rarely articulated.
A field ecologist who has devoted years of life to the minute observation and
analysis of one or a few ecological communities is aware, as no reader of a brief
published report can be, of the special characteristics that distinguish the biota
and physical habitat of his or her study sites, both from one another and from the
study sites of others. A theoretically inclined reader who extracts a few simpli-
fied measurements from an already condensed publication in order to show how
this lovingly observed community is like all other communities must indeed ap-
pear presumptuous and be a source of irritation to more than one field ecologist.
There is an inescapable tension between the thrilling uniqueness of individual
communities and general empirical ecological laws, whatever their explanation.

A helpful perspective comes from the study of the solar system. “Unique
events are difficult to accommodate in most scientific disciplines. The solar sys-
tem, however, is not uniform. All nine planets (even such apparent twins as
the earth and Venus) and over 50 satellites are different in detail from one an-
other ... [There are many examples.] All this diversity makes the occurrence of
single events more probable in the early stages of the history of the solar sys-
tem” (Taylor 1987, p.477). Notwithstanding this diversity, there is no doubt
among physicists that these single events and the dynamics of the solar system
were, are and will be governed by uniform laws of physics and chemistry. Only
through a thorough understanding of those laws has it become possible to col-
lect appropriate data about the unique characteristics of planets and satellites
from earth-based observations, lunar collections, and planetary missions. Only
through an increasing theoretical understanding of those laws in combination
with the best data has it become possible to make good inferences about unique
early events.

Likewise, in the study of food webs, and of community ecology generally, ecol-
ogists require a good understanding of general laws to appreciate the common
features and differences among food webs and ecological communities.



A. General Regularities

§1. Ratio of Prey to Predators in Community Food Webs
Joel E. Cohen

Whether the diversity of resources limits the diversity of consumers, and specif-
ically, whether the number of kinds of prey limits the number of kinds of preda-
tors, has been of continuing interest in theoretical ecology and wildlife man-
agement (Haigh and Maynard Smith 1972; Levin and Paine 1974; Sullivan and
Shaffer 1975). Food webs from the ecological literature were collected in ma-
chine readable form to study this question empirically. We report here that in
community food webs, the ratio of the number of kinds of prey to the number of
kinds of predators seems to be constant, near 3/4. This invariance has not been
noticed in earlier studies of individual cases.

Before analysis, food webs were characterised as one of three types — com-
munity, sink and source. Community food webs describe all kinds of organisms
(possibly restricted to some location, size or taxa) in a habitat, without reference
to the eating relations among them. Sink food webs describe all the prey taken
by a set of one or more selected predators, plus all the prey taken by the prey of
those predators, and so on. Source food webs describe all the predators on a set
of one more selected prey organisms, plus all the predators on those predators,
and so on. Sink and source food webs, hypothetical or schematic constructions,
and avowedly incomplete, partial or tentative food webs were excluded from
further study. Fourteen community food webs were thus selected. The complete
data and individual cases are discussed in Cohen (1978). When the report of a
food web contained ambiguous or uncertain information about a feeding rela-
tion, the web was included in two versions, one based only on the unambiguous
information and the other incorporating the additional uncertain or probable
eating relations. The analysis here, based on all versions, makes no claim that
the data points are statistically independent and attaches no probability values
to the statistics calculated.

The food webs describe the diets or predators not of individual organisms but
of kinds of organisms. A ‘kind of organism’ may be a stage in the life cycle or a
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size class within a single species, or a collection of functionally or taxonomically
related species, according to the practice of the original report. The numbers
in the following analyses refer to these ecologically defined kinds of organisms,
not necessarily to any conventional taxonomic unit. A predator is defined as a
kind of organism that consumes at least one kind of organism in the food web.
A prey is defined as a kind of organism that is consumed by at least one kind of
organism in the food web. Some kinds of organisms may be both predators and
prey.

In community food webs, the number m of prey is very nearly proportional to
the number n of predators (Fig. A.1.1). A least squares regression of m against
n gives

m=179+0.71n. 1)

The sample standard deviation of the regression coefficient is 0.07 and the linear
correlation coefficient between m and nis 0.90. The standard error of estimate, or
sample standard deviation from regression, is 4.62. As is obvious from Fig. A.1.1,
the regression may be well approximated by a straight line through the origin.
The least squares regression is

m=0.7Tn. (2)

The proportionality between the number of prey and the number of predators
in Fig. A.1.1 is based on 24 versions of 14 food webs reported over a period of
decades. When the food webs were collected and encoded it was not known that
such a simplicity would emerge. It therefore seems likely that this invariance
in the proportions of predators and prey represents a fact about nature, rather
than an artefact of collusion or convention.

Given that the proportion of prey to predators is a scale-invariant feature of
community food webs, the proportion can be predicted quantitatively from other
facts. For a given food web with m prey and n predators, let A be the number
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of predator-prey couples. (If X eats Y and Y eats X, the couples (X,Y) and
(Y, X) are counted as distinct. If X eats X, (X, X) also counts as a couple.
In the conventional graphical representation of a food web, A is the number of
directed arrows from prey to predator.) Then within any food web

A = (average prey per predator) X n
= (average predators per prey) x m. (3)

The grand mean over all 24 community food web versions, weighting each food
web equally, of the average prey per predator is 2.418; the grand mean of the
average predators per prey is 3.199. If these means apply to each food web, then
substitution into equation (3) predicts

m/n = 2.418/3.199 = 0.756 )

which differs trivially from the least squares regression in equation (2).

The simplicity of the argument from the proportionality between m and n to
equation (4) may raise a suspicion that its success depends on an arithmetical
fact rather than on the observed invariance of proportions of predators and prey
in nature. A numerical example disproves this suspicion. Suppose a sample of
community food webs consisted of two food webs. Suppose the first food web
matrix had m; = 8 prey, n; = 6 predators, and A; = 19.2 predator-prey couples
(neglecting the requirement that A; be integer for the sake of argument). Then
its (average predators per prey); is 2.4 and its (average prey per predator); is 3.2.
Suppose the second food web matrix had mg = 4, ny = 10, and A = 16. Then
its (average predators per prey); = 4.0 and (average prey per predator)z = 1.6.
Then the grand mean over both food webs of the average predators per prey
is 3.2 and the grand mean of the average prey per predator is 2.4, which are
close enough to the observed. But the straight line through the pairs (n,m)
satisfies m = 14 — n. Only because nature assures a constant proportion of prey
to predators do the grand mean of the average predators per prey and the grand
mean of the average prey per predator apply to all food webs.
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If the ratio of prey to predators in community food webs is a constant of
the order of 3/4, then dividing equation (3) by n leads to the prediction that a
regression (Fig. A.1.2) of average prey per predator against average predators per
prey should be a straight line through the origin with slope 3/4. The regression
coefficient of a straight line through the origin is 0.69, not far from 3/4.

In conclusion, in community food webs, the number of kinds of prey, as op-
erationally defined by field ecologists, approximates 3/4 the number of kinds of
predators. This results from the study only of an ensemble of food webs, rather
than of individual cases.

§2. Community Food Webs Have Scale-Invariant Structure

Frédéric Briand and Joel E. Cohen

We have analysed 62 community food webs drawn from published studies and
have found a remarkable regularity in ecosystem structure: in biological com-
munities, the proportions of top, intermediate and basal species are, on average,
independent of the total number of species. Hence, there is a direct proportion-
ality between the numbers of prey and predators.

The finding (Chap. II.1) that, in community food webs, the ratio of prey
to predators is 3:4 may be challenged on two grounds: first, it is based on a
relatively small set of 14 webs, and second it may indicate that taxonomists
have exercised greater taxonomic refinement in classifying organisms at higher
than at lower trophic levels (Pimm 1982).

A community food web involves the feeding, that is, trophic, relations among
all organisms found in a well-defined habitat by the original investigator. Or-
ganisms are separated into ‘trophic species’, which may be a single biological
species, or a size class or stage in the life cycle of a single biological species, or
a collection of functionally or taxonomically related biological species, accord-
ing to the original report. Throughout this paper a ‘species’ refers to a ‘trophic
species’, not necessarily to a single biological species. A ‘top’ species is a preda-
tor that has no predator. An ‘intermediate’ species is a species that is both a
predator and a prey. A ‘basal’ species is a prey that has no prey.

The community food webs analysed include 40 webs assembled and described
by Briand (Chap. I1.5); of these, 13 are corrected and drawn from the 14 origi-
nally used by Cohen (Chap. I1.1). Details of the food webs are presented in Chap.
IV. We find that the number of prey is roughly proportional to the number of
predators with a slope less than 1 (Fig. A.2.1a). This is also true for webs from
constant and fluctuating environments, although they are quite different in over-
all structure (Chap. I1.5). On the far right of Fig. A.2.1a, four outliers emerge
from the general relationship: a cluster of three constant food webs (C), all from
Fryer’s study (1959) of littoral communities of Lake Nyasa, and one fluctuating
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Fig. A.2.1a,b. Number of prey species as a function of number of predator species in 62
community food webs. F', fluctuating environment. C, constant environment. An environment
is classified as ‘fluctuating’ if the original report indicates temporal variations of substantial
magnitude in temperature, salinity, water availability, or any other major physical parameter.
The magnitude, and not the predictability, of the fluctuations is the criterion of classification.
The symbols F' and C have been shifted from their exact locations by a small random amount
to indicate when several food webs have exactly the same coordinates. (a) Original data; (b)
after lumping. The solid line through the origin is fitted on the assumption that the variance
of the residuals is proportional to the number of predators. The slope is 0.8819
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food web (F) representing a salt meadow from New Zealand (Paviour-Smith
1956).

There can be no direct test of Pimm’s conjecture (1982) of why the slope is less
than 1, without repeating the original field studies with a uniform attention to
taxonomic detail. As an indirect test, we examined the ratio of prey to predators
in the 62 food webs, after we had ‘lumped’ trophically identical species. That is,
in each food web, whenever two or more species are preyed on by exactly the same
set of predators, and prey upon exactly the same set of prey, we treated them
as one. This procedure, which we call ‘lumping’, removes possible differences in
the propensity to split, both among observers and among trophic levels.

Lumping moves the outliers into or much closer to the bulk of the remaining
data points, for both fluctuating and constant webs (Fig. A.2.1b). The correlation
coefficient between numbers of predators and prey among the 43 fluctuating webs
increases from 0.83 before lumping to 0.92 after, and from 0.58 to 0.64 among
the 19 constant webs. In other words, eliminating predators or prey that are
trophically identical tightens the relation between numbers of predators and
prey.

Because individual observers tend to influence prey-predator ratios, we shall
deal only with the lumped version of the webs. Because some observers con-
tributed more than one food web to our collection, the assumption of indepen-
dence that is required to justify attaching probability values to significance tests
using the unlumped data is open to challenge. Though the assumption of inde-
pendence is probably more acceptable with the lumped version of the webs, we
shall base our statistical analysis primarily on descriptive statistics. Fortunately
the patterns in the data are clear.

If a straight line, either with arbitrary intercept or through the origin, is
fitted to a scatter plot of the 62 community food webs, the squared residuals
increase with the number of predators. This reveals that the usual least-squares
procedure, which assumes the variance of residuals constant regardless of the
abscissa, is not appropriate to these data.

If a regression line is fitted through the origin on the assumption that the
variance of the residuals is proportional to the number of predators, then the
estimator of the slope is simply the ratio of the mean number of prey divided by
the mean number of predators. Under this assumption, a straight line through
the origin fitted to all 62 food webs has slope 0.8819 or approximately 0.9.

This slope is higher than the slope near 0.75 found in Chap. II.1, so there
appears to be some merit in Pimm’s suggestion (1982) that ecologists have ex~
ercised greater taxonomic refinement at high trophic levels than at low. This
suggestion, however, is not quantitatively sufficient to account for the excess,
that remains after lumping, in the number of predators over the number of prey.

Classical ecological theory views predators as generally limited by resources,
and the diversity of predators in particular as being limited by the diversity of
prey. From this perspective it would seem more natural to treat the number of
prey as an independent variable and the number of predators as a dependent
variable. However, when the number of predators is regressed against the num-
ber of prey, using a straight line through the origin with variance of residuals
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proportional to the abscissa, the standard error of estimate (with 61 degrees of
freedom) increases from 3.1 to 3.5.

This observation means that the number of predators is a better predictor of
the number of prey than the reverse. This raises the intriguing possibility that, in
both constant and fluctuating environments, the number of predators is causally
more important in controlling the number of prey than vice versa. Evidence and
theory in favour of this suggestion have been independently reviewed by Jeffries
and Lawton (1984).

That we find a linear relationship between number of prey and number of
predators is not too surprising, since the z- and y-axes share a similar quantity,
namely the intermediate species, which are both prey and predators. What is
surprising is the tightness of the fit, considering the size and heterogeneity of the
sample examined. This suggests two possibilities: either the redundant variable,
that is, the number of intermediate species, is very large compared with the
number of basal and top species in most communities, or the proportions of all
species in a food web that fall into each of these three categories are, overall,
independent of the total number of species.

Fig. A.2.2 illustrates the reality of the second alternative: in the 62 webs
examined, the fractions of top, intermediate and basal species are, on average,
independent of the total number of species, although there is a slight tendency
for the fraction of top species to increase and for the fraction of basal species to
decrease as the total number of species increases. To obtain a global estimate
of the proportions of species in each of the three categories (top, intermediate,
basal), we summed over all food webs the observed numbers in each category, and
divided by the sum total of species over all food webs. The global proportions of
top, intermediate and basal species correspond to the heights of the horizontal
lines in Fig. A.2.2a-c.

The scatter of points about the horizontal lines in Fig. A.2.2, when constant
and fluctuating food webs are considered together, agrees with the hypothesis
that in each food web the top, intermediate and basal species are multinomially
sampled from the total species in proportions that are constant for all webs. If
the species counts are arranged in a 3 x 62 contingency table with rows for top,
intermediate and basal species and one column for each web, a homogeneity test
yields a x? statistic of 138.9 with 122 df, which is not significant at the 0.1 level.

There is no evidence for a difference between constant and fluctuating food
webs in the mean proportions of top, intermediate and basal species. A homo-
geneity test of a 3 x 2 contingency table with rows for top, intermediate and basal
species and columns for constant and fluctuating food webs, and the summed
species counts as cell entries, gives a x? statistic of 1.4 with 2 df, which is not
significant at the 0.1 level.

However, the proportions of top, intermediate and basal species in constant
food webs, considered separately, are significantly more variable, and the pro-
portions in fluctuating food webs, considered separately, are significantly less
variable, than expected from multinomial sampling (using a 0.02 significance
level). Separate homogeneity tests of the constant webs (in a 3 x 19 contingency
table) and of the fluctuating webs (in a 3 x 43 contingency table) yield x2 of
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Fig. A.2.2a-c. Three ratios plotted as a function of the number of species. The fitted lines
are constrained to be horizontal (slope = 0). (a) Top species/total species. The height of the
line is 0.2853. (b) Intermediate species/total species. The height of the line is 0.5251. (c) Basal
species/total species. The height of the line is 0.1896

82.8 with 36 df and 56 with 84 df, respectively. The visual counterpart of this
statistical result is the appearance in each panel of Fig. A.2.2 of fluctuating food
webs near the horizontal line and of constant food webs scattered above and be-
low the band of fluctuating webs. Food web structure appears more constrained
in fluctuating than in constant environments, as previously noted (Chap. IL5;
Yodzis 1981).

We now show that the empirical regularities in Fig.A.2.1b can be derived
from the approximate scale-invariance shown in Fig. A.2.2.

Let S be the total number of species in a single community food web, T
the expected number of top species in that web, I the expected number of
intermediate species, B the expected number of basal species, R the expected
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number of predators and Y the expected number of prey. By definition

S=T+I+8B, (1)
R=T+1, (2)
Y=I+B. (3)

By observation

T/S=p or T=pS, p=0.2853(Fig.A.2.2a) 4)
I/S=q or I=gS, §=05251Fig.A.2.2b) (5)
B/S=r or B=rS, #=0.1896 (Fig.A.2.2c). (6)

Adding equations (5) and (6) and dividing by the sum of equations (4) and (5),
we recover the observed regularity (Fig. A.2.1b)

Y/R=a or Y=aR, a=(q+7)/(¢+p). (7

The predicted value (§ + #)/(¢ + p) = 0.8819 is identical to the observed & =
0.8819 because of the formulas we used to estimate the slope ¢ and the pro-
portions p, ¢ and r. However, the observation in Fig. A.2.1b that the average
number of prey is a linear function of the number of predators is not a tautol-
ogous consequence of the estimation formulas. The proportionality of prey to
predators follows from the scale-invariance we have discovered here. Were data
available, it would be interesting to examine whether the distribution of biomass
into top, intermediate and basal species is also scale-invariant.

We conclude that the values of any two of the three parameters p, ¢ and r
summarize succinctly a substantial amount of information about the empirical
regularities found in community food webs and provide a factually grounded
benchmark against which the deviations of particular food webs may be mea-
sured. Why these proportions take the values they do and why the proportions
are scale-invariant remain open questions (see Chap. III).

§3. Trophic Links of Community Food Webs
Joel E. Cohen and Frédéric Briand

1. Problem and Hypotheses

How does the total number L of links in a web vary as the number S of species
increases? At least three hypotheses are plausible. First, the number of potential
links increases as S? because the maximal number of edges in a directed graph
on S nodes is S(S — 1). If there were a constant probability that any potential
link were a real link, the mean E(L) of L would be proportional to $2. Second, if
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each species could eat or serve as food for only a finite number of other species,
regardless of how many species were present in the community, the mean F(L)
would be proportional to S. Third, both of the preceding hypotheses might apply
over different ranges of values of S. When the number of species in a community
is small, L may be constrained only by the availability of potential links and
hence vary as S2. When the number of species in a community is large, L may
be limited by the potential for interaction of each species and hence vary as
S. The same relation between L and S might also arise because field ecologists
might be more thorough in recording links when the total number of species in
the community is small, but proportionally more prone to omission when the
number of species is large.

According to these three hypotheses, plots against S, on the abscissa, of (a)
the square root of L, (b) L, or (c) some power of L between 1/2 and 1, on the
ordinate, should be approximately linear.

2. Definitions and Data

A community food web (henceforth abbreviated to “web”) includes the feeding
relations among all organisms found in a well-defined habitat by the original
investigator. Organisms with identical sets of prey and identical sets of predators
have been combined into a single “lumped” species (Chap. 11.2). Throughout
this chapter, “species” means trophic species, not necessarily a single biological
species. A “top” species is a predator that has no predator. An “intermediate
species” is a species that is both a predator and a prey. A “basal” species is a
prey that has no prey. The number of basal, intermediate, top, and all species
in a web will be denoted by B, I, T', and S.

A “trophic link” (hereafter, “link”) is any reported feeding or trophic relation
between two species in a web. Observers use various criteria to decide how much
feeding justifies the reporting of a link and how much failure to observe feeding
Jjustifies reporting the absence of a link.

Webs are classified as arising in “fluctuating” or “constant” environments.
The environment is considered to be fluctuating if the original report indicates
temporal variations of substantial magnitude in temperature, salinity, water
availability, or any other major physical parameter. This fluctuation may re-
sult from a pronounced seasonality, as in temperate terrestrial systems, from
daily oscillation, as in intertidal systems, or from irregular perturbations, such
as hurricanes. The magnitude, and not the predictability, of the fluctuations is
the criterion of classification. Only 19 of 62 environments in our sample qualify
as constant, including the deep sea and most, but not all, tropical systems. Since
the classification of an environment as constant or fluctuating is to some extent
subjective, we point out that this task was carried out before we had analyzed
the data and uncovered any pattern.

The 62 webs analyzed here are drawn from published studies. Details are
presented in Chap. IV.
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3. Results

Fig. A.3.1 shows, plotted against S, L1/2 (a), L (b), and L3/* (c). The slopes
of the straight lines plotted through the origin are computed on the assumption
that the variance of the (transformed) ordinates is proportional to the abscissa.
Visual inspection of Fig. A.3.1a rejects the first hypothesis: the trend of the data
points is distinctly concave compared to the fitted straight line. When the square
roots of links vs. species are plotted separately (not shown here) for constant
and fluctuating webs, both graphs show a concave trend like that of Fig. A.3.1a.
Visual comparison of Fig. A.3.1b and ¢ is less decisive. Plotting the 3/4 power
of L (Fig. A.3.1c) brings the points closer to the fitted line at low values of S
but, at high values of S, lets most of the points fall below the line.

We accept E(L) as proportional to S. This approximation does no obvious
violence to the data and simplifies further analysis.

If E(L) = ¢S and the variance in L is proportional to S, then the estimate
¢ = 1.8559 is the ratio of the total number of links, 1919, to the total number of
species, 1034, in our 62 webs. The standard deviation of ¢ is 0.0740.

The number L of links is the sum of the numbers Lgy, Lgt, Ly, and Lyt
of links from basal to intermediate, from basal to top, from intermediate to in-
termediate, and from intermediate to top species, respectively. Fig. A.3.2 shows,
plotted against S, the proportions of links in each category Lgr/L (a), Lpt/L
(b), L11/L (c), and Lyp/L (d). No increasing or decreasing trends are evident.
Thus, the mean proportions of links of each kind are roughly invariant with re-
spect to the total number of species in the web, though variability around the
mean is evident. It follows that the average numbers of links of each kind, in
addition to the average total number of links, increase in proportion to the total
number of species, again with variability.

Table 1. Summary statistics of the numbers of species and links
in 62 webs, by type of web, type of species, and category of link

Type of unit Webs

Constant Fluctuating All

No. Fraction No. Fraction No. Fraction

Webs 19 43 62

All species 351 1.000 683 1.000 1034 1.000
B 66 0.188 130 0.190 196 0.190
1 177 0.504 366 0.536 543 0.525
T 108 0.308 187 0.274 295 0.285

All links 811 1.000 1108 1.000 1919 1.000
B-1 198 0.244 327 0.295 525 0.274
B-T 92 0.113 56 0.051 148 0.077
I-I 260 0.321 318 0.287 578 0.301
I.T 261 0.322 407 0.367 668 0.348

B, basal; I, intermediate; T, top
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Fig. A.3.1a-c, Number of links L; as a function of the number of trophic species (S) in
62 webs. Plotted against S are L'/? (a), L (b), and L3/4 (c). C = constant environment;
F = fluctuating environment. The symbols F and C have been perturbed from their exact
locations by a small random amount to indicate when several food webs have exactly the
same coordinates. In the straight lines through the origin plotted here and in Fig. A.3.3, the
slopes are computed assuming that the variauce of the ordinates (as transformed, in a and c)
is proportional to the abscissa. In a, the trend of the data points is concave compared to the
fitted straight line. In c, the points lie closer to the fitted line at low values of S but, at high
values of S, most of the points fall below the line

Table 1 shows the numbers Lgy, LgT, Ly and L 1T and proportions of links in
each of the four categories, summed for constant, fluctuating, and all webs. The
proportions of each category of links are highly variable among webs, compared
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Fig. A.3.2a-d. The proportions of links in each category as a function of species. Plotted
against S are Lg;/L (a), Lgr/L (b), L;1/L (c), and Lyp/L (d), where Lgr, Lgr, Ly, and
L7 are the numbers of links from basal to intermediate, from basal to top, from intermediate
to intermediate, and from intermediate to top species, respectively. No increasing or decreasing
trends are evident in the data. The points in the upper left corner of a are based on very few
links. The heights of the fitted horizontal lines are the ratio of the links in the given category,
summed over all webs, to the total links, summed over all webs

to the variation among webs that would be expected from multinomial sampling
with proportions that are the same for all webs. If the counts of links are arranged
in a 4 x 62 contingency table with one row for each type of link and one column
for each web, a homogeneity test yields a x2 of 794.2 with 183 degrees of freedom
(df). If the summed link counts of the constant webs are compared to the summed
link counts of the fluctuating webs in a 4 x 2 contingency table (the counts
are shown in Table 1), a homogeneity test yields a x2 of 33.0 with 3 df. A
homogeneity test of the link counts for the 19 constant webs alone yields a x? of
510.3 with 54 df, while the same test for the 43 fluctuating webs alone yields a
x?2 of 284.0 with 126 df. Under the assumption, which is open to doubt, that the
observations of different webs are mutually independent, the astronomically low
significance level of each of these values of x2 rejects the null hypothesis that
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the variation among webs in the proportions of links of each category is due to
random sampling,.

We now display the relation between number of links and number of species
at a level of resolution finer than that of Figs. A.3.1 and A.3.2. Our previous
analysis of community webs (Chap. I1.2) established that there are fixed positive
constants r, p, and ¢ such that, within multinomial sampling error, for each
web, E(B) = rS, E(I) = ¢S, and E(T) = pS. These equations mean that the
average number of basal species is proportional to the total number of species
and similarly for intermediate and top species. For all webs, » = 0.190, ¢ = 0.525,
and p = 0.285 (Table 1). The differences between constant and fluctuating webs
are within multinomial sampling error (Chap. II.2). As a consequence of this
simple proportionality, the geometric mean of any two of B, I, and T should
be roughly proportional to S. Since, as Fig. A.3.2 implies, the number of links
of each kind is also proportional to S (with substantial variability, in light of
the above inhomogeneity), L gy should be roughly proportional to (BI )1/ 2 with
variability.
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Fig. A.3.3. (a) Plot of the number Lp; of basal-intermediate links against the geometric
mean (BI)}/2 of basal and intermediate species and analogous plots for basal-top links (b),
intermediate-intermediate links (c), and intermediate-top links (d). A straight line through
the origin is most plausible as a description of the data in a and d, less so for c, and least so
for b. In b, many webs, both constant and fluctuating, lack links from basal to top species
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Fig. A.3.3a plots Lp; against (BI)l/ 2. The remaining panels of Fig. A.3.3
give similar plots for basal-top links (b), intermediate-intermediate links (c), and
intermediate-top links (d). The linear model in Fig. A.3.3b is least satisfactory
because for many webs, both constant and fluctuating, there are no links from
basal to top species.

The linearity or near-linearity in Fig. A.3.3 is not materially changed when
the links of constant and fluctuating webs are plotted separately on the same
axes or when the links of constant and fluctuating webs are plotted separately
against the product of the corresponding species numbers — e.g., Lgr against
BI rather than against (BI)!/2 (not shown). For fluctuating webs, the apparent
convexity of Lg against (BT)I/ 2 is somewhat diminished in the plot against
BT.

Table 2. Regression coefficients of the number (y) of links in a
specified category against the geometric mean number (z) of the
corresponding types of species

Type of link Webs

Constant Fluctuating All

Slope SD Slope SD Slope SD
B-1 1.3824 0.0989 1.5817 0.1038 1.6802 0.0908
B-T 0.4437 0.1530 0.8317 0.1265 0.6580 0.0976
I 0.8258 0.0877 1.0907 0.1092 1.0645 0.0906
I-T 1.5464 0.0938 1.8053 0.1206 1.7891 0.0983

All regressions assume that the variance in the ordinate y is pro-
portional to the abscissa z. SD = standard deviation of the esti-
mated slope coefficient. B, basal; I, intermediate; T, top

Table 2 gives the regression coefficients, and their standard deviations, of
the number of each kind of link against the geometric mean number of species
in the source and sink class, for all webs (corresponding to the slopes of the
lines plotted in Fig. A.3.3a-d) and for constant and fluctuating webs separately.
Regressions (not reported here) that assume a line through the origin with the
standard deviation of the residuals proportional to the abscissa give, in every
case, a larger mean square residual and a visually poorer fit.

The regression coeflicients in Table 2 and the values of r, ¢, and p in Table 1
can, in some cases, be combined to predict accurately the proportion of each
kind of link shown in Table 1. For example, suppose that the proportion of
basal-intermediate links is given by

pB1=Lpi/L,
that the regression in Fig. A.3.3a is summarized by

Lpr = ag(BI)Y/?,
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and that B, I, and T are all proportional to S. Then
pBI = ap(B)Y?/[ap(BI)*/? + ap7(BT)!/

+ar(INY? + apr(IT)Y/?)
= ap1(rg)"*/[ap1(re)"/? + apr(rp)*/? + arrq + arr(ap)*/?] .

Table 3. Predicted fractions of links of each
category, for constant and fluctuating webs sep-
arately and for all webs

Type of link Webs
Constant Fluctuating All

B-I 0.2732 0.2561  0.2740
B-T 0.0685 0.0963 0.0791
-1 0.2672 0.2966  0.2889
T 0.3911 0.3510 0.3579
x? 44.6144 31.2953  1.6049

The x? statistic to measure goodness of fit be-
tween the observed fractions (given in Table 1)
and the predicted fractions given here has 3 df.
When computing the predictions for the con-
stant webs, both the regression coefficients and
the proportions of species of each type were
derived from the constant webs only and sim-
ilarly for the fluctuating webs. B, basal; I, in-
termediate; T, top

Table 3 shows the predicted proportions of links of each category, based on
the regression coefficients a;; from Table 2, the values of p, ¢, and r from Ta-
ble 1, and a goodness-of-fit x2 (with 3 df) when the predicted proportions are
compared with the observed proportions of links of each category. For all webs
combined, the predicted proportions agree remarkably well with the observed;
the discrepancy could be attributed entirely to sampling fluctuation.

However, this good agreement is not a strong confirmation that the number
of links of each category scales according to the geometric mean rather than, say,
according to the product. If, for example, in the above equations the regression
coefficient of Lgr against BI is used and (BI )1/ 2 is replaced by BI, and similarly
for BT, I1, and IT, then the predicted proportions also agree remarkably well,
though not as well, with the observed (x? = 3.95). The excellent agreement
between observed and predicted proportions of links of each category is rather
robust with respect to the exact way in which the numbers of links scale with
an increasing number of species.

For constant and fluctuating webs considered separately, the quantitative dis-
crepancies between the observed and predicted proportions of each category
of link are not large, but the x?2 statistic indicates that the fit would be re-
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jected at any conventional level of significance, under the assumption of inde-
pendence among webs. Among constant webs, fewer basal-intermediate links and
more basal-top links are observed than predicted. Among fluctuating webs, more
basal-intermediate and fewer basal-top links are observed than predicted. These
discrepancies precisely cancel when all webs are considered together. [When con-
stant webs are compared with fluctuating webs, rather than each with the pre-
dictions of a model, the ratio of basal-intermediate links to total species is higher
in constant webs (198/351 = 0.564) than in fluctuating webs (327/683 = 0.479),
contrary to the comparison with the model. The ratio of basal-top links to total
species is higher in constant webs (92/351 = 0.262) than in fluctuating webs
(56/683 = 0.082), in parallel with the model comparison.]

When a web has intermediate species (as do all those in our sample), the pres-
ence of basal-top links gives the top species collectively a more flexible trophic
strategy, in that some top predators prey on intermediate species and some (pos-
sibly the same) top predators prey on basal species. The deficit of basal-top links
in fluctuating webs and the excess of basal-top links in constant webs, relative
to the proportions expected from our simple model of scaling, suggests that
fluctuating webs are trophically more constrained than constant webs.

Further evidence that fluctuating webs may be more severely constrained
than constant webs is provided by comparing the standard deviations of char-
acteristics of fluctuating and constant webs. Since the number of species in our
sample of constant webs ranges from 11 to 33, while the number of species
in our sample of fluctuating webs ranges from 3 to 33, we have, for the pur-
poses of this comparison, removed from the sample of fluctuating webs those
13 webs with fewer than 11 species. Compared to the 19 constant webs, the
remaining 30 fluctuating webs have smaller standard deviations of the num-
ber of: basal-intermediate links, basal-top links, intermediate-intermediate links,
intermediate-top links, total number of links, basal species, intermediate species,
top species, total species, predator species (T'+ I); and smaller standard devia-
tions of the ratios: links per species, basal links (Lgy + LgT) per basal species,
intermediate links (Lgr + Lir + LT) per intermediate species, and top links
(LeT+LIT) per top species. The 30 fluctuating webs were slightly more variable
than the 19 constant webs only in the number of prey species (B + I).

4. Discussion

According to our newly assembled data, the mean number of links L in a web
is approximately proportional to the total number of species S. The coefficient
of proportionality is =&~ 1.8559 with a standard deviation of 0.0740.

The hypothesis that the mean of L is proportional to S may be derived from
empirical observations that the connectance C varies approximately inversely as
S. The observation was first made by Rejmanek and Stary (1979) in a collection
of 31 plant-aphid-parasitoid webs and confirmed by Pimm (1980, 1982) in a sam-
ple of 18 miscellaneous webs, including those assembled by Cohen (1978). Since
C is approximately proportional to LS~2, if C' varies approximately as 1 /S then
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L/S is approximately independent of S, or L is approximately proportional to S.
(Conversely, if L is proportional to S, then C varies as 1/S.) Pimm (1980; 1982,
p. 89) interpreted his empirical generalization as a consequence of a behavioral
supposition: “Suppose each species in a community feeds on a number of species
of prey that is independent of the total number of species in the community.”

The alternative hypothesis, that some power of L between 1/2 and 1 is pro-
portional to S, may be new and is also not ruled out by the data.

The only prior explicit examination of the relation between L and S appears
to be Briand’s (Chap. II.5 and Fig. B.5.2a) empirical finding, based on 40 “un-
lumped” webs, that L = S!1. He observed that this relation was “nearly linear.”

Without presuming to discriminate between a power law exponent of 1.1
and one of 1.0, we find that Fig. A.3.1, which is based on 62 lumped webs,
confirms the approximate correctness of Briand’s finding and is consistent with
the hypothesis of Pimm, at least within the range of S, 3-33, covered.

That the mean of L is approximately proportional to S indicates that the
trend of SC or L/S is roughly independent of variation in S. This may appear
to contradict Briand’s (1983, p.37) finding, based on a principal components
analysis, that the product of species S times “upper connectance” is a major
discriminator of variation among webs. However, upper connectance counts both
links and “potential competitive links,” and the latter increases as a nearly
quadratic function of S (Chap. IL.5 and Fig. B.5.2b). Therefore S times upper
connectance is much more variable among webs than is SC, since connectance
C, as used here and by Pimm (1980, 1982), counts only links.

Links are more subject to errors of omission than are species, because a feeding
interaction between a predator and prey must be observed or inferred for a link
to be recorded, whereas no special behavior need be observed for a species to be
recorded. Consequently, future webs collected with more systematic attention to
recording all links may yield larger estimates of C' than that based on present
data.

The likelihood of recording a link may vary more among observers than the
likelihood of recording a species. Variability among observers in the probability of
recording a link may explain why the above homogeneity tests for links, under the
assumption of independence, reject the null hypothesis of multinomial sampling
fluctuations with constant proportions.

The approximately linear relation in Fig. A.3.3 between the expected number
of links of each category and the geometric mean number of species in the source
and sink categories appears to be new.

Earlier observations have suggested that fluctuating webs are more severely
constrained in trophic structure than constant webs (Chaps. I1.2,5). The finding
here that fluctuating webs have significantly fewer basal-top links, and constant
webs have significantly more basal-top links, than expected from a simple model
based on pooled proportions, may be interpreted to be consistent with the ear-
lier observations. Similarly, the standard deviations of many characteristics of
constant webs exceed those of fluctuating webs.
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5. Conclusion

Together, this chapter and Chap. I1.2 show that the main features of the struc-
ture of food webs — namely, the numbers of top, intermediate, and basal species
and the numbers of links from each kind of predator to each kind of prey — all
behave in quantitatively simple, interpretable ways as the number of species in
webs ranges from 3 to 33. The data on which our quantitative generalizations
are based are the most extensive and most carefully edited presently available.
Nevertheless, because of variations among observers in field practices and defini-
tions of concepts, the present generalizations will have to stand the test of more
consistent and thorough field work in the future.

Our findings open at least three lines of further inquiry. First, how can these
ecological generalizations be explained in terms of the behavior, genetics, and
population dynamics of species, individually and in interaction? Second, do these
ecological generalizations suffice to explain other significant features of food
webs (Cohen 1978; Hutchinson 1959; Cohen 1983)? Third, what characteristics
of individual communities account for their deviations from the overall trends?

§4. Food Webs and the Dimensionality of Trophic Niche Space
Joel E. Cohen

Ecological studies of where the organisms in communities are and what the
organisms do (especially what they eat) frequently use the concept of niche space,
the set of the environmental (including biotic) factors acting on an organism
(Hutchinson 1944, 1965; Miller 1967; Vandermeer 1972; Pianka 1976). Studies
of what organisms eat frequently also use the concept of a food web (Shelford
1913; Gallopin 1972).

Here is presented a new technique for using food webs to gain information
about the minimum number of dimensions of a niche space necessary to rep-
resent, in a specific sense, the overlaps among observed trophic niches. Based
on the application of this technique to data, it is inferred that, within habitats
of limited physical and temporal heterogeneity, the overlaps among niches along
their trophic (feeding) dimensions can be represented in a one-dimensional space
far more often than expected by chance alone.

1. Materials and Methods

Classification and Selection of Food Webs

Prior to analysis, published or privately communicated food webs were char-
acterized as describing a single habitat or as describing a composite of several
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habitats. Food webs were also characterized as attempting to describe all the
kinds of organisms (possibly restricted to some location, size, or taxa) in a habi-
tat, without reference to the eating relationships among them (“community food
webs”); or as attempting to describe all the prey taken by a set of one or more
predators, plus all the prey taken by the prey of those predators, and so on
(“sink food webs”); or as attempting to describe all the predators on a set of
one or more prey organisms, plus all the predators on those predators, and so
on (“source food webs”). Source food webs were excluded from further study
because they are uninformative about whether the community food webs of
which they form a part are interval. Hypothetical or schematic constructions
and avowedly incomplete, partial, or tentative food webs were also excluded.
Fourteen community food webs and 16 sink food webs from 21 different papers
were thus selected.

Units of Description

These food webs describe the diets or predators not of individual organisms but
of kinds of organisms. A “kind of organism” may be a stage in the life cycle or
a size class within a single species, or it may be a collection of functionally or
taxonomically related species, according to the practice of the original report.
This analysis assumes that a group of organisms qualifies as one “kind” of or-
ganism in a food web only if its niche, viewed as a region or set of points in
niche space, is connected along the trophic dimensions — that is, only if it is
possible to pass from any one point in the niche to any other without leaving
the niche. For example, if two stages in the life cycle of a single species of insect
were so different that the region in niche space corresponding to one stage were
unconnected to the region corresponding to another, it is assumed that the two
stages would have feeding habits sufficiently different that the stages would be
distinguished as different “kinds” in a food web.

Machine Representation of Food Webs

Each food web selected for study was stored in a computer as a matrix with m
rows and n columns. Each column corresponds to a predator or other kind of
organism that consumes at least one of the kinds of organisms in the food web.
Each row corresponds to a prey or other kind of organism eaten by at least one
of the kinds of organisms in the food web. Some kinds of organisms are both
predators and prey. Let w;; be the entry in the i-th row and j-th column of a
given food web matrix. Then w;; = 1 if predator j eats prey ¢ and w;; = 0 if
predator j does not eat prey i. Version A of a food web includes only eating
relationships that could be unambiguously established from the original report;
version B includes any additional eating relationships that were uncertain or
probable.
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The Overlap Matrix and the Number of Niche Overlaps

If two kinds of predators both eat some kind of prey, then along some trophic
dimensions the niches of those two predators logically must overlap. The n by
n overlap matrix which describes the overlaps among the trophic niches of the
predators has 1 wherever the predator corresponding to the row and the predator
corresponding to the column both eat some kind of prey in common, and 0
elsewhere. The overlap matrix is symmetric with respect to its main diagonal,
which contains all 1s. The number of niche overlaps E is defined as the number
of 1s above the main diagonal. Overlap matrices were constructed corresponding
to version A and version B of each food web.

The Overlap Matrix and the Dimension of Trophic Niche Space

We say that a food web is interval, and that the trophic niche overlaps that it
describes can be represented in a one-dimensional niche space, when its overlap
matrix is the adjacency matrix of an interval graph (Klee 1969). An interval
graph is the intersection graph of a set of intervals of the real line. More explicitly,
a food web is interval if and only if, for each kind of predator ¢ in the food web,
there exists an interval i’ of the real line such that for any two predators ¢ and
J, Yofeq wiiwg; > 0 when and only when the corresponding intervals i’ and j'
overlap. Not every food web with four or more predators is interval.

To test whether a food web is interval, a computer program implementing the
algorithm of Fulkerson and Gross (1965) was written by Thomas Mueller. The
performance of this algorithm was verified by hand for several hundred examples,
and the same algorithm was used for both observed and artificially generated
food webs (see below).

Monte Carlo Estimation of the Probability of an Interval Food Web

In order to compare the observed frequency of interval food webs with the fre-
quency that would be expected if the food webs or niche overlaps were drawn
by chance, it is necessary to estimate the frequency of interval food webs in a
universe of possible food webs from which the observed food webs may be drawn.
Two possible universes, or models of a random food web, are described here; the
results of five other models are consistent with these.

Model 6 assumes that every predator in a given food web has a constant and
independent probability p of preying on each prey. The probability p is estimated
separately for each food web as A/(mn) in which A is the sum of all elements
in the food web matrix (that is, the observed number of feeding relationships)
and mn is the maximum possible number of relationships in the food web. For
each food web, 100 artificial food webs are generated by distributing a 1 with
probability p and a 0 with probability 1 — p into each element of an m by n
matrix, independently for each element.

Model 7 assumes that the number E of niche overlaps in a given food web
is fixed but that the pairs of predators that have overlapping trophic niches are
randomly determined. For each food web with E overlaps, 100 artificial overlap
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matrices are generated by distributing E 1s at random among the elements above
the main diagonal.

Let f;; be the proportion of the 100 artificial food webs that are interval
according to model j using the parameter values (A, E, m,n) of food web i. For
a set S of food webs (e.g., the set of version A community food webs) the mean u
and variance o2 of the number of interval food webs expected according to model
jare p=3 ;cs fij and o2 = Yies fij(1— fij), respectively. The probability of
a discrepancy between an observed number of interval food webs in a set S and
the expected u is assessed by treating z = (observed number of interval food
webs — p)/o as a standardized normal random variable. Assuming the validity
of the normal approximation, the probability that z exceeds 3.1 by chance alone
is less than 0.001 (one-tailed test).

2. Results

Most food webs based on single habitats are interval (Table 1). The one sink
food web and the two community food webs that are not interval are reviewed
below. A higher proportion of food webs based on composite communities are
noninterval. This finding does not conflict with the hypothesis that most or all
single-habitat food webs are interval (see Discussion).

Table 1. Numbers of interval and noninterval food webs

Habitats Community food webs  Sink food webs
Interval Noninterval Interval Noninterval

Single 7 2 13 1
Composite  11/2¢% 31/2¢ 1 1

@ One food web was interval in version A and noninterval in
version B. There were no other discrepancies between versions
A and B

Because the distinction between single and composite habitats is less clear-
cut, both conceptually and in ecological reports, than that between community
and sink food webs, the comparison between the observed number of interval
food webs and the number expected by chance from two model universes of
food webs retains only the distinction between community and sink food webs
(Table 2). Community food webs are interval significantly more frequently than
expected by chance, assuming either random eating relationships (model 6) or
random niche overlaps (model 7). Sink food webs are interval significantly more
frequently than expected by chance, assuming random niche overlaps (model
7) but not assuming random eating relationships (model 6), considering either
version A (definite information only) or version B (additional uncertain infor-
mation) food webs only. The significant excess of sink interval food webs when
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Table 2. Comparison of observed frequencies of interval food webs with expectations assuming
random predatory relations (model 6) or random niche overlap (model 7)

Set of food web versions Versions Observed Model 6 Model 7
in set, no. Normal Normal
no. interval Mean, SD, deviate, Mean, SD, deviate,
I o z W o z

All versions*

Community food webs 24 14 4.83 1.13 8.11 2.95 1.26 8.73

Sink food webs 20 18 14.47 0.88 4.01 13.42 0.66 6.96
Version A

Community food webs 14 9 3.27 0.93 6.16 2.19 0.96 7.09

Sink food webs 16 14 1248 0.87 1.74 11.42 0.66 3.92
Version B

Community food webs 14 8 2.89 0.82 6.21 1.82 0.86 7.19

Sink food webs 16 14 11.65 0.79 299 10.42 0.66 5.44

* Food webs for which versions A and B are identical are counted only once here

all versions are considered together (z = 4.01) is an artifact of the lack of inde-
pendence between different versions of the same food web.

Individual Cases

One food web (Kohn 1959) reports prey organisms consumed by vermivorous
species of the gastropod genus Conus in Hawaii at subtidal reef stations and at
marine bench and deep water habitats. It is thus a sink food web describing a
composite habitat, and it is not interval. The numbers of specimens examined
of each predator range from 4 to 342. It seems plausible that, when only a few
specimens of a predator are examined, some kinds of prey eaten on occasion
might not be seen. The resulting omission of some trophic niche overlaps may
cause a true underlying one-dimensional trophic niche space to appear to be
more than one-dimensional. When only predators represented by more than 20
specimens (a threshold determined in advance) are included in a reanalysis, the
food web is still not interval.

From this food web, the specimens taken at subtidal reef stations were se-
lected to create the only sink, single-habitat food web which turned out to be
noninterval (Table 1). However, if predators represented by 20 or fewer speci-
mens taken at the subtidal reef stations are excluded, the resulting food web is
interval. In this case, restricting attention to the adequately sampled predators
is not enough to make the food web based on composite habitats interval but
does yield an interval food web for a single habitat. Because the food webs of
the single habitat and the composite community are reported by the same ob-
server, the difference between them cannot be attributed to different definitions
of “kind of organism.”

The two single-habitat community food webs that are noninterval describe
the sandy shore and Crocodile Creek of Lake Nyasa (Fryer 1959); a third food
web describing the rocky shore is interval. The coded forms of these food webs
incorporate extensive additions, based on the text, to the ambiguous food web
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graphs. The number of specimens of each predator examined is not reported, so
it is impossible to exclude predators that were lightly sampled.

3. Discussion

Community Food Webs

The number of community food webs that are interval greatly (and significantly)
exceeds the number expected assuming either random eating relations (model 6)
or random trophic niche overlaps (model 7). The quantitative adequacy of two
noninterval community food webs based on single habitats cannot be assessed.
The finding that several composite-habitat community food webs are noninterval
is consistent with the hypothesis that every niche space within a single habitat
is one-dimensional. It is likely that the features that differentiate one habitat
from another are multidimensional (Cody 1968; Schoener 1974) and different
from the dimension of variation within a habitat.

Sink Food Webs

The only single-habitat sink food web that is noninterval becomes interval if
lightly sampled predators are excluded. All single-habitat sink food webs based
on sufficient sampling are interval. The number of sink food webs that are inter-
val greatly (and significantly) exceeds the number expected, assuming random
trophic niche overlaps. The parameters of the sink food webs evidently specify
a region of the model universe 6, which assumes random eating relationships, in
which the frequencies of interval food webs are nearly as high as those observed.

Because all of the adequately sampled sink food webs are consistent with
a one-dimensional niche space in single habitats, the failure of the observed
frequency of interval sink food webs to be significantly larger than expected
from some models in no way weakens the conclusion that all or nearly all single-
habitat community or sink food webs are interval.

Nonuniqueness of the One Dimension

If a one-dimensional niche space can represent trophic niche overlaps in a single
habitat, the single dimension identified in one community may differ from that in
another. In a single habitat, the one dimension may be chosen from a manifold of
monotonically related dimensions such as predator size and prey size (Schoener
1967).

What Is the One Dimension?

A few food web studies provide enough information on feeding and distribution
to suggest what the one dimension may be. For example, among Hawaiian snails
(Kohn 1959), Conus sponsalis, C. abbreviatus, C. ebraeus, and C. chaldaeus have
all possible pairwise overlaps of diet on marine benches and, in all four species,
individuals between 27 and 28 mm long were found on the marine bench at
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station 5. If the dietary overlaps found from the pooled marine bench sample are
faithfully reflected at station 5, the length of the snails is then a candidate for the
single dimension of a space in which trophic niche overlaps can be represented.
On the other hand, on reef platforms, the food web is again interval. There the
diets of C. ebracus and C. sponsalis overlap, but neither diet overlaps with that
of C. flavidus or C. lividus, which do overlap with each other. Because all four
species are found between 0% and 30% of the distance from the shore to the
outer edge of the reef platforms at stations 3, 7, and 9, that distance measure
can be excluded in this case as the one dimension along which trophic niche
overlaps can be represented.

Operational Definitions of “Dimension”

Different kinds of studies of niche space, such as those of resource partitioning
(Cody 1968; Schoener 1974) or those based on competition experiments, use dif-
ferent operational definitions of “dimension”. Niche overlap inferred from food
webs is a necessary but not a sufficient condition for exploitation competition
when one common limited resource is food. Niche overlap is neither necessary
nor sufficient for interference competition (Pianka 1976). Therefore, a low level
of exploitation competition may be inferred when a low level of niche overlap is
observed in food webs; but a high level of niche overlap implies only the possi-
bility of a high level exploitation competition. A concordance among the results
of the different kinds of studies of “dimensionality” would represent a major
empirical discovery. If a concordance among the different operational definitions
of “dimension” is taken for granted but turns out to be contrary to fact, the
word will become a conceptual trap for the unwary.

Why One Dimension?

Several interpretations are possible of why the trophic niche space of single
habitats appears to be representable in one dimension. If the finding were a
tautology because we say that communities describe composite habitats when
their niche spaces turn out not to be one-dimensional, then we would not have
the embarrassment of the two single-habitat community food webs that are not
interval. This interpretation cannot explain the excess frequency of interval food
webs observed in comparison with expectations from random models. We dismiss
the accusation of tautology.

It is plausible to expect a predator that can take prey at two different values
of any natural continuous variable (such as prey size, seed hardness, altitude, or
humidity) to be able to take prey at all intermediate values of the same variable.
This argument implies only that a trophic niche should be convex, and hence
(Klee 1969) that three independent dimensions are always sufficient to represent
trophic niche overlap. The argument does not explain why one dimension suffices.

It may be shown that there is no necessary connection between the one di-
mensionality of a community’s niche space and the qualitative stability (May
1973) of the dynamical system implied by its food web. The possibility of a sta-
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tistical association between qualitatively stable and interval food webs remains
uninvestigated.

The finding that single-habitat food webs are interval while trophic niches are
commonly described in multidimensional terms may reflect the difference be-
tween community ecology and physiological ecology. Organisms may have more
degrees of freedom in their physiological capacities to exist under varied cir-
cumstances than the biotic, especially trophic, interactions with other kinds of
organisms in their community permit them to enjoy.

Extensions

When food webs are not interval, a combinatorial approach can reveal whether
the niche overlaps could be represented by the overlaps of regions in a higher
dimensional space (Roberts 1969a), but it is necessary to have quantitative in-
formation about the actual shape of niches before applying this theory. When
a food web is not interval, it may also be worth examining how far it is from
being interval (Kendall 1969).

Shortcomings of This Approach

These results suffer from at least four major shortcomings. First, the concepts
in terms of which the data are reported and the results are framed are ambigu-
ous (e.g., what constitutes a “single habitat”?). Second, statistical features of
the data used, especially the sampling design and reporting, leave much to be
desired. Third, even if the concepts were clear and the statistics of the data im-
peccable, the claimed results do not attempt to answer important quantitative
questions. In particular, most available food webs record feeding relationships as
either present or absent. It is impossible to determine whether the high frequency
of interval food webs depends in some special way on replacing underlying con-
tinuous variables that describe the frequency of predation by a dichotomous rep-
resentation. Finally, a derivation of the claimed results from a more fundamental
dynamic theory is lacking. Each of these shortcomings opens opportunities for
further empirical and theoretical investigation.

A review of these results, including examples of the technique of analysis, the
complete food web data, a discussion of each food web, a fuller analysis of the
consequences, interpretation, and limitations, and recommendations for further
research, as well as a synthesis with related results, appear in Cohen (1978). An
overview of results since 1978 is given in Chap. II1.6, where the theme of this
chapter is taken up again.
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§5. Environmental Control of Food Web Structure

Frédéric Briand

The past decade has seen a surge of interest in food web structure and orga-
nization, largely under the impulse of theoretical ecologists concerned with the
relation between complexity and stability (see review by May 1981). However,
due to the small number of natural food webs generally known from the pub-
lished record, most of these studies have remained confined to rather abstract
models of randomly constructed communities. As a result we find that some
very basic questions still elude us, for instance the extent to which, and even
whether, habitat type and environmental variability affect the structure of food
webs in nature.

To tackle this problem, I assembled and analyzed a collection, the largest to
date, of 40 community food webs drawn from the published record and repre-
sentative of a wide variety of environments. Community food webs are defined
as those webs which attempt to include all the kinds of organisms found in a
particular habitat. A “kind of organism” (interchangeable henceforth with the
term “species”) may be an individual species, or a stage in the life cycle or a
size-class within a single species, or it may be a collection of functionally or
taxonomically related species. In every case the segregation follows the practice
of the original report.

The 40 food webs studied are listed in Table 1, along with their source of ref-
erence. They include 13 webs previously described by Cohen (1978), although 5
of those required corrections. Webs only partially defined, too schematic in rep-
resentation, or else based on information drawn from different locations, were
omitted. For each community a food web matrix indicating trophic interactions
was built, based on the graph and in some cases on additional information con-
tained in the text of the original report. These matrices are given as webs 1-40
in Chap. IV.
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Table 1. Origin and main structural parameters of the food webs analyzed. Trophic structure
indicates how many kinds of organisms occupy each trophic level from producers to top preda-
tors. Species feeding on more than one trophic level are recorded at their highest position in
the web. S and C denote species richness and connectance, respectively

Case Community Trophic structure S C(%) Reference
No. (producers —

top predators)
A. Fluctuating environments

1 Cochin estuary 2-4-1-1-1 9 69.4 Qazim (1970)

2 Knysna estuary 3-7-4-1 15 47.6 Day (1967)

3 Long Island estuary 4-10-6-4 24 21.4 Woodwell (1967)

4 California salt marsh 2-2-6-2-1 13 56.4 Johnston (1956)

5 Georgia salt marsh 3-2-2 7 33.3 Teal (1962)

6 California tidal flat 2-7-5-3-2-5-1 25 30.3 MacGinitie (1935)

7 Narragansett Bay 3-5-7-4-1 20 33.2 Kremer and Nixon (1978)

8 Bissel Cove marsh 4-4-2-4-1 15 41.9 Nixon and Oviatt (1973)

9 Lough Ine rapids 2-3-4-1 10 51.1 Kitching and Ebling (1967)
10 Exposed intertidal (New England) 2-2-1 5 70.0 Menge and Sutherland (1976)
11 Protected intertidal (New England) 3-4-1 8 42.9 Menge and Sutherland (1976)
12 Exposed intertidal (Washington)  3-7-1-2 13 46.2 Menge and Sutherland (1976)
13 Protected intertidal (Washington) 3-6-2-2 13  48.7 Menge and Sutherland (1976)
14 Mangrove swamp (station 1) 1-3-3-1 8 57.1 Walsh (1967)

15 Mangrove swamp (station 3) 1-5-2-1 9 58.3 Walsh (1967)
16 Pamlico River 4-4-5-1 14 36.3 Copeland et al. (1974)
17 Marshallese reefs 3-3-3-3-1-1 14 28.6 Hiatt and Strasburg (1960)
18 Kapingamarangi atoll 8-9-2-3-5 27 20.8 Niering (1963)
19 Moosehead Lake 2-3-8-3-1 17 42.6 Brooks and Deevey (1963)
20 Antarctic pack ice zone 3-3-5-3-4-1 19 29.8 Knox (1970)
21 Ross Sea 3-2-1-1-1-1-1 10 55.6 Patten and Finn (1979)
22 Bear Island 6-10-2-3-2-2-2-1 28 27.5 Summerhayes and Elton (1923)
23 Canadian prairie 1-5-4-4-1 15 59.1 Bird (1930)
24 Canadian willow forest 4-3-1-31 12 36.4 Bird (1930)
25 Canadian aspen communities 3-11-8-2-1 25 30.7 Bird (1930)
26 Aspen parkland 9-10-6-4-3-1-1 34 20.0 Bird (1930)
27 Wytham Wood 4-6-4-5-3 22 27.3 Varley (1970)
28 New Zealand salt-meadow 7-19-10-9 45 13.5 Paviour-Smith (1956)
B. “Constant” environments
29 Arctic seas 2-3-6-6-3-2 22 31.2 Dunbar (1954)
30 Antarctic seas 1-2-3-23-21 14 52.7 Mackintosh (1964)
31 Black Sea epiplankton 2-3-5-1-1-1-1 14 83.5 Petipa et al. (1970)
32 Black Sea bathyplankton 2-3-5-1-1-1-1 14 84.6 Petipa et al. (1970)
33 Crocodile Creek 5-16-6-4-2 33 39.0 Fryer (1959)
34 River Clydach 4-4-1-2-1 12 56.1 Jones (1949)
35 Morgan's Creek 2-4-2-2-3 13 - 74.4 Minshall (1967)
36 Mangrove swamp (station 6) 8-7-4-2-1 22 34.8 Walsh (1967)
37 California sublittoral 6-10-3-5 24 26.1 Clarke et al. (1967)
38 Lake Nyasa rocky shore 3-10-9-9 31 67.1 Fryer (1959)
39 Lake Nyasa sandy shore 5-15-12-5 37 29.8 Fryer (1959)
40 Malaysian rain forest 3-3-4-1 11  52.7 Harrison (1962)
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For purposes of comparison, I distinguished at the start between two broad
categories of ecosystems: those exposed to high and those exposed to low tempo-
ral variability of the physical environment. By convention any system described
in the original report as subjected to substantial variations in temperature, salin-
ity, pH, water availability, or any other major parameter, was labelled “fluctuat-
ing.” Accordingly, Table 1 lists 28 communities as representative of fluctuating
environments and the remaining 12 as representative of “constant” environ-
ments. I emphasize that this distinction is based only on the amplitude of the
changes, and not on their degree of predictability.

The striking disparity of food web structures encountered in nature can be
appreciated from Table 1. Except for the closely related planktonic communi-
ties of the Black Sea (codes 31 and 32) that are similarly constructed, each
network appears unique in design. If structural trends do exist, they are not
readily apparent. For instance I find that the ratio of prey to predator species
is far less constant than previously indicated by Cohen (1978). Nor is there any
significant correlation (Student’s t test; P > .05) between species richness and
prey : predator ratio, percentage of specialized predators (those feeding only on
one kind of prey), or food chain length. Taken singly, none of these variables
can discriminate among fluctuating, constant, aquatic, terrestrial, tropical, or
nontropical systems.

On the other hand, environmental variability is found to have a marked impact
on the connectance, that is, the fraction of nonzero off-diagonal elements in the
community matrix. Such a matrix indicates not only trophic interactions, as does
the food web matrix, but also direct competitive interactions. Since interference
competitors are not identified in the original reports, one must adopt simple
and realistic criteria to that effect. I follow here the procedure used by Yodzis
(1980), which yields a relatively high estimate of connectance but possesses such
attributes. Whenever two predator species (say a and b) have at least one prey
in common, I recognize them as potential interference competitors and so enter
the elements A,; and A, as nonzero in the community matrix. The connectance
is calculated simply as

n
b EEn

where n denotes the number of nonzero interaction coefficients A;; in the com-
munity matrix, and S the number of species in the system.

As shown in Fig. B.5.1a, for any given number of species, the connectance
is significantly lower in fluctuating than in constant environments (¢ test, P <
.005). This confirms a prediction tentatively advanced by May (1981), and is
most interesting in light of the importance attached to connectance in stability
theory. One recalls in particular the work of Gardner and Ashby (1970) and the
proposition by May (1972) that communities in the neighborhood of equilibrium
will tend to be stable if

i(5C)V?2 <1
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Fig. B.5.1. (a) Connectance of food webs as a function of species richness (S) in fluctuating
(e) and constant (o) environments. The solid line represents the regression curve for fluctu-
ating environments y = 2.20z~9%% (r = —.83, P < .001). The regression curve for constant
environments y = 2.71z7958 (r = ~.60, P < .05) is not represented as it is based on a
small sample size. The dashed line indicates the lower boundary for connectance, equal to
25-1. (b) Maximum average interaction strength, calculated as (SC)~1/2 (hence, according
to May’s equation, the upper bound on i which allows stability), as a function of species
richness, where C = connectance. ¢ = fluctuating environments; o = constant environments.
The solid line represents the regression curve for fluctuating environments y = 0.68—9-17
(r = —.62, P < .001). For constant environments, the relation between the two variables is
not significant $P > .1). The dashed lines indicate the upper and lower boundaries, equal to
2—1/2 and §-1/2, respectively

and unstable otherwise. There S and C denote, respectively, species richness
and connectance, while i represents the average strength of interaction among
species.

Within the context of this relation, it is important to determine whether com-
plexity (high S) is handled functionally or structurally by real systems. In other
words, do complex systems retain their stability by reducing ¢, C, or both? The
present study indicates that the answer will depend on the degree of environ-
mental variability. In fluctuating systems the decrease in C associated with high
S is so abrupt that only a slight reduction of 7 will be required to preserve sta-
bility (see Fig.B.5.1b). On the other hand, complex systems subjected to more
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Fig. B.5.2. (a) Number of predator-prey links as a function of species richness (S) in fluctuat-
ing (e) and constant (o) environments. The dashed lines indicate the upper and lower possible
boundaries, equal to S(S —1)/2 and S — 1, respectively. (b) Number of potential competitive
links as a function of species richness in fluctuating () and constant (o) environments. The
dashed line indicates the upper possible boundary, equal to S(S — 1)/2. There is no lower
boundary

constant environmental conditions must depend on much weaker interactions,
or else be more fragile.

I suggest that the difference in connectance patterns between the two en-
vironments results from the optimization of feeding, which imposes structural
constraints in one case and functional adaptations in the other. In fluctuating
systems, environmental perturbations do limit the time available for feeding.
There, it would appear advantageous for the consumer species to rely on briefer
but more intense periods of predation. If this is correct, ¢ then is the factor that
must be maximized, at the expense of C when necessary. By contrast, in con-
stant environments the structure of complex food webs need not be constrained
to accommodate as large an i as possible. In gsuch environments, weaker inter-
actions may be tolerated since they can be exploited on a more continuous and
reliable basis. It is even conceivable that in such systems both C and i might
be large. This would violate the conditions for stability, but the risk appears
acceptable considering the low probability of environmental disruption.

It is perhaps worthy of note that the components of connectance relate quite
distinctly to species richness: on one hand, the number of trophic links, that
is, the total of nonzero entries in the food web matrix, increases as a nearly
linear function of S (y = 1.3z119); on the other hand, the number of potential
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competitive links, calculated by scoring one link for every pair of predator species
sharing one or more prey species between them, increases as a quadratic function
of S (y = 0.07z%99). Both regressions are highly significant (r = .88; P < .001),
and in each case the dependent variable is markedly lower in fluctuating than in
constant environments (see Fig. B.5.2).
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Fig. B.5.3. Segregation of ecosystems as a function of the percentage of strictly herbivorous
species in the community and the product of species richness and connectance (SC). The code
numbers identify the communities listed in Table 1. From left to right the groups represent
Atlantic coast intertidal (10, 11), forest (24, 40, 27), estuarine (3, 1, 2), pelagic (21, 20, ...),
Pacific coast intertidal (12, 13), and mixed terrestrial ecosystems (28, 25, ...). Although river
and salt-marsh habitats are well represented, their respective communities do not appear
distributed closely on this graph

Finally, some remarkable relations do emerge when one attempts to relate
habitat type and food web structure. As shown in Fig. B.5.3, intertidal, forest,
estuarine, pelagic, and mixed terrestrial communities appear as distinct groups
in the space defined by connectance, species richness, and percentage of strictly
herbivorous species; the last variable is chosen as indicative of food web shape.
Clearly, then, ecological networks tend to be more similar within, than between,
classes of ecosystems, and this is the case regardless of geographic location and
taxonomic composition. I emphasize, however, that the limits delineating each
group are only drawn tentatively and must be interpreted with caution. At the
least, they imply that environmental constraints will impose a far greater rigidity
of web shapes and a much smaller choice of trophic patterns than previously
assumed.
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§6. Environmental Correlates of Food Chain Length
Frédéric Briand and Joel E. Cohen

A community food web (Cohen 1978) describes the feeding relations in a com-
munity of organisms. A trophic species (Briand and Cohen 1984) (hereinafter
species) in a web is a collection of organisms that feed on a common set of or-
ganisms and are fed on by a common set of organisms. Species z is linked to
species y when energy flows from z to y, that is, when y feeds on z. A chain is
an energy path or sequence of links that starts at a species that eats no other
species in the web and ends at a species that is eaten by no other species in the
web. The length of a chain is the number of links it comprises. The mean chain
length of a web is the arithmetic average of the lengths of all chains in the web.

Two major hypotheses and one empirical generalization have been proposed
to relate chain lengths to environmental conditions. The first hypothesis, known
as the “energetic hypothesis” (Hutchinson 1959), proposes that chain length is
limited by the inefficiency with which energy is transmitted by predation and
by the minimal energy requirements of predators. Limited available energy may
make it impossible to support enough individuals to maintain a population,
may make it impossible for individuals to find enough prey to survive, or may
constrain chain length through other mechanisms. In its simple form, this hy-
pothesis predicts that chains should be longer in ecosystems with higher primary
productivity. It has been tested experimentally (Pimm and Kitching 1987) and
rejected for small artificial ecosystems, and it remains to be tested further exper-
imentally. From a review of nine studies ranging from energetically impoverished
to highly productive environments, Pimm (1982) concluded that there was no
evidence for food chains being longer in more productive habitats.

The second hypothesis, known as the dynamical stability hypothesis (Pimm
and Lawton 1977), is based on the finding in specific mathematical models of
ecosystems that the longer the chains, the more severe the restrictions that
must be imposed on the coefficients of the models for equilibrium to be feasible
or stable. Further, in certain models, ecosystems with longer chains take longer
to return to equilibrium once perturbed, so that webs with longer chains may
be less likely to persist in nature. This hypothesis predicts that chains should be
longer in ecosystems exempt from large perturbations. To our knowledge, there
is no reported evidence for or against this hypothesis.

The empirical generalization (Briand 1983a), based on 34 webs, proposes that
chains tend to be longer in three-dimensional than in two-dimensional environ-
ments. An environment is classified as having dimension 2 if it is essentially flat,
like a grassland, the tundra, a sea or lake bottom, a stream bed, or the rocky
intertidal zone. An environment is classified as having dimension 3 if it is solid,
like the pelagic water column or a forest canopy. Webs from habitats integrating
both flat and solid environments are considered as having “mixed” dimension.

To evaluate the relative influence on chain length of the primary productivity,
the variability, and the dimensionality of the environment, we studied a collection
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of 113 webs, culled from 89 published and 2 unpublished studies, to cover as wide
a diversity of natural environments as possible. Most of the world biomes are
represented. There are 55 continental (23 terrestrial and 32 aquatic), 45 coastal,
and 13 oceanic webs, rauging from arctic to antarctic regions.

Only webs partially defined, presented too sketchily, or based on information
explicitly drawn from different locations were excluded from this collection. The
webs were not screened by rejection of outliers or by any other statistical proce-
dure based on the data. Only obvious biological errors were amended in editing
the data. Although all webs were treated consistently in this collection, the prac-
tices of field ecologists in observing and reporting webs are not standardized. As
the apparent characteristics of an individual web may reflect the idiosyncrasies
of its observer, it is appropriate with these data to attend to broad trends and
major differences among distributions.

The 113 webs studied are listed in Table 1 together with their sources and the
following characteristics: mean chain length, maximal chain length, number of
species, number of links, productivity, variability, dimensionality, and geographic
origin. The details of all of these webs are fully documented (Chap. IV); the
frequency distributions of chain length of all webs have been reported (Cohen,
Briand and Newman 1986). This large collection allows comparisons to be made
that are more sensitive than before to small differences in mean chain length.

The productivity of a web is classified as low if the net primary productivity
of its ecosystem falls below 100 g of carbon per square meter per year and high
if it exceeds 1000 g of carbon per square meter per year. Of 113 webs, 22 were
classified as having low productivity, 10 as having high productivity, and 6 as
having intermediate productivity. The remaining 75 webs were unclassified for
want of information.

The variability of a web’s habitat is classified as fluctuating or constant. The
environment is fluctuating if the original report indicates temporal variations of
substantial magnitude in temperature, salinity, water availability, or any other
major physical parameter. The magnitude, not the predictability, of the vari-
ations is the criterion of classification. Of 113 webs, 64 were classified as fluc-
tuating and 17 as constant. The remaining 32, previously (Cohen, Briand and
Newman 1986) unclassified, are considered here as intermediate.

Of 113 webs, 40 were classified as having dimension 2 and 28 as having dimen-
sion 3. Forty-five webs previously (Cohen, Briand and Newman 1986) recorded
as having neither dimension 2 nor dimension 3 are here considered as having
mixed dimension.

Some subjective judgments are involved in classifying webs as fluctuating or
constant and as two-dimensional or three-dimensional. For the first 40 webs in
the series (Cohen 1978; Chap. I1.5), the facts supporting these judgments are
already documented.

All calculations were performed for both mean and maximal chain lengths.
Maximal chain lengths varied in parallel with mean chain lengths throughout. We
present the mean (within-web) chain lengths descriptively using box plots (Tukey
1977; McNeil 1977). We attempt no formal statistical tests of differences between
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Fig. B.6.1. Box plots of the frequency
distributions of mean (within-web) chain
lengths in 113 webs classified according to
productivity (low or high), environmental
variability [fluctuating (Flu.) or constant
(Con.)], and dimension (2 or 3). Some webs
are omitted from each frequency distribu-
tion because they were intermediate. For
each box, the upper edge corresponds to
the upper quartile (75th percentile or Q3)
of the distribution being plotted, and the
lower edge corresponds to the lower quar-
tile (25th percentile or Q1), and the dash
in the middle corresponds to the median
(50th percentile or Q2). The numerical val-
ues of these ordinates appear below each
box. Vertical lines extend from the upper
quartile @3 up to the largest observation
(marked by x) less than Q3 + (Q3 — Q1),
and from Q1 down to the lowest obser-
vation (also marked by x) greater than
Q1 - (Q3 — Q1). Webs more extreme than
those represented by X are represented by
one (o), unless a number next to the sym-
bol indicates a larger number of webs co-
incident at this value. Outlying webs more
than 1.5 x (@3 — Q1) distant from the
nearest quartile are emphasized by (®); n,
number of webs
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distributions because it is doubtful that the webs in our collection form a random
sample from a well-defined universe of webs (Cohen, Briand and Newman 1986).

Fig. B.6.1 shows that the distributions of mean chain lengths are similar, with
virtually identical medians, in webs differing markedly in productivity. Contrary
to the energetic hypothesis, high-energy systems do not support longer chains,
on average or maximally, than energetically impoverished environments. The
possibility remains that energy influences chain length but that highly produc-
tive systems attract a greater fraction of energetically less efficient consumers,
which prevent the assembly of longer food chains. Lacking detailed data on the
energetic efficiency of the web species, we cannot exclude this possibility (Yodzis
1983).

The distributions of mean chain length are relatively distinct in fluctuating
compared to constant webs and quite distinct in webs having dimension 2 com-
pared to those having dimension 3. The upper quartile of mean (within-web)
chain length for the 40 webs of dimension 2 is 2.6 links, which falls below the
lower quartile (2.7 links) of mean chain length for the 28 webs of dimension 3.

With a sufficiently large collection of fully described webs, it would be possi-
ble to cross-classify each web by its productivity, variability, and dimension and
thereby to study the dependence of chain length on all three variables simulta-
neously. When the 113 webs are cross-classified by the variability and dimension
of the environment only (and not by productivity, which is unknown for many
webs), there are only two webs in constant environments of dimension 2. There
are 27 webs in fluctuating environments of dimension 2, and this is the largest
number in any cell of the cross-classification. Not enough webs are available to
support further cross-classification.

It would be hasty to conclude that variability and dimensionality indepen-
dently influence chain length. Of the two-dimensional webs, 27 are fluctuating
and 2 are constant; of the three-dimensional webs, 13 are fluctuating and 7
are constant. Thus the proportion of constant webs is more than five times
as high among three-dimensional webs as among two-dimensional webs. No
such risk of confounding affects the interpretation of the effect of productiv-
ity in Fig.B.6.1, since webs from environments with low or high productivity
include comparable fractions of fluctuating and constant, and two-dimensional
and three-dimensional, habitats.

To assess the relative influence of environmental dimension and variability
on chain lengths, we compared the distributions among webs of mean (within-
web) chain lengths in fluctuating and constant webs having comparable, mixed
dimension (Fig. B.6.2a) and in two- and three-dimensional webs of comparable
variability in constant, fluctuating, or intermediate habitats (the last comparison
being shown in Fig. B.6.2b).

If environmental variability alone markedly affects the length of chains, then
the distributions in Fig. B.6.2a should be distinct. That is not the case: given a
mixed dimension, constant environments do not support markedly longer chains
than fluctuating environments, contrary to the dynamic stability hypothesis.

If environmental dimension alone markedly affects chain length, then the dis-
tributions for webs with intermediate variability in Fig. B.6.2b should be distinct.
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Fig. B.6.2a,b. Box plots of the frequency distribu-
tions of mean (within-web) chain length (a) in webs
of mixed dimension, comparing fluctuating (Flu.)

and constant (Con.) environments and (b) in webs of
intermediate variability, comparing two- and three-
dimensional environments. Symbols and other abbre-
viations are as in Fig.B.6.1
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That is clearly the case. Further, in fluctuating habitats, the 27 webs with di-
mension 2 have a median 2.3 mean chain length, less than the median 2.8 mean
chain length of the 13 webs with dimension 3. In constant habitats, the two webs
with dimension 2 have a median 2.3 mean chain length, less than the median
4.0 mean chain length of the seven webs with dimension 3. Although there are
too few webs in constant two- or three-dimensional habitats to justify any firm
conclusion, the differences are consistent in the three comparisons: controlling
for variability, webs in two-dimensional habitats have shorter mean chain lengths
than those in three-dimensional habitats.

We conclude from our data that the dimensionality of the environment in-
fluences mean or maximal chain length more than environmental variability.
Dimensionality is a major determinant of chain length in natural communities.
Why this is so remains to be explained, although it is evident that environmen-
tal dimension may affect the probability per unit time of an encounter between
predator and prey.

Table 1. Characteristics of 113 webs. Serial numbers and sources are as in Chap. IV. Produc-
tivity: 0, unclassified (unknown or intermediate); 1, low; 2, high. Variability: 0, intermediate;
1, fluctuating; 2, constant. Dimension: 0, mixed; 2, two dimensional; 3, three dimensional.

Web

Mean Max. No. of No. of Prod. Var. Dim. Habitat

number chain chain trophic links

length length species

WO U=

3.13 4 8 14 0 0 0 Cochin backwater, India

2.71 3 14 22 0 1 0 Knysna estuary, South Africa

2.30 3 24 34 0 1 2 Salt marsh, Long Island, USA

2.74 4 13 26 0 1 0 Salt marsh, California

2.00 2 6 5 2 0 0 Salt marsh, Georgia

3.82 6 25 43 0 1 0 Tidal flat, California

2.79 4 18 30 0 0 0 Narragansett Bay, Rhode Island
2.44 4 15 25 2 1 0 Salt marsh, Rhode Island

2.86 3 9 13 0 0 0 Lough Ine Rapids, Ireland

2.00 2 3 2 0 1 2 Exposed rocky shore, New England, USA
2.00 2 5 4 0 1 2 Protected rocky shore, New England, USA
2.25 3 9 13 0 1 2 Exposed rocky shore, Washington
2.50 3 9 14 0 1 2 Protected rocky shore, Washington
2.40 3 8 10 0 0 0 Mangrove swamp 1, Hawaii

2.33 3 7 7 0 1 0 Mangrove swamp 3, Hawaii

2.14 3 14 20 2 1 0 Pamlico estuary, North Carolina
3.56 5 14 23 0 0 3 Coral reefs, Marshall Islands

2.00 4 23 35 0 0 0 Kapingamarangi Atoll, Polynesia
3.00 4 17 32 1 1 3 Moosehead Lake, Maine

3.26 5 19 30 1 0 3 Antarctic pack ice zone

4.61 7 9 20 0 0 3 Ross Sea

3.69 7 28 58 0 1 0 Bear Island, Spitsbergen

2.40 4 15 27 0 1 2 Prairie, Manitoba

2.70 4 12 18 0 1 3 Willow forest, Manitoba

2.16 4 24 37 0 1 3 Aspen communities, Manitoba
2.93 (] 32 56 0 1 0 Aspen forest, Manitoba

2.89 4 22 39 2 1 3 Wytham Wood, England

1.96 3 32 35 0 1 0 Salt meadow, New Zealand

3.14 5 16 22 1 0 3 Arctic seas

5.02 7 14 32 1 0 3 Antarctic seas
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Table 1. Continued

Web Mean Max. No. of No.of Prod. Var. Dim. Habitat
number chain chain trophic links
length length species

31 3.90 6 14 51 0 0 3 Epiplankton communities, Black Sea
32 3.86 6 14 52 0 2 3 Bathyplankton communities, Black Sea
33 1.93 4 29 48 0 2 0 Crocodile Creek, Malawi

34 2.56 4 12 27 0 2 2 River Clydach, Wales

35 2.72 4 13 36 0 0 2 Morgan’s Creek, Kentucky

36 2.07 4 19 35 0 0 0 Mangrove swamp 6, Hawaii

37 2.75 4 24 46 0 2 0 Marine sublittoral, southern California
38 2.13 3 31 95 0 2 0 Lake Nyasa, rocky shore, Malawi

39 1.80 3 33 70 0 2 0 Lake Nyasa, sandy shore, Malawi

40 1.88 3 11 15 0 2 3 Rain forest, Malaysia

41 5.92 8 18 49 1 2 3 Tropical seas, epipelagic zone

42 4.95 8 15 36 2 2 3 Upwelling areas, Pacific Ocean

43 3.13 5 20 38 0 2 3 Kelp bed community, south California
44 3.63 5 12 29 2 2 0 Marine coastal lagoons, Guerrero, Mexico
45 2.14 3 11 20 0 2 2 Cone Spring, lowa

46 4.43 8 19 68 1 0 3 Lake Texoma, Texas

47 4.22 5 27 50 0 2 0 Swamps, south Florida

48 3.53 5 13 20 0 1 0 Nearshore marine 1, Aleutian Islands
49 2.56 4 12 20 0 1 0 Nearshore marine 2, Aleutian Islands
50 2.44 3 14 23 0 1 2 Sand beach, California

51 3.28 5 25 46 0 0 0 Shallow sublittoral, Cape Ann, Massachusetts
52 2.08 3 20 32 0 1 2 Rocky shore, Torch Bay, Alaska

53 1.95 2 22 31 0 1 2 Rocky shore, Cape Flattery, Washington
54 2.58 4 14 20 0 0 0 Western rocky shore, Barbados

55 2.46 3 12 18 2 1 2 Mudfiat, Ythan Estuary, Scotland

56 2.22 3 10 14 0 1 2 Mussel bed, Ythan Estuary, Scotland
57 3.29 5 9 19 2 0 0 Brackish lagoons, Guerrero, Mexico

58 4.28 7 17 21 0 1 0 Sphagnum bog, Russia, USSR

59 2.37 4 29 61 0 1 3 Trelease Woods, Illinois

60 2.36 3 33 69 0 1 3 Montane forest, Arizona

61 2.00 3 8 10 1 1 2 Barren regions, Spitsbergen

62 3.00 4 11 12 1 1 2 Reindeer pasture, Spitsbergen

63 3.16 4 18 75 0 0 2 River Rheidol, Wales

64 1.67 2 19 28 0 0 2 Linesville Creek, Pennsylvania

65 1.85 2 13 25 0 0 2 Yoshino River rapids, Japan

66 2.93 4 10 18 0 0 2 River Thames, England

67 3.94 6 21 62 0 0 0 Mudflats, Mississippi River, Iowa

68 2.63 4 22 32 0 1 3 Loch Leven, Scotland

69 3.62 6 29 73 0 1 0 Tagus Estuary, Portugal

70 2.49 3 14 28 0 1 0 Crystal River Estuary, Florida

71 5.15 7 16 32 0 1 3 Lake Rybinsk, Russia, USSR

72 3.95 5 17 32 0 1 3 Heney Lake, pelagic zone, Quebec

73 2.38 3 10 15 0 1 3 Hafner Lake, Austria

74 2.38 4 21 36 0 1 2 Sand beach, South Africa

75 2.75 4 9 14 0 1 3 Vorderer Finstertaler Lake, Austria

76 2.67 4 14 17 1 1 0 Neusiedler Lake, Austria

77 3.63 5 13 24 0 2 0 Lake Abaya, Ethiopia

78 3.15 5 16 27 2 2 0 Lake George, Uganda

79 3.41 5 21 29 0 1 0 Lake Paijarvi, offshore, Finland

80 3.35 5 27 70 0 1 0 Lake Padjarvi, littoral zone, Finland
81 2.73 4 12 19 1 0 0 Sendai Bay, mesopelagic zone, Japan
82 3.7 5 10 14 0 1 0 Permanent freshwater rockpool, France
83 2.45 4 25 67 1 1 0 Lake Pyh&jarvi, littoral zone, Finland
84 3.61 5 12 23 0 1 0 Temporary pond, Michigan

85 3.61 5 27 49 2 1 0 Tasek Bera Swamp, Malaysia
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Table 1. Continued

Web Mean Max. No. of No. of Prod. Var. Dim. Habitat
number chain chain trophic links
length length species

86 4.09 6 16 37 0 1 3 Suruga Bay, epipelagic zone, Japan

87 291 4 11 17 1 0 0 Ice edge community, High Arctic, Canada

88 1.95 2 16 42 0 0 2 Lestijoki River Rapids, Finland

89 2.89 4 18 32 0 0 3 River Cam, England

90 1.84 2 22 39 0 1 2 Old field, New Jersey

91 3.00 4 10 13 0 1 3 Shigayama coniferous forest, Japan

92 2.00 3 18 18 1 0 2 High Himalayas community, Tibet

93 2.12 3 26 70 1 1 2 Alpine tundra, Montana

94 3.35 5 12 19 1 1 2 Wet coastal tundra, Barrow, Alaska

95 2.50 4 10 12 1 1 2 Tundra, Prudhoe, Alaska

96 1.92 2 9 16 1 1 2 Tundra, Yamal Peninsula, Siberia

97 2.00 3 11 17 1 1 2 Tundra, South Yamal, Siberia

98 3.54 5 17 39 1 0 2 Sand dunes, Namib Desert, Namibia

99 2.51 4 48 138 1 0 2 Sonora Desert, Arizona
100 3.34 6 22 59 1 0 2 Rajasthan Desert, India
101 1.67 2 6 5 0 1 0 Temporary freshwater rockpool, France
102 3.97 7 9 27 1 2 3 Plankton, oligotrophic tropical Pacific
103 5.59 10 23 133 1 2 3 Tropical plankton community, Pacific
104 3.16 5 27 62 0 0 2 Rocky shore, Bay of Panama
105 3.67 5 10 22 0 1 2 Rocky shore, Gulf of Maine, USA
106 2.41 5 35 73 0 1 2 Rocky shore, Monterey Bay, California
107 2.50 3 10 14 0 1 2 Bay pilings community, New Jersey
108 2.27 3 14 20 0 1 2 Rocky shore, Cabrillo Point, California
109 2.88 4 21 57 0 1 2 Rocky shore, central Chile
110 2.13 3 13 23 0 1 2 Rocky shore, Cape Ann, Massachusetts
111 2.44 3 19 36 0 1 2 Mudflat, Cape Ann, Massachusetts
112 1.83 3 14 17 0 1 0 Low salt marsh, Cape Ann, Massachusetts
113 2.11 3 11 12 0 1 0 High salt marsh, Cape Ann, Massachusetts




Chapter II1
A Stochastic Theory of Community Food Webs

§1. Theory: Circles of Complexity, Spherical Horses
Joel E. Cohen

The introduction to the empirical portion of this book describes a three-panel
cartoon. In the middle panel, theoretical ecologists collected community food
webs and discovered some entertaining empirical regularities. (That summarizes
the preceding chapters of this book.) In the background of the last panel, mice
were constructing a theoretical scaffolding to hold together the observed empir-
ical regularities. This portion of the book presents that scaffolding.

The materials in a scaffolding are often used for more than one building. The
theory in this portion of the book is no exception. This introduction describes
where some of the previously used pieces of the theoretical scaffolding came
from, and suggests some directions for future extensions.

There is a well-known joke about a theoretical physicist who decides to con-
quer biology using methods that proved so powerful in physics. After modestly
taking a whole week to learn biology, he or she begins: “Consider a spherical
horse.” The history of the theory in this portion of the book might be viewed
as a progression from spherical horses, to random spherical horses, to the neighs
of a random spherical horse. To form a clearer image of a scaffolding built of
spherical horses, read on.

1. Spherical Horses

Lotka, in his 1925 magnum opus Elements of Physical Biology, and in earlier
papers, constructed an influential model of community ecology from the kinetic
equations of chemistry. He proposed that the species (chemical or biological) of
a community evolve according to a family of autonomous, generally nonlinear,
first-order ordinary differential equations. As special cases, he considered a pair
of equations that model interactions between a predator and a prey, and another
pair of equations that model interactions between two competitors. The famous
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“Lotka-Volterra equations” refer to one or another of these pairs of nonlinear,
first-order ordinary differential equations. Lotka’s perspective on ecological dy-
namics has influenced much ecological theory (e.g., there are 11 index references
to Lotka or his equations in May 1981; 3 references in the subject index, but
none in the name index, of Strong et al. 1984; and 7 references in the subject
index of Diamond and Case 1986), including in particular models of food webs
(e.g., Pimm 1982). It is ironic that Lotka apparently did not consider himself an
ecologist, and hoped for recognition from physicists that was never forthcoming
(Kingsland 1985).

The history that led Lotka to his view of ecological communities is perhaps
equally ironic. Trained as a physical chemist, Lotka studied for the 1901-1902
academic year in Leipzig, where he was greatly influenced by the lectures of
Ostwald, a Nobel Laureate in chemistry. Ostwald in turn was greatly influenced
at that time by the views of Haeckel, who (in 1866) coined the word “ecology”.
Haeckel saw Darwinian evolution, and the survival of the fittest (interpreted as
naively as possible), as the universal law of human groups as well as of nonhuman
species. In 1906, not long after Lotka’s studies in Leipzig, Ostwald helped found
the Monist League. Its purpose was to advance the views of Haeckel. In the social
and cultural setting of Germany, Haeckel’s Monism provided an interpretation
of Darwinism that eventually justified the systematic destruction of non-Aryans
(Stein 1988).

Lotka, who would have been among those destroyed had he remained in
Leipzig, carried away from Leipzig the purely scientific interpretation of Ost-
wald’s Monistic views. Coming to America, Lotka began the program of research
and publication that culminated in his 1925 book. His 1907 paper, “Studies on
the mode of growth of material aggregates”, followed a mathematical theory
of stable age-structured populations with a model of isothermal monomolecu-
lar reactions (Cohen 1987). He viewed both models as “the study of the laws
governing the distribution of matter among complexes of any specified kind, as
determined by their general physical character.”

Here is a spherical horse! Lotka, more than many who adopted his perspec-
tives and used his models, knew a spherical horse when he saw one, even if he
rode it. In 1932, Lotka ended a paper on what are now called the Lotka-Volterra
equations for two competing species with the observation: “It is perhaps hardly
to be expected that concrete examples of the law of growth for two popula-
tions here discussed shall be found in nature.” Among the feature of nature
these equations neglect are: the age structure of the competing species, genetic
heterogeneity within each species, spatial and temporal heterogeneity in the
environment and in the parameters of interaction, possible roles of learning, in-
terference from other species that may be present, and exhaustion or resupply
of nutrients. The list could be extended, but suffices to indicate why Lotka’s
abstract, general models are spherical horses.

Nevertheless, when Gause constructed microbiological “ecosystems” that were
sufficiently simplified to be described by the Lotka-Volterra competition equa-
tions, the equations were enshrined as useful keys to vastly more complex nature.
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Perhaps one reason for the influence of Lotka-Volterra equations on food web
theory is that they provide a language that can-formalize Darwin’s theoretical
intuitions about food webs. Darwin (1859, p. 72) described a region of Paraguay
where no cattle, horses, or dogs run wild because a certain fly lays its eggs in
the navels of these animals when the animals are born. He then hypothesized:
Hence, if certain insectivorous birds (whose numbers are probably regulated by hawks or beasts
of prey) were to increase in Paraguay, the flies would decrease — then cattle and horses would
become feral, and this would certainly greatly alter (as indeed I have observed in parts of
South America) the vegetation: this again would largely affect the insects; and this, as we just

have seen in Staffordshire, the insectivorous birds, and so onwards in ever-increasing circles of
complexity.

In a second example, Darwin (1859, pp. 73-74) described the crucial role of
British insects in pollinating British flowers, and the apparent influence of field-
mice on insects. He again hypothesized:

Hence it is quite credible that the presence of a feline animal in large numbers in a district

might determine, through the intervention first of mice and then of bees, the frequency of
certain flowers in that district!

Hypotheses such as these ignore the age structure of the competing species,
genetic heterogeneity within each species, spatial and temporal heterogeneity in
the environment and in the parameters of interaction, possible roles of learning,
interference from other species that may be present, and exhaustion or resupply
of nutrients. Does this list sound familiar? Darwin’s hypotheses are made to order
for the stoichiometric equations of Lotka; in both, predation simply inhibits the
population growth and population size of the prey and enhances the population
growth and population size of the predator. Though their verbal formulation
makes them appear to be horses of another color, Darwin’s hypotheses about
food chains and food webs are spherical horses as much as Lotka’s.

Like Lotka, Darwin knew a spherical horse when he saw one. Immediately
after the preceding example, he wrote (1859, p. 74):

In the case of every species, many different checks, acting at different periods of life, and
during different seasons or years, probably come into play; some one check or some few being
generally the most potent, but all concurring in determining the average number or even the

existence of the species. In some cases it can be shown that widely-different checks act on the
same species in different districts.

Darwin recognized age structure, seasonality, and spatial heterogeneity. This
recognition did not make him afraid to build around his observations a scaffold-
ing of spherical horses.

2. Random Spherical Horses

Meanwhile, back at the spherical ranch (where the spherical horses range), nu-
clear physicists were trying to understand the distribution of energy levels, or
spectra, of nuclei. In a typical experiment, nuclei of some element are bombarded
by neutrons with differing amounts of energy, and the number of particles flying
out are counted as a function of the energy of the bombarding neutrons (Mehta
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1986). The frequency histogram of counted particles as a function of energy,
called the spectrum, displays discrete sharp peaks. The problem is to explain
the location of these peaks.

In the 1950s, the physicist Eugene P. Wigner introduced the idea that the
distribution of peaks could be understood as the distribution of the eigenvalues
of a certain square symmetric matrix with random elements. By a happy co-
incidence, the set of eigenvalues of a matrix is called its spectrum, so Wigner
proposed that energy spectra could be described by random matrix spectra. This
weird idea gives an amazingly good quantitative description of observed energy
spectra (Mehta 1986).

Wigner discovered that if the size (i.e., number of rows or columns) of his
particular random matrix increases while the variance of each element falls like
the reciprocal of the size of the matrix, then the empirical distribution function
of the spectrum (which is just a statistical summary of where the eigenvalues
are) approaches a specific limit, the so-called semicircle law. Moreover, there
is a fixed number such that, with a probability that approaches one as the
matrix gets arbitrarily large, the largest eigenvalue falls arbitrarily close to the
fixed number. This means that the cumulative probability distribution function
of the largest eigenvalue looks like a step function, jumping from nearly zero
below the fixed number to nearly one above the fixed number. As the largest
eigenvalue of a matrix determines the stability of a linear system described
by that matrix, Wigner proved, in effect, that the stability of a linear system
described by his random matrix obeys a similarly abrupt transition. Wigner’s
results (e.g., Wigner 1958) have been very extensively generalized and refined
(e.g. Bai and Yin 1988).

In 1972, Robert M. May, another physicist by training, proposed that Wigner’s
mathematics could illuminate an important question of ecology: what is the re-
lation between the complexity and the stability of communities? May’s central,
and powerful, idea was that if it is difficult to investigate the relation between
stability and complexity in individual communities, it may be informative to
investigate that relation in a hypothetical ensemble of random communities.
In the absence of data, such communities could be constructed according to hy-
potheses chosen largely for analytical convenience, to take advantage of Wigner’s
mathematics.

May’s model, truly a random spherical horse, might have been named Son
of Lotka. His model describes the population dynamics of a set of interacting
species by a set of nonlinear first-order differential equations, assumed to have
a point of equilibrium. Around this equilibrium, the nonlinear dynamics are
approximated by a linear equation dz/dt = Az. Here z is a vector with as many
elements as there are species in the community, and each element represents that
species’ deviation from its equilibrium. The matrix A is called the community
matrix. The diagonal elements of A are fixed at —1, so that each species is stable
by itself. The off-diagonal elements are set equal to zero with probability 1 — C
and otherwise, with probability C, are chosen at random from a distribution
with mean zero and some positive variance. The parameter C, 0 < C < 1, is
called the connectance. It is the probability of interaction between two species.
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May (1972) found that, as the number of species became very large, if the
product of the number of species times the connectance times the variance of
the off-diagonal elements remained less than one, then the probability that the
community would be stable approached one, i.e., certainty, while if the same
product remained greater than one, then the probability that the community
would be stable approached zero, i.e., impossibility. May interpreted his finding:
Applied in an ecological context, this ensemble of very general mathematical models of multi-
species communities, in which the population of each species would by itself be stable, displays

the property that too rich a web connectance ... or too large an average interaction strength
... leads to instability. The larger the number of species, the more pronounced the effect.

According to this conclusion, any increase in complexity, whether measured
by number of species, connectance, or interaction strength, brings an initially
stable community closer to instability. This conclusion contradicted the then-
received wisdom among ecologists that the more complex a community is, the
more stable it is. May’s random spherical horse, amplified in his monograph
(May 1973), kicked open the ecological barn door, and a stampede of theoretical
and empirical studies thundered out. See the reviews and references of May
(1981) and Pimm (1984).

It took a dozen years to notice that May’s claims, in the generality with
which they were originally stated, were mathematically false (Cohen and New-
man 1984, 1985). Wigner had assumed symmetry, May had not. In a footnote,
May (1972) had suggested that “the present results for the largest eigenvalue
and its neighbourhood can be obtained by using Wigner’s original style of ar-
gument on” the product of the community matrix times the transpose of that
matrix, which is indeed symmetric. Attempts by others to fill in the details of
May'’s sketch were doomed to failure.

Nevertheless, in a model in which the random community matrix changes
randomly in time, conclusions very like May’s hold under certain assumptions
(Cohen and Newman 1984). For a model with a fixed community matrix, as
May (1972) assumed, Geman (1986) discovered additional conditions sufficient
to guarantee May’s conclusions about stability. Additional conditions sufficient
to guarantee May’s conclusions about instability remain to be discovered for a
model with a random community matrix fixed in time. This random spherical
horse still limps in one leg.

But in an important sense, by the time the limp became obvious, it did not
matter! Indeed, May’s random spherical horse, limp and all, has arguably been
much more useful than many a technically correct model in theoretical ecology.

First, May’s model contributed importantly to ecological theory. The model
raised the level of ecologists’ thinking about the relation between complexity and
stability. The model encouraged ecologists to think in terms of an ensemble of
ecosystems composed according to some random process. The model strength-
ened the growing willingness among ecologists to think abstractly and exactly
about ecological issues in general. It demonstrated that multi-species community
models could, in principle, be analyzed using methods more recent than Lotka’s
general theory of equilibrium. It provoked a host of more detailed models.
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Second, May’s conclusions made quantitative predictions that could be tested
against data. For example, for a fixed variance in the off-diagonal elements of
the community matrix, the maximum connectance that is compatible with a
stable community is predicted to fall as the reciprocal of the number of species
in the community, asymptotically as the number of species becomes very large.
Reinterpreted as a statement about communities with a finite number of species,
this prediction prompted Rejmanek and Stary (1979) to collect food webs; as
predicted, they found a hyperbolic relation between connectance and the number
of species. Though other interpretations of this observation are now possible
(Cohen and Newman 1988), it was May’s model that prompted the observation
in the first place.

A random spherical horse that promotes theory and observation is not a bad
horse!

3. Neighs of a Random Spherical Horse

In another part of the spherical ranch, while Wigner was analyzing the asymp-
totic theory of the spectra of random matrices, two mathematicians, P. Erdos
and A. Rényi, were developing a revolutionary theory of random graphs. A ran-
dom graph consists of a set of vertices and some probabilistic rule for assigning
edges between pairs of vertices. Think of each vertex as representing a species in
an ecological community, and of each edge as some bidirectional relation between
species, e.g., competition. In 1960, Erdés and Rényi showed that amazing things
happen in a random graph if the number of vertices grows arbitrarily large while
the probability of an edge between two vertices is a specified, declining function
of the number of vertices. For example, if the probability of an edge between
two vertices declines ever so slightly faster than the reciprocal of the number
of vertices, then almost surely a large random graph will contain no cycles of
any order; but if the probability of an edge between two vertices declines ever so
slightly slower than the reciprocal of the number of vertices, then almost surely a
large random graph will contain cycles of every order. Thus the reciprocal of the
number of vertices is called the threshold function for cycles of all orders: when
edges are asymptotically more (or alternatively less) probable than the recipro-
cal of the number of vertices, cycles of all orders are nearly sure to be present
(or alternatively absent). Erdos and Rényi discovered threshold functions for a
host of interesting graph properties, and many more have been discovered since
(e.g. Bollobds 1985).

Given data about community food webs, these discoveries about random
graphs are exciting because they reveal large-scale order in random mathemati-
cal objects, graphs, that are much closer to the form of most food web data than
are the quantitative community matrices assumed in the models of Lotka and
May; in this sense, because random graphs simplify quantitative relations into
purely combinatorial ones, they are the neighs of random spherical horses. On
the other hand, these discoveries are frustrating because random graphs are not
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random directed graphs, or digraphs, as food webs are; random graphs do not
represent directed relations between species, such as one species eating another.

One possible response is to construct from food webs undirected graphs, such
as trophic niche overlap graphs (Cohen 1978) or resource graphs or common
enemy graphs (Sugihara 1982; Lundgren and Maybee 1985). If the probabilistic
models of Erdos and Rényi (1960) are appropriate, then their methods and
theorems give information about the asymptotic behavior of these undirected
graphs (e.g., Cohen, Komlés, and Mueller 1979).

A second possible response, slower and more laborious, is to construct digraph
models appropriate for food webs, taking inspiration from Erdés and Rényi
(1960). Cohen (1978) considered six digraph models for food webs, all of which
were unsuccessful; Cohen and Newman (Chap. II1.2) consider three more, two
of which clearly fail. Pimm, Yodzis (1984), Lawton, DeAngelis, Sugihara (1982)
and others have considered many other models; see Pimm (1982) for references.
The cascade model, which is the principal support of the theoretical scaffolding
in the following chapters, is not the first idea that came to mind, though it
incorporates elements of many of its predecessors.

The cascade model is an incomplete, cross-sectional description of dynamic
ecological processes. In directing attention to a finite set of species (though they
are trophic species rather than biological species), the cascade model reveals
itself a descendant of the spherical horses of Darwin, Lotka, and May. (Where
are the age structure and the genetic heterogeneity of the species, and where
the temporal and spatial heterogeneity [e.g., Levin 1978] of the environment?)
In supposing that the presence or absence of interaction between two species
is randomly determined, the cascade model shows the genes of May’s random
spherical horse. In replacing the quantitative effects of one species preying on
another by a simple all-or-none relation, i.e., in replacing the horse by its neigh,
the cascade model shows the parentage of the random graph theory of Erdds
and Rényi (1960).

Each of the following chapters points out limitations of the cascade model;
but one limitation is perhaps not sufficiently emphasized. The cascade model, by
construction, has no cycles, i.e., excludes the possibility that e.g. A eats B and B
eats A, or A eats B, B eats C, and C eats A. The justification for this exclusion is
empirical: published food webs rarely report such cycles. Nevertheless, in nature,
energy flows not only uphill, in chains of grazing or browsing and carnivory, but
also downhill, in chains of detritus, decomposition and decay (see e.g. Wood-
well 1970; Cousins 1980). The cascade model neglects the trophic or chemical
processes of recycling, but only because most of the available data do, too. As
Kenneth Wachter suggested (personal communication, 16 May 1986), the cas-
cade model really aims to describe the largest cycle-free portion of community
food webs.

Stripping away dynamics (Darwin, Lotka), stability (Lotka, May), and that
warm feeling that being able to tell a story about a model gives you, the cas-
cade model concentrates on explaining the phenomenology of observed food web
structure, using a minimum of hypotheses. This concentration on structural
phenomenology does not deny the importance of other aspects of food webs;
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it is merely a point of departure. The walls rise with the scaffolding, and the
wallpaper comes later.

4. What Next?

The achievements of the cascade model have been summarized in the general
introduction to this book, and are set out in detail in the following chapters.
There are two main directions to explore next: seeing what else the cascade model
can, or cannot, explain; and seeing what explains the structure and parameters
of the cascade model.

The introduction to this book suggested that the cascade model, in con-
junction with the standard species-area curve, might explain the very weak, or
nonexistent, connection between the area of an island and the length of the
longest chains in its food web.

Other areas where the cascade model might offer explanations are: the roles
of predation and competition as a function of trophic position in a community;
allometric relations between the body sizes of predators and prey; differences
in mean or maximal food chain length between different classes of habitats; the
pyramid of numbers and biomass in communities; and differential responses to
environmental perturbations as a function of trophic position in a community.

In the other direction, if the cascade model continues to be useful, it becomes
a challenge to explain the form and parameters of the model itself. I, and in-
dependently Warren and Lawton (1987), suggested that the upper triangular
form of the predation matrix assumed by the cascade model might result from
ordering the species in a community by size, if animals eat prey that are smaller
than themselves. In one food web derived from laboratory experiment, rather
than from field observation, Warren and Lawton (1987) found that when con-
sumers were ordered by increasing size, the predation matrix was close to, but
not quite, upper triangular. The role of size as the possible order in the cascade
model deserves much further empirical study, using food webs derived from the
field.

In addition to assuming an ordering of species, the cascade model assumes
that the probability of a link from any species to any species above it in the
ordering falls as the reciprocal of the number of species in the community. This
hypothesis is mathematically equivalent to the link-species scaling law. Cohen
and Newman (1988) use stability criteria inspired by May’s (1972), in combina-
tion with a model of the incompleteness of ecological observations, to derive the
link-species scaling law. Other possible derivations should be explored.

Thus serious first steps have already been taken to explain the two structural
assumptions of the cascade model, namely, the ordering of species and the link-
species scaling law. Still in need of explanation are the model’s two parameters.
One parameter is the coefficient of proportionality between the probability of a
link and the reciprocal of the number of species. This coeflicient is about 4 for
large numbers of species. Why? The other is the number of species. Explaining
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the number of species occupied Darwin (1859) and has occupied every ecologist
since.

§2. Models and Aggregated Data
Joel E. Cohen and Charles M. Newman

1. Introduction

A food web is a set of kinds of organisms and a relation that shows which kinds of
organisms, if any, each kind of organism in the set eats. A community food web is
a food web obtained by picking, within a habitat or set of habitats, a set of kinds
of organisms on the basis of taxonomy, size, location, or other criteria, without
prior regard to the eating relations among the organisms (Cohen 1978, pp. 20~
21). In the past hundred years, ecologists have reported many community food
webs. Briand (Chap. IV) collected and edited 62 of these, including 13 of those
assembled by Cohen (1978). Several simple empirical generalizations describe the
major features of these community food webs, viewed as an ensemble (Chaps.
11.2, IL.3).

The purpose of this chapter is to propose a simple explanation that accounts
for these empirical generalizations in an economical way. The proposed expla-
nation (the ‘cascade’ model of section 6) is one several attempted models. The
unsuccessful models will also be reviewed to show why models that are simpler
than the one we ultimately propose do not account for the major features of the
data.

Section 2 introduces our terminology and summarizes the empirical gener-
alizations that this work aims to explain. Sects. 3-6 describe successively more
restricted stochastic models, based on random directed graphs, and their failures
and successes in accounting for the observed generalizations. Section 7 reviews
the results obtained, relates them to prior results, and points out some of their
limitations.

The next chapter (Chap. IT1.3) tests further the most successful model pro-
posed here, by using disaggregated data on individual community food webs.

2. Terminology and Empirical Generalizations

We shall follow the terminology and restate the major conclusions of Briand &
Cohen (1984) and Cohen & Briand (1984) (Chaps. 11.2-3).

By a species, we mean a class of organisms that prey on the same kinds of
organisms and are preyed on by the same kinds of organisms. A species in this
sense may result from lumping together kinds of organisms that were identified
as separate by a reporting ecologist but that were recorded as having the same
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sets of prey and the same sets of predators (Briand & Cohen 1984). A species
in this sense bears no necessary relationship to a biological species.

By a link, we mean any reported feeding or trophic relation between two
species in a community food web. Observers use various criteria to decide how
much feeding justifies the reporting of a link and how much failure to observe
feeding justifies reporting the absence of a link (Cohen & Briand 1984).

A community food web graph represents a community food web as a directed
graph or digraph. (The use of digraphs to represent food webs was proposed,
apparently independently, by Harary (1961) and Gallopin (1972).) The vertices
of the digraph correspond to the set of species in the community food web, and
there is an arrow or directed edge from vertex i to vertex j in the digraph if
and only if species j feeds on species i, that is, food flows from species i to
species j. In the description of the theory of digraphs by Robinson & Foulds
(1980), the possibility that i = j, that is, cannibalism, is excluded. As will be
explained below, cannibalism was excluded from our data, independently of the
theory of digraphs. Consequently the data are consistent with the assumptions
of Robinson & Foulds (1980). Henceforth we shall use the single word web to
mean a digraph that represents a community food web. We shall sometimes use
the words species and vertex interchangeably.

A predator is a species that eats at least one species in the web. A prey is a
species that is eaten by at least one species in the web. A top species is a species
not eaten by any species in the web. Such a species is represented in the web by
a vertex that is called a sink (Robinson & Foulds 1980, p.20). An intermediate
species is a species that has both at least one predator and at least one prey. A
basal species is a species that eats no species. Such a species is represented in
the web by a vertex that is called a source (Robinson & Foulds 1980, p. 20).

A species that neither eats nor is eaten by any species (an isolated species) is,
according to the definitions just given, both a top and a basal species. However,
either such species do not exist in reality or reports of webs, with rare exceptions,
exclude them. In the whole collection of 62 webs that we shall analyse, only two
or three isolated species in total were reported by the original sources, and these
isolated species have been excluded in the editing of the data (F. Briand, personal
communication).

We now distinguish special subsets of top and basal species. A proper top
species is a top species that is also a predator, that is, a species that is eaten by
none, but that eats at least one other species. A proper top species is represented
by a vertex that is a proper sink in the terminology of Robinson & Foulds (1980,
p-20). A proper basalspecies is a basal species that is also a prey, that is, a species
that eats none, but that is eaten by at least one other species. A proper basal
species is represented by a vertex that is a proper source (Robinson & Foulds
1980, p. 20). Because isolated species are absent from our data, all reported top
species are proper top species and all reported basal species are proper basal
species. In the absence of isolated species, we can partition all species in a web
into the sets of proper top, intermediate, and proper basal species.
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A basal-intermediate link is a link from a (necessarily proper) basal species to
an intermediate species; similarly for a basal-top link, an intermediate-intermediate
link, and an intermediate-top link.

For a given reported web, let S denote the total number of species (vertices), T
the number of (proper) top species, I the number of intermediate species, B the
number of (proper) basal species, L the total number of links, L gy the number of
basal-intermediate links, L g1 the number of basal-top links, L7y the number of
intermediate-intermediate links, and Ljr the number of intermediate-top links.

The adjacency matrix A of a web (or of any digraph) is an S x S matrix in
which the element a;; in row i and column j equals 1 if species ¢ is eaten by
species j, and equals 0 if species i is not eaten by species j. Thus species j is a
basal species if and only if column j of A is 0, because column j of A is 0 if and
only if species j eats no species in the web. Species j is a proper basal species
if and only if column j of A is 0 and row j is not 0. Similarly species ¢ is a top
species if and only if row i of A is 0. Species 7 is a proper top species if and only
if row ¢ is 0 but column ¢ is not 0. Species ¢ is isolated if both row i and column
1 are 0.

As is conventional, let E(.) denote the expectation or average of the random
variable enclosed in parentheses. Let a bar denote the sample mean of the random
variable it covers. Thus B is the sample mean number of basal species, while
E(B) is the expected number of basal species according to some model.

The three major findings of Briand & Cohen (1984) and Cohen & Briand
(1984) may be stated as ‘scaling laws’, that is, as summaries of how the variables
just defined change, or scale, as the total number of species in a web increases.
Each of these scaling laws has two parts: (i) a qualitative part that states the
approximate form of a scaling relationship, and (ii) a quantitative part that
estimates the numerical value of the parameter or parameters in the scaling law.
The scaling laws are cross-sectional, not longitudinal: they describe a comparison
of many webs at the moment of observation, not the development of a single web
over time resulting from the sequential addition of species.

Species Scaling (Briand & Cohen 1984)

(i) As S varies from 3 to 33 lumped species, B, T and T are all approximately
proportional to S. Equivalently, the proportions of species that are basal,
intermediate and top show no pronounced trend, neither increasing nor de-
creasing, as .S varies from 3 to 33.

(ii) Approximately, B = 0.19S, T = 0.53S, and T = 0.29S for all webs. (The
sum 0.19+0.53 +0.29 exceeds 1 due to rounding. For more exact figures, see
Table I11.2.1.)

It seems plausible (Pimm 1982) that ecologists have been more interested in
species at the top of webs than in species at the bottom, and that the coefficient
0.19 for the observed fraction of basal species is lower than the true fraction
of basal species. When Briand & Cohen (1984) ‘lumped’ trophic species, they
found that the ratio of basal species to top species increased relative to the ratio
observed by Cohen (1977, 1978), as expected from Pimm’s suspicions. Supposing
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that the number of top species in Table II1.2.1 were correctly observed, and that
the number of basal species were increased to equal the number of top species,
as predicted by all of our models, the fraction of all species that are top species
would decline to 0.26 and the fraction of all species that are basal would increase
to 0.26. This number seems a reasonable estimate of the fractions of top and
basal species, corrected for the possible undercount of basal species.

Table III.2.1. Summary statistics of the numbers of species and links in 62 community webs,
by type of web, type of species, and category of link (from Cohen & Briand 1984; Chap. I1.3)

constant webs fluctuating webs® all webs
number fraction number fraction number fraction

webs ... 19 43 62

all species 351 1.000 683 1.000 1034 1.000
basal 66 0.188 130 0.190 196 0.190
intermediate 177 0.504 366 0.536 543 0.525
top 108 0.308 187 0.274 295 0.285

all links 811 1.000 1108 1.000 1919 1.000
basal-intermediate 198 0.244 327 0.295 525 0.274
basal-top 92 0.113 56 0.051 148 0.077
intermediate-intermediate 260 0.321 318 0.287 578 0.301
intermediate-top 261 0.322 407 0.367 668 0.348

¢ The environment of a web is considered to be ‘fluctuating’ if the original report indicates
temporal variations of substantial magnitude in temperature, salinity, water availability or any
other major physical parameter. Otherwise, the environment of the web is considered to be
‘constant’

Link Scaling (Cohen & Briand 1984)

(i) As S varies from 3 to 33, Ly, LT, L11 and LT are all approximately
proportional to L. Equivalently, the proportions of links that are basal-
intermediate, basal-top, intermediate-intermediate and intermediate-top
show no pronounced trend, neither increasing nor decreasing, as S varies
from 3 to 33.

(ii) Approximately, Lgy = 0.27L, LgT = 0.08L, L7 = 0.30L, and L;1 = 0.35L,
for all webs.

Link-Species Scaling (Cohen & Briand 1984)

(i) As S varies from 3 to 33, L is approximately proportional to S. Equivalently,
the ratio of total links to total species in a web shows no pronounced trend,
neither increasing nor decreasing, as S varies from 3 to 33.

(ii) Approximately, L = 1.86S, for all webs. (More precisely, the coefficient of
proportionality is 1.8559 with a standard deviation of 0.0740.) It will be
convenient later to have a notation for the empirically observed ratio of links
to species; we denote this quantity by d, to suggest ‘density of links per
species’. Thus in our data d = 1.86 approximately.
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In stating these empirical generalizations, we have repeatedly emphasized
that the range of variation in the total number of lumped species S among
the webs collected by Briand is from 3 to 33. We cannot know whether these
generalizations will continue to hold in webs with substantially larger S. The
theory to be developed predicts that the scaling laws will continue to hold for
larger S.

The scaling laws just stated are all first-order laws that describe trends only.
They neglect entirely variability with respect to the trends. We shall discuss
variability briefly in connection with the cascade model of §6.

A fourth empirical generalization plays a major role in attempts to explain
the first three. Gallopin (1972, p.266) observed that ‘directed food webs are
in general acyclic, although exceptions are possible’. Cohen (1978, p. 57) found
one case of cannibalism, but no larger cycles, in four webs. In the 62 webs of
Briand, cannibalism was reported by very few of the original sources, and then
only for one species in each web. Because cannibalism is widespread in nature,
particularly among invertebrates, the original investigators must have largely,
but not consistently, ignored cannibalism. Consequently, Briand chose to exclude
all of the few reported cases of cannibalism (F. Briand, personal communication).

To be precise in describing trophic cycles other than cannibalism, we now
define (Robinson & Foulds 1980, pp. 24-25,70) a walk in a digraph to be a finite
sequence, consisting of vertices and edges alternately, beginning and ending with
vertices, in which each edge goes from the vertex written on its left to the vertex
written on its right. For example a, (a,b), b, (b,c), c is a walk from vertex a to
vertex ¢ through the edges (4,b) and (b,c). A walk in which the first vertex is the
same as the last vertex is a closed walk. The length of a walk is the number of
edges it contains, each counted as often as it occurs. A cycle is a closed walk in
which all vertices are distinct except the first and last. If two cycles pass through
the same set of vertices in the same order, differing only in the vertex that is
written down first, the two cycles are considered to be identical. A k-cycle is a
cycle of length k > 0. (If cannibalism is excluded, then 1-cycles are impossible.
However, it will sometimes be convenient later to consider the possibility of a
directed edge from a vertex to itself, that is, an 1-cycle or loop.) For k& > 0,
a digraph is k-acyclic if it contains no h-cycles, for h = 1,...,k. A digraph is
acyclic if it contains no k-cycles, for any k > 0.

If we use this language, all 62 of Briand’s webs are acyclic except cases 21 and
30 (in the numbering of Chap. IV where the unlumped matrices are given). Webs
21 and 30 each contain a single cycle of length 2, and no longer cycles (F. Briand,
personal communication). We summarize the distribution of cycles in the webs
assembled by Briand with a fourth empirical generalization: acyclicity.

Acyclicity (Gallopin 1972)

Nearly all webs are acyclic.
It seems nearly certain that decomposers feed on what appear as top species
and are food for what appear as basal species. The absence of cycles of length
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greater than 2 implies that the reporters of webs ignore the decomposers. There-
fore we cannot examine the ecological role of decomposers with these data.

3. Model 0: Anarchy

We shall say that a random variable Y is Bernoulli with parameter p, and shall
write Y ~ B(p), for 0 < p < 1, if Y = 1 with probability p and Y = 0 with
probability ¢ = 1 — p. (In our notation, ~ means ‘has the distribution of’ or
‘distributed as’ rather than ‘asymptotically or approximately equals’.) We shall
say that a random matrix X is independently and identically distributed (i.i.d.)
Bernoulli with parameter p, and shall write X ~ i.i.d. B(p), if every element X;;
of X is ~ B(p), and all elements of X are i.i.d. (Since p is assumed constant for
all elements of the matrix, the additional requirement that they be identically
distributed is redundant, but is retained to accord with convention.)

Suppose A, the S x S adjacency matrix of a model web, were ~ i.i.d. B(p).
Then E(L) = pS?. However, according to the link-species scaling law, L = dS.
These two equations are simultaneously satisfied (with E(L) = L) if p = d/S.
To avoid confusing the empirical estimate of density d with a model parameter,
we shall specify p in all of our models as ¢/S. The relation between the model
parameter ¢ and the sample statistic d will vary from model to model.

Suppose that each species in a web of S species has an identical and inde-
pendent chance p of eating any species, including itself, in the web, where, as
the number S of species increases, the probability p decreases according to ¢/S,
that is, let A ~ i.i.d. B(c/S) for S > c.

We now analyse the properties of model 0 and compare them with the em-
pirical generalizations above, using d = 1.86 as an estimator for c.

Species Scaling

The probability that a species is a top species is ¢°, and this is also the proba-
bility that a species is a basal species. Thus

E(T)/S = E(B)/S =¢° = (1-¢/S)° (3.1)

is the expected fraction of species that are top species in a web of S species,
and also the expected fraction of species that are basal species. Thus model 0
predicts that the fractions of top and basal species should be equal.

Similarly, the probability that a species is a proper top species is ¢° (1-q
and this is also the probability that a species is a proper basal species. Thus
model 0 predicts that the fractions of proper top and proper basal species should
be equal.

This prediction is only roughly consistent with the empirical observation that
0.19 of species are basal and 0.29 of species are top. However, like Pimm (1982),
we believe that ecologists often are more interested in species at the top of food
chains than in species at the bottom. If other predictions of the model turned
out to be correct, we would be prepared to accept the model’s prediction that

S—l)
3
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in properly collected data, the expected fractions of top and of basal species are
equal.

The right member of (3.1) increases monotonically and becomes close to the
limiting value

Sl_l_'n;o E(T)/S = Slgr;o E(B)/S=¢€"¢ (3.2)

even for moderate values of S. For example, (1 — d/10)!° = 0.13 and (1 —
d/20)2° = 0.14 while e~¢ = 0.16. Thus model 0 predicts that the fractions of top,
basal and intermediate species should be very nearly independent of the number
S of species in the web. The same conclusion applies to the asymptotic fractions
of proper top and proper basal species, which are both equal to e~%—e2¢ The
predicted change in these proportions for S between 3 and 33 would probably be
undetectably small, given the variation among webs in the observed proportions
(Chap. 11.2).

While model 0 explains the qualitative part of the species scaling law, its pre-
dicted asymptotic fractions of top and basal species seem too low to explain the
quantitative part of the species scaling law. The predicted asymptotic fraction
0.16 is substantially lower than the fraction 0.26 estimated above. The predicted
asymptotic ratio of expected number of proper top or proper basal species to
the expected number of non-isolated species, given by [e™¢ —e~2¢]/[1 —e~2¢), is
0.14, further still from the estimated fraction 0.26.

In going from the proportions of top or basal species to the proportions of
proper top or proper basal species, the term involved in the corrections, e~2¢ =
0.024, is small compared with the terms being corrected, given the observed
ratio 1.86 of links to species, and appears in both numerator and denominator.
When the proportions of top and basal species are corrected to the proportions of
proper top and proper basal species, they decrease slightly. This slight decrease
holds in the remaining models as well. For this reason, we shall not discuss
proper top or proper basal species further until we come to model 3.

Link Scaling

We skip the analysis of link scaling because model 0 will be evaluated on other
grounds.

Species-Link Scaling

The assumed behavior of p as a function of S is chosen to reproduce the observed
species-link scaling.

Acyclicity

Although model 0 predicts that about 84% (that is, a fraction 1 — e~%) of webs
will display cannibalism, model 0 should not be rejected on this basis because
cannibalism has been suppressed from the data. However, according to theorem
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1 below, model 0 also predicts that about 82% (that is, a fraction 1 — e @/ 3
of webs will have one or more 2-cycles, which is grossly contrary to observation.

Effect of Lumping

According to model 0, it could happen that, for some ¢ < j, column ¢ is identical
to column j and row ¢ is identical to row j. In this case, if the simulated matrix
were to be treated in the same way as the real data were treated, species i and
Jj should be lumped. Our analysis so far has ignored the possible need to lump
species in the simulated webs. We now show that the probability of needing to
lump two non-isolated simulated species according to model 0 is so small that it
is perfectly reasonable to ignore lumping, given the observed ratio 1.86 of links
to (lumped) species.

Choose i < j. Define P(lump i and j) to be the probability that, in a matrix
A with entries ajj generated by model 0, column 7 equals column j and row
equals row j. Similarly, define P(lump non-isolated i and j) to be the probability
that, in a matrix A generated by model 0, column ¢ equals column j, row ¢ equals
row j, and column 7 or row ¢ or both are not all zero. The 45—4 entries in the two
columns and rows consist of 2(S — 2) pairs of entries and one quartet of entries
(aii,aij,a5i,a;;). To lump species i and j, we require that the two entries of
each pair be equal and the four entries in the quartet be equal. Hence P(lump ¢
and j) = (p? + ¢*)?5~4(p* + ¢*), and P(lump non-isolated i and j) = P(lump i
and ) — P(i and j are isolated) = (p? + ¢%)25~4(p* + ¢*) — ¢*5~%. The expected
fraction of species that are non-isolated but lost by lumping is then less than or
equal to

s
(1/5) Z iP(lump non-isolated ¢ and j)
1=21i=1
= (1/2)(S - D1 - 2p)*°~4(p* + ¢*) - ¢*7%], (3.3)

which, as S increases, approaches c2e~4¢ = 0.002 when ¢ = 1.86. Thus the
expected fraction of non-isolated vertices of a random web generated according
to model 0 that should be lumped is negligible, so we do not correct the previous
calculations for lumping.

Effect of Disconnected Weak Components

All reported webs are weakly connected in the sense that the set of species cannot
be divided into two non-empty subsets with no link between the two subsets.
(The adjective ‘weak’ allows for the possibility that the linkage might be in one
direction only.) A weak component is a maximal set of vertices (species) that is
weakly connected. Thus all reported webs have only a single weak component.
We now show that the expected fraction of non-isolated species that belong to
a single weak component according to model 0 is asymptotically so close to 1
that it is reasonable to ignore the effect of disconnected weak components, given
d =1.86.
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According to Erdés & Rényi (1960, p.56, Theorem 9b), the fraction of all
species (including isolated species) that belong to the largest weak component
of a web is asymptotically

1—(20)71 i k¥ (2ce~2¢)* [k . (3.4)
k=1

Hence the fraction of all species that are not isolated and do not belong to the
largest weak component is

o]
(2)71 ) JkF 1 (2ce™2) [kt — €72
k=1

=(20)7! f: EF=1(2ce~2¢)k /!
k=2

(3.5)

which is approximately 0.002 when ¢ = 1.86. Thus 99.8% of the non-isolated
species of a random web generated according to model 0 belong to a single
weak component, so we do not correct the previous calculations for disconnected
components.

In summary, model 0 can explain roughly the observed scale-invariance in the
proportion of top, intermediate and basal species and the numerical similarity
in the proportions of top and basal species. But it predicts fractions of top and
basal species that are too low and fractions of food webs with cycles that are far
too high.

4. Model 1: Finitely Acyclic Democracy

The most straightforward way to eliminate the problem of too many cycles is
by assumption. We start with the weakest assumption that is a priori plausible.

Suppose there is a finite positive integer k£ and a finite positive real number
¢ such that, for S > ¢, the adjacency matrix A of a web with S species is
~ i.i.d. B(c/S), conditional on A being k-acyclic.

Biologically, this model assumes that any species can eat any species with
equal probability ¢/S provided that, in the resulting feeding relations, it never
happens that species X eats species X (no 1-cycles), nor that species X eats
species Y and species Y eats species X (no 2-cycles), nor that species X eats
species Y, species Y eats species Z and species Z eats species X (no 3-cycles),
nor that there are any cycles of length up to and including k, which is fixed and
independent of S.

One way to simulate this model would be to generate Bernoulli matrices
according to model 0 and then throw away those matrices A in which the trace
(sum of the diagonal elements) of A + A% + ...+ AF exceeds 0.

Before considering general k, we consider the special case of 1-acyclic demo-
cracy.
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1-Acyclic Democracy

To generate an S x S Bernoulli matrix A with parameter ¢/S, conditional on
no cannibalism (no 1-cycles), set the diagonal elements of A equal to 0 with
probability 1. The off-diagonal elements of A are to be filled with independent
random variables ~ B(c/S) as before. Then E(L) = (¢/S)S(S — 1). Since the
species-link scaling law gives L = dS, we can estimate ¢ by ¢ = dS/(S - 1),
which approaches d for large S but is larger than d for finite S.

The probability that a species is a top species is ¢5~1, where ¢ = 1 — /S,
and this is also the probability that a species is a basal species. Thus

E(T)/S=E(B)/S=¢°"1=1-d/[S-1])51 (4.1)

is the expected fraction of species that are top species in a web of S species, and
also the fraction of species that are basal species. This model predicts that the
fractions of top and basal species should be equal. The asymptotic behaviour of
E(T)/S and E(B)/S for large S is identical to that in (3.2) for model 0. The
predicted asymptotic fractions of top and basal species are too low to accord
well with observation.

A web will have a 2-cycle if there exist indices i, j # i such that a;; = 1 and
aj; = 1. For a given i and j, the probability that there is a 2-cycle through ¢
and j is p?, so the probability that there is no 2-cycle through i and j is 1 — p2.
The probability that there is no 2-cycle in the entire web is

(1= p?)SE-1/2 = (1 - {d/[S - 1]}2)5E-V/2 L, /2 =018 (4.2)

so that about 82% of such model webs would have at least one 2-cycle. This
proportion is grossly too high and we are forced to abandon 1-acyclic democracy
as unrealistic.

The calculated asymptotic fraction e~ of webs under model 0 (anarchy) that
have no 1-cycles may be multiplied by the calculated asymptotlc fraction e—¢"/2
of webs under 1-acyclic democracy that have no 2-cycles to give the predicted
asymptotic fraction e=°=/2 of webs under model 0 that are 2-acyclic, that is,
have neither 1-cycles nor 2-cycles, because under model 0 the diagonal elements
of the adjacency matrix are independent of the off-diagonal elements.

k-Acyclic Democracy: The General Case

From the perhaps surprising finding that the predicted asymptotic fraction of
top or basal species is e~¢ under the anarchy model as under the model of 1-
acyclic democracy, one might conjecture that the proportion is the same under
the k-acyclic democracy model, for any finite £ > 0. From the formula e—c—¢/2
for the asymptotic fraction of webs under model 0 that are 2-acyclic, and from
the analogous formulas for undirected graphs of Erdés & Rényi (1960), one might
conJecture that the asymptotic proportion of k-acyclic digraphs under model 0
is exp (— Y°F_; cP/h). The following theorem and corollary establish that both
of these conjectures are correct.
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Theorem 1. Suppose that for some ¢ > 0 and for S > c, the adjacency matriz
A of a web with S species is ~ i.i.d. B(c/S). (This is model 0.) Let My(S)
be the number of distinct k-cycles in the web, k = 1,2,...,S, and let Y(S5)
be the number of prey species of species 1, that is, the sum of column 1 of A.
Let M(S) = Zfﬂ My (S) be the total number of distinct cycles in A. Then
for any k > 0, the random vector (Y(S), M1(S),..., Mi(S)) (which is inter-
preted as the scalar Y(S) if k = 0) converges in distribution as S — oo to
a random vector with independent Poisson-disiributed components with mean
(c,¢,c?/2,c3/3,...,ck[k), that is, for any non-negative integers y,my, ..., my,

Sl_l_’II;oP(Y(S) = y)Ml(S) =my,.. ,Mk(S) = mk)

k
= e[y [] {e " /M(ch/hY™ ] fmy} . (4.3)

h=1

For 0 < ¢ < 1, (Y(S),M(S)) converges in distribution as S — oo to a bivari-
ate random vector with independent Poisson-distributed components with mean

(¢, —In(1-c¢)).
Corollary. Under the above assumptions, foranyc > 0 and any k > 1, as S — oo

P(Y(S)=y|Mi(S)=0,...,Mi(S) =0) — e “[c¥/y!] . (4.4)

The left member of (4.4) is the probability that species 1 has y prey in the model
of k-acyclic democracy. For 0 < ¢ < 1, the asymptotic probability that species 1
has y prey in an acyclic web is also Poisson, that is,

P(Y(S) =y | M(S) = 0) — e~[c¥/y1] . (4.5)

The corollary follows immediately from Theorem 1 and the definition of con-
ditional probability. The proof of Theorem 1 is deferred to Appendix 1.

The corollary (with y = 0) implies that, in the model of k-acyclic democracy,
the fraction of species with no predators, and the fraction of species with no
prey, both approach e™¢ as S — 0o. The mean number of species on which a
given species preys, and the mean number of species that prey on a given species,
both approach c.

In summary, for fixed finite &, the model of k-acyclic democracy predicts that
the expected fractions of top and basal species are equal and, asymptotically for
large numbers S of species in a web, independent of S. These predictions are
roughly consistent with the data. The model also predicts that the numerical
value of this asymptotic fraction should be lower than that observed. However,
in concluding that this discrepancy exists, we are assuming that it is appropriate
to use the ratio d = 1.86 of links to species, observed in the finite range of S
from 3 to 33, to estimate the asymptotic effective density of links c.
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5. Model 2: Acyclic Democracy

Excluding cycles up to any fixed finite order k, as in model 1, might be quali-
tatively different, in the limit of large S, from excluding cycles of all lengths in
the limit of large S. To investigate this possibility, we have partly analysed the
next model.

Suppose there is a finite positive real number ¢ such that, for S > e, the
adjacency matrix A of a web with S species is ~ i.i.d. B(c/S), conditional on A
being acyclic.

Biologically, this model assumes that any species can eat any species with
equal probability ¢/S, provided that, in the resulting feeding relations, it never
happens that species X eats species X (no 1-cycles), nor that species X eats
species Y and species Y eats species X (no 2-cycles), nor that species X eats
species Y, species Y eats species Z and species Z eats species X (no 3-cycles),
and so on, excluding all cycles of length up to and including S.

The theoretical results available to us so far require us to discuss separately
two cases: 0 <e¢<1l,and 1 <ec.

In the first case, (4.5) implies that the fractions of top and basal species
are equal and, asymptotically for large S, independent of S. These predictions
are roughly consistent with the data. However, since the expected value of the
observed density d must be no larger than the model parameter ¢, and since
d > 1, this first case is not of empirical interest, given our data.

In the second case, 1 < ¢, we have so far no exact results concerning the
asymptotic proportions of top and of basal species. By symmetry these propor-
tions must be equal. The results of our numerical investigations, which we will
now describe, can be interpreted to be consistent with the conjecture that, for
S > ¢, the fraction of top species and the fraction of basal species both approach
e~9", where d* is the asymptotic (large S) effective density of links. We know
that this is also the case when ¢ < 1 since then d* = ¢. However, when ¢ > 1,
we have no theory so far that permits us to compute ¢ from d* or vice versa.

To estimate the fractions of zero rows and of zero columns according to model
2, we have resorted to simulation, settling at last on the third of three ap-
proaches described in Appendix 2. This approach to simulation, which is actu-
ally a slight modification of model 2, guarantees that the model parameter c
equals the asymptotic ratio d* of links to species. For S = 10 and S = 20, and
for each value of ¢ = 0.5(0.5)4.0 (an abbreviation for the sequence of numbers
0.5,1.0,1.5,...,4.0), Table III.2.2 compares the simulated mean fractions of zero
rows and of zero columns in 100 acyclic matrices with the conjectured asymp-
totic fraction e~¢. For the lower values of ¢, the agreement between the sampled
fractions of zero rows or columns and e~° is excellent. For the larger values of
¢, e~¢ falls more rapidly than the sampled fractions of zero rows or columns.
For large c, the difference between e~ and the sampled fraction of zero rows or
columns is slightly smaller for S = 20 than for S = 10.
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Table II1.2.2. The simulated mean fractions of zero rows or
zero columns in 100 acyclic S X .S matrices with exactly Sc posi-
tive elements, generated by the third approach (Appendix 2) to
simulating model 2, and the fractions predicted by the asymp-
totic function e=%" conjectured in (5.1) and by the function
(6.2a) (with c replaced by 2c) derived for model 3, the cascade
model

[ S$=10 predictions S=20
rows columns exp(—c) model 3 rows columns

0.5 0.5854 0.5974 0.6065 0.6321 0.5959 0.5962
1.0 0.3500 0.3494 0.3679 0.4323 0.3644 0.3600
1.5 0.2313 0.2445 0.2231 0.3167 0.2341 0.2470
2.0 01669 0.1769 0.1353 0.2454 0.1585 0.1642
2.5 0.1620 0.1232 0.0821 0.1987 0.1522 0.1332
3.0 0.1318 0.1042 0.0498 0.1663 0.1121 0.1142
3.5 0.1147 0.1056 0.0302 0.1427 0.0959 0.1133
4.0 0.1032 0.1000 0.0183 0.1250 0.0859 0.0820

For S = 10, the standard deviation (computed from the numerical simulation)
of the proportion of zero rows (in a single matrix, not in the mean proportion)
at first increases with increasing c and then declines slowly from a maximum of
approximately 0.09 when ¢ = 1 to a minimum of approximately 0.02 when ¢ = 4.
Since 100 matrices were generated, the standard deviation of the simulated mean
proportions given in Table I11.2.2 is one-tenth as large, that is, not exceeding
0.01. The standard deviations when S = 20 are similar, and the same conclusion
applies. Thus the difference in Table I11.2.2 between the sampled proportion of
zero columns or rows and e~ = =% for the larger values of ¢ appears to be
real.

If this difference approaches 0 as S — oo, then we may conjecture, pending
further theoretical progress, that in model 2,

*

Jim E(T)/S = lim E(B)/S = e, (5.1)

If this is so, then, like models 0 and 1, model 2 can explain roughly the observed
scale-invariance in the proportion of top, intermediate and basal species and the
numerical similarity in the proportions of top and basal species. But it predicts
fractions of top and basal species that are too low according to the conjecture
(5.1), and that are too low (according to our simulations) even for S = 10 (in
Table I11.2.2, ¢ = 2.0 gives a fraction of 0 rows near 0.17, lower than the estimate
from data of 0.26).

6. Model 3: Cascade

Many biologists might be reassured by the failure of the models considered so
far because these models make the biologically implausible assumption that any
species is capable, in principle, of eating any other species. These models assume
that it is only a matter of chance that the grass does not eat the cow, nor the lamb
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the wolf. Yet it is not absurd to consider such models. It is a healthy discipline
to require that they be rejected by quantitative data and not by ‘intuitions’ that
are often wrong.

Now that the previous models have been rejected for their quantitative fail-
ures, we must abandon the assumption that each species could potentially eat
‘any other, while imposing the least possible additional structure. We shall do so
by noticing an important feature of acyclic matrices.

An S x S matrix A is called strictly upper triangular if a;; = 0 whenever
t > j. This means that the main diagonal and all matrix elements below the
main diagonal are zero; the non-zero elements of A, if any, lie strictly above the
main diagonal. For brevity, we shall henceforth call such a matrix triangular.

If the adjacency matrix of a web with S species is triangular, the species
labelled 1 can potentially be eaten by any species other than itself, but can eat
none. The second species can potentially be eaten by the species labelled 3 to
S, but can eat only species 1. And so on: the species labelled S can potentially
eat all the other species, but can be eaten by none of them. Thus a triangular
adjacency matrix describes a strict trophic hierarchy or cascade.

A digraph is acyclic if and only if its vertices can be numbered in such a
way that its adjacency matrix is triangular (for example, Robinson & Foulds
1980, p.176). Thus the adjacency matrix A of a web is acyclic if and only if
some permutation, applied to both rows and columns of A, changes the matrix
to triangular form. Model 2 can be interpreted as saying that the luck of the
draw determines which species eat which others, provided that, when all is done,
the species can be arranged in a cascade. The order of species in the cascade is
determined (non-uniquely) after the trophic links are chosen.

We now suppose that the order of species in the cascade is determined before
the trophic links are chosen.

Suppose there is a finite positive real number ¢ such that, for § > ¢, the
elements above the main diagonal of the adjacency matrix A are ~ i.i.d. B(¢/S),
while the elements on or below the main diagonal are fixed with probability 1
at 0.

Theorem 2. Suppose that for some ¢ > 0 and for S > ¢, the adjacency matriz A
of a web with S species is triangular, with the elements above the main diagonal
~ i.i.d. B(c/S). (This is model 3.) Let T be the number of zero rows (top species)
and B be the number of zero columns (basal species) in A. Then, with p=c/S,

¢g=1-p,

E(T) = E(B)=1-¢°]/p, (6.1a)

var(T) = var(B) = (1 - ¢%)/p - (1 - ¢5)/(1 - ¢?) . (6.1b)
Asymptotically,

Slin;o E(T)/S = Slgrgo EB)/S=(1/e)1-¢e79), (6.2a)

Sl—ligo var(T/S) = Slg:;g var(B/S)=0. (6.2b)
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If Tp is the number of proper top species, Bp is the number of proper basal
species, N is the number of not isolated species, and I is the number of inter-
mediate species, then

E(Tp) = E(Bp) = S[(1 - ¢°)/c - ¢°7], (6.3a)
E(I) = S[1-2(1~¢%)/c+¢°71], (6.3b)
E(N)=5(1-¢°1), (6.3¢)

and asymptotically
lim E(Tp)/E(N)= lim E(Bp)/E(N)
S—o0 S—o0

={[1-e)/c—e}/[1-e77], (6.4a)
;Lngo E(D)/E(N)={1-(2/c)[1—e ]+ °}/[1—e7]. (6.4Db)

For large ¢, e~ is nearly zero so the asymptotic fraction of top or proper top or

basal or proper basal species approaches 1/c. Also, the total number L of trophic

links is binomially distributed with mean and variance
E(Ly=pS(S-1)/2=¢(S-1)/2,

var(L) = pgS(S — 1)/2 = ¢(S — ¢)(S - 1)/(25) , (6.5)

and the numbers of links of each kind have means

E(Lpr) = E(Lit) = (S-1)(1+¢5 ) - (1 +¢)(1 - ¢ 1)/p, (6.6a)

E(Lpr)=(1-Y/p-(S-1)¢°1, (6.6b)
E(Li)=pS(S-1)/2—(S-1)2+¢°7")
+(1=¢5N(1+29)/p. (6.6¢)

Asymptotically, as S — o0,

E(Lp1)/E(L), E(Lrr)/E(L) = 2[e(1+¢7°) —2(1 - e™°)]/*, (6.7a)
E(LpT)/E(L) — 2[1 —e™¢ — ce™°]/c?, (6.7b)
E(Li1)/E(L) =1 —2[c(2+e7 %) —3(1 —e™9)]/c?. (6.7¢)

Proof. Only elementary calculations are required, noting that the proba.bility
that species ¢ is basal is q =1 the probability that species i is top is ¢5~*, the
probability that species i is proper topis ¢5~*—¢5~1, the probablhty that specles
i is proper basal is g1 — ¢5-1, the probablllty that species i is intermediate

is1—¢"~1—¢5 %4451 and the probability that species ¢ is not isolated is
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1—¢5-1. Also,

s j~1
E(Len=pY_ Y ¢ (1-¢°7),
j=21i=1
S j_l . .
E(Lpr)=pY_ Y ¢ ¢,
7=21i=1
S J_l . .
E(Lrr)=p) Y (1-¢"1)¢*7,
j=21=1
S '1_1 . .
E(Li)=p), Y (1-¢"1H)(1-¢7).

j=2i=1

(6.8)

When (6.5) is solved for p and E(L) is replaced by the observed number of
links, it becomes apparent that p is what ecologists call the (lower) connectance
(F. Briand, personal communication).

To compare the predictions of model 3 with observation requires an estimate
of ¢. From (6.5),

c=2E(L)/(S-1). (6.9)

For a single finite S, replacing E(L) by the total number of links, we estimate
¢ as twice the total number of links divided by S — 1. However, for a single
value of ¢ common to all webs, we use an asymptotic estimate. Asymptotically,
as § — o0, the link scaling law indicates that L is dS, and S/(S—1) | 1 as
S — 00, so that c is estimated as 2d = 3.72. We now examine the macroscopic
predictions of model 3, using this single estimate of ¢ = 3.72. We shall review
the scaling laws stated in Sect. 2.

Species Scaling

Figure II1.2.1 shows the predicted mean proportion of top species and a confi-
dence interval of +2 standard deviations as a function of S, using (6.1) with a
single value of ¢ = 3.72, superimposed on the data of Briand & Cohen (1984).
FigureIIl.2.2 shows the same for basal species. (Cf. Fig. A.2.2.)

The predicted mean proportion of top or of basal species changes so slowly
in the observed range of S as to defy discrimination from constancy. According
to (6.1) with ¢ = 3.72, model 3 predicts the mean and variance in the propor-
tion of top species to be (with identical results for basal species) as shown in
Table I11.2.3. Thus model 3 reproduces qualitatively the species scaling law.

Quantitatively, model 3 predicts asymptotic proportions of basal, intermedi-
ate and top species equal to 0.26, 0.48, and 0.26. (By using the remark after
(6.4), we can easily see why the predicted proportion of top species is near one
quarter. Because e=3-72 = (.024, the fraction of top species is predicted to be
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Figure II1.2.1. The predicted mean proportion of top species (middle line) and a confidence
interval of +2 standard deviations (upper and lower lines) as a function of total species S,
according to the cascade model. In this figure and Fig.II1.2.2, x is constant environment,
o is fluctuating environment. The symbols X and o have been perturbed from their exact
locations by a small random amount to indicate when several food webs have exactly the same
coordinate. The data are replotted from Briand & Cohen (1984)

slightly greater than one quarter.) The observed proportions are 0.19, 0.53, and
0.29. As we suggested above, if observer bias has lowered the fraction of basal
species, a plausible estimate of the proportion of top and of basal species is 0.26,
exactly as predicted by model 3. Thus the quantitative agreement between the
predicted asymptotic mean and the observed mean is good. The model predicts a
decrease in the standard deviation that is suggested by the data on basal species
but that is not observed in the data on top species.

In summary, model 3 predicts the form and the parameter value of the species
scaling law. It is only partly successful in explaining the variation with respect
to the species scaling law.

We now show that models 0 and 1, and perhaps 2 (if conjecture (5.1) is valid),
predict asymptotic fractions of top or basal species that are lower than those
predicted by model 3. From (3.2), (4.4) and (6.2a), we must establish that for
any non-negative ¢ (for example, ¢ = 1.86), e™¢ < (1 — e~2¢)/(2c). We use 2¢ in
place of ¢ on the right of (6.2a) so that, asymptotically, models 0, 1 and 3 will
all have the same effective density d* of links. The inequality is equivalent to
the inequality ¢ < (e — e7¢)/2, which is easily proved by noting that both sides
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Figure II1.2.2. The predicted mean proportion of basal species (middle line) and a confidence
interval of 12 standard deviations (upper and lower lines) as a function of total species S,
according to the cascade model. The symbols and source of data are as in Fig. I11.2.1

Table IIL.2.3. Predicted mean and
variance in the proportion of top
species, according to model 3

s E(T)/(S) [var (T/S)]'/?

5 0.269 0.104
15 0.265 0.086
25 0.264 0.069
35 0.264 0.059
o] 0.262 0

approach 0 when ¢ | 0 and by comparing derivatives of both sides with respect
to c.

This inequality raises a question. In Table III.2.2, the simulated fractions
of top and basal species exceed e~¢. We have just shown that (1 — e~2¢)/(2c)
exceeds e~. Might not (1—e~2¢)/(2c), shown in Table I11.2.2 under the column
headed ‘predictions, model 3’, be a better description of the simulated fractions
of top and basal species in model 2 than e=4"? Table II1.2.2 gives a weak hint
that this may not be the case. Though, for ¢ = 4.0, the simulated fractions of
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top and basal species are near those predicted by model 3, as S increases from
10 to 20 the simulated fractions move slightly away from (1 — e=2¢)/(2¢) and

towards e~ ¢.

Link Scaling

FigureII1.2.3 shows the ratio of the expected number of links of each kind to
the expected total number of links, based on (6.5) and (6.6) with ¢ = 3.72, for S
between 4 and 40. For S > 10, the ratios are effectively constant. For S < 10, the
predicted curves for E(Lgy)/E(L) and E(Ly7)/E(L) reproduce the suggestion
of a decline in the observed values of Lg;/L in Fig. A.3.2a and in the observed
values of Lyr/L in Fig. A.3.2d. The predicted increase in E(Lyr)/E(L) might
even be reflected in the data of Fig. A.3.2c. However, few of the real webs had
10 or fewer species, so these suggestions from the data are very weak. Overall,
the qualitative predictions of model 3 are consistent with the qualitative link
scaling law.

Quantitatively, model 3 predicts the asymptotic proportions of each kind of
link shown in Table I11.2.4. The principal discrepancy between the data and the
model is that fewer basal-top links and more intermediate-top links are observed
than predicted.

04

intermediate —intermediate links

Ql— intermediate and intermediate - top links
02

L basal-top links

proportion

N . Y i 1 i I ']

0 10 20 30 40

total species

Figure II1.2.3. The predicted ratio of the expected number of links of each kind to the
expected total number of links, according to the cascade model with ¢ = 3.72, for total numbers
of species S = 4(2)40. For S > 10, the ratios change little

Table III.2.4. Observed proportions of each kind of link, and asymptotic
predicted proportions according to model 3

type of link observed proportion predicted proportion

from (6.7) with ¢ = 3.72
basal-intermediate 0.27 0.27
basal-top 0.08 0.13
intermediate-intermediate 0.30 0.33

intermediate-top 0.35 0.27
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Link-Species Scaling

That model 3 correctly predicts the qualitative relation between total links and
total species follows from (6.5). Quantitative agreement is guaranteed by the
choice of ¢ = 3.72.

Acyclicity

Acyclicity is guaranteed by making the adjacency matrices triangular.

In summary, model 3 correctly predicts the qualitative species scaling and
link scaling laws in webs with more than a handful of species. Quantitatively,
model 3 also predicts, to a first approximation, the observed proportions of basal,
intermediate and top species and the observed proportions of each kind of link.

Sensitivity Analysis

We are sceptical about the completeness of observation of trophic links, espe-
cially those that involve what are currently described as basal species. If mod-
erately more trophic links were observed, would our quantitative predictions be
radically altered? If so, the present quantitative estimates of model 3 are approx-
imately right for the wrong reason, namely, that the effective density of links
happened to be low. Thus it is important to know how the predicted asymp-
totic proportions of species and of links of each kind vary as c varies in the
neighbourhood of its estimated value 3.72.

Figure II1.2.4 plots the predicted asymptotic proportions of basal, top, proper
basal, proper top, and intermediate species among all non-isolated species, based
on (6.2) and (6.4), as a function of ¢ = 0.5(0.5)10. As ¢ increases from 3.5 to
4.5, the predicted asymptotic proportions of proper basal or proper top species
declines from 0.25 to 0.21 while the predicted asymptotic proportion of inter-
mediate species among non-isolated species increases from 0.49 to 0.58. Neither
range of variation seems incompatible with the data.

Figure II1.2.5 plots the predicted asymptotic proportions of links of each kind,
based on (6.7), as a function of ¢ = 0.5(0.5)10. As c increases from 3.5 to 4.5, the
predicted asymptotic proportions of basal-intermediate or intermediate-top links
declines from 0.27 to 0.25, the proportion of basal-top links declines from 0.14 to
0.09, and the proportion of intermediate-intermediate links increases from 0.31
to 0.40. Such changes improve the agreement between the observed and predicted
proportions of basal-top links but worsen the agreement between the observed
and the predicted proportions of the remaining classes of links. However, the
changes in the predicted asymptotic proportions are not very radical in any
case. In particular, the estimate of ¢ = 3.72 happens to fall very near where the
curve for basal-intermediate and intermediate-top links is flattest.

We conclude that the predicted asymptotic proportions of species and links
of each kind are not so sensitive to the exact value of the observed ratio of links

to species as to exclude the possibility of a somewhat greater effective density
of links.
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Figure II1.2.4. The predicted asymptotic proportions of basal, proper basal, top, proper top,
and intermediate species, as a fraction of non-isolated species, according to the cascade model,
for ¢ = 0.5(0.5)10. Because basal and top species are plotted here as a fraction of non-isolated
species, the sum of proportions (basal + intermediate + top) exceeds 1. The excess over 1 is
small once ¢ > 3. The sum of proportions (proper basal + intermediate + proper top) equals 1

Lumping

Would lumping substantially alter the number of species and hence the propor-
tions of interest in the cascade model? The same approach used to analyse lump-
ing in model 0 shows that, for i < j, P(lump ¢ and j) = (1-2 q)"""*""‘-7"1 g?l-9-1
while P(lump non-isolated i and j) = (1 — 2pq)S++—i—142 J=i)-1 _ g2(S-1)-1
The expected fraction of species that are not isolated and lost by lumping is
then less than or equal to

s
(1/5) E EJ: P(lump non-isolated i and j)
j=21i=1
= (*52/[STDIS - DA + 1)
—{(A+r)5 1 —1}/r-S(S - 1)r/9], (6.10)
where r = (p/q)%. As § — oo, (6.10) approaches c?e~2¢/3 = 0.003 when ¢ =

3.72. In model 3 as in model 0, the effect of lumping non-isolated species is
negligible.
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Figure II1.2.5. The predicted asymptotic proportions of links of each kind, according to the
cascade model, for ¢ = 0.5(0.5)10

Effect of Disconnected Components

The effect of weak components is essentially identical in models 0 and 3. The
calculation based on (3.4) remains the same, with the parameter c of (3.4) still
estimated by d = 1.86 rather than by 2d. As in model 0, asymptotically all but
a negligible fraction of species belong to the largest weak component.

So far, we have taken c as exogenously determined, for example, by the feed-
ing apparatus or behavioural flexibility of species, and have attempted to predict
other structural features of webs from that parameter. Why might ¢ assume a
value in the vicinity of 3.727 Figure II1.2.5 shows that ¢ = 3.72 is in the range
around 2.69 where the predicted asymptotic proportions of basal-intermediate
and intermediate-top species are maximal. It is tempting to speculate, but with-
out theoretical or additional empirical support at the moment, that the effective
density of links is adjusted to maximize the proportions of links between basal
and intermediate species, and between intermediate and top species.

7. Conclusions

In this section, we shall first summarize the conclusions we draw from the four
models we have considered. We then relate our results to some earlier efforts to
model webs. Finally, we mention two important limitations on our results.
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Briand (1983; Chap. IL.5), using ‘unlumped’ webs, first suggested, and Cohen
& Briand (1984; Chap. I1.3), using ‘lumped’ webs, demonstrated that the average
total links of a web are nearly proportional to the total species of the web. Within
the framework of the random digraph models considered here, this observation
has the important implication that the probability of a given species eating or
being eaten by another given species must vary as the reciprocal of the total
number of species in the web. This has the further consequence that the number
of predators or prey of a randomly chosen species is asymptotically independent
of the total number of species in the web.

The exclusion of cycles of finite lengths or of all lengths as S increases is
insufficient to reproduce quantitatively the species scaling law, although an open
mathematical question remains in the analysis of model 2. That question is:
when ¢ > 1, what is the asymptotic mean fraction of zero columns or of zero
rows in a random S X S matrix whose elements are independently and identically
distributed Bernoulli random variables with mean ¢/S, conditional on the matrix
being acyclic?

To explain the observed proportions of top and basal species, it appears to be
necessary to suppose that there is an ordering, hierarchy, or cascade of species
that constrains the possible predators and prey of each species. Under this as-
sumption, it is possible to predict qualitatively, and to fair approximation quan-
titatively, the species scaling law and the link scaling law, by using a single
parameter from the data, the ratio of total links to total species.

In evaluating the quantitative discrepancies between the observed and pre-
dicted proportions of each kind of species and each kind of link, it is important
to recall that no fitting is involved in generating the predicted proportions. The
only numerical parameter taken from the data is the observed ratio of the total
number of links to the total number of species. In addition to its qualitatively
correct predictions, model 3 gives seven numbers for the price of one. (Of these
seven, only five are independent: two of the three proportions of kind of species,
and three of the four proportions of kinds of links.)

The gross testing presented here demonstrates that the overall proportions
of species or links are consistent with the predictions of model 3. The following
chapter (Chap. II1.3) examines how well model 3 describes individual webs.

Cohen (1978, pp. 58-61) considered six stochastic models of webs that are sim-
ilar to those considered here. His model 6 models the adjacency matrix (‘food
web matrix’) of a web with m prey and n predators by constructing an m x n
matrix in which each element equals 1 with probability L'/(mn) and equals 0
with probability 1 — L’/(mn), where L' is the observed number of links, inde-
pendently for all elements. This model 6 is similar to model 0 here, but model
6 limits the number of prey to m and the number of predators to n. Model 0
here allows the adjacency matrix to be S x S so that the numbers of prey and
predators are limited only by S. None of the models of Cohen (1978) rules out
cycles (like our models 1 and 2) or imposes a cascade structure (like our model
3).

Lawlor (1978) observed that in randomly constructed matrix models of ecosys-
tems, when the probability of a non-zero entry in the matrix is independent of
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the number of species, an overwhelming majority have 3-cycles if the number of
species increases beyond 20 (contrary to his and others’ informal observations
that such cycles are rare in real webs). However, when the probability of a non-
zero entry varies inversely as the number of species (as we suppose in this paper,
on the basis of the link-species scaling law), Lawlor found (without giving the
details of the calculations) that the proportion of random matrix models with-
out 3-cycles increases with increasing numbers of species. He concluded that the
usefulness of ‘random’ models of ecosystems depends critically on whether the
models possess the specific structural patterns characteristic of real ecosystems.
This conclusion we share.

We are aware of at least two major limitations of the scope of the models and
data we have investigated here. First, we have dealt only with the combinatorial
structure of webs, rather than with quantities of stocks and flows. Our approach
is more like gross anatomy than like physiology. Second, we have dealt only with
a static snapshot of webs, ignoring cyclical, successional, or other changes. That
is, the gross anatomy is frozen, rather than in motion. In spite of these important
limitations, we have provided, in the cascade model, a unifying perspective of
simplicity and potential usefulness.

Appendix 1: Proof of Theorem 1

In this proof, we shall omit the explicit dependence on S where possible; for
example, we replace Y(S) by Y, M(S) by M. Let C(¥) be the set of possible
distinct k-cycles. For s € C(k), let ng) = 1 if cycle s occurs in (the web specified
by) the random adjacency matrix A, ng) = 0 if s does not occur. Then the
number of k-cycles in A is M = My(S) = 3 com ng).

Since the random variables {a;; };9:1 are independent with E(a;;) = ¢/S, it
is a standard fact that Y converges in distribution to a Poisson variable with
mean c.

Let #(.) denote the cardinality (number of elements) of the set in parentheses.
Then

#(CHW) = SIS - kK], E@BY) = (c/s)*
so that

#CNEBFY Skl as S 0.

The random variables {B,Sk)} sec(k) are non-decreasing functions of the indepen-
dent elements {a;;} of A and hence are associated. (Recall that a finite family
{X1,...,Xn} of random variables is defined to be associated if cov (f(Xq,...,
X»n),9(X1,...,Xn)) > 0 for any real functions f and g that are coordinate-wise
increasing.) A theorem independently discovered by Wood (1982) and Newman
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et al. (1984) (and stated as Theorem 11 by Newman (1984)) then implies that
M;, converges in distribution to a Poisson variable with mean ck /k, for ¢ > 0,
k > 1, provided that

lim 3 cov(BY, BW) =0, (A1)

S—o0

where the summation extends over pairs s, s' € C(¥) such that s # &',
Similarly, according to Theorem 10 of Newman (1984), which is taken from
Newman (1980), (4.3) holds if, in addition,

lim cov(Y, M) =0, (A2a)
S—o00
lim cov(Mp, M;) =0, (A2Db)
S—o00

for all ¢ > 0 and all h,j such that 1 < h # j <k.

So we must prove (Al) and (A2).

For k = 1, as noted in the text, each ng is just an a;; so that cov (a;;,a;;) =0
for i # j and (Al) holds. Also, for k = 1, cov(Y,M;) = cov(ae11, a11) =
(¢/S)(1 — ¢/S) so that (A2a) holds for A = 1. Similarly cov (M7, M;) = 0 for
J # 1. We may henceforth assume &, h,j > 2.

Unless the two cycles, s and s’ # s share some directed edge, ng) and Bgc)
are independent. Similarly, a;; and Bﬁk) are independent unless the edge (i,1)
is in s. Since, for k£ > 1, ay; and ng) are independent,

S
cov(Y, My) =Z Z COV(ail,B:(rk))

1=1 g (k)
=(5-1) Y cov(az, B+ I cov(arr, BY)
seC(k) seC(k)
- ! (k)
=(S-1 Z cov(az1,B;5 '),
360(")

where 3~/ is over those cycles s that include the edge (2,1). There are exactly
(S =2)Y/(S -2 - (k- 2))! such k-cycles. If iy = 2, i3 = 1, i3,...,i) are the
vertices of such a cycle, with ix4 = 4; =2, then
(®) -
COV(azl, B, ) = cov(a21, a1 H a,'j,'j_'_])
J=2
= (¢/9)* var(az) = (¢/S)F (1~ ¢/5) . (A3)
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Thus

cov(Y, M) = [(S — 1)!/(S — k))(c/S)F(1 —¢/S) =0 as S —o0,
which proves (A2a).

Suppose s is an h-cycle and s’ is a j-cycle. Let 8 = (s, s') denote the number
of edges shared in both s and s'. Analogously to (A3), we have

. _ 6
cov(th) , Bg)) = (¢/S)* P (c/S) ~Pvar( H Gigigsr)

g=1
= (c/SY*+37%[(c/S)’ - (c/S)*"]
= (c/S)*P[1 - (c/S)P] = O(S~H7+F) . (A4)

Then, for some fixed s € CF), and for C; = {(s,5')|s # &'}, C2 = {s €
Cc®)]s # s0},

Z cov(B_Sk), Bgc)) = #(C(k)) E cov(Bg:), ng))
G

C:
= #(C(k))(20+21 + .”+Zk—1)
=#CQ T +...+> k) (A5)

where ) B denotes ) cov (B,S(’,c ) , ng)) over those s € C(¥) such that B(s0,8) = B.
The last equality in (A5) holds because there can be no s € C(¥) with 8(so, s) =
k — 1 and because each term in the "0 sum vanishes.

Now the removal of k — # > 0 edges from a k-cycle sg leaves some number
1 > 1 of disconnected walks. A cycle ¢ € Zﬁ must reconnect these walks into
a cycle (in an order that may differ from the order in sg). Thus s is specified
by the order of the walks shared with sg and by 7 new walks leading from an
end point of one shared walk to a starting point of another shared walk. If these
n new walks have lengths L,,..., Ly, with Ly + ...+ L, = k — 3, then for a
given ordering of the shared walks, the number of such new walks is bounded
above by §l1—1gl2=1 GLa—1 = gk=B-1 an{ thus by S¥~#~1. So for B < k
the number of terms in any Eﬁ is bounded by S*~#-1 times a combinatorial
coefficient that depends only on k and # but not on S. By using (A4) with
h = j = k, we may bound (A5) above by

k-2
#(CB) 3" 0(5~H+Pgk—F-1) = o(sksF 1) = 0(S™!),  (AS6)
B=1

which proves (Al).
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We now prove (A2b). As in (A5), for h < j,
cov(Mp, M;) = #(C(h)) Z COV(B.gg), ng))

se€c(d)
=#CM+Y T+ +D0H
=#CMO T+ 4. (A7)

In the last equality, Z = 0 because no j-cycle can share h edges with the
h-cycle sg if A < j. As in the derivation of (A6) as an upper bound for (A5), we
see that with h — 8 > 0, the number of terms in 37 is O(S7~#~1). Then (A4)
implies that (A7) is bounded by

h-1
#(CM) Y- o(s~h-i*P5i=A1) = o(shs™m) = 0(571) ,
g=1

which proves (A2b).

The claimed limiting behaviour of (Y (S), M (S)) for 0 < ¢ < 1 now follows
from (4.3) by approximating M(S) by M} (S) = Zh =1 Mp(S) for large fixed k.
For fixed k, (4.3) implies that (Y (S), M} (S)) converges in distribution as S — oo

to a 2-vector with independent Poisson components and mean (e, Eﬁ:l ch/h).
Moreover,

E|M(S) - M{(S)| = E(M(S) - Mi(S)) = 3 #(C™)EBY)
h=k+1

o0

< Y ctm
h=k+1
—0 as k—oo0 for c<1.

Now for any real numbers r and ¢

|E(exp{i(rY (S) + tM(S))}) — E(exp{i(rY (S) +tMg(S))})]
< E(|exp{it(M(S) — Mg(S))} - 1)
< ERjy(M(S) - M,:(S))I —0 as k—oo.
Therefore, the limiting distribution of (Y (S), M(S)) equals the limiting distri-

bution, as k — o0, of the limiting distribution, for any fixed k, as S — oo, of
(Y (S), M;(S)). This proves the claimed results when 0 < ¢ < 1.
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Appendix 2: Numerical Simulation of Acyclic Random Digraphs

We have programmed three numerical approaches to investigating the fraction
of zero rows or columns in a matrix that is ~ i.i.d. B(¢/S), conditional on being
acyclic.

The first, and most naive, approach is to generate matrices that are ~ i.i.d.
B(c/S) and reject those that have a cycle of any length. There are two difficulties
with this approach. First, given a value of ¢, this approach generates acyclic webs
very inefficiently. For example, with an arbitrarily chosen ¢ = 2.1, the number
of Bernoulli matrices that had to be generated to find 100 acyclic matrices of
each size in a sample calculation was as shown in Table II1.2.A1.

Table III.2.A1. Matrices generated according to
a first naive approach

size of matrix number of matrices generated
(S) to get 100 acyclic S x S matrices

3 34972

5 16113
10 28726
15 62825
20 279401

We lack theory for what the numbers on the right of the table should be, either
for finite S or in the limit as S — 0o. (These results show, incidentally, first that
the fraction of acyclic matrices among Bernoulli matrices, for fixed ¢, need not
be a monotone decreasing function of S, and second that the fraction of 10-
acyclic Bernoulli matrices, asymptotically as S — oo, according to Theorem 1,
bears no close relation to the fraction of 10-acyclic 10 x 10 Bernoulli matrices.
According to (4.3), the former fraction is exp(— 3_k2, ¢¥/k), which is less than
10157 when ¢ = 2.1, while according to the numerical results above the latter
fraction is approximately 100/28726.)

A second difficulty with this first approach is that, so far, we lack theory
to guide the choice of ¢ when we want to compare the computed fractions of
zero rows or columns with data. By throwing away the matrices with cycles, we
change the expected number of matrix elements that equal 1 from pS? = ¢S
to some (so far) unknown smaller function of ¢ and S. For comparison with
data, we want to choose ¢ so that the ‘effective density’ of links, estimated as
(average number of matrix elements equal to 1)/S, equals the observed d = 1.86.
In the numerical simulations described above, with ¢ = 2.1, the total number of
elements equal to 1, summed over 100 acyclic matrices, and the average effective
density per matrix, were as shown in Table IT1.2.A2.
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Table IIL.2.A2. Number and effective density of
links in naively generated acyclic matrices

size of matrix number of 1s effective
(S) in 100 acyclic matrices density

3 239 0.80

5 537 1.07
10 1293 1.29
15 2124 1.42
20 3094 1.55

Depending on the matrix size S, the effective density can be quite different
from c in model 2. Again, we lack theory for what the numbers on the right
should be, either for finite S or as § — co.

A second approach, based on the ideas of Erdos & Rényi (1960), avoids both
of these difficulties, but encounters a subtler third difficulty. In this approach,
to obtain an effective density ¢, we construct a random acyclic matrix with the
integer part of ¢S (denoted int (cS)) edges. This is impossible if ¢S > S(S—1)/2
(or more generally if ¢S exceeds the maximum number of links possible in an
S x S acyclic matrix). Provided int (¢S) is sufficiently small, we add one edge at
a time. We choose a 0 element of the matrix, with probability equal to 1 divided
by the number of 0 elements that could be changed to 1 without creating a
cycle. To identify the 0 elements that are available to be changed to 1 without
creating a cycle, we maintain in an auxiliary matrix the transitive closure of
the adjacency matrix. We continue adding edges until int (¢/S) edges have been
added. If, because of the sequence of edges chosen, the required number of 1’s
cannot be added to the matrix, then the partly completed matrix is abandoned
and a fresh start is made. This generates a random acyclic matrix with effective
density close to c.

The virtue of this second approach is that it guarantees L/S = ¢ = d* = d
approximately (recall that ¢ is the model parameter with c/S being the proba-
bility of a random link, d* is the asymptotic (large S) effective ratio of links to
species, and d is the observed ratio L/S of links to species in real webs). A draw-
back, which we overlooked at first, is that this approach does not generate all
random digraphs with S vertices and, say, E (always directed) edges with equal
probability. In the probability distribution over digraphs assumed by model 2,
any two digraphs with S vertices and E edges occur with equal probability.
However, in the numerical approach just described, suppose S = 6 and we wish
to choose randomly E = 3 edges. There are 6 x 5 = 30 ways to choose the first
edge without creating a loop. Suppose, without loss of generality, that the edges
are labelled so that the first edge is (1,2), that is, the edge goes from vertex 1
to vertex 2. There are then 28 ways to choose the second edge (edge (1,2) has
already been chosen and edge (2,1), which would create a cycle, is forbidden).
If the second edge is, for example (3,4), then there are 26 ways to choose the
third edge. But if the second edge is (2, 3), then there are only 25 ways to choose
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the third edge because two edges have already been chosen and three edges are
forbidden ((2,1), (3,2) and (3,1)).

Our third approach modifies the procedure just described to avoid this dif-
ficulty. As each randomly chosen edge is added to a digraph, the number of
available edges that could have been chosen at that stage is noted. The product
of all the numbers of available edges is assigned to the generated digraph as a
weight. This weight is the inverse of the probability of choosing the edges in the
particular random digraph in the order in which the edges occurred. The weight
assigned to a given digraph may vary depending on the order in which the edges
are chosen. All the statistics (such as the mean or variance of the fraction of
species that are top or basal) computed from the random digraphs generated
according to this third approach incorporate the weights, so that all digraphs
with a given number of vertices and edges are represented with equal probability.

When the unweighted simulations based on the second approach are compared
with the weighted simulations based on the third approach, the simulated mean
fractions of 0 rows and columns were generally slightly larger when weighted,
but usually not by more than 0.01 and never (for the range of parameters in
Table I11.2.2) by more than 0.04. A conjecture that for large S and for ¢ small
compared to S the two approaches give identical mean proportions of 0 rows
and columns seems plausible.

The simulations based on the second and third approach are not identical to
those based on the first, naive approach. There is no variation in the number
of edges (links) per acyclic digraph generated according to the second or third
approach, while there is variation in the number of edges per acyclic digraph
generated naively by the first approach. As in the parallel case of undirected
graphs considered Erdds & Rényi (1960), we expect (but have not proved) that
this difference in approach to simulating model 2 has no effect in the limit of
large S.

§3. Individual Webs
Joel E. Cohen, Charles M. Newman and Frédéric Briand

1. Imtroduction

A food web is a set of different kinds of organisms and a relation that shows
the kinds of organisms, if any, that each kind of organism in the set eats. A
communily food web is a food web whose vertices are obtained by picking, within
a habitat or set of habitats, a set of kinds of organisms (hereafter called species)
on the basis of taxonomy, size, location, or other criteria, without prior regard
to the eating relations (specified by trophic links) among the organisms (Cohen
1978, pp. 20-21).
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In the previous chapter (Chap. III.2), several models were proposed to de-
scribe the structure of community food webs. When models were tested against
data on 62 community food webs in Chap. II1.2, a crucial parameter in all the
models, namely the ratio of links to species, was estimated from the aggregated
data on all webs taken together. One model, the cascade model, successfully
described, to a first approximation, the proportions of all species that are top,
basal and intermediate, and the proportions of all links of each kind.

The purpose of this chapter is to test how well the cascade model describes
webs when the ratio of links to species is estimated separately for each web.

In section 2 we describe the cascade model, show how to estimate the param-
eters of the model, and verify the correctness of the estimation procedure. In
section 3 we test the assumption, made in Chap. III.2, that the ratio of links to
species is constant for all webs. We then test seven predictions of the cascade
model, estimating this ratio separately for each web. In section 4 we evaluate
the results of this chapter and relate them to the results of Chap. ITI.2.

We shall use a number of terms with special meanings that are given in
section 2 of Chap. III.2. These terms include: web, species, link, predator, prey,
top, proper top, intermediate, basal, proper basal, adjacency matrix, isolated,
triangular. We shall not repeat the definitions here.

Webs are classified as arising in ‘fluctuating’ or ‘constant’ environments. The
environment is considered to be ‘fluctuating’ if the original report indicates tem-
poral variations of substantial magnitude in temperature, salinity, water avail-
ability or any other major physical parameter. The magnitude, and not the
predictability, of the fluctuations is the criterion of classification. Since the clas-
sification of an environment as constant or fluctuating is to some extent sub-
jective, we point out that this task was carried out before we had analysed the
webs and uncovered any pattern.

The 62 webs analysed here are drawn from published studies. They include
the 40 webs assembled and described by Briand (1983; Chap. I1.5). Of these,
13 are drawn from the 14 originally used by Cohen (1978). Details of the webs
appear in Chap. IV.

2. The Cascade Model and Parameter Estimation

The cascade model assumes that the S species of a web may be labelled from
1 to S so that, for some finite positive real number ¢ < S, the probability that
species j feeds on species i is 0 if j < i. If i < j, then j feeds on i with probability
p = ¢/S and does not feed on i with probability ¢ = 1 — ¢/S, independently for
all<i<j<8s.

All numerical predictions of the cascade model depend on the values of the
model’s two parameters ¢ and S. These two parameters, in turn, depend only
on the observed numbers of links and of species.

In the data we shall use to test this model, only proper top species (that is,
those that eat at least one other species) and only proper basal species (that is,
those that are eaten by at least one other species) are reported. Thus the total
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number of observed species in a web is not S but the number of not isolated
species. The true number S of species in a web is not directly counted.

The expected number E(N) of not isolated species depends on both ¢ and
S according to (6.3c) in Chap. IIL.2. Similarly, the expected number E(L) of
links in a web depends on ¢ and S according to (6.5) in Chap. III.2. To test the
predictions of the cascade model with individual webs, we estimate ¢ and S by
the method of moments. That is, if S’ is the observed number of species (that
is, ' is the observed value of the random variable N, the number of not isolated
species), and L' is the observed number of links (that is, L’ is the observed value
of the random variable L, the number of links in a web), we replace E(N) on
the left of (6.3c) in Chap. II1.2 by S’ and E(L) on the left of (6.5) in Chap. II1.2
by L'. The resulting equations are restated as (A1) in the appendix. We then
solve this system of two nonlinear equations for the two unknowns ¢ and S by
using Newton’s method, as described in the appendix, except for the one web
with S’ = 3. For this web, we take S = 3 and then compute ¢ by solving (Ala).

As a check on the correctness of the numerical solutions ¢ and S, we used
the numerical values of ¢ and S to compute E(L) from (6.5) in Chap. II1.2 and
E(N) from (6.3c) in Chap. II1.2. In figures not shown, we plotted L’ as a function
of the calculated E(L) and S’ as a function of the calculated E(N). A line of
slope one through the origin passed through all the plotted characters except, as
expected, the web with §' = 3, verifying that the computed numerical solutions
for ¢ and S in fact satisfy (A1) adequately.

The computed values of S are not in general integers. We could force them to
be integers by replacing S with the integer closest to S and then solving (Ala)
for a new value of ¢. A simpler alternative, which we adopt here, is to interpret
the equations of the cascade model derived in Chap. II1.2 as applying whether
S is integral or positive real.

From (6.3¢c) in Chap. II1.2 or (Alb), it follows that if S > 1 and e™° < 1,
then S is approximately S’. In the data plotted in Fig.I11.3.1, S does not greatly
exceed the observed values of S’. In fact S — S’ < 2.1 for all webs but one. For
the exceptional web (Paviour-Smith 1956), S — S’ = 5.5, where S = 37.5. This
exceptional case is visible as the outlying fluctuating web in the lower right corner
of Fig.II1.3.1. Briand & Cohen (1984) also noted that this web was an outlier
on a plot of prey against predators based on unlumped data (Fig. A.2.1a). This
web appears to be unusual in both the relation between links and total species
and the relation between predators and prey.

3. Testing The Predictions of The Cascade Model

The tests of the cascade model in Chap. II1.2 use a single value of ¢ for all webs.
If this procedure is correct, then a plot of ¢ against S, estimated individually
for each web, should display no increasing or decreasing trend. Substantial vari-
ability in ¢ as a function of S is expected because the realized number of not
isolated species need not exactly equal the mean E(N) and the realized number
of links need not exactly equal the mean E(L).
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Figure II1.3.1. The estimated value of ¢ as a function of the total number of species S. The
straight line ¢ = 3.438 + 0.017S is an ordinary least-squares regression line fitted under the
assumption that the variance of the residuals is independent of S, and without constraints on
the slope or intercept. The slope 0.017 has a standard deviation of 0.022. There is no evidence
of a rise or fall in ¢ with increasing S. In this and all subsequent figures, the plotted symbols
have been perturbed by a small random amount from their exact positions to indicate when
several symbols coincide. X, constant web; o, fluctuating web. Only ‘lumped’ webs are used
(Briand & Cohen 1984; Chap. I1.2)

Figure I11.3.1 shows that there is no evidence of a pronounced trend in the
estimated ¢ as a function of the estimated S. Because S and S—1 are close to the
observed number S’ of not isolated species, the observation that ¢ = 2L/ /(S —1)
has no significant trend as a function of S follows from the link-species scaling
law (Chap. IT1.2) that L’/S’ has no increasing or decreasing trend as a function
of §'.

The observation of a slightly positive slope in Fig.1I1.3.1 is consistent with
two earlier observations. First, by using multiple versions of the unlumped com-
munity webs of Cohen (1978), Yodzis (1980) observed that with increasing S,
the observed (lower) connectance C’, defined by C’ = 2L’ /[S'(S' —1)], decreases
nearly but not quite as fast as 1/S’. Now C’ = ¢(1/5")[(S — 1)/(S' — 1)] and
the last factor [(S — 1)/(S’ — 1)] approximates 1. Therefore if ¢ has no trend as
a function of S, C’ would be expected to decline approximately as 1/S’. Sec-
ondly, by using 40 unlumped webs, Briand (1983; Chap. I1.5) observed that the
number L' of links was proportional to S'1! rather than to S'. Because of the
overlaps among the sets of data used by Yodzis (1980), Briand (1983) and here,
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the findings of Yodzis (1980) and Briand (1983) are by no means independent of
ours. Moreover, the webs analysed by Yodzis and Briand were unlumped while
ours are lumped. Thus there is no persuasive evidence against the natural null
hypothesis that for the lumped webs studied here, c is effectively constant as S
increases.

Of the 19 constant webs, 14 fall above the regression line in Fig.II1.3.1. Of
the 43 fluctuating webs, 34 fall below the regression line. The difference in the
proportions of webs above the regression line (74% for constant webs, 21% for
fluctuating webs) is too large to be attributed to chance (x% = 15.7 with one
degree of freedom, a value with extremely low probability if one chooses to
believe the underlying but doubtful assumption of independence among webs).
For a given number of species, constant webs have more links than fluctuating
webs (Briand 1983; Chap. IL5).

This difference demonstrates at the level of individual webs the aggregate
difference in the ratio of links to species between constant and fluctuating webs.
For constant webs, the ratio of links to species is 811/351 = 2.31, while for
fluctuating webs, the ratio is 1108/683 = 1.62.

The use of a single value for ¢ in Chap. IT1.2 overlooks differences in the typical
values of ¢ of two distinguishable kinds of webs, the constant and the fluctuating,
making it all the more surprising that the aggregated predictions of the cascade
model in Chap. III.2 are not worse. Here, since ¢ and S are estimated separately
for each web, we are testing how the cascade model applies to individual webs,
both constant and fluctuating.

We now test seven predictions of the cascade model. In Figs.II1.3.2-8 the
abscissa is the expected value of some feature of a web, according to the cascade
model, and the ordinate is the observed value of that feature. If the estimated
values of ¢ and S corresponded exactly to the true values of ¢ and S and if the
observed value of each feature in each web corresponded to the expected value,
then all data points would fall along a line of slope one through the origin. The
cascade model is a stochastic model, however, so the data points are expected to
deviate from such a line, but not systematically. Since the scales of the abscissa
and ordinate vary, a line of slope one through the origin is drawn in Figs. IT1.3.2-8
for comparison.

There is no reason to assume that half of the data points should fall above, and
half below, the line of slope one, because we have not proved that, according
to the cascade model, the variables of interest are symmetrically distributed
about their mean. However, as the number of species in a web increases, it
seems reasonable to suppose that the distributions of these variables approach
normality. In this limit of large S, it seems reasonable to anticipate roughly half
of the data points above and half below the line of slope one if the cascade model
is correct.

As might be expected, in Figs. IT1.3.2-8 the variance of the observed number,
plotted on the ordinate, increases as the expected number, plotted on the ab-
scissa, increases. Since all the abscissae are increasing functions of the number of
species in a web, the variances of observed numbers also increase with increasing
size of web.
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Figure IIL3.2. The observed number of (proper) basal species as a function of the expected
number of proper basal species according to the cascade model. In this and all the following
figures, the solid straight line passes through the origin with slope 1. This is not a regression
line, but should describe the trend of the data if the predictions of the cascade model are
approximately correct

Figure I11.3.2 plots the observed (proper) basal species against the expected
proper basal species, computed from (6.3a) in Chap. II1.2. There appear to be
‘rows’ of data points in Fig. I11.3.2 because the observed numbers of basal species
are constrained to be integers, while the expected numbers can vary continuously.
The bulk of the data points, though by no means all, fall below the line of slope
one. This finding is consistent with the fact that fewer basal than top species
are observed and with the observation in Chap. II1.2 that fewer basal species are
observed than expected using an aggregate estimate of ¢. No difference between
constant and fluctuating webs in the success of the cascade model is immediately
evident from Fig.II1.3.2. This absence of apparent difference is consistent with
the finding of Briand & Cohen (1984; Chap. I1.2) that the proportions of (proper)
basal, intermediate, and (proper) top species are homogeneous between constant
and fluctuating webs, within statistical fluctuations.

Figure I11.3.3 plots the observed intermediate species against the expected
intermediate species, computed from (6.3b) in Chap. III.2. The constant webs
fall nearly evenly above and below the line of slope one (9 fall above, 10 fall
below). The bulk of the fluctuating webs fall slightly above the line. This small
difference is consistent with the insignificantly greater aggregate proportion of



106 Chapter III. A Stochastic Theory of Community Food Webs

20

16

12

observed intermediate species

L 1 ] 1 1 1 1 i
8 12 16 20

predicted intermediate species

Figure II1.3.3. The observed number of intermediate species as a function of the expected
number of intermediate species according to the cascade model

intermediate species in fluctuating webs than in constant webs (54% versus 50%).
Overall, the agreement between observed and expected species is good.

Figure I11.3.4 plots the observed (proper) top species against the expected
proper top species, computed from (6.3a) in Chap. III.2. The constant web with
17 top species appears to be an outlier. This same web, which describes the
rocky shore of Lake Nyasa (Fryer 1959) also appeared as an outlier in a plot,
with unlumped data, of prey against predators (Fig. A.2.1a). For both constant
and fluctuating webs, there is a suggestion that the remaining points may rise
convexly. At least in the middle range of expected values, however, the agreement
between observation and expectation is good.

In summary, when the expected numbers of species of each kind are compared
with the observed, the agreement is best for intermediate species and is fair for
proper top and proper basal species. The cascade model describes the kinds of
species in constant and fluctuating webs about equally well.

Figure II1.3.5 plots the observed basal-intermediate links against the expected
basal-intermediate links, computed from (6.6a) in Chap. II1.2. There is no sign
of systematic deviation between the points and the line of slope one, for the
constant and fluctuating webs considered separately or together.

Figure II1.3.6 plots the observed basal-top links against the expected basal-
top links, computed from (6.6b) in Chap. II1.2. Contrary to expectation, there
are many webs with no basal-top links or one only. The line through the origin
with slope one passes through the mass of the remaining points, but even for
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Figure IIL.3.4. The observed number of (proper) top species as a function of the expected
number of proper top species according to the cascade model

these the scatter about the line is large, compared with that in Figs.II1.3.5, 7
and 8.

Figure I11.3.7 plots the observed intermediate-intermediate links against the
expected intermediate-intermediate links, computed from (6.6¢c) in Chap. ITL.2.
The apparent outlier with six observed intermediate-intermediate links in the
lower right corner of Fig.II1.3.7 is the same web that appears above as the
potential outlier in Fig. II11.3.4. This same web appears again as the outlier with
59 observed intermediate-top links in the top-right corner of Fig.II1.3.8. Clearly
this web is exceptional in several respects, when compared with other webs. Aside
from this outlier, the remaining webs are scattered more or less symmetrically
about the line of slope one, and no systematic deviations are evident.

Figure I11.3.8 plots the observed intermediate-top links against the expected
intermediate-top links, computed from (6.6a) in Chap. III.2. As in Fig.II1.3.5
(apart from the single outlier), there is no sign of systematic deviation of the
points from the line of slope one, for the constant and fluctuating webs separately
or together.

In summary, the cascade model provides a good description of the numbers of
basal-intermediate, intermediate-intermediate, and intermediate-top links, aside
from one outlying constant web, and a rather poor description of the number of
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Figure IT1.3.5. The observed number of basal-intermediate links as a function of the expected
number of basal-intermediate links according to the cascade model

basal-top links. The cascade model describes the links of constant and fluctuating
webs about equally well.

4. Discussion and Conclusions

We have tested a model, called the cascade model, which assumes that species
in a community are arranged in a hierarchy or cascade of potential feeding rela-
tions. This model assumes that whether a potential feeding relation becomes an
actual feeding relation is determined randomly, independently of all other poten-
tial feeding relations. The probability that a potential feeding relation becomes
actual is assumed to be the same for every potential feeding relation within a
community, and to vary inversely as the number of species in the community.

Consequently, according to the model, for a randomly chosen species in a
community, the mean number of other species that prey on it or that are prey
to it is independent of the total number of species in the community. Thus
the model is consistent with the hypothesis, suggested by Pimm (1982, p. 89),
that ‘each species in a community feeds on a number of species of prey that is
independent of the total number of species in the community’, provided that the
term ‘each species’ is replaced by the term ‘a randomly chosen species’.
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Figure IIL.3.6. The observed number of basal-top links as a function of the expected number
of basal-top links according to the cascade model

In Chap. II1.2 we showed that the cascade model describes several important
properties of webs, to a first approximation, when a fixed probability parame-
ter, estimated from aggregated data, is applied to all webs. There is no logical
necessity for the cascade model to describe individual webs, given that it suc-
ceeds reasonably in the macroscopic analysis. Tests of the cascade model using
data on individual webs are logically and empirically independent of tests using
aggregated data. Indeed, it would be surprising to find that ecological ‘assembly
rules’ as simple as the cascade model apply to communities that arise in diverse
environments.

To test the cascade model’s ability to describe individual webs, we used two
numbers, the observed number of not isolated species and the observed number
of links, to estimate the two parameters of the cascade model: the unknown true
number S of species and the unknown constant ¢ to which the probability of a
feeding relation is proportional. We then computed the expected values of seven
characteristics of webs and compared them with the observed.

In 62 webs, with exception of an occasional outlier, the cascade model de-
scribes well the numbers of intermediate species (Fig. I11.3.3), basal-intermediate
links (Fig.1I1.3.5), intermediate-intermediate links (Fig.II1.3.7), and interme-
diate-top links (Fig.II.3.8). It describes fairly the numbers of proper basal
(Fig.I11.3.2) and proper top (Fig. I11.3.4) species. It describes poorly the num-
bers of basal-top links (Fig.II1.3.6).



110 Chapter III. A Stochastic Theory of Community Food Webs

40

o 0o

> = 8
T
x

observed intermediate—intermediate links
0

32 40 48

predicted intermediate-intermediate links

Figure II1.3.7. The observed number of intermediate-intermediate links as a function of the
expected number of intermediate-intermediate links according to the cascade model

For a given value of S, the probability ¢/S that a species will prey on another
species, when their positions in the trophic hierarchy permit, is higher in constant
webs than in fluctuating webs. Given ¢ and S, the cascade model describes the
numbers of kinds of species and kinds of links in constant and fluctuating webs
about equally well, according to our examination of the data.

Cohen & Briand (1984; Chap. I1.3) noted that the proportions of each kind of
link appear to differ between constant and fluctuating webs. Since the cascade
model describes the numbers of each kind of link about equally well in constant
and fluctuating webs, the difference in proportions may be explained by the
difference in the typical values of ¢ for constant and fluctuating webs, rather than
by some deeper structural difference between constant and fluctuating webs. The
difference in the typical values of ¢ between constant and fluctuating webs is not
explained by the cascade model.

In testing the model, we present graphical comparisons of the observations
and predictions so that the reader can make his or her own verbal summaries of
how good or bad the fit is. We avoid formal statistical measures of goodness of
fit because the data may not be independent and because we are interested in
simultaneous inference about the model as a whole. The assumption of indepen-
dence among webs appears doubtful, since some authors contributed more than
one web and the proclivities of authors do appear to influence the structure of
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Figure IIL.3.8. The observed number of intermediate-top links as a function of the expected
number of intermediate-top links according to the cascade model

webs. We are less concerned to test hypotheses about any portion of the cascade
model than to see how well, on the whole, it describes simultaneously several
major features of webs, some of which may not be independent. (For example,
given the total number of not isolated species, the observed numbers of proper
top, intermediate, and proper basal species are not independent.)

How should one evaluate the discrepancies between theory and observation
most evident in Fig.I11.3.6, and strongly suggested by Figs.I11.3.2 and 47 One
can be sceptical about the model, but not the data; or one can be sceptical
about the data, but not the model; or one can be sceptical about both. We are
sceptical about both.

As for the data, the earlier chapters by Briand and Cohen, jointly and sepa-
rately, indicate that there is great variability among observers in the operational
definitions of species and links and in the detail of published reports of field
work. Often, these operational definitions are not even described in the pub-
lished reports. A first step that field ecologists could make toward improving the
data would be to describe in detail how the species and links are operationally
defined. A second step would be to work toward some uniform definitions.

Nevertheless, the data analysed here are the best available at present. The
regularities in these data merit theoretical attention.
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As for the model, numerous assumptions underlying it are unrealistic. Is it
plausible to assume that the species at the top of the hierarchy or cascade is
equally likely to prey on all other species in the community? Is it plausible to
assume that the prey species a predator eats are chosen independently of the
abundance of the prey species and stochastically, once and for all, as the model
implicitly assumes? We think not.

Nevertheless, the cascade model provides a very simple unifying perspective,
quantitatively testable and open to improvement, that explains for the first time
several empirical regularities in the structure of webs. The ecological generaliza-
tions explained by the cascade model still need to be derived from a persuasive
and testable theory of behaviour, population dynamics, and trophic interactions.

The cascade model also needs to be tested further against macroscopic data.
Can the cascade model explain the observed frequency of intervality (Cohen
1978) in food webs? Can the cascade model explain the observed frequency
distributions of length of food chains? See Chaps. III. 4-6.

Appendix: Estimation of ¢ and S by Newton’s Method

Given observed numbers of species S’ and observed numbers of links L’, the
parameter c and the true number of species S satisfy, according to model 3 (the
cascade model):
0=c(S-1)/2-L'=v, (Ala)
0=(1-[1-¢/3)°1)S-8' =v,. (A1b)
We find c and S numerically by Newton’s method (for example, Rektorys 1969,
pp. 1180-1181).
Step 1. Let cg = 2L'/(S' — 1), So = S'. (These are initial estimates.)
Step 2. Compute
Jir=(Se—-1)/2,
J12 = ¢c0/2,
J21 = (So — 1)(1 — co/So)% 2,
Jog=1-— (1—60/50)50_1[1+60(So—1)/(5’0—00) + So 111(1—60/50)] .
(This is the Jacobian of the nonlinear system (A1), that is J; = dvy/8c, etc.,

evaluated at (co, Sp).)
Step 3. Compute A = J~1, that is,

J22 —J12)
A= —
( T Jn [(J11Jd22 — J12J21)
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and v1, vg from (A1) with c replaced by cg, S by Sp, then
€1 =co — a11v1 — a12v2, S1 = Sp — a1v1 — G22V2

(The new estimates of ¢ and S are ¢;, S7.)

Step 4. Stop if |c; — co| + |So — S1| < 6 = 0.01. (Stop when the procedure
quasi-converges. The value of § = 0.01 was chosen to require the final estimates
c1, 51 to be changing far less than the uncertainty in the data.)

Step 5. Otherwise, replace the value of ¢p by the value of ¢; and replace
the value of So by the value of S;. Then go to step 2. (Iterate with improved
estimates.)

When applied to the 62 pairs (S, L') from the webs assembled by Briand,
this procedure stopped after at most 3, and generally 2, iterations, except for
the pair (S, L') = (3, 2) from one web (code number 10). For this web, the
procedure diverged, and we used the initial estimate.

§4. Predicted and Observed Lengths of Food Chains
Joel E. Cohen, Frédéric Briand and Charles M. Newman

1. Imtroduction

The purpose of this chapter is to derive a quantitative theory of the length
of food chains from a mathematical model of community food webs called the
cascade model and to test this theory quantitatively against data from real food
webs. The cascade model was developed and tested by Cohen & Newman (1985;
Chap. II1.2) and by Cohen et al. (1985; Chap. II1.3). The predictions of the
cascade model describe, to a first approximation, several major characteristics
of a collection of 62 real webs: the proportions of all species that are top, basal
and intermediate, and the proportions of all links from basal to intermediate
species, from basal to top species, from intermediate to intermediate species,
and from intermediate to top species.

This chapter determines what the cascade model implies for the frequency
distribution of the length of food chains in webs with a finite number of species
and compares the predictions with observations. The number of species in the
observed webs ranges from 3 to 48. The theory of chain lengths is developed
further for webs with a large number of species in the next chapter (Newman &
Cohen 1986; Chap. IIL.5).

Section 2 reviews present biological theories of food chain lengths; section 3
presents terminology for chains and reviews the cascade model. Section 4 gives
exact results about the frequency distribution of chain lengths for webs with a
finite number of species and proposes a way to evaluate the goodness of fit of
the cascade model’s predictions to the observed frequency distribution of chain
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length in an individual web. A mathematical proof in section 4 (the only one in
this chapter) is set off by Proof at the beginning and Bl at the end. Readers may
defer or skip the proof with no loss of continuity.

In section 5, we find that the cascade model describes acceptably most, but
not all, of the frequency distributions of chain length observed in 62 webs, other
aspects of which were previously used to develop and test the model. Does the
cascade model succeed in most of these webs because the model was selected to
describe other aspects of the same data, since such selection might constrain the
possible frequency distributions of chain length?

No, according to the results of section 6. There we examine the frequency
distributions of chain lengths in a freshly assembled and edited collection of 51
webs that have not been previously related to the cascade model. The species-
link scaling law (Cohen & Briand 1984; Chap. I1.3), one of the central features of
the cascade model, is not contradicted by these new data. The cascade model de-
scribes acceptably 46 of the 51 observed frequency distributions of chain lengths;
this majority is even larger than the majority of its successes with the original
62 webs.

According to section 7, the mean and variance calculated from the expected
numbers of chains of each length cannot validly be compared with the mean
and variance of chain lengths in an observed web. If such a comparison is made,
nevertheless, the mean chain lengths are described acceptably, but not the vari-
ances.

In section 8, we explain why we doubt the assumption that the 113 webs in our
collection are a random sample from some statistical ensemble of webs. Under
this dubious assumption, a Kolmogorov-Smirnov test rejects the null hypothesis
that the cascade model’s predictions describe the chain lengths in the ensemble
of webs sampled by either the original 62 or the new 51 webs or all 113 combined.

Most of the 16 or 17 webs with chain lengths that the cascade model fits
poorly have unusually large average chain lengths (greater than four links) or
unusually small average chain lengths (fewer than two links).

Finally, in section 9, we review the accomplishments of the chapter, relate
them to previous work, and propose several further studies. An appendix presents
algorithms that were used to compute the frequency distribution of chain length
and the length of the longest chain of a given web.

Chap. IV presents in detail the sources and full data on all 113 (62 + 51)
webs.

2. The Length of Food Chains: Present Ecological Theory

Elton (1927 [1935], p. 56) justifies attention to food webs and food chains: “The
primary driving force of all animals is the necessity of finding the right kind of
food and enough of it. Food is the burning question in animal society, and the
whole structure and activities of the community are dependent upon questions
of food-supply.’
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To our knowledge, Elton (1927 [1935], p.56) is the first to introduce the
terminology ‘food chains’: “There are, in fact, chains of animals linked together
by food, and all dependent in the long run upon plants. We refer to these as
“food chains”, and to all the food-chains in a community as the “food-cycle”.’
Elton’s ‘food-cycle’ has been generally replaced by ‘food-web’.

In notes added to the second impression, Elton (1927 [1935], p. xxvii) remarks
that ‘the first food-cycle diagram was published by V.E. Shelford’ in 1913. Elton
does not remark that the community described by Shelford’s diagram is hypo-
thetical, but observes elsewhere (p.57): ‘Extremely little work has been done so
far on food-cycles, and the number of examples which have been worked out in
even the roughest way can be counted on the fingers of one hand’.

Systematic quantitative data about food chains have been assembled only in
the last decade. To our knowledge, the first numerical data on the frequency
distribution of chain lengths in real food webs are presented by Cohen (1978,
pp. 56-59), who emphasizes the need for, but does not provide, a quantitative
theory (see also Cohen 1983).

The most comprehensive, quantitative and empirically based modern presen-
tation of theories about the length of food chains that we know of is Pimm’s
(1982, Chap. 6, pp.99-130). He evaluates four hypotheses to explain why food
chains rarely contain more than, roughly, five animal species (Hutchinson 1959,
p. 147). Some recent perspectives on these hypotheses and their cousins are given
by May (1983) and DeAngelis et al. (1983); see also Chap. IL.6.

First, the energetic hypothesis suggested by Hutchinson (1959, p.147) pro-
poses that the length of food chains is limited by the inefficiency with which
energy is transmitted along a chain and by the minimal energy requirements of
predators at the top of a chain. This hypothesis could be interpreted to pre-
dict that food chains in ecosystems with higher primary productivity should
be longer. Pimm’s data do not confirm this prediction, though the ecosystems
in Pimm’s collection with extremely low primary productivity do have short
chains. However, the energetic hypothesis could also be interpreted to predict
that food chains in ecosystems with higher primary productivity can support
energetically less efficient intermediate and top species without any change in
chain length. Data on chain length alone, without detailed information on the
energetic efficiency of the species in the chains, can neither establish nor disprove
the energetic hypothesis. In a pioneering experimental study, Pimm & Kitching
(1987) compared the chain lengths of artificial ecosystems with varying levels of
energy input. They found no evidence of increasing chain lengths with increasing
energy inputs.

Secondly, the size or design hypothesis predicts that chains should be limited
in length by the requirement that a predator be larger than its prey. Pimm
points out that parasites need not obey this requirement, and suggests that size
or design requirements have no simple or easily testable effects on chain length.

Thirdly, the optimal foraging or evolutionary shortening hypothesis cites ad-
vantages in energetic efficiency that result from feeding low (near the primary
producers) in food chains, and other energetic advantages that result from feed-
ing high (near top predators), and suggests that the observed distributions of
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chain lengths result from an equilibrium of these opposing selective advantages.
Although examples appear to illustrate one or another aspect of this hypothesis,
precise quantitative predictions do not seem to follow from it.

Fourthly, the dynamical stability hypothesis argues first that, in several spe-
cific mathematical models of interacting populations, the longer the chains, the
more severe the restrictions that must be imposed on the coefficients in the
models for an equilibrium to be feasible or stable, and second that in certain
models, those with longer food chains take longer to return to equilibrium once
perturbed, so that systems with longer chains are less likely to persist in nature.
The models (generally based on Lotka-Volterra equations) that support the dy-
namical stability hypothesis have not been independently verified. When these
models are tested against data including data on chain length, it will be possible
to decide what weight this hypothesis deserves as an explanation.

In addition to these four hypotheses, Kitching and Pimm (1985) describe
seven environmental factors that may influence webs in phytotelmata. Phytotel-
mata are plant-held waters, such as occur in the axils of trees, bamboo internodal
spaces, bromeliads, tree holes, and pitcher plants. The factors affecting webs in-
clude the size (surface area and volume) of the body of water, the latitude (hence
climate), the size of the pool of species available to colonize the phytotelma, the
evolutionary history of the host plants (see Beaver 1985), the particular host
plant species, the successional stage, and altitude. Most of these factors influ-
ence webs in general. Kitching & Pimm give no quantitative predictions of the
effects on chain length of changes in these factors.

Pimm (1982, appendix 6A) also presents a so-called ‘null-hypothesis’ about
chain lengths. To our knowledge, his is the first simple quantitative model of web
structure that is used to derive quantitative predictions about the frequency dis-
tribution of chain length. To describe Pimm’s model, we repeat some definitions
from Chaps. II1.2-3. A proper basal species is a species that preys on no other
species but is preyed on by at least one other. An intermediate species is a
species that preys on at least one other species and is preyed on by at least one
other species. A proper top species is a species that preys on at least one other
species and is preyed on by no other species. If Bp, I and Tp are the numbers
of proper basal, intermediate and proper top species in a community with L
(trophic) links, Pimm constructs a predation matrix with (Bp + I) rows and
(Tp + I) columns. All but L elements of the matrix are zero. The L elements
that are equal to 1 are randomly assigned subject to three constraints: each
proper top or intermediate species has at least one prey (at least one 1 in its
column), each proper basal or intermediate species has at least one predator (at
least one 1 in its row) and, to assure that the web is acyclic, the submatrix where
intermediates prey on intermediates is strictly lower triangular. (The species are
numbered from the top of the web to the bottom, contrary to the convention we
adopt for the cascade model.)

For each of 13 real webs, Pimm computes the modal trophic level of each
real top species (which, except for some minor details, is one greater than the
modal length, defined below, of chains leading up to that species) and the modal
trophic level of each (proper) top species in simulated webs generated as just
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described. He then adopts a conservative procedure for deciding when the vector
of simulated trophic levels of (proper) top species is smaller than the vector of
real trophic levels of top species. He concludes that the simulated trophic levels
of top species are smaller than the real levels in a proportion P of simulations
whose mean (over different real webs) is ‘significantly less’ (Pimm 1982, p. 104)
than 0.5, though he gives no significance level, and therefore that real chains are
shorter than would be expected ‘at random’ according to the null hypothesis.

This conclusion seems liable to two criticisms. First, assuming with Pimm
that the observed webs are independent observations (we shall return to this
assumption), we believe that Pimm’s null hypothesis that the expected P = 0.5
should be replaced by the null hypothesis that P is approximately uniformly
distributed between 0 and 1. P will not be exactly uniformly distributed under
the null hypothesis because the number of trophic levels is a discrete, not a con-
tinuous, random variable. When we perform a one-sample Kolmogorov-Smirnov
test of the null hypothesis that Pimm’s 13 P values are drawn from a uniform
distribution, we obtain a Djs-statistic of 0.389. The probability that a value
that large or larger would occur by chance alone is between 0.02 and 0.05. We
conclude that the data do not overwhelmingly reject Pimm’s null hypothesis.

Secondly, Pimm’s test of the hypothesis that the expected P = 0.5 is based
on adding x? values for each of the 13 webs; this is equivalent to treating the
webs as independent. The webs are chosen from ten papers; Paine is the author
or a co-author of two of these. We doubt that different webs reported by the
same observer are independent in structure because the observer brings the
same, usually unstated, biases to all his observations (Chaps. I1.4-5, II1.2-3).
Under the worst dependence, Pimm’s x? value could be based on as few as
nine independent observations. The probability that a Dg-statistic of 0.389 or
larger would occur by chance alone is between 0.05 and 0.1 according to the
Kolmogorov-Smirnov test.

We are less persuaded than Pimm that his null hypothesis is a bad idea.
Pimm’s model is in the same family, though perhaps not in the same genus, as
the cascade model that we now review.

3. Terminology; The Cascade Model

This section reviews and introduces terminology, then describes the cascade
model (as in Chaps. I11.2-3).

A food web is a set of kinds of organisms and a relation that shows which,
if any, kinds of organisms each kind of organism in the set eats. A community
Jood web is a food web whose vertices are obtained by picking, within a habitat
or set of habitats, a set of kinds of organisms (hereafter called species) on the
basis of taxonomy, size, location or other criteria, without prior regard to the
eating relations (specified by trophic links) among the organisms (Cohen 1978,
pp. 20-21). Hereafter ‘web’ means ‘community food web’. A basal species is a
species that eats no other species, and a top species is a species that is eaten by
no other species.
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In the representation of a web by a directed graph or digraph (see Chap.
I11.2), each vertex corresponds to a (lumped trophic) species. An edge (always
directed) (a,d) from vertex a to vertex b corresponds to a link from species a
to species b, meaning that species b eats species a. An example of a walk in a
digraph is the sequence a, (a,b), b, (b, ¢), ¢ of alternating vertices and edges. The
length of a walk is the number of edges in it. An n-walk is a walk of length n.
The digraph of any web generated by the cascade model is acyclic, so no vertex
(or species) can figure more than once in a walk in such a web. A chain is a
walk from a basal species to a top species. A chain in this sense is identical to
a ‘maximal food chain’ as defined by Cohen (1978, p. 56). An n-chain is a chain
of length n, i.e. a chain with n links. The length of a chain is one less than the
number of species involved in that chain.

Let S be the number of species in a web, and let Cp, be the number of n-
chains in an acyclic web, n = 1,2,...,S — 1. Algorithms for computing C,
for a given web are presented in the appendix. Chains of length greater than
S — 1 are impossible. The frequency distribution of chain length is the vector
(Ci,...,Cs-1) = C. The total number of chains in the web will be denoted

The cascade model assumes that species in a community web are arranged
in a hierarchy, pecking order or cascade of potential feeding relations. Whether
a potential feeding relation becomes an actual feeding relation is determined
randomly, independently of all other potential feeding relations. The probability
that a potential feeding relation becomes actual is the same for every poten-
tial feeding relation within a community, and varies inversely as the number of
species in the community.

More formally, the cascade model assumes that the S > 2 species of a web
may be labelled from 1 (at the bottom, subject to predation by all other species)
to S (at the top, subject to predation by no other species). (In graph theory,
this labelling is called a topological sorting (Gibbons 1985, p. 122) because for
every edge (i, 7) we have i < j.) The probability that species j feeds on species
i1is 0if j < i. If i < j, then j feeds on i with propabiliby p = p(S), i.e. with
a probability between 0 and 1 that depends on S, and does not feed on i with
probability ¢ = 1 — p, independently for all 1 < i < j < S. Unless a contrary
assumption is explicitly given, it will be assumed that for some finite positive
real number ¢ < S, p = ¢/S, where ¢ is a constant independent of S.

All numerical predictions of the cascade model depend on the values of the
model’s two parameters ¢ and S. These two parameters, in turn, may be esti-
mated from only two observations: the observed number, L', of links and the
observed number, ', of species.
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4. Frequency Distribution of Chain Length in Finite Webs; Testing Fit

As usual, E(.) denotes the expectation (or mean) of the random variable enclosed
in parentheses. According to the cascade model, with probability p of a random
link, the expected number of n-chains in a web with S species is

& k-1
E(Ca)=p"¢° 1) (S F) (n_1>q'k, n=12..5-1.

k=n

Proof. There is an n-chain going upward from vertex (species) i to vertex j if
and only if: (a),1 <i< S —n; (b),i+n < j<S;(c), all nlinks on one of the
(’ = 1) possible walks of length n from ¢ to j are present; (d), ¢ is basal, i.e. no
link is present from one of the i — 1 vertices below i to #; and (e), j is top, i.e.
no link is present from j to one of the § — j vertices above Jj- Therefore

S-n
'_'__1 i o
Cn)-z Z (an_l )pnqt 1qSJ_

i=1 j=i+n
Now
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s S-15-k
-1
BC) =Y Y (R1]) 0
k=n i=1
= k-1
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Figure I11.4.1, which we discuss in more detail below, plots E(Cy) as a func-
tion of n for parameter values that are typical of the webs in the sample of 62
webs analysed in Chaps. I11.2-3.

This analysis leaves open a question concerning dependence, which we will
answer roughly by numerical simulations of the cascade model. For typical webs,
is there enough dependence between the number of chains of one length and the
number of chains of another length to affect what statistical test we use to
evaluate the goodness of fit between the observed and the predicted frequency
distributions of chain length? In the cascade model of a web with S species, for
any two different positive integers m and n, 1 < m #n < § -1, if C,, and
Ch, the (random) numbers of chains of length m and n, were independent, then
we might measure the goodness of fit of the observed to the expected frequency
distributions of chain lengths by Pearson’s x2 statistic. However, if Cp, and Ch,
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number of chains

0 1 1 3
1 3 5 7 9

chain length

Figure III.4.1. Theoretically expected number (—) of chains of length 1 to 9 in a web of
S = 17 species, according to the cascade model with ¢ = 3.75, sample mean number (o) of
chains of each length in 100 simulations of the cascade model, and sample mean plus one
sample standard deviation (0) in the number of chains of each length. No chains with more
than nine links occurred in the simulations; the expected total number of such chains per
simulation is 0.003

m # n, were not independent, then the tabulated probability distribution of x2
would bear no relation to the actual probability distribution of the computed
x? statistic. In the case of dependence, it would be necessary to compute the
correct probability distribution or find another way to measure goodness of fit.

To answer this question, we chose S = 17 as a typical number of species,
because the mean number of species per web in the 62 webs analysed in Chaps.
II1.2-3 is 16.7. We chose ¢ = 3.75, near the observed estimate of 3.71, so that the
expected number of links per web would be 30, near the observed mean in the
62 webs of 30.95 links per web. Given these two parameters, we generated 100
random webs according to the cascade model and recorded various statistics.

The mean number, averaged over the 100 simulated webs, of chains of each
length is plotted in Fig.II1.4.1 along with the theoretically expected number
derived above. The excellent agreement serves as a check both on the simulation
and on the theoretical derivation. Also plotted in Fig. II1.4.11is the mean number
plus one sample standard deviation in the number of chains of each length.

To investigate dependence among the numbers of chains of each length, we
computed the dispersion matrix or variance-covariance matrix of the simulated
random variables {Cy,n = 1,2,...,9}. (No chains of length greater than nine
occurred.)
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Table II1.4.1. Dispersion or variance-covariance matrix of the numbers of chains of each
length 1,2,...,9 in 100 simulations of the cascade model with S = 17 and ¢ = 3.75. (For
example, the sample covariance of C3 and Cy was 19.85. No chains of length greater than 9
occurred)

chain chain length

length 1 2 3 4 5 6 7 8 9
1 8.08 242 -574 -808 -583 -385 -161 -0.58 —0.10
2 242 11.87 187 -1.90 -3.07 -339 -242 -114 -0.28
3 ~5.74 1.87 2682 19.85  16.19 7.96 128 026 -0.14
4 808 -1.90 19.85 3264 2802 16.16 5.29 1.12 0.06
5 -5.83 -3.07 1619 2802 3213  20.00 8.31 2.49 0.37
6 -385 -3.39 796 1616 2000 17.70  10.26 414 0.72
7 -1.61  -2.42 1.28 5.29 831  10.26 8.52 3.98 0.80
8 -0.58 -1.14 -0.26 1.12 2.49 4.14 3.98 2.12 0.44
9 -0.10 -0.28 -0.14 0.06 0.37 0.72 0.80 0.44 0.10

Table II1.4.1 gives the dispersion matrix. In general, the numbers of chains
of similar length appear to be positively correlated, while the numbers of very
short chains are negatively correlated with the numbers of very long chains.

To test whether {Cpn, n = 1,2,...,9} could be treated as independent, we
applied a test for independence given by Kendall & Stuart (1968, p.271). If the
p x p dispersion matrix D (for p random variables) has diagonal elements d;;
and determinant det D and is based on a sample of N observations, then the
test statistic

N

P 3
—2(1 = [2p + 11)/[6n]) In (det D/ H d,-,-)

i=1

has approximately the distribution of x? with p(p — 1)/2 degrees of freedom.
For the dispersion matrix in Table II1.4.1, p = 9, N = 100, and we obtain a
test statistic of nearly 1050 with 36 degrees of freedom. The test statistic is so
large that it decisively rejects the null hypothesis that {Cr, n = 1,2,...,9} are
independent.

We therefore measure the goodness of fit of the predicted frequencies E(Cy,) to
the observed frequencies, for each web separately, by a Monte Carlo procedure.
For brevity, let E, = E(Cy) be the expected number of chains of length n
according to the cascade model and Dy, the observed number in a given web.
(We reserve Cy, for the random variable that denotes the number of n-chains
in the cascade model.) If M (for maximum) is the length of the longest chain
observed in the given web, we take as data the vector

D = (Dy,...,Dp,0),

where the final 0 is the total observed frequency of chains of all lengths greater
than M (namely, none). We take as our theoretical predictions the vector of
expectations computed using the values of S and c¢ estimated by the iterative
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procedure in the appendix of Chap. I11.3:

S-1
E= (El,...,EM, > E,,) .

h=M+1

Table I11.4.2 gives D and E for all 113 webs analysed here; and shows that the
sum of the expected number of chains of each length, i.e. the expected total
number of chains, does not, in general, equal the sum of the observed number of
chains of each length, i.e. the observed total number of chains. The values of the
parameters ¢ and S used to compute E match the expected with the observed
numbers of links, but these links can be arranged to yield widely varying numbers
of chains.

Table III.4.2. Species, links, and numbers of chains of each length observed in 113 webs,
and the cascade model's estimated parameters S, c, and expected numbers of chains of each
length. Web numbers are identified in Chap. IV.

(Under ‘S’, the upper number for each web is the observed number of species, the lower number
the estimated value of the parameter S. Under ‘L’, the upper number is the observed number
of links, the lower number the estimated value of the parameter c. Under the number of chains
of each length, the upper number is the observed number, while the lower number is the
predicted number. The last positive predicted number is the number predicted for all chains
of that length and longer) -

web number of chains of length

number S L 1 2 3 4 5 6 7 8 9 10 >10
1 8 14 0 2 3 3 0 0 0 0 0 0 0
1 81 4.0 1.9 4.0 38 20 07 00 00 00 0.0 0.0 0.0
2 14 22 0 4 10 0 0 0 0 0 V] 4] 0
2 145 33 3.7 6.1 53 48 00 00 00 00 0.0 0.0 0.0
3 24 34 1 19 10 0 0 0 0 0 0 0 0
3 255 28 71 9.4 74 65 00 00 00 00 0.0 0.0 0.0
4 13 26 0 7 10 2 0 (1] 0 1] 0 0 0
4 131 43 2.9 7.1 87 67 55 00 00 00 00 0.0 0.0
5 6 5 0 3 0 0 0 0 0 0 0 0 0
5 81 14 24 1.1 03 00 00 00 00 00 00 0. 0.0
6 25 43 1 12 8 18 18 3 0 0 0 0 0
6 25,7 35 63 11.7 121 87 47 20 09 00 00 0.0 0.0
7 18 30 1 5 16 2 0 0 0 0 0 0 0
7 185 34 4.6 8.2 80 53 38 00 00 00 00 0.0 0.0
8 15 25 5 6 12 2 0 1] 0 0 0 (4] 0
8 154 3.5 39 6.9 67 42 27 00 00 00 0.0 0.0 0.0
9 9 13 0 1 6 0 0 0 0 0 0 0 0
9 93 31 25 3.7 27 15 00 00 00 00 0.0 0. 0.0
10 3 2 0 1 0 0 0 0 0 0 0 0 0
10 30 20 11 0.4 60 00 00 00 00 00 0.0 0.0 0.0
11 5 4 0 2 0 0 0 0 0 0 0 0 0
11 69 14 18 0.7 02 00 00 00 00 00 00 0.0 0.0
12 9 13 0 6 2 0 0 0 0 0 0 0 0
12 93 31 25 3.7 27 15 00 00 00 00 0.0 0.0 0
13 9 14 1] 4 4 0 0 1] 0 0 0 0 0
13 9.2 34 24 4.0 33 21 00 00 00 00 0.0 0.0 0.0
14 8 10 1 1 3 0 0 ] 0 0 0 0 0

14 85 2.7 24 2.7 1.5 06 00 00 00 00 0.0 0. 0.0
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Table II1.4.2. (Continued)

web number of chains of length

number S L 1 2 3 4 5 6 7 8 9 10 >10
15 7 7 0 2 1 0 0 0 0 0 0 0 0
15 8.1 2.0 2.5 1.8 0.7 0.2 0.0 0.0 00 0.0 0.0 0. 0.0
16 14 20 1 10 3 0 0 0 0 0 0 0 0
16 14.7 29 3.9 5.4 4.1 3.1 0.0 0.0 00 00 0.0 0.0 0.0
17 14 23 0 2 9 9 3 0 0 0 0 0 0
17 144 34 3.6 6.4 6.0 3.7 1.6 0.6 00 0.0 00 0.0 0.0
18 23 35 13 10 5 4 0 0 0 0 0 0 0
18 241 3.0 6.5 9.9 8.6 5.2 3.6 0.0 00 0.0 0.0 0.0 0.0
19 17 32 0 4 17 4 0 0 0 0 0 0 0
19 17.3 39 4.0 8.7 10.1 7.7 6.7 0.0 00 0.0 00 0. 0.0
20 19 30 0 5 9 7 2 0 0 0 0 0 0
20 19.7 3.2 5.1 8.2 7.4 4.6 2.1 1.0 00 0.0 00 0. 0.0
21 9 20 0 2 8 15 16 10 3 0 0 0 0
21 9.0 5.0 1.8 5.4 7.4 5.7 2.7 0.8 0.1 00 00 0.0 0.0
22 28 58 4 13 34 36 19 6 2 0 0 0 0
22 283 4.2 6.2 153 206 189 13.0 7.0 31 16 0.0 0.0 0.0
23 15 27 1 11 7 1 0 0 0 0 0 0 0
23 153 3.8 3.7 7.4 8.0 5.6 4.2 0.0 00 00 0.0 0.0 0.0
24 12 18 3 5 12 4 0 0 0 0 0 0 0
24 124 3.1 3.3 5.0 4.0 2.1 1.0 0.0 00 00 0.0 0. 0.0
25 24 37 3 16 5 1 0 0 0 0 0 0 0
25 25.1 3.1 6.8 104 9.3 5.8 4.1 0.0 00 00 0.0 0.0 0.0
26 32 56 7 16 16 10 5 2 0 0 0 0 0
26 329 3.5 8.0 15.1 16.2 12.2 6.9 3.2 1.7 00 0.0 0.0 0.0
27 22 39 0 12 28 7 0 0 0 0 0 0 0
27 22.5 3.6 55 10.6 114 8.4 7.4 0.0 00 0.0 0.0 0. 0.0
28 32 35 6 15 5 0 0 0 0 0 0 0 0
28 375 19 11.2 9.2 4.9 2.6 0.0 0.0 00 00 00 0. 0.0
29 16 22 1 5 8 6 2 0 0 0 0 0 0
29 17.0 2.7 4.9 6.3 4.6 2.3 0.8 0.3 00 0.0 00 0.0 0.0
30 14 32 0 0 5 21 39 25 4 0 0 0 0
30 14.1 49 2.8 84 124 11.6 7.5 3.5 1.2 04 0.0 0. 0.0
31 14 51 0 9 39 51 29 7 0 0 0 0 0
31 140 7.8 1.8 104 284 47.2 535 434 418 0.0 0.0 0.0 0.0
32 14 52 0 11 40 51 29 7 0 0 0 0 0
32 140 8.0 1.7 105 29.2 499 578 480 478 00 0.0 0.0 0.0
33 29 48 14 20 7 2 0 0 0 0 0 0 0
33 30.0 3.3 78 134 133 9.3 79 0.0 00 0.0 0.0 0.0 0.0
34 12 27 1 22 18 4 0 0 0 0 0 0 0
34 12.0 4.9 2.4 7.1 10.2 9.0 8.3 0.0 00 0.0 00 0. 0.0
35 13 36 1 33 36 12 0 0 0 0 0 0 0
35 13.0 6.0 2.2 8.7 16.5 19.2 28.5 0.0 00 00 00 0. 0.0
36 19 35 14 13 11 3 0 0 0 0 0 0 0
36 19.3 3.8 4.6 9.5 10.7 8.1 7.2 0.0 60 0.0 00 0.0 0.0
37 23 38 0 21 23 8 0 0 0 0 0 0 0
37 238 33 6.0 103 10.1 6.8 5.3 0.0 00 00 0.0 0.0 0.0
38 31 95 20 55 34 0 0 0 0 0 0 0 0
38 31.0 6.3 4.9 21.2 47.6 3140 0.0 0.0 00 00 0.0 0.0 0.0
39 3 70 19 34 7 0 0 0 0 0 0 0 0
39 334 4.3 72 183 255 59.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0
40 11 15 4 10 2 0 0 0 0 0 0 (4] 0
40 11.6 2.8 3.2 4.1 2.8 1.7 0.0 0.0 00 0.0 0.0 0.0 0.0
41 18 49 0 0 5 18 55 86 59 14 0 0 (1]
41 180 5.8 3.1 11.8 223 271 235 154 78 31 13 0.0 0.0
42 15 36 2 3 17 37 56 43 15 2 0 0 0
42 15.0 5.1 2.9 9.2 146 14.7 104 5.4 21 06 0.2 0.0 0.0
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Table IIL.4.2. (Continued)
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web number of chains of length
number S L 1 2 3 4 5 6 7 8 9 10 >10
43 20 38 0 16 27 16 4 0 0 0 0 0 0
43 203 3.9 4.7 103 121 9.6 56 37 00 00 00 00 0.0
44 12 29 0 3 19 19 7 0 0 0 0 0 0
44 120 53 23 75 118 113 73 46 00 00 00 00 0.
45 11 20 1 10 3 0 0 0 0 0 0 0 0
45 111 39 26 56 59 6.1 00 00 00 00 0.0 0.0 0.
46 19 68 3 12 59 85 84 45 13 2 0 0 0
46 190 76 25 140 375 642 778 709 501 28.0 188 0.0 0.0
47 27 50 0 1 10 22 25 0 0 0 0 0 0
47 276 3.8 6.5 135 155 123 74 54 00 00 00 00 0.
48 13 20 0 2 7 8 2 0 0 0 0 0 0
48 134 3.2 35 55 47 2.6 10 03 00 00 00 00 0.0
49 12 20 0 8 7 1 0 0 0 0 0 0 0
49 123 36 3.1 56 53 31 1.7 00 00 00 00 00 0.0
50 14 23 0 10 8 0 0 0 0 0 0 0 0
50 144 34 36 64 60 59 00 00 00 00 00 00 0.
51 25 46 0 4 17 9 2 0 0 0 0 0 0
51 255 3.8 6.0 124 14.2 11.1 65 45 00 00 00 00 0.
52 20 32 2 19 4 0 0 0 0 0 0 0 0
52 20.7 32 53 87 8.1 8.7 00 00 00 00 0.0 00 0.0
53 22 31 1 19 0 0 0 0 0 0 0 0 0
53 234 28 65 86 124 00 00 00 00 00 00 00 0.0
54 14 20 1 4 6 1 0 0 0 0 0 0 0
54 147 29 39 54 4.1 2.1 10 00 00 00 00 00 0.
55 12 18 0 7 6 0 0 0 0 0 0 0 0
55 124 31 33 50 40 30 00 00 00 00 00 00 0.
56 10 14 0 7 2 0 0 0 o 0 0 0 0
56 104 30 29 39 27 186 00 00 00 00 00 00 00
57 9 19 0 5 14 10 2 0 0 0 0 0 0
57 90 47 19 52 66 4.8 21 07 00 00 00 00 0.
58 17 21 1 3 3 2 3 4 2 0 0 (1] 0
58 18.7 24 54 5.7 3.5 1.5 0.5 0.1 0.0 0.0 0.0 0.0 0.0
59 29 61 o 34 17 1 ] 0 0 0 0 0 0
59 293 43 63 160 22.0 206 28.2 0.0 0.0 00 0.0 0.0 0.0
60 33 69 1 54 33 0 0 0 0 0 0 0 0
60 334 43 73 18.1 247 56.1 00 00 00 00 0.0 00 0.
61 8 10 2 3 2 0 0 0 0 0 0 0 0
61 85 2.7 24 2.7 1.5 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0
62 1 12 1 0 3 2 0 0 0 0 0 0 0
62 126 2.1 3.7 31 1.5 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0
63 18 75 2 50 131 100 0 0 0 0 o 0 0
63 180 88 20 139 451 919 5168 00 00 00 00 0.0 0.0
64 19 28 7 14 0 0 0 0 0 0 0 0 0
64 200 3.0 53 76 11.7 0.0 00 00 00 00 0.0 00 0.0
65 13 25 3 17 0 0 0 0 0 0 0 0 0
65 131 41 3.0 69 183 0.0 00 00 00 00 00 00 0.
66 10 18 0 4 8 3 0 0 0 0 0 0 0
66 10.1 40 24 5.1 52 3.2 1.7 00 00 00 00 00 0.0
67 21 62 1 8 30 48 30 6 0 0 0 0 0
67 210 6.2 34 142 301 413 409 309 322 00 00 00 0.0
68 22 32 4 8 20 3 0 0 0 0 0 0 0
68 23.2 29 64 90 73 4.1 26 00 00 00 00 00 0.
69 29 73 6 4 37 36 19 2 0 0 0 0 1]
69 291 5.2 5.5 18.0 313 36.6 319 21.8 208 0.0 00 0.0 0.0
70 14 28 0 19 18 0 0 0 0 0 0 0 0
70 141 43 31 76 94 138 00 00 00 00 00 00 00
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Table II1.4.2. (Continued)

web number of chains of length

number S L 1 2 3 4 5 6 7 8 9 10 >10
71 16 32 0 1 7 17 28 25 11 0 0 0 0
71 16.2 4.2 3.6 8.6 108 8.8 5.1 22 0.7 02 0.0 0.0 0.0
72 17 32 0 3 6 19 10 0 0 0 0 0 0
72 173 39 4.0 8.7 101 7.7 4.2 25 00 00 00 0. 0.0
73 10 15 2 6 8 0 0 0 0 0 0 0 0
73 103 3.2 2.7 4.2 3.3 2.2 0.0 00 00 0.0 0.0 0.0 0.0
74 21 36 2 14 8 2 0 0 0 0 0 0 0
74 216 3.5 53 9.8 10.1 7.0 5.7 00 00 0.0 0.0 0.0 0.0
75 9 14 1 3 6 2 0 0 0 0 0 0 0
75 9.2 34 24 4.0 3.3 1.6 06 00 00 0.0 00 0. 0.0
76 14 17 1 4 5 2 0 0 0 0 0 0 0
76 154 2.4 45 4.6 2.8 1.1 0.4 00 0.0 0.0 0.0 0.0 0.0
77 13 24 1 3 9 13 6 0 0 0 0 0 0
77 13.2 39 31 6.6 7.3 5.1 2.5 11 00 0.0 00 0.0 0.0
78 16 27 0 5 8 6 1 0 0 0 0 0 0
78 164 3.5 4.1 7.4 7.3 4.8 2.2 11 00 0.0 0.0 00 0.0
79 21 29 0 4 8 7 3 0 0 0 0 0 0
79 224 2.7 63 8.0 6.1 3.2 1.2 05 00 00 0.0 0.0 0.0
80 27 70 3 16 18 33 8 0 0 0 0 0 0
80 271 54 49 17.0 30.7 370 330 453 00 00 0.0 0.0 0.0
81 12 19 0 6 7 2 0 0 0 0 0 0 0
81 123 34 3.2 5.3 4.6 2.6 1.3 00 00 00 0.0 0.0 0.0
82 10 14 0 0 3 3 1 0 0 0 0 0 0
82 104 3.0 29 3.9 2.7 1.2 0.3 01 00 00 0.0 0.0 0.0
83 25 67 2 31 25 2 0 0 0 0 0 0 0
83 251 56 44 161 30.2 376 829 00 00 00 0.0 0.0 0.0
84 12 23 0 4 10 11 6 0 0 0 0 0 0
84 12.1 41 28 6.4 7.3 5.2 2.5 11 00 00 00 0.0 0.
85 27 49 2 6 27 35 13 0 0 0 0 0 0
85 276 3.7 6.6 13.2 149 11.5 6.7 47 00 00 00 00 0.
86 16 37 0 0 13 43 16 2 0 0 0 0 0
86 16.1 49 3.2 9.6 14.5 14.2 9.8 50 2.7 00 0.0 0. 0.0
87 11 17 1 5 11 5 0 0 0 0 0 0 0
87 11.3 33 3.0 4.8 4.0 2.1 0.9 00 00 00 0.0 00 0.0
88 16 42 3 59 0 0 0 0 0 0 0 0 0
88 160 56 2.8 103 733 0.0 0.0 00 0.0 0.0 0.0 0.0 0.0
89 18 32 0 6 18 3 0 0 0 0 0 0 0
89 184 3.7 44 8.8 9.4 6.7 5.4 00 0.0 00 0.0 0.0 0.0
90 2 39 6 32 0 0 0 0 0 0 0 0 0
90 225 36 55 106 27.2 0.0 0.0 00 00 00 0.0 0.0 0.0
91 10 13 0 2 4 2 0 0 0 0 0 0 0
91 106 2.7 3.0 3.5 2.2 0.9 0.3 00 00 00 0.0 0.0 0.0
92 18 18 3 5 3 0 0 0 0 0 0 0 0
92 220 1.7 6.7 4.6 2.0 0.8 0.0 00 0.0 00 0.0 0.0 0.0
93 26 70 1 51 8 0 0 0 0 0 0 0 0
93 26.1 5.6 46 168 31.7 1303 0.0 00 0.0 00 0.0 0.0 0.0
94 12 19 1 4 8 6 4 0 0 0 0 0 0
94 123 34 3.2 5.3 4.6 2.6 1.0 03 00 0.0 0.0 0.0 0.0
95 10 12 1 3 3 1 0 0 0 0 0 0 0
95 109 24 3.0 3.1 1.7 0.6 0.2 00 00 0.0 0.0 0.0 0.0
96 9 16 1 11 0 0 0 0 0 0 0 0 0
96 9.1 4.0 2.2 4.6 8.3 0.0 0.0 00 00 0.0 0.0 0.0 0.0
97 11 17 1 14 1 0 0 0 0 0 0 0 0
97 11.3 33 3.0 4.8 4.0 3.0 0.0 00 00 0.0 0.0 0.0 0.0
98 17 39 1 11 21 35 10 0 0 0 0 0 0
98 171 49 34 101 152 149 104 85 00 00 0.0 0.0 0.0
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Table II1.4.2. (Continued)

web number of chains of length

number S L 1 2 3 4 5 6 7 8 9 10 >10
99 48 138 14 115 98 21 0 0 0 0 0 0 0
99 48.1 5.9 8.1 31.8 66.1 93.7 315.8 0.0 0.0 0.0 0.0 00 00
100 22 59 3 27 28 28 16 3 0 0 0 0 0
100 220 5.6 39 14.2 26.6 32.7 29.2 20.0 18.2 0.0 0.0 0.0 0.0
101 6 5 1 2 0 0 0 0 0 0 0 0 0
101 81 14 24 11 03 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0
102 9 27 O 7 19 24 16 6 1 0 0 0 0
102 90 6.7 1.3 63 13.0 149 103 4.3 1.0 0.1 0.0 0.0 0.0
103 23 133 1 46 260 602 769 856 621 285 88 12 0
103 23.0 12.1 1.9 19.2 92.7 284.8 624.1 1036.8 1355.1 1427.1 1230.6 877.9 937.4
104 27 62 2 21 17 22 7 0 0 0 0 0 0
104 27.2 4.7 5.5 158 244 254 196 21.2 0.0 0.0 0.0 0.0 0.0
105 10 22 O 3 6 11 4 0 0 0 0 0 0
105 10.0 49 2.0 59 8.1 6.5 3.3 14 0.0 0.0 00 0.0 0.0
106 35 73 7 44 22 6 2 0 0 0 0 0 0
106 354 4.2 7.7 19.1 26.1 24.7 176 17.4 0.0 0.0 0.0 0.0 0.0
107 10 14 1 2 5 0 0 0 0 0 0 0 0
107 104 3.0 29 39 27 1.6 0.0 0.0 0.0 0.0 0.0 00 0.0
108 14 20 0 11 4 0 0 0 0 0 0 0 (1]
108 147 29 39 54 41 3.1 0.0 0.0 0.0 0.0 00 0.0 0.0
109 21 57 0 18 40 10 0 0 0 0 0 0 0
109 21.0 5.7 3.6 13.7 259 32.1 66.4 0.0 0.0 0.0 00 0.0 0.
110 13 23 3 7 5 0 0 [4] 0 0 1] 0 0
110 13.2 38 32 64 6.6 7.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
111 19 36 2 15 17 0 0 0 0 0 0 0 0
111 193 39 45 98 114 173 0.0 0.0 0.0 0.0 00 00 0.0
112 14 17 3 8 1 0 0 0 0 0 0 0 0
112 154 24 45 4.6 28 1.5 0.0 0.0 0.0 0.0 00 00 0.0
113 11 12 1 6 2 0 0 0 0 0 0 0 0

113 126 21 3.7 31 15 06 00 0.0 0.0 0.0 00 00 00

We compute the difference between data and predictions by one of two mea-
sures: the sum of squared differences,

M+1
dl(D’E) = E (Dh - Eh)2 )
h=1

or a Pearson x2 measure,

M+1

dy(D,E)= Y (Dy — Ey)*/Ep .
h=1

Large values of these measures of difference confound two distinct kinds of dis-
crepancies between D and E: differences in the expected and observed total
numbers of chains, and differences in the expected and observed proportions of
all chains that are of given lengths. However, both measures are useful in that
low values of either measure signify good agreement between observation and
expectation in both total numbers of chains and proportions of each length.
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low values of either measure signify good agreement between observation and
expectation in both total numbers of chains and proportions of each length.
To measure how likely the difference d,,, m = 1,2, is to arise by chance alone
according to the cascade model, we generate random strictly upper triangular
adjacency matrices according to the cascade model. For S, the size of the matrix,
we use the integer part of the value of S obtained by the iterative procedure in
the appendix of Chap. ITL.3. In most but not all cases, the size of the matrix is
identical to the observed number of species in the web. For ¢, we use exactly the
value of ¢ obtained by the iterative procedure in the appendix of Chap. II1.3.
Rounded values of S and ¢ for each web are given in Table I11.4.2. For each
randomly generated adjacency matrix, we compute the frequency distribution of
chain lengths (see the appendix of this chapter). We then combine the frequencies
of all chains longer than M and compute the difference between the resulting

(M + 1)-vector of simulated frequencies and E. Call this difference d,(:,) for the
tth simulated web.

We take our null hypothesis to be that the difference, d,,, between the ob-
served and expected frequency distributions is greater than 95% of randomly

chosen values of dg,?, i.e. that the cascade model provides a description of ob-
served chain lengths that is poor enough to reject at the 5% level of significance.
If our simulations show that a sufficiently small proportion of the simulated dif-

ferences satisfy ds,';) < dp,, then we can reject the null hypothesis and conclude
that the cascade model could not be rejected at the 5% level, and hence describes
the data on chain lengths.

For each observed web, we test the goodness of fit between E and D as
follows. We generate 20 random webs according to the cascade model and find

the number, Xq0, of those simulated webs for which ds,;) < dy,. We then consult a
table (previously calculated and stored) of the binomial cumulative distribution
function with parameters N = 20 and p' = 0.95 to find the probability, P,
of X0 or fewer successes. If this probability P is less than or equal to 0.01,
we reject the null hypothesis that the difference d,;, between the observed and
expected frequency distributions is gréater than or equal to 95% of randomly
chosen values of ds,:) and accept E as describing D. In this case, we then go on
to the next observed web. However, if P > 0.01, we generate another 20 random
webs according to the cascade model and find the cumulative number, X49, of

the 40 simulated webs for which d,(-,;) < d;,. We then consult the table of the
cumulative binomial distribution with parameters N = 40 and p’ = 0.95 to find
the probability P of X4o or fewer successes. Once again, if P < 0.01, we stop
and accept the cascade model. If P > 0.01, we continue to generate additional
batches of 20 random webs, up to a total of 100 random webs, until either we
find a P < 0.01 and accept the cascade model or we are left with X00/100 as

the estimated fraction of random webs that satisfy d,(,;) <dm.

For every web, we record the number, N of simulated webs generated, the
number, X, of ‘successes’ among the simulated webs, and either the probability
P (provided P < 0.01) of X}y or fewer successes from a binomial distribution
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new random webs for each observed web, with ds, to see whether the choice of
difference measure affects our conclusions.

This procedure tests the goodness of fit of E to D for an observed individual
web without making any assumption that D for one observed web is independent
of D for another observed web.

5. The Original Batch of 62 Webs

By using the sum-of-squares measure, d, of difference between observed and
predicted frequency distributions, we find that 40 of 62 observed webs (65%)
reject at the 0.01 significance level the null hypothesis that the cascade model’s
expectations fit the data worse than 95% of random webs generated by the
cascade model. For brevity, we say that the cascade model describes the ob-
served frequency distributions of chain lengths well in 40 of 62 webs. In 11 of
62 webs (18%), more than 95% of the generated random webs had chain length
distributions that were closer to expectation than is the observed chain length
distribution. For brevity, we say that the cascade model describes badly the ob-
served frequency distribution of chain lengths in 11 of 62 webs (serial numbers
10, 21, 30, 37, 41, 42, 47, 53, 58, 59, 60). For the remaining 11 (= 62 — 40 — 11)
webs, we say that the cascade model describes chain lengths moderately well
(serial numbers 3, 5, 6, 9, 34, 35, 38, 39, 43, 52, 62). Figure II1.4.2 plots the
frequency histogram of Xy /N for the 62 webs, where (as above) N is the num-
ber of random webs generated for a given web and X is the number of these
random webs with a chain length distribution closer to the theoretical expec-
tations than is the observed chain length distribution. Evidently a majority of
webs have X /N greater than or equal to 0.6.

According to the x? measure, dz, of difference between observed and pre-
dicted frequency distributions, 43 of 62 observed webs (69%) have frequency
distributions that are described well by the cascade model, and 7 have frequency
distributions that are described moderately well (serial numbers 3, 6, 9, 27, 47,
52, 59). The cascade model describes badly the observed frequency distribution
of chain lengths in 12 of 62 webs (serial numbers 10, 21, 30, 35, 37, 38, 39, 41,
42, 53, 58, 60). In this batch of webs, the measure of difference chosen makes
very little difference to the overall performance of the cascade model.

The frequency distributions of chain lengths that are described badly by the
cascade model are of at least three kinds. First, in some webs, the number of
chains is so small that it is not clear whether to take seriously any measure of
fit (e.g. web 10 has only one chain of length 2). Second, in some webs, most of
the observed chains are shorter than most of the predicted chains (e.g. webs 53,
60). Third, in some webs, most of the observed chains are longer than most of
the predicted chains (e.g. webs 21, 30, 41, 42, 58).

We conclude that, when webs are considered one at a time, the cascade model
predicts the observed frequency distributions of chain length well or moderately
well in 50 or 51 of the 62 webs in our original batch, although no information
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Figure IIL.4.2. Frequency histogram of X 5 /N for 62 webs previously studied: the number of
webs with X 5 /N in the interval [0.17,0.1(i + 1)), for i = 0,1, 2, ...,10. Here N is the number
of random webs generated for each real web and Xy is the number of those random webs with

chain length distributions closer (using d;) to that expected from the cascade model than is
that of the real web

about chain length was used in developing the cascade model or in estimating
its parameters.

6. A Fresh Batch of 51 Webs

The finding that 11 or 12 of the 62 webs in the first batch have frequency
distributions of chain length that the cascade model describes badly shows that
there is no logical necessity for the cascade model to describe well, or moderately
well, the chain lengths of an individual web. However, such bad fits do not
exclude the possibility that the cascade model describes chain lengths, at least
in part, because the cascade model also describes, for most webs, the other
major features of web structure considered in Chaps. I11.2-3. One of us therefore
assembled and edited a fresh batch of 51 community webs (described in detail in
Chap. IV) and extracted, for each web, the observed number, S/, of species, the
observed number, L', of links, and the observed frequencies Dy, n =1,..., M

)
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of chain length. These webs provide a strong test of the ability of the cascade
model to describe new observations.

6.1 Checking the Assumptions of the Cascade Model

One central structural assumption of the cascade model is that species are ar-
ranged in a hierarchy so that (ignoring cannibalism, as in Chap. II1.2) cycles
should be absent. The 51 new webs contain only one cycle of length 2 (in the web
numbered 100 in the serial numbering of Briand) and no longer cycles. Cycles
are rare enough that the assumption of a hierarchy is a reasonable assumption.

A second structural assumption of the cascade model is that the probability
of a link from one species to another above it in the hierarchy varies inversely
as the number of species in the web. This assumption implies that the total
number of links in a web should be directly proportional to the total number
of species: this is the species-link scaling law. Figure I1I11.4.3 plots the number,
L', of observed links as a function of the number, S, of observed species for
the 51 webs in the new batch. Apart from two clear outliers with 75 and 133
links (webs numbered 63 and 103), the points appear to fall along a straight line
through the origin. Web 63 is an extended version of the River Rheidol subweb
depicted by Jones (1950). High connectance aside, nothing special appears to
distinguish this web from the others. Web 103, one of three webs in the collection
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of 113 provided by Petipa (1979), describes a tropical plankton community in
the Pacific Ocean. This web contains the longest chain, with ten links, in the
entire collection of 113 webs.

The cascade model implies that the variance of the number, L, of links
is asymptotically (for S considerably greater than c¢) proportional to S, and
Fig.1I1.4.3 makes it plausible that the variance of the number, L', of observed
links is proportional to the number, ', of observed species. When this is true
(see, for example, Snedecor & Cochran 1967, p. 168), the least squares estimate
of the slope of the line through the origin is the ratio of the total number of links
to the total number of species. The standard error of the slope may be estimated
by a formula, also given by Snedecor & Cochran.

In the 51 webs of this batch, there are 1878 links and 874 species, giving
an estimated slope of 2.1487 with an estimated standard error of 0.1220. If
webs 63 and 103 are omitted, there remain 1670 links and 833 species, giving
an estimated slope of 2.0048 with an estimated standard error of 0.0801. For
comparison, Cohen & Briand (Chap. I1.3) report, in the first batch of 62 webs,
that L’ is approximately proportional to S’ with slope 1.8559 and estimated
standard error 0.0740. Figure I11.4.4 plots links, L', versus species, S’, for all 113
(= 62451) webs. The lack of marked difference between the slopes 1.86+0.07 for
the old batch of 62 webs and 2.00 £ 0.08 for the new batch of 49 webs (51 minus
the two outliers), and the lack of clear separation between the old and the new
sets of data points in Fig.II1.4.4, suggest that underlying both batches of webs
is a common direct proportionality between numbers of species and numbers of
links, with a constant of proportionality near 2. Combining all 113 webs gives
1908 species, 3797 links and an estimated slope of 1.9900+0.0697. Without webs
63 and 103, the slope is 1.9223 + 0.0546.

Cohen & Briand (Chap. II.3) remark that the 62 webs available to them
do not exclude a slightly nonlinear relation, as noted by Briand (Chap. IL.5),
between species and links, i.e. a relation of the form E(L) = aS? with b slightly
different from 1. They find that a graph of L3/ against S’ looks very nearly
linear through the origin. The same caveat and observation hold here. The use
of the ordinary linear least squares method to regress log L’ on log S’ for all 113
webs gives the allometric model L = 0.671351-35%9+¢ where ¢ is the error term,
or (taking 1/1.3559 ~ %) L3/4 proportional to S. The parameters obtained by
this procedure are not the least squares estimates for the nonlinear allometric
model in the original scales of L and S. Scatter plots (not shown) of the residuals
(observed links L’ minus predicted) as a function of S’ show very little difference
between the fitted allometric model and the linear model L = 1.9900S + ¢.
The sum (rounded to three significant figures) of the absolute residuals of the
allometric model, namely 897, is smaller than the corresponding sum for the
linear model, namely 999. The sum of the squared residuals of the allometric
model (20 000) is also smaller than the sum of the squared residuals of the linear
model (21400). The data thus suggest that a relation between E(L) and S that
is mildly nonlinear for the observed range of species may be more precise than a
simple proportionality. The exact relation between E(L) and S deserves further
empirical and theoretical investigation.
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However, taking E(L) as proportional to S does not do serious violence to
the data. Moreover, in this paper, we estimate ¢ independently for each web
rather than assuming c to be constant for all webs. Hence this empirical test of
the cascade model is less sensitive to how many links there are than to how the
links that do occur are connected into chains.

6.2 Testing the Predictions of Chain Length

On the basis of the rarity of cycles and the near-proportionality shown in
Fig.111.4.3, we conclude that the underlying assumptions of the cascade model
are approximately satisfied by (nearly all of) the new batch of webs. As with
the old batch, for each web in the new batch, we estimate the parameters S
and c (given in Table II1.4.2 after rounding), compute the expected frequency
of chains of each length, and measure the goodness of fit between observed and
predicted frequencies by the procedure described in section 4.

From the sum-of-squares measure, dj, of difference between observed and
predicted frequency distributions, we find that the cascade model describes well
36 of 51 observed webs (71%) and moderately well 10 webs (serial numbers 63, 68,
70, 72,77, 85, 86, 93, 96, 103). In 5 of 51 webs (18%), the cascade model describes
the observed frequency distribution of chain lengths badly (serial numbers 65, 71,
88, 90, 97). The outlying webs 63 and 103 are not among these badly described
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Figure II1.4.5. Frequency histogram of Xy /N for 51 webs not previously studied: the number
of webs with X5 /N in the interval [0.14,0.1(s+1)), for{ = 0,1, 2,...,10, Here N is the number
of random webs generated for each real web and X y is the number of those random webs with
chain length distributions closer (using d; ) to that expected from the cascade model than that
of the real web

five webs. Figure I11.4.5 plots the frequency histogram of X /N for the 51 webs,
where (as above) N is the number of random webs generated for a given web
and Xp is the number of these random webs with a chain length distribution
closer to theoretical expectations than is the observed chain length distribution.
As in Fig.1I1.4.2, a majority of the webs have X /N greater than or equal to
0.6.

According to the y? measure, dp, of difference between observed and pre-
dicted frequency distributions, 34 of 51 observed webs (67%) have frequency
distributions of chain length that the cascade model describes well. Twelve webs
have frequency distributions that the cascade model describes moderately well
(serial numbers 63, 65, 68, 70, 72, 77, 86, 87, 96, 97, 99, 106). The cascade model
describes the observed frequency distribution of chain lengths badly in 5 of 51
webs (serial numbers 71, 85, 88, 90, 93). In this batch of webs, as in the first,
which measure of difference we choose makes very little difference to the overall
performance of the cascade model.

As in the original batch of 62 webs, in this new batch sometimes more short
chains are observed than expected (e.g. webs 65, 88, 90) and sometimes more
long chains are observed than expected (e.g. webs 71, 85).

Table II1.4.3 lists, for all 113 webs, the number of random webs generated
and the number of those random webs with chain length distributions closer
to the expected than that of the real web. For the sum-of-squares measure of
difference, dy, all 74 real webs for which fewer than 100 random webs were
generated fitted the cascade model’s predictions well. In addition, webs 48 and
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87, for each of which 100 random webs were generated, also fitted the cascade
model’s predictions well.

We conclude that, considering webs one at a time, the cascade model predicts
the observed frequency distributions of chain length well, or moderately well, in
46 of the 51 webs in a new batch of webs not previously used to calibrate the
model. This success rate is slightly higher than that of the cascade model with
the original batch of 62 webs.

Table II1.4.3. Characteristics of 113 webs (Web numbers are identified in Chap. IV, and
are the same in all previous joint publications of Briand & Cohen. di measures the difference
between observed and predicted frequency distributions of chain length by the sum of squared
differences; da, by a Pearson x? function; see text. N is the number of random webs gener-
ated. X is the number of random webs with frequency distributions of chain length closer to
that predicted theoretically than is the observed distribution. Variability: 0, unclassified; 1,
fluctuating; 2, constant. Dimension: 0, unclassified; 2, two-dimensional; 3, three-dimensional.
Productivity: 0, unclassified; 1, low productivity; 2, high productivity. Man: 0, absent from
web; 1, present in web.)

web dy da variability dimension productivity man
number N X N X

1 20 6 20 10 0 0 0 1
2 40 33 40 33 1 0 0 0
3 100 94 100 92 1 2 0 1]
4 20 5 20 11 1 0 0 0
5 100 92 60 51 0 0 2 0
6 100 94 100 93 1 0 0 1
7 60 50 20 14 0 0 1] 1
8 20 6 20 13 1 0 2 1
9 100 92 100 93 (1] 1] (4] (4]
10 100 100 100 100 1 2 0 0
11 40 33 60 49 1 2 (1] 0
12 20 12 20 12 1 2 0 0
13 20 8 20 12 1 2 0 0
14 20 13 20 11 0 0 1] 0
15 20 14 20 10 1 0 0 0
16 40 30 20 14 1 0 2 0
17 20 14 20 14 0 3 0 0
18 20 7 40 30 0 0 0 1
19 40 31 40 32 1 3 1 0
20 20 13 20 15 0 3 1 0
21 100 99 100 100 0 3 0 0
22 20 11 20 14 1 0 0 0
23 20 14 40 32 1 2 0 0
24 20 14 40 31 1 3 [s] 0
25 40 29 20 15 1 3 0 0
26 20 0 20 0 1 0 0 0
27 60 51 100 94 1 3 2 0
28 40 30 40 33 1 0 0 0
29 40 31 60 51 0 3 1 0
30 100 96 100 99 0 3 1 1
31 20 12 40 28 0 3 0 0
32 20 13 20 13 2 3 0 0
33 60 52 40 32 2 0 [h] 0
34 100 92 40 33 2 2 0 0
35 100 92 100 97 0 2 0 0
36 20 13 80 69 0 0 0 0
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Table IIL4.3. (Continued)

web dy do variability dimension productivity man
number N X N X
37 100 98 100 96 2 0 0 0
38 100 94 100 96 2 0 0 0
39 100 94 100 96 2 0 0 0
40 60 51 40 33 2 3 0 0
41 100 100 100 100 2 3 1 0
42 100 100 100 100 2 3 2 0
43 100 94 80 67 2 3 0 0
44 40 27 20 13 2 0 2 0
45 60 49 20 15 2 2 0 0
46 20 6 20 9 0 3 1 0
47 100 96 100 92 2 0 4] 0
48 100 88 60 52 1 0 0 1
49 20 8 20 13 1 0 0 1
50 20 13 20 15 1 2 0 0
51 20 14 20 13 0 0 0 0
52 100 92 100 91 1 2 0 0
53 100 99 100 96 1 2 0 0
54 20 8 20 6 0 0 0 0
55 20 13 40 30 1 2 2 0
56 60 50 40 31 1 2 0 0
57 60 52 20 15 0 0 2 0
58 100 96 100 100 1 0 0 0
59 100 98 100 95 1 3 0 0
60 100 97 100 99 1 3 0 0
61 20 0 20 1 1 2 1 0
62 100 93 100 84 1 2 1 0
63 100 91 100 93 0 2 0 0
64 60 52 60 52 0 2 0 0
65 100 97 100 93 0 2 0 0
66 20 7 20 6 0 2 0 0
67 40 25 20 11 0 0 0 0
68 100 91 100 91 1 3 0 1
69 20 14 20 8 1 0 0 0
70 100 92 100 92 1 0 0 0
71 100 99 100 99 1 3 0 1
72 100 90 100 95 1 3 0 0
73 20 13 20 15 1 3 0 0
74 20 9 20 9 1 2 0 0
75 20 7 20 6 1 3 0 0
76 20 11 20 10 1 0 1 0
77 100 90 100 89 2 0 0 1
78 20 3 20 8 2 0 2 1
79 40 33 60 48 1 0 0 0
80 20 15 20 12 1 0 0 0
81 20 11 20 9 0 0 1 0
82 20 15 60 51 1 0 0 0
83 60 50 60 51 1 0 1 0
84 20 14 60 50 1 0 0 0
85 100 95 100 7 1 0 2 0
86 100 93 100 94 1 3 0 1
87 100 87 100 93 0 0 1 0
88 100 96 100 98 0 2 0 0
89 60 51 40 30 0 3 ] [1]
90 100 97 100 97 1 2 0 0
91 20 13 40 28 1 3 0 0
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Table III.4.3. (Continued)

web dy da variability dimension productivity man
number N X N X
92 20 12 20 7 0 2 1 0
93 100 93 100 96 1 2 1 0
94 20 15 60 51 1 2 1 0
95 20 7 20 7 1 2 1 0
96 100 94 100 93 1 2 1 0
97 100 96 100 93 1 2 1 (4]
98 60 51 20 14 0 2 1 0
99 60 52 100 93 0 2 1 0
100 20 8 20 12 0 2 1 (1]
101 20 7 20 9 1 0 0 0
102 20 12 20 12 2 3 1 0
103 20 12 40 33 2 3 1 0
104 20 15 20 12 0 2 o 0
105 20 12 20 7 1 2 0 0
106 100 89 100 93 1 2 0 0
107 20 15 20 10 1 2 0 0
108 60 49 60 52 1 2 0 0
109 20 15 40 32 1 2 0 0
110 20 11 20 11 1 2 0 0
111 20 14 40 32 1 2 0 0
112 20 13 20 12 1 0 0 0
113 40 32 20 11 1 0 0 0

7. Does the Cascade Model Predict the Moments of Chain Length?

After examining Table III.4.2 in a previous draft of this chapter, S.L. Pimm
(personal communication, 3 September 1985) suggested that the cascade model
does not predict adequately the variance and kurtosis of the distribution of chain
lengths. He allowed that the cascade model may predict roughly the mean chain
length, according to Table I11.4.2.

Direct comparisons of the mean and variance of the observed chain lengths
with the corresponding quantities calculated from the expected numbers of
chains of each length shown in Table II1.4.2 confirm Pimm’s observations re-
garding the first two moments. However, we claim that to evaluate the cascade
model’s ability to predict the moments of chain length the expected numbers in
Table I11.4.2 may not be the right numbers to compare with the observed. We
will explain what calculations are required, although they remain to be done.

In computing numerically the mean and variance from the observed and ex-
pected numbers of chains of each length, separately for each web in Table I11.4.2,
we truncate (i.e. ignore) all predicted frequencies for chains of length 9 or greater.
This truncation lowers the predicted mean and variance of chain length. The ef-
fect is small for all webs other than the exceptional web 103 because, for the
remaining 112 webs, the expected number of chains of each length greater than
or equal to 9 is less than 0.05. (We do not cumulate all predicted frequencies
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Figure II1.4.6. ‘Predicted mean’ chain length, i.e. mean calculated from the expected numbers
of chains of each length according to the cascade model, as a function of the observed mean
chain length in 113 webs. The points fall about a line of slope one through the origin. See text
for an explanation of why the ‘predicted mean’ is not the mean chain length predicted by the
cascade model

of chains longer than the largest observed, as we did in testing goodness of fit
between observed and predicted frequencies.)

Temporarily, we shall call the mean calculated from the theoretically expected
numbers of chains of each length the ‘predicted mean’, and the variance calcu-
lated from the theoretically expected numbers of chains of each length the ‘pre-
dicted variance’. The terminology is misleading, for reasons we shall explain.

The scatter plot (Fig. I1.4.6) of ‘predicted means’ against the observed means
clusters around a line of slope one through the origin. The observed mean chain
lengths exceed the ‘predicted means’ in 50 of 113 webs. The ‘predicted means’
of the cascade model do reasonably well in predicting the observed mean chain
length, as Pimm conceded.

In contrast to the acceptable performance of the ‘predicted mean’, the ob-
served variance of chain length exceeds the ‘predicted variance’ in only two of
113 webs. Most points in the scatter plot (Fig.II1.4.7) of ‘predicted variance’
against observed variance lie well above a line of slope one through the origin.
This finding confirms Pimm’s suggestion that chain lengths observed for a single
web generally have a smaller variance than the ‘predicted variance’.
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Figure IT1.4.7. ‘Predicted variance’ of chain length, i.e. variance calculated from the expected
numbers of chains of each length, as a function of the observed variance of chain length in 113
webs. All but two of the points fall above a line of slope one through the origin. See text for
an explanation of why the ‘predicted variance’ is not the variance of chain lengths predicted
by the cascade model

However, this finding does not imply that the cascade model predicts the
variance of chain lengths badly. Also, unfortunately, the acceptable performance
of the ‘predicted mean’ does not imply that the cascade model predicts the
mean of chain lengths well. It is not possible to infer the mean or variance of
chain length in one realization of the cascade model with a finite number of
species from the expected numbers of chains of each length, averaged over all
realizations, which are given in Table II1.4.2.

The ‘predicted mean’ and ‘predicted variance’ are (except for the truncation
of chains of length 9 or greater) the mean and variance of a distribution in which
the relative frequency of chains of length = is

E(Cn)/E(C),

where, as before, Cy, is the number of chains of length n and C is the total number
of chains. As explained in Chap. I11.5.3, for finite S this distribution does not
describe the chain length distribution of a single web randomly generated by the
cascade model, but rather describes the distribution of the pooled chains from
many webs generated by the cascade model with a fixed ¢ and S.



§4. Predicted and Observed Lengths of Food Chains 139

The proper theoretical mean to compare with the observed mean chain length
is (again ignoring truncation and conditional on C > 0)

E [Zk: ka/C} .

The proper theoretical variance to compare with the observed variance is (ig-
noring truncation and assuming C > 0)

2
E Y k*Cy/(C~1)~ (chk) /Ic(C-1)]
k

k

In addition to the difference between E(C,/C) and E(Cy)/E(C), there are
correlations between Cp, and Cpn, m # n, illustrated by Table II1.4.1, which
influence the theoretical varance of chain length but not the ‘predicted vari-
ance’. This additional discrepancy may explain why the ‘predicted variance’
(Fig.I11.4.7) does worse in describing the variance of observed chain lengths
than the ‘predicted mean’ (Fig.I11.4.6) does in describing the mean of observed
chain lengths.

It follows from the results of Chap. 111.5.4 that the corresponding theoretical
and ‘predicted’ moments have the same limit for large S. However, for any finite
S, the corresponding theoretical and the ‘predicted’ moments need not agree.
We are not able analytically to compute the theoretical mean or variance, or
higher moments, of chain length according to the cascade model for finite S. It
may be impossible to do so. Simulation, observed web by observed web, would
make it possible to compare the observed mean and variance of chain lengths
with the mean and variance in each of, say, 100 simulations. We have yet to
carry out this computation.

Because of the success of the cascade model according to the measures of
goodness of fit that we have used so far, we expect that the observed moments
should not fall far in the tail of the distributions of the simulated moments.
The theoretical moments could not be systematically and grossly different from
the observed if the simulated distributions of chain lengths are usually near
the observed distributions of chain lengths. However, we have not conclusively
demonstrated that the moments of chain lengths according to the cascade model
correspond well to the moments of observed chain lengths in real webs.

8. Trying to Explain the Cascade Model’s Failures

In this section, we seek characteristics of webs that explain why the cascade
model’s predictions sometimes fit badly the observed frequency distributions of
chain length. We find that bad fits occur far more often than expected among
webs in which the mean length of chains is either unusually large (more than four
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links) or unusually small (less than two links). Twenty-one other characteristics
do not appear to be associated with bad fits.

First, we explain why we do not use the conventional statistical tools of hy-
pothesis testing; we then present our descriptive analyses.

Throughout, we have been sceptical of the assumption that our observed webs
are a random sample from some statistical ensemble of webs. One reason for scep-
ticism is that webs reported by the same author sometimes share idiosyncrasies
that differentiate them from webs reported by others. Sixty-one of our 113 webs
were described by distinct observers or teams (two sets of observers are consid-
ered distinct here if they have no member in common). The remaining 52 webs
were reported by 20 distinct observers or teams, each contributing between two
and five webs; there is therefore likely to be dependence among the webs.

A second reason for scepticism is that field ecologists with special training in
some taxon (birds or insects or fishes) or in some habitat (lacustrine or marine
intertidal or tropical montane) pick communities in which their special training
can be used, rather than at random. Until it is shown that the properties of webs
are invariant with respect to major taxa, habitats and other characteristics that
may bias ecologists’ choices of webs to study, it seems implausible a priori to
regard any given batch of webs as a random sample of webs from the world.

If the webs were a random sample from a cascade model ensemble, then
the frequency histograms in Figs. I11.4.2 and 5 should approximate histograms
sampled from the uniform distribution, which is a horizontal straight line. Un-
der the assumption of random sampling of webs, it would be valid to use the
Kolmogorov-Smirnov test (Kendall & Stuart 1973, p. 469) to assign a probability
value to the deviation between the sample and uniform cumulative distribution
functions. Denoting the test statistic by D (do not be confused with our notation
above for the observed total number of chains), with a subscript that gives the
sample size, we compute for the first batch of webs Dgz = 0.4403, for the second
batch Ds; = 0.4127 and for all webs combined D13 = 0.4142. These values
are all far beyond the 0.01 critical values for the corresponding sample sizes.
Because we regard the assumption of random sampling with scepticism, we also
regard with scepticism the ‘significance’ of this rejection of the fit of predicted
to observed chain length distributions in the collection of webs as a whole.

Nevertheless, 16 or 17 of 113 webs (11 or 12 in the first batch, 5 in the second)
individually have chain lengths that the cascade model describes badly. We now
seek a simple explanation for these bad fits in terms of the characteristics of
webs.

S.L. Pimm (personal communication, 3 September 1985) suggested that the
cascade model describes worse the chain length distributions of webs with large
numbers of species. To examine this suggestion, we identified the 45 webs with
more than 17 species as ‘above average’ in size. (The average number of species
per web in 113 webs is 16.9.) We also identified the 19 webs with more than 24
species as ‘large’ in size.

As Fig.II1.4.6 shows, most webs have mean chain lengths of two to four
links. We defined the 12 webs with mean chain length less than two links (webs
numbered 28, 33, 39, 40, 53, 64, 65, 88, 90, 96, 101, and 112) and the 10 webs
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with mean chain length greater than four links (webs numbered 21, 30, 41, 42,
46, 47, 58, 71, 86, and 103) to be webs with ‘extreme mean chain length’.

As Fig.I11.4.7 shows, most webs have a variance of chain length that is less
than 1. We defined the 22 webs with variance greater than or equal to 1 to be
webs with ‘high variance of chain length’. We also defined the 17 webs with
variance less than 0.25 to be webs with ‘low variance of chain length’.

For all 113 webs, we determined four characteristics in addition to trophic
structure: dimension, variability and productivity of the environment, and the
presence of man in the web (Table II1.4.3).

A web is classified as having dimension 2 if it occurs in an environment that
is essentially flat, such as grassland, a sea or lake bottom, a stream bed or the
rocky intertidal zone. A web is classified as having dimension 3 if it occurs in
a solid environment, such as the pelagic water column or forest canopy. Webs
that could not clearly be assigned dimension 2 or 3 are shown in Table I11.4.3
as having dimension 0.

As in Chap. II1.3, the variability of a web’s environment is classified as ‘fluc-
tuating’ or ‘constant’. The environment is ‘fluctuating’ if the original report
indicates temporal variations of substantial magnitude in temperature, salinity,
water availability or any other major physical parameter. The magnitude, and
not the predictability, of the variations is the criterion of classification. In this
paper we apply stricter criteria than previously for deciding whether an envi-
ronment is fluctuating or constant. Whereas previously webs 1 to 28 and 48 to
62 were classified as from fluctuating environments, while webs 29 to 47 were
considered to be from constant environments, we now regard a number of webs
from each former category as unclassified. These are shown by 0 in Table 111.4.3.

In several instances, the original cbservers measured and reported the net
primary productivity of the ecosystems they studied. For such cases, we classify
the productivity of a web as lowif it falls below 100 gCm~2a~1, and as high if it
exceeds 1000 g Cm~2a~1. When productivity is unknown or has an intermediate
value, we treat it as unclassified (shown by 0).

Man is present in a web if explicitly recorded as one of the species, and is
absent otherwise.

We then cross-classified the webs by 22 pairs of dichotomous criteria. One
member of each pair was bad fit between predicted and observed frequency dis-
tributions of chain length (Xn/N > 0.95, with the sum-of-squares measure of
difference, dy) against not a bad fit. Another member of the pair was selected
from this list of dichotomies: above-average number of species (more than 17
observed species) versus average or below number of species (17 or fewer ob-
served species); large number of species (more than 24 observed species) against
not large number of species (24 or fewer observed species); high value (greater
than 3.6) of the parameter ¢ against low value (¢ < 3.6); extreme mean chain
length against not extreme; high variance of chain length against not high; low
variance of chain length against not low; man absent against man present; di-
mension unclassified against dimension known; dimension 2 against dimension
not 2; dimension 3 against dimension not 3; dimension 2 against dimension 3;
environment not classified against environment fluctuating or constant; envi-
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ronment fluctuating against environment not fluctuating; environment constant
against environment not constant; environment fluctuating against environment
constant; productivity unclassified against productivity low or high; productiv-
ity low against productivity not low; productivity high against productivity not
high; productivity low against productivity high; dimension 2 and fluctuating
against dimension 3 and constant; no basal-top links against one or more basal-
top links; one or fewer basal-top links against more than one basal-top link. (The
last two dichotomies explore the possibility that the webs with anomalously few
basal-top links, apparent in Figs. A.3.2-3 on pp. 35-36, might also be those
badly described here by the cascade model.) Some of these cross-classifications
involve all 113 webs; others involve fewer (for example, only 34 webs are either
dimension 2 and fluctuating or dimension 3 and constant).

For each cross-classification, we compute the x? measure of association cor-
rected for continuity (Snedecor & Cochran 1967, p.217). If we could accept the
doubtful assumption that the webs are a random sample, we could assign a
level of statistical significance to the computed values of x? with one degree of
freedom: Under this assumption, the critical value for significance at the (very
weak) 10% level is 2.71. Only three of the 22 values of x? exceed this level:
x% = 4.55 for the cross-classification with dimension not classified, x% = 5.45 for
the cross-classification with low variance of chain length, and x2 = 25.33 for the
cross-classification with extreme mean chain length. The first two of these x2
values do not exceed the one percent significance level. The third is very large.
Table II1.4.4 shows the counts of bad and not bad fits cross-classified according
to whether or not the mean chain length is extreme.

Table III1.4.4. Cross-classification of 113 webs ac-
cording to fit (based on d;) between observed and
predicted frequency distributions of chain length,
and extreme values of mean chain length. (x? with
one degree of freedom (corrected for continuity)

=25.3265)

goodness of fit mean chain length
22and <4 <2o0r>4

not bad 86 11

bad (X /N > 0.95) 5 11

When we carry out the same 22 cross-classifications with bad fit based on
d3, which is the x2 measure of difference between observed and predicted chain
length distributions, only two of the 22 values of the association x2? exceed
the 10% critical value: x2 = 4.60 for the cross-classification with high ¢, and
x?% = 16.92 for the cross-classification with extreme mean length of chains. The
former value does not exceed the 2.5% significance level. The latter value far
exceeds the 1% significance level.

We conclude that a single dichotomy, extreme mean lengths of chains, explains
at least partly why the cascade model’s predictions sometimes fit badly the
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observed frequency distributions of chain length. This finding does not exclude
the possibility that a more elaborate stratification of webs by combinations of
other characteristics could yield another, and perhaps better, explanation of the
bad fits (Mantel 1982). However, we have not explored possible explanations
based on more elaborate combinations of characteristics. Table II1.4.3 provides
raw data for a more sophisticated analysis.

We now speculate briefly on how the deviations between the observed and
predicted frequency distributions of chain lengths could arise. To explain the
excess numbers of observed long chains relative to the numbers expected, suppose
that, instead of describing all species and links in a community, as we assume, an
observer initially samples a link at random and then follows a chain containing
that link up to a top species and down to a basal species; and then samples
another link at random from those not previously recorded and repeats the
procedure. The longer a chain is, the more links it contains, and therefore the
more likely it is to be sampled by this procedure. This sampling procedure would
produce an observed excess of long chains compared to sampling in which each
chain is sampled randomly.

To explain the excess numbers of observed short chains relative to the numbers
expected, suppose that, as above, an observer picks a link at random and finds
some of the other (if any) links in the same chain but, wary of the bias of sampling
chains in proportion to their length, interrupts recording the entire chain after
a small number of links. This hypothetical procedure would selectively sample
long chains at first and would then selectively break the long chains into short
chains, producing an observed excess of short chains compared to sampling in
which each chain is sampled randomly.

A plausible model of the process of observation that would not explain an
observed excess of either long or short chains is to suppose that an observer
attempts to record all links, but has a probability ¢ (for ‘error’), 0 < € < 1,
of failing to observe or record any given link, independently and identically for
all links. The recorded web will then be identical to that of a cascade model
in which the true probability p = ¢/S of an edge is replaced by the recorded
probability p’ = p(1 — €). The mean length of chains will be reduced by these
errors of omission, but conditional on the net probability, p/, that a link occurs
and is recorded, the distribution of the expected number of chains of each length
will be as predicted by the cascade model with parameter p'.

The original reports of webs rarely describe the sampling procedures by which
the links are determined. Different investigators may use different sampling pro-
cedures. It is not possible to prove, from the original reports, either of the above
explanations for deviations from the predictions of the cascade model. Still, it is
some comfort that simple explanations exist.

9. Discussion and Conclusion

Here we review the accomplishments of this chapter, relate them to previous
work, and indicate some useful further efforts.
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9.1 Accomplishments of This Chapter

From an exact analysis of the cascade model, we derive the expected number of
chains of each length in a web with any finite number, S, of species. Simulations
of the cascade model demonstrate substantial dependence among the numbers of
chains of different lengths. Because of the dependence, we develop a Monte Carlo
method of evaluating the goodness of fit between the numbers of chains observed
in an individual web and the numbers expected from the cascade model.

Without fitting any free parameters, and with the use of no direct information
about chain lengths other than that implied by the total number of species and
the total number of links in a web, the cascade model describes acceptably the
observed numbers of chains of each length in all but 16 or 17 of 113 real webs.
The cascade model describes well, in the technical sense defined in section 5, the
chain lengths of 40 or 43 of the 62 webs previously used to test the cascade model,
and well or moderately well, again in the technical sense, the chain lengths of
all but 11 or 12 of these webs. In a fresh batch of 51 webs, the numbers of links
are very nearly proportional to the numbers of species (apart from two outlying
webs). The constant of proportionality is consistent with that in the original 62
webs. This finding independently verifies the species-link scaling law (Cohen &
Briand 1984; Chap. I1.3). The cascade model describes well the chain lengths
of 34 or 36 of the 51 webs, and well or moderately well all but 5 of these webs.
When the collection of webs is viewed as a whole, the cascade model describes
adequately the mean chain lengths.

The poor fit of the cascade model to 16 or 17 webs is associated with one
characteristic of the webs, namely, an unusually large (more than four links) or
an unusually small (fewer than two links) mean length of chains.

In Chaps. II1.2-3, we evaluated the cascade model’s fit to the data on the pro-
portions of each kind of species and link largely by visual inspection of graphical
displays. Even measured by that very crude procedure, the fit between predic-
tions and observations was not always good, e.g. for the proportions of basal-top
links. Here, in Chap. II1.4, we examine a much finer aspect of web structure than
in Chaps. II1.2-3, namely, the frequency distribution of chain lengths, and we
use far more delicate measures of goodness of fit. A priori, the apparent perfor-
mance of the cascade model should be worse than in Chaps. II1.2-3. We consider
it significant that the approximation between observed and predicted frequency
distributions of chain length, though far from perfect, is as good as it is.

9.2 Relation to Previous Work

This chapter offers three novelties in ecological theory. First, this chapter presents,
to our knowledge, the first exactly derived theory of the length of food chains.
The only previous quantitative model to predict chain length (Pimm 1982) has
been simulated but not analysed mathematically. Secondly, this chapter repre-
sents, we believe, the first instance in which an ecological model that was initially
developed to explain an aspect of webs different from chain length (namely the
proportions of species and links of various kinds) is used to predict chain lengths
quantitatively. Thirdly, this chapter gives the first quantitative predictions (ob-
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tained either by simulation or by analysis) of the entire frequency distribution
of chain length. Pimm (1982, Chap. 6) considers only the modal trophic level of
top species.

Although the cascade model is the first to be analysed exactly in the detail
given here, it is one of a family of similar models that have been proposed
for webs. Cohen’s (1978, p.60) model 5 proposes that webs be generated by
constructing a matrix with a number of rows equal to the observed number of
prey (basal plus intermediate species), a number of columns equal to the observed
number of predators (intermediate plus top species), and a number of 1-elements
equal to the observed number of links, all other elements of the matrix being
0. According to this model 5, the positive elements of the ‘predation matrix’ (a
condensed adjacency matrix) are to be distributed randomly.

From comparisons of real food webs with simulations of model 5 and other
similar models, Cohen (1978, p.92) ‘concluded that the high observed frequency
of arrangements of niche overlap that can be represented in a one-dimensional
niche space does not result from the operation, within the framework of several
plausible models, of chance alone’, i.e. that the species’ feeding relations have a
one-dimensional ordering.

The null model of Pimm (1982, Appendix 6A) adds to Cohen’s model 5 the
constraints that each prey have a predator and each predator a prey, and that
the intermediate species be in a strict hierarchy or cascade. Such a hierarchy
or cascade is a natural interpretation of Cohen’s finding that feeding relations
have a one-dimensional ordering. Sugihara (1982, 1984, §3.1.2) also discusses the
importance of a hierarchical ordering in assembly rules for food webs, but does
not analyse the lengths of food chains.

When we proposed the cascade model (Chap. II1.2), we had not read Ap-
pendix 6A of Pimm (1982) because we were considering questions other than
the length of chains. Whereas Pimm’s null model takes as given the numbers
of links and of basal, intermediate and top species, the cascade model takes as
given the total number of species and the number of links. The cascade model
predicts the fractions of species that are basal, intermediate and top and the
numbers of links of each of four kinds. Pimm’s null model could be viewed as a
conditional version of the cascade model: given numbers of links and of basal,
intermediate and top species produced by the chance mechanisms of the cascade
model, the distribution of these links among pairs of species in the cascade model
is identical to that in Pimm’s null model (ignoring the negligible probabilities in
the cascade model that top species are not proper top and basal species are not
proper basal).

Cohen (1978) and Pimm (1982) propose the models just described as ‘null’
models, models that would describe how webs should look in the absence of
interesting biological structure. Here we consider the cascade model as a ‘the-
ory’. We suggest that between ‘null models’ and ‘theories’ is a continuum of
increasingly sophisticated and successful models. The null models at one ex-
treme are models that do not describe much of nature well. ‘Theories’, at the
other extreme, provide a unifying and quantitatively successful view of diverse
phenomena. The cascade model provides explanations for some aspects of webs
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that Cohen’s (1978) and Pimm’s (1982) models take as given and describes with
moderate success the observed frequency distributions of chain lengths. Whether
the cascade model should continue to be dignified as theory depends on its suc-
cess in describing other aspects of real webs.

9.3 Further Work Required

How well does the cascade model describe the variance and higher moments
of the distribution of chain length? A key difficulty in answering this question,
which was raised by S. L. Pimm, is the dependence among the numbers of chains
of different lengths. Attacks via mathematical analysis and via numerical simu-
lation are both desirable.

Why does the cascade model fail to predict 16 or 17 observed frequency dis-
tributions of chain length? One possibility is that, like a straight line tangent to
a parabola, the predictions of the cascade model are systematically of the wrong
shape but are locally good approximations in a certain neighbourhood. Accord-
ing to this possibility, a better model could explain all the observed frequency
distributions of chain length, as well as explain better the other features of webs
that are described approximately by the cascade model. As noted in Chap. II1.3,
some assumptions underlying the cascade model are unrealistic. For example,
the model assumes that the species at the top of the cascade is equally likely to
prey on all other species in the community, and that the prey species a predator
eats are chosen statistically, once and for all, independently of the abundance
of the prey species and of the existence of other links. A better model might
replace these assumptions by more realistic ones. However, we cannot provide
and analyse a better model at this point.

A second possibility is that the bad fits of the cascade model are associated
with some combination of the characteristics of webs. According to this possi-
bility, the cascade model is acceptable for a large class of webs, e.g. those with
mean chain length between two and four links, but for another relatively small
class of webs a different model is required.

A third possibility is that the original data are wrong; that links have been
overlooked, or that inconsistent criteria have been used for reporting links, or
that stomach contents have been misidentified and mistaken links have been
reported, or that error has crept into the process of writing, publishing and
transcription.

The consequences for action of these three possible explanations are different.
If the cascade model is only an approximation to a better global model, then one
should try to construct a better global model. If combinations of characteristics
could identify exactly webs for which the cascade model fails, one should try
to discriminate the webs where the cascade model succeeds from those where
it fails. If the reported frequency distributions of chain length are materially
wrong, one should go back into the field and do better field work and reporting.
There is no shortage of opportunities for diverse skills.

The empirical successes of the cascade model are great enough to encour-
age the hope that efforts in all three directions may yield further successes.
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The present successes of the cascade model also justify attempts to exploit the
model further as it stands. Can the cascade model describe or explain yet other
aspects of webs, such as the frequency of omnivory, i.e. predation on different
trophic levels (S. L. Pimm, personal communication, 3 September 1985), however
‘trophic levels’ are to be defined? Can the cascade model account for the relative
importance of predation against competition (Schoener 1982), the occurrence of
compartments (Pimm 1982), and the frequency of intervality (Cohen 1978)7?

Appendix: Computing Algorithms

This appendix describes procedures for computing the frequency distributions
of chain length and the length of the longest chain of a given acyclic web.

The Frequency Distribution of Chain Length

A digraph (directed graph) with S vertices (species) and L edges (links) may be
represented by its S x S adjacency matrix, A. The elements of A are a;; = 1 if
(3,7) is an edge, a;; = 0if (4,7) is not an edge, 1 < i,j < S.

An easily programmed, but inefficient, way to compute the number of n-
chains, Cy,, from the adjacency matrix A of an acyclic web uses the powers A™
of A. If Sg and S7 are the subsets of {1,2,...,S} that contain the labels of],
respectively, the basal and the top species, then

Cn:- Z Z(An)ij’ n=1,2,...,S—1.

1€Sp JEST

If each power is computed by O(S?) multiplications, then the computation of
the frequency distribution of chain length {Cy,} requires O(S3) multiplications.

A much more efficient algorithm that requires O(S?) steps (additions or mul-
tiplications) was outlined in conversation (1984) by P.H. Sellers. Assume that
the adjacency matrix A is strictly upper triangular, so that the vertices are num-
bered from 1 at the bottom of the web to S at the top of the web, i.e. edges point
from vertices with lower numbers to vertices with higher numbers. The following
algorithm requires as input the adjacency matrix A and returns as output an
(S — 1)-vector, C, with nth element Cy,, the number of n-chains.

Step 1. Set I = 1 and set V to be an S x S — 1 matrix with all elements
0. (After completion of the loop on I below, V(I,J) will hold the number of
maximal J-walks that terminate at vertex I, i.e. the number of J-walks that
originate at some basal species and terminate at species I.)

Step 2. Increment I by 1. If the result exceeds S, go to step 8.

Step 3. Set H = 0.

Step 4. Increment H by 1. If the result equals I, go to step 2. (We are going
to compute for each J the contribution, to the number of maximal J-walks
terminating at vertex I, of maximal (J — 1)-walks terminating at vertex H, for
every H < 1.)
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Step 5. If A(H,I) = 0, go to step 4. (If there is no edge from H to I, then
walks terminating at H either do not pass through I at all or must pass through
some other vertex on their way to I.)

Step 6. If the sum of the Hth row of V is positive, then for J =2,...,5 -1,
set V(I,J)=V(I,J)+V(H,J —1). Then go to step 4. (Each maximal (J —1)-
walk that terminates at a vertex H that is connected by an edge to vertex I
determines a maximal J-walk that terminates at vertex I.)

Step 7. Otherwise, increment V/(I,1) by 1. Then go to step 4. (If no walks
terminate at vertex H but H is joined to I by an edge, then there is a maximal
1-walk terminating at 1.)

Step 8. For J = 1,...,5 — 1, set Cj equal to the sum of V(I,J) over only

those I such that the Ith row sum of A is 0. (The chains are the maximal walks
that terminate at top vertices. Vertex I is a top vertex if and only if the Ith row
sum of A is 0. After all the maximal walks terminating at all the vertices have
been counted, the number of J-chains is the total number of maximal J-walks
that terminate at top vertices.)
. We programmed both the algorithm based on powers and Sellers’ algorithm
in APL, with the APL68000 interpreter running on the WICAT 150-6, a mi-
croprocessor that uses the Motorola 68000 chip. For the 14 x 14 adjacency ma-
trix of Chap. IV’s web number 31, the algorithm based on powers required ap-
proximately 10s to produce the frequency distribution of chain length, whereas
Sellers’ algorithm required approximately 5s. For a 50 x 50 adjacency matrix
generated according to the cascade model with ¢ = 3.71, the powers algorithm
required approximately 25.5 min and Sellers’ algorithm required approximately
0.6 min.

The Length of the Longest Chain

For a digraph with a strictly upper triangular adjacency matrix A, finding the
height, i.e. the length M of the longest chain, is a standard problem in network
theory. For example, Gibbons (1985, pp. 121-122) gives a recursive algorithm
for finding the longest path from a specified vertex to every other vertex. The
following algorithm for finding the longest path from any vertex to any other,
which requires in general O(S?) multiplications, was outlined in conversation
(1985) by F.R. K. Chung. The algorithm requires as input the adjacency matrix
A and returns as output the height M.

Step 1. Set V equal to an S-vector with all elements 0, and set I = 0. (After
completion of the loop on I below, V(I) will hold the length of the longest walk
terminating at vertex I.)

Step 2. Increment I by 1. If the result exceeds S, go to step 4.

Step 3. Set V(I) = max{A(H,I)(V(H)+1) |1 < H < I-1}. Then go to
step 2. (The length of the longest walk terminating at vertex I is 1 greater than
the maximum over all H < I with an edge from H to I of the length of the
longest walk terminating at H.)

Step 4. Set M = max{V(I) | 1 < I < S}. (The longest chain is as long as the
longest of the maximal walks.)
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For a 50 x 50 adjacency matrix, generated according to the cascade model
with ¢ = 3.71, independently of the matrix used in the previous example, the
computation of M = max{n | Cr > 0} based on Sellers’ algorithm for C required
38s and Chung’s algorithm required only 6s.

As S gets large, the number of positive elements in adjacency matrices gen-
erated by the cascade model increases only as O(S) rather than as O(S?). The
number of multiplications and the amount of memory required by the preceding
algorithm may be reduced from O(S?) to O(S) as S gets large by representing
the digraph by an L x 2 matrix that lists, in some order, the initial and final
vertex of each of its L edges. Step 3 above is then modified to pay attention only
to those vertices H < I for which there is an edge from H to I. By using this
modified algorithm, we simulated webs of S species where S? far exceeded the
words of memory available in our microprocessor.

§5. Theory of Food Chain Lengths in Large Webs
Charles M. Newman and Joel E. Cohen

1. Imtroduction

The purpose of this chapter is to develop a theory of the length of food chains
that is derived from a mathematical model of community food webs called the
cascade model. Cohen & Newman (1985, hereafter referred to as Chap. II1.2)
and Cohen et al. (1985, hereafter referred to as Chap. II1.3) showed that the pre-
dictions of the cascade model describe, to a first approximation, several major
characteristics of a collection of 62 real webs: the proportions of all species that
are top, basal and intermediate, and the proportions of all links from basal to in-
termediate species, from basal to top species, from intermediate to intermediate
species, and from intermediate to top species. Cohen et al. (1986, hereafter re-
ferred to as Chap. II1.4) showed that the cascade model describes the frequency
distribution of the length of food chains observed in a large majority of 113 real
webs. In the light of this empirical support for the cascade model, it is desirable
to analyse the properties of the model further. This chapter determines what the
cascade model implies for the frequency distributions of the length of a typical
food chain and of the length of the longest chain, primarily in the limit as the
number of species in the web becomes arbitrarily large.

Section 2 presents terminology for chains and reviews the cascade model.
Section 3 derives a generating function for the expected number of chains of
each length and moments of the chain length distribution for webs with a finite
number of species. Section 4 describes the frequency distribution of chain lengths
in the limit as the number of species in a web gets large. Section § describes the
length of the longest chain in a web with a finite number of species. Section 6
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describes the length of the longest chain as the number of species in a web gets
(very) large. Section 7 analyses the sensitivity of the asymptotic behaviour of
the longest chain derived in section 6 to the assumptions of the cascade model.
The results in sections 3-7 are obtained by mathematical analysis. Numerical
simulations of the cascade model in section 8 confirm and amplify the prior
analytical results concerning the length of the longest chain. Section 9 reviews
what has been achieved in this chapter, and the concluding section 10 identifies
some tasks that remain.

We shall accept the mathematical convention of setting off every proof with
Proof at the beginning and M at the end. Readers may defer or skip proofs with
no loss of continuity.

2. Terminology; The Cascade Model

This section reviews and introduces terminology, then describes the cascade
model.

A food web is a set of kinds of organisms and a relation that shows which,
if any, kinds of organisms each kind of organism in the set eats. A community
food web is a food web whose vertices are obtained by picking, within a habitat
or set of habitats, a set of kinds of organisms (hereafter called species) on the
basis of taxonomy, size, location or other criteria, without prior regard to the
eating relations (specified by trophic links) among the organisms (Cohen 1978,
pp. 20-21). Hereafter ‘web’ means ‘community food web’. A basal species is a
species that eats no other species, and a fop species is a species that is eaten by
no other species.

In the representation of a web by a directed graph or digraph (see Chap.
II1.2.2), each vertex corresponds to a (lumped trophic) species. An edge (always
directed) (a,b) from vertex a to vertex b corresponds to a link from species a
to species b, meaning that species b eats species a. An example of a walk in a
digraph is the sequence a, (a,d), b, (b, ), c of alternating vertices and edges. The
length of a walk is the number of edges in it. An n-walk is a walk of length n.
The digraph of any web generated by the cascade model is acyclic, so no vertex
(or species) can figure more than once in a walk in such a web. A chain is a
walk from a basal species to a top species. An n-chain is a chain of length n,
i.e. a chain with »n links or equivalently n + 1 species. The height of a web is the
longest chain in it.

Let S be the number of species in a web, and let C;, be the number of n-chains
in an acyclic web, n =1,2,...,5 — 1. The frequency distribution of chain length
is the vector (Cy,...,Cs_1) = C. The total number of chains in the web will
be denoted

S-1
C= ZC’”.

n=1
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As usual, E(.) and var(.) denote the expectation (or mean) and variance,
respectively, of the random variable enclosed in parentheses. For any function f
of any real or integer variable ¢, we write f(t) = O(t) if f(t)/t stays less than some
fixed finite positive constant as t — 0o, and f(t) = o(t) if lims—.oo f(t)/t = 0.

The cascade model assumes that the S > 2 species of a web may be labelled
from 1 (at the bottom, subject to predation by all other species) to S (at the top,
subject to predation by no other species). The probability that species j feeds
on species i is 0 if j < i. If i < j, then j feeds on i with probability p = p(S),
i.e., with a probability between 0 and 1 that depends on S, and does not feed
on i with a probability ¢ = 1 — p, independently for all 1 < i< j < S. Unless a
contrary assumption is explicitly given, it will be assumed that, for some finite
positive real number ¢ < S, p = ¢/S, where c is a constant independent of S.
(Some results below require only the weaker assumption that Sp(S) — v, for
some constant v, as S — 00.)

According to the cascade model with probability p of a random link, the
expected number of n-chains in a web with S species is (Chap. II1.4):

= E-1
BOw =r" L6 (E1]) et n=12.5-1.

k=n

3. Moments of the Frequency Distribution of Chain Length in Finite Webs

To find an average chain length predicted by the cascade model, we need to
compute ), nfy,, where fy, is the probability density of n-chains according to
the cascade model. There are two, not one, natural candidates for f,,. The first
corresponds to ‘expected relative frequency’, and the second corresponds to ‘rel-
ative expected frequency’. To compute the first,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>