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ABSTRACT
Based on the primes less than 4 × 1018, Oliveira e Silva et al. (Math. Comp., 83(288):2033–2060, 2014)
conjectured an asymptotic formula for the sum of the kth power of the gaps between consecutive primes
less than a large number x. We show that the conjecture of Oliveira e Silva holds if and only if the kth
moment of the first n gaps is asymptotic to the kth moment of an exponential distribution with mean log n,
though the distribution of gaps is not exponential. Asymptotically exponential moments imply that the gaps
asymptotically obey Taylor’s law of fluctuation scaling: variance of the first n gaps ∼ (mean of the first n gaps)2.
If the distribution of the first n gaps is asymptotically exponential with mean log n, then the expectation of
the largest of the first n gaps is asymptotic to (log n)2. The largest of the first n gaps is asymptotic to (log n)2

if and only if the Cramér-Shanks conjecture holds. Numerical counts of gaps and the maximal gap Gn among
the first n gaps test these results. While most values of Gn are better approximated by (log n)2 than by other
models, seven exceptional values of n with Gn > 2e−γ (log n)2 suggest that lim supn→∞ Gn/[2e−γ (log n)2]
may exceed 1.
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1. Introduction

The gaps between consecutive prime numbers have been studied mathematically, numerically, and statistically by many people for
centuries [4, 8–10, 13, 16, 17, 19–21, 23–25, 28, 29, 32, 38–42]. This list of references is far from complete. Many questions remain
open. Throughout, we use gap to mean a difference, denoted d, between consecutive primes, including d4 := p5 − p4 = 11 − 7 = 4
and excluding p4 − p2 = 7 − 3 = 4, where pn is the nth prime, p1 = 2.

We do not attempt to summarize here everything that is currently known about the distribution of prime gaps. Some selected
recent results and conjectures are pertinent. Heath-Brown [21, p. 87] conjectured a simple asymptotic expression for the sum of the
squares of the gaps of the primes not exceeding a large real x (OEIS A074741). Wolf [39, Conjecture 5] conjectured an alternative
asymptotic form and compared the two alternatives numerically. Based on a detailed numerical study of the primes less than 4×1018,
Oliveira e Silva [28, p. 2056] conjectured a simple asymptotic formula for the sum of the kth power of the gaps of primes less than
x as x → ∞, for every k = 1, 2, . . .. Wolf [41] refined and extended the conjectured asymptotic expressions of Oliveira e Silva and
compared the alternatives analytically and numerically. Firoozbakht conjectured that the sequence (p1/n

n )n∈N decreases as n increases
[38]. The conjecture holds for all primes less than 264 ≈ 1.84 × 1019 as of April 2024 [38]. Kourbatov [23] showed that Firoozbakht’s
conjecture implies an upper bound on all gaps. Maier [24] showed that chains of consecutive large gaps exist, and that average gaps
of primes in short intervals do not converge (contrary to previous conjecture) but have a limsup strictly greater than the liminf [25].

What is new here? We consider the first n = 1, 2, . . . gaps instead of the gaps of primes less than large x (Section 3). This change
of scale enables us to show (Theorem 3) that the conjecture of Oliveira e Silva holds if and only if, for every k = 1, 2, . . ., the kth
moment of the gaps (that is, the sum of the kth power of the first n gaps, divided by n) is asymptotically (as n → ∞) the kth moment
k!(log n)k of an exponential distribution with mean log n.

Obviously the distribution of gaps is not exponential because an exponential random variable has a continuous density function
on [0, ∞), whereas gaps are positive integers only and all gaps except d1 = p2 − p1 = 3 − 2 = 1 are even integers. Gaps
are also not geometrically distributed (the integer-valued analog of the exponential) because a geometric distribution would give
positive probability to all odd positive integers. Despite these deviations from the exponential distribution at a microscopic scale, the
numerically supported conjecture that the kth moment of the first n gaps is asymptotically the kth moment k!(log n)k of an exponential
distribution with mean log n has interesting consequences, as we now summarize and then show in detail.

From Theorem 3, it follows (Corollary 4) that, as n → ∞, the ratio of the variance of the first n gaps to the square of the mean
of the first n gaps converges to 1 (Section 4). Thus the gaps have a power-law asymptotic variance function [1, 2, 11, 34–36] or,
equivalently, asymptotically obey Taylor’s law of fluctuation scaling: variance of the first n gaps ∼ square of the mean of the first n
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gaps [4, 6, 7, 12, 14, 33]. Moreover (Section 6), Taylor’s law (with a different coefficient and a different exponent) also describes the
variance function of the maximal gap among the first n gaps if the maximal gap may be modeled as the largest order statistic of n
observations of an exponential distribution with mean log n: variance of the maximal order statistic ∼ (π2/6)×mean of the maximal
order statistic. These (conjectured) scaling laws do not appear to have been noticed previously.

The Cramér-Shanks conjecture (Cramér [8, pp. 24, 27], Shanks [32, p. 648, his Eq. (5)], Granville [17, p. 21, his Eq. (14)]) proposes
that the maximal gap of primes less than x is asymptotic to (log x)2 as x → ∞ (Section 6). Using the exponential distribution as a
heuristic model of the gaps, we show (Theorem 5) that the Cramér-Shanks conjecture holds if and only if the largest of the first n
gaps is asymptotic (as n → ∞) to the expectation (log n)2 of the largest order statistic of a sample of n independent observations
from an exponential distribution with mean log n. However, the (1 − 1/n)-quantile of the largest order statistic of a sample of n
independent observations from an exponential distribution with mean log n yields 2(log n)2 as an asymptotic estimate of the largest of
the first n gaps. This estimate exceeds the Cramér-Shanks conjecture and Kourbatov’s bound [23] on gaps derived from Firoozbakht’s
conjecture.

In the concluding Section 7, we compare asymptotic expressions (derived from the exponential model of prime gaps and from
other conjectures) for moments and maximal gaps with exact numerical results derived from public sources. Numerical evidence
supports the moments of an exponential distribution with mean log n as models of the moments of the first n gaps and questions
(log n)2 as an asymptotic description of the largest of the first n gaps.

2. Definitions and background

For any natural number n ∈ N := {1, 2, . . .}, let pn be the nth prime starting from p1 = 2, p2 = 3 (OEIS A000040). Let P :=
{p1, p2, . . .} be the set of primes. Define the nth gap dn between consecutive primes (OEIS A001223) and the sum Dk(x) of the kth
power, k ∈ {0} ∪ N, of the gaps between consecutive primes that do not exceed real x to be

dn := pn+1 − pn, n ∈ N, (1)

Dk(x) :=
∑

pn+1≤x

dk
n. (2)

We shall say that dn is the gap of pn if and only if (1). For example, the gap of 17 is 2.
Let π(x) := #{p ∈ P | p ≤ x} be the number of primes that do not exceed real x ≥ 2 (OEIS A000720 gives π(x) evaluated at

positive integral values of x). Obviously π(pn) = n and pπ(x) = max{pn ∈ P | pn ≤ x}. For 2 < a < b, the number of primes in the
interval (a, b] equals π(b) − π(a). Those primes are pπ(a)+1, . . . , pπ(b) and the gaps of those primes are dπ(a)+1, . . . , dπ(b). Then

dπ(a)+1 + · · · + dπ(b)−1 := L1 < L := b − a < L2 := dπ(a)+1 + · · · + dπ(b). (3)

Some authors define the number of the gaps of the primes in (a, b] to be N1 := π(b) − π(a) − 1 (excluding gap dπ(b) because
pπ(b)+1 > b) and some authors define it to be N2 := π(b) − π(a) (including gap dπ(b)). Asymptotically, the difference in these
definitions is immaterial.

If f (x) and g(x) are real-valued functions of real x and g(x) > 0 for all x sufficiently large, define f (x) ∼ g(x) to mean that
f (x)/g(x) → 1 as x → ∞. In Riesel’s [29, p. 61] cautious notation, define f (x) ∼c g(x) if f (x) ∼ g(x) is conjectured but not proved.
Likewise, =c will denote a conjectured but unproved equality.

Oliveira e Silva [28, p. 2056] conjectured that

Dk(x) ∼c k! x(log x)k−1, k ≥ 1. (4)

The prime number theorem states:

π(x) ∼ x
log x

as x → ∞ or equivalently pn ∼ n log n as n → ∞. (5)

Because π(x) ∼ x/log x if and only if log x ∼ x/π(x), and because x/π(x) is asymptotic to the average gap of the primes ≤ x, the
prime number theorem (5) implies that the average gap of the primes ≤ x is asymptotic to log x. (Why? Because x is asymptotic to the
sum of gaps of the primes ≤ x. Also π(x) is asymptotic to the number of gaps of the primes ≤ x, by either definition of that number
N1 or N2 above. By definition, the average of the gaps of the primes ≤ x is the sum of gaps of the primes ≤ x divided by the number
of gaps of the primes ≤ x. That ratio is asymptotic to x/π(x) = log(x).) As n → ∞, (5) implies that pn/n → ∞. Taking logs of both
sides gives log pn − log n → ∞ but log pn/ log n ∼ (log n + log log n)/ log n → 1.

Wolf [41] remarked that, when k = 0, the right side of conjecture (4) becomes x/ log x as in the prime number theorem in (5).
When k = 1, (2) simplifies to D1(x) = pπ(x) − 2 and (4) asserts that D1(x) ∼ x, which is well known and, in any case, follows from
Lemma 1. For k > 1, (4) apparently remains unproved, though well supported numerically [28, 41].

We shall use some elementary consequences of the prime number theorem (5).

https://oeis.org/A000040
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Lemma 1. The prime number theorem (5) implies

lim
n→∞

pn+1
pn

= 1, (6)

lim
x→∞

x
pπ(x)

= 1, (7)

lim
x→∞

log π(x)

log x
= 1. (8)

Proof. By (5),
pn+1

pn
∼ (n + 1) log(n + 1)

n log n
∼ 1 · 1 = 1. (9)

This proves (6). To prove (7), observe that pπ(x) ≤ x < pπ(x)+1, hence 1 ≤ x/pπ(x) < pπ(x)+1/pπ(x). As x → ∞, also π(x) → ∞, so
(6) implies (7). To prove (8), take logarithms of (5): log π(x) ∼ log x − log log x ∼ log x as x → ∞.

Now we define an exponentially distributed random variable and state, mostly without proof, several of its well known properties.
Let X be a nonnegative real-valued random variable with cumulative distribution function (cdf) F(x) := Pr{X ≤ x}, x ≥ 0. If
there exists some λ > 0 such that F(x) = 1 − exp(−λx), then X is exponentially distributed with scale parameter λ and we write
X d= Exp(λ).

Lemma 2. Assume λ > 0. For n > 1, let X and X1, . . . , Xn be independently and identically distributed (iid) Exp(λ) random variables.
Then:

1. For any real c > 0, cX d= Exp(λ/c).
2. For real r > −1, the rth moment of X is E(Xr) = �(r + 1)/λr [26, p. 28, Eq. (5)]. When r ∈ N, then �(r + 1) = r!. Hence the

expectation or mean of X is 1/λ and the variance of X is 1/λ2.
3. Let the order statistics of X1, . . . , Xn be X(1) ≤ · · · ≤ X(n). Then [30, p. 343] for i = 1, . . . , n,

E(X(i)) = 1
λ

i∑
j=1

1
n − j + 1

= 1
λ

n∑
j=n−i+1

1
j

, (10)

Var(X(i)) = 1
λ2

i∑
j=1

1
(n − j + 1)2 = 1

λ2

n∑
j=n−i+1

1
j2

. (11)

4. The cumulative distribution function (cdf) of the smallest order statistic X(1) is
Pr{X(1) ≤ x} = 1 − exp(−nλx), x ≥ 0, (12)

i.e., X(1)
d= Exp(λn). For 0 < q < 1, let y1 be the (1 − q)-quantile of X(1). By definition, y1 satisfies q = Pr{X(1) > y1} =

1 − Pr{X(1) ≤ y1} = exp(−nλy1). Then
y1 = −(1/[nλ]) log q < +(1/[nλ])(1/q − 1). (13)

In particular, if q = 1/n, then y1 = +(1/[nλ]) log n.
5. The cdf of the largest order statistic X(n) is

Pr{X(n) ≤ x} = (1 − exp(−λx))n, x ≥ 0. (14)
For 0 < q < 1, let yn be the (1 − q)-quantile of X(n). By definition, yn satisfies Pr{X(n) > yn} = 1 − Pr{X(n) ≤ yn} = q. Then

yn = −(1/λ) log(1 − (1 − q)1/n) < +(1/λ)(log n − log q). (15)

Proof. q = 1 − (1 − exp(−λyn))n, hence 1 − exp(−λyn) = (1 − q)1/n and then −λyn = log(1 − (1 − q)1/n). The inequality follows
from (1 − q)1/n < 1 − q/n.

6. [18, p. 324, Ex. 9] By Lemma 2.1, λXn
d= Exp(1). Then

Pr
{

lim sup
n→∞

λXn
log n

= 1
}

= 1. (16)

7. Let Sn := X1 + · · · + Xn. Let random variables U1, . . . , Un−1 be iid uniformly on [0, 1] and let U0 := 0, Un := 1 with probability 1.
Then (X1/Sn, X2/Sn, . . . , Xn/Sn)

d= (g1, g2, . . . , gn) := (U(1) − U(0), U(2) − U(1), . . . , U(n) − U(n−1)) ([15, p. 75, III.3(e)] and [18,
p. 302, Ex. 42]).

8. [27] Large deviations: When a > 1/λ, then

Pr
{

X1 + · · · + Xn
n

> a
}

≈ exp(−(aλ − 1 − log λ − log a)n). (17)
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3. Asymptotic moments of first n gaps are exponential

Define the kth moment (k > −1) of the first n gaps to be

μ′
k,n := 1

n

n∑
j=1

dk
j . (18)

Thus if π(x) = n, then (2) and (18) give μ′
k,n = Dk(x)/n.

Theorem 3. The conjecture (4) of Oliveira e Silva [28, p. 2056] holds for each k ∈ {0} ∪ N if and only if the kth moment of the first n
gaps is asymptotic to the kth moment of the exponential distribution Exp(1/ log n) with mean log n:

μ′
k,n ∼c k!(log n)k, n → ∞. (19)

Proof. The cases k = 0, k = 1 are known to be true. Assume (4) for k > 1. Using the definition (2) and Lemma 1, replace x by pn+1
in (4) to get

Dk(pn+1) ∼c k! n log n(log(n log n))k−1 = k! n log n(log n + log log n)k−1 ∼ k! n(log n)k. (20)
Dividing both sides by n gives (19).

Conversely, suppose the kth moment of the first n gaps is asymptotic to the kth moment of the exponential distribution
Exp(1/ log n). Then, working backward through the calculation in (20),

nμ′
k,n :=

n∑
j=1

dk
j ∼ k!n(log n)k ∼ k! n log n(log n + log log n)k−1

= k! n log n(log(n log n))k−1 ∼c Dk(pn+1). (21)
Again using Lemma 1 to replace pn+1 by x and n log n ∼ pn ∼ pn+1 by x gives

k! x(log x)k−1 ∼c Dk(x). (22)

4. Asymptotic variance function obeys Taylor’s power law

For n ∈ N, n ≥ 2, define the mean and variance of the first n gaps as

mn := 1
n

n∑
j=1

dj = μ′
1,n, (23)

vn := 1
n − 1

n∑
j=1

(dj − mn)
2 = n

n − 1

⎛
⎝ 1

n

n∑
j=1

d2
j − m2

n

⎞
⎠ = n

n − 1
(μ′

2,n − (μ′
1,n)

2). (24)

The central equality in (24) holds because
∑n

j=1(dj − mn)2 = ∑n
j=1(d2

j − 2djmn + m2
n) = ∑n

j=1 d2
j − 2

∑n
j=1 djmn + nm2

n =∑n
j=1 d2

j − 2(nmn)mn + nm2
n = ∑n

j=1 d2
j − nm2

n.
The variance function of gaps is the function f that satisfies vn = f (mn) [1, 2, 11, 34–36]. The asymptotic variance function of

gaps is a (not unique) function f that satisfies vn ∼ f (mn).

Corollary 4. Conditional on the conjectures of Heath-Brown [21], Wolf [39], and (4) of Oliveira e Silva [28, p. 2056],

lim
n→∞

vn
m2

n
=c 1. (25)

Proof. From (19),
μ′

2,n
(μ′

1,n)
2 ∼c 2. (26)

Hence

vn ∼ (μ′
1,n)

2

(
μ′

2,n
(μ′

1,n)
2 − 1

)
∼c (μ′

1,n)
2(2 − 1) = m2

n. (27)

This power-law asymptotic variance function is the special case c = 1, b = 2 of Taylor’s law of fluctuation scaling vn ∼ cmb
n, c > 0

[4–7, 12, 14, 33]. These parameter values c = 1, b = 2 are consistent with the exponential distribution, in which the variance equals
the square of the mean. However, a variance asymptotic to the squared mean does not imply an exponential distribution (e.g., a
normal distribution with mean μ and variance μ2 has a variance equal to the squared mean).
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5. An asymptotically exponential distribution of gaps is plausible

In a heuristic and numerical exploration, Yamasaki and Yamasaki [42] “assume that the exponential distribution can be applied to
the gaps of prime numbers. But the gaps [except for d1 = 1] are always even integers, so do not distribute continuously on [0, ∞).”
They proposed adjustments to the exponential distribution.

Conditional on a uniform version of the unproved prime r-tuple conjecture of Hardy and Littlewood [20], Gallagher [16] showed
that, for λ > 0, h ∼ λ log N, and n ≤ N, as N → ∞, the distribution of the values of π(n + h) − π(n) converges to the Poisson
distribution with parameter λ. Thus λ is the expectation and the variance of the number of primes over the interval (n, n + λ log N]
of length λ log N, so the average gap is asymptotically log N. If the Poisson-distributed number of primes arrived in the interval
(n, n + λ log N] according to a Poisson process, then the inter-arrival interval between successive primes (that is, the gap) would be
exponentially distributed [15, pp. 188, 378], Exp(1/ log N).

Wolf [40] gave strong numerical evidence [40, p. 3, his Figure 1] and a heuristic argument [40, p. 2, his Eq. (7)] that an exponential
distribution with mean log n asymptotically approximates the distribution of the first n gaps. To circumvent the difficulty that the
exponential distribution lacks the discreteness of the natural numbers, Wolf [40, his Eq. (19), his Figure 5] proposed a rescaling that
turns the discrete dn into a continuous variable.

Our finding that, conditional on the conjecture (4) of Oliveira e Silva [28, p. 2056], the moments of the first n gaps are asymptotic
to the moments of the exponential distribution, even though the gaps are not continuously distributed, is consistent with T. Stieltjes’s
discovery in 1894 that the moments of the lognormal distribution do not uniquely specify the continuous probability distribution
that produced the moments [31, pp. 17–18, section 2.1].

We suggest it is plausible that the moments (18) of the first n gaps are asymptotic to the moments of Exp(1/ log n). First, the
primes that do not exceed x are asymptotically uniformly distributed on [0, x] as x → ∞ [4]. To see why, choose any 0 < r < 1.
Then, for large x, the number of primes not exceeding rx divided by the number of primes not exceeding x is asymptotically, by the
prime number theorem (5), π(rx)/π(x) ∼ limx→∞(rx/ log(rx))/(x/ log x) = r. (From a more general perspective, the asymptotic
counting function π(x) ∼ x/ log x of primes is regularly varying [3] with exponent 1.)

Assume U1, . . . , Un are iid uniform on [0, x]. The finding that the primes are asymptotically uniformly distributed on [0, x] [4]
suggests the order statistics U(1) ≤ · · · ≤ U(n) of U1, . . . , Un as a stochastic model of the asymptotic distribution of the primes on
[0, x] and suggests the n “spacings” [5, 22] gi := U(i) − U(i−1), i = 1, . . . , n, with U(0) := 0 almost surely, as a stochastic model of
the first n gaps. The spacings are exponentially distributed (Lemma 2.7) and their average size is asymptotically log n. So the gaps
between consecutive primes ≤ x are plausibly distributed as the spacings between consecutive order statistics of π(x) iid uniform
random variables on [0, x], and these spacings are distributed as Exp(1/ log n).

This stochastic model of the primes and gaps intentionally omits the discreteness of integers and the lack of independence of
primes.

6. The largest of the first n gaps

What would the exponential model of gaps predict about the asymptotic behavior of the maximal gap, Gn := max{d1, . . . , dn}, among
the first n gaps? Here we consider two possible answers.

Theorem 5. For fixed n > 1, let Xi
d= Exp(1/ log n), i = 1, . . . , n, be iid. Let γ ≈ 0.5772 be the Euler-Mascheroni constant, ζ(·) the

zeta function, and π2/6 ≈ 1.6449. Then the mean and variance of the largest order statistic X(n) are

E(X(n)) = (log n)

n∑
j=1

1
n − j + 1

∼ (log n)(γ + log n) ∼ (log n)2, (28)

Var(X(n)) = (log n)2
n∑

j=1

1
(n − j + 1)2 ∼ (log n)2ζ(2) = (log n)2 π2

6
. (29)

Thus Var(X(n))/E(X(n)) → π2/6 > 1 and Var(X(n)) ∼ (π2/6)E(X(n)). The maximal gap illustrates Taylor’s law with c = π2/6, b = 1.

Proof. From Lemma 2.3,

E(X(n)) = (log n)

(
1 + 1

2
+ 1

3
+ · · · + 1

n

)
∼ (log n)(γ + log n) ∼ (log n)2, (30)

Var(X(n)) = (log n)2
(

1 + 1
22 + 1

32 + · · · + 1
n2

)
∼ (log n)2ζ(2) = (log n)2 π2

6
. (31)

The Cramér-Shanks conjecture may be stated as
max
pj≤x

(pj+1 − pj) ∼c (log x)2 ∼ (log pπ(x))
2. (32)

See Cramér [8, pp. 24, 27], Shanks [32, p. 648, his Eq. (5)], and the very helpful Granville [17, p. 21, his Eq. (14)].
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Theorem 6. The Cramér-Shanks conjecture (32) holds if and only if the maximal gap Gn := max{d1, . . . , dn} satisfies

Gn ∼c (log n)2. (33)

Proof. If there are n primes less than or equal to x, then the largest of these is pn ∼ n log n ∼ x, using Lemma 1. Thus, translated
from the scale of primes not exceeding x to the first n gaps, the Cramér-Shanks conjecture (32) becomes (33) because

max
1≤j≤n

dj ∼c (log(n log n))2 = (log n + log log n)2 ∼ (log n)2. (34)

Conversely, if max1≤j≤n dj ∼c (log n)2, then max1≤j≤n dj = maxpj≤pn dj ∼ maxpj≤x dj and log x ∼ log(n log n) ∼ log n +
log log n ∼ log n, so (log x)2 ∼ (log n)2 and (32) holds.

Theorems 5 and 6 suggest that (log x)2 in the Cramér-Shanks conjecture (32) is too small asymptotically. In the model of
Theorem 5, the largest gap is likely to be larger than the expectation of the largest gap because the variance of the largest gap
is of the same order of magnitude as the expectation of the largest gap. To the extent that the above conjectures are correct
that gaps have exponential moments asymptotically, it would be surprising if the largest of the first n gaps did not exceed
(log x)2.

These suggestions indirectly challenge Firoozbakht’s conjecture [38]. Kourbatov [23] showed that Firoozbakht’s conjecture implies
that dn := pn+1 − pn <c (log pn)2 − log pn − 1 for all n > 9 and is implied by dn <c (log pn)2 − log pn − 1.17 for all n > 9. These
upper bounds are stronger than the Cramér-Shanks conjecture (32), and lower than the dominant term (log pn)2 ∼ (log n)2 (see
Theorem 6) by amounts that increase without limit as n increases. To the extent that our Theorems 5 and 6 suggest that (log x)2 in
the Cramér-Shanks conjecture (32) is too small asymptotically, our results suggest even more that Kourbatov’s upper bounds on gaps
are likely to be too small. Kourbatov [23] discusses many related inequalities and conjectures concerning prime gaps.

Granville [17, p. 24] reviewed results that suggest, contrary to the Cramér-Shanks conjecture (32), that

max
pj≤x

dj
>∼c 2e−γ (log x)2 ∼ 2e−γ (log pπ(x))

2, (35)

where 2e−γ ≈ 1.1229. Translating from the scale of x to the scale of the number of gaps n = π(x) by x ∼ pn ∼ n log n so that
(log x)2 ∼ (log(n log n))2 ∼ (log n)2 gives the proposal that

Gn
>∼c 2e−γ (log n)2. (36)

These observations motivate another estimate of the largest of the first n gaps, namely, the (1 − 1/n)-quantile of the largest order
statistic X(n). We now determine the value of y such that, in a sample of size n from Exp(1/ log n), as in Theorem 5, the probability
that the largest order statistic X(n) exceeds y is 1/n.

Theorem 7. In a sample of size k > 1 from Exp(1/ log n), let yk be the (1 − 1/k)-quantile of the maximal order statistic X(k). Then
yk ∼ 2(log n)(log k) as k → ∞. If k ∼ tn for some t > 0, then yk ∼ 2(log n)2 as n → ∞.

Proof. Using Lemma 2.5, (15), with λ = 1/ log n gives

yk = −(log n) log(1 − (1 − 1/k)1/k). (37)

Repeated applications of l’Hopital’s rule as k → ∞ shows that − log(1 − (1 − 1/k)1/k) ∼ (2 log k) and hence that

yk ∼ +2(log n)(log k). (38)

Wolf [40, his Eq. (15)] argued heuristically for the conjecture that, as x → ∞,

GW(x) := max
pn<x

(pn − pn−1) ∼c
x

π(x)
(2 log(π(x)) − log(x) + c), (39)

where c ≈ 0.2778769. Here c := log(C2) and C2 := 2
∏

p>2(1− (p−1)−2) is known sometimes as the twins constant and sometimes
as twice the twins constant. The product in C2 is taken over all positive odd primes. Replacing x by pn + ε and letting ε ↓ 0 gives the
equivalent conjecture, as n → ∞,

GW(pn) ∼c
pn
n

(2 log(n) − log(n log n) + c) ∼ (log n)2. (40)
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7. Numerical illustrations

For moments and maximal gaps, we compare exact numerical results derived from public sources with asymptotic expressions derived
from the exponential model of prime gaps and from other conjectures.

7.1. Moments

To illustrate Theorem 3, we compare exact computations of the moments of the first n gaps with the moments of an exponential
distribution with mean log n as given by (19). Wolf [40] generously made public extensive numerical results at http://pracownicy.
uksw.edu.pl/mwolf/gapstau.zip. Wolf [40, p. 2, his Eq. (2)] defined, for large real x and even d ∈ N,

τd(x) := #{pn+1 | pn+1 < x and pn+1 − pn = d} (41)

and, for every odd d ∈ N, τd(x) := 0. In words, when d is even, τd(x) is the number of pairs of consecutive primes such that the larger
prime is less than x and such that their difference equals d; and for odd d, τd(x) := 0. This definition and my subsequent analyses
exclude τ1(x) = 1, x ≥ 3, representing the single gap p2 − p1 = 3 − 2 of size d = 1. Wolf collected the non-zero values of τd(x) in 34
text files, one file for each of the 34 values of x = 2t , t = 15(1)48. (Approximately, 248 ≈ 2.8147 × 1014.) Each file has two columns,
the first listing values of d such that τd(x) > 0, and the second listing the corresponding non-zero values of τd(x).

First, using MATLAB Version 9.13.0.2049777 (R2022b), I calculated τd(x) directly for all primes less than 220. My results agreed
exactly with those in Wolf ’s file tau20s.dat. For example, Wolf and I independently found τ2(220) = 8535 gaps of size d = 2; the
maximal gap size, d = 114, occurred once: τ114(220) = 1.

Having partially verified Wolf ’s results, I analyzed Wolf ’s 12 files with values of x = 2t , t = 15, 18, 21, 24, 27, . . . , 48. For each
such file separately, Table 1 gives t; the number of gaps n = ∑

d∈N τd(x) where x = 2t (not counting the first gap d = 1); the first four
integer moments μ′

k,n, k = 1, 2, 3, 4 from (18); and the maximal gap Gn. Figure 1 compares μ′
k,n with k!(log n)k, which is asymptotic

Table 1. For each upper limit x = 2t , this table shows the exponent t of 2, the number n of gaps between consecutive primes (not counting the odd first gap), the moments
μ′

k,n(k = 1, 2, 3, 4), and the maximal gap Gn .

Moments

row t n k = 1 k = 2 k = 3 k = 4 Gn

1 15 3510 9.3293 136.2017 2.7818e+03 7.4292e+04 72
2 18 22998 11.3982 210.7095 5.5060e+03 1.8546e+05 86
3 21 155609 13.4770 304.1124 9.8914e+03 4.2503e+05 148
4 24 1077869 15.5652 412.7866 1.5776e+04 7.8862e+05 154

5 27 7603551 17.6520 539.4491 2.3885e+04 1.3864e+06 222
6 30 54400026 19.7379 683.2373 3.4423e+04 2.2806e+06 282
7 33 393615804 21.8231 844.1273 4.7670e+04 3.5440e+06 354
8 36 2.8744e+09 23.9074 1.0222e+03 6.3972e+04 5.2773e+06 464

9 39 2.1152e+10 25.9908 1.2173e+03 8.3638e+04 7.5819e+06 532
10 42 1.5666e+11 28.0736 1.4296e+03 1.0699e+05 1.0574e+07 652
11 45 1.1667e+12 30.1560 1.6590e+03 1.3435e+05 1.4377e+07 766
12 48 8.7312e+12 32.2379 1.9056e+03 1.6603e+05 1.9127e+07 906

Figure 1. Moments μ′
k,n (k = 1, 2, 3, 4) of the first n gaps between consecutive primes (solid dots) from k = 1 (bottom row) to k = 4 (top row); and corresponding kth

moments (k = 1, 2, 3, 4) of exponential distributions Exp(1/ log n) (solid lines). The dots and the lines are calculated independently with no adjustment of parameters.

http://pracownicy.uksw.edu.pl/mwolf/gapstau.zip
http://pracownicy.uksw.edu.pl/mwolf/gapstau.zip
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Figure 2. Maximal gap Gn (solid blue dots) among the first n gaps and four conjectured models: (log n)2 (solid black line); (log pn)2 (solid black line with + markers);
2e−γ (log n)2 (dashed purple line), where 2e−γ ≈ 1.1229; and 2e−γ (log pn)2 (dashed purple line with + markers). The dots and lines are calculated independently with no
adjustment of parameters. While the great majority of the values of Gn are better approximated by (log n)2 (solid black line) than by the other models, the seven exceptional
values of n with Gn > 2e−γ (log n)2 in Table 2 suggest that lim supn→∞ Gn/[2e−γ (log n)2] may exceed 1.

Table 2. Seven maximal gaps Gn that exceed (log n)2 and 2e−γ (log n)2, the index n of the prime pn that begins the maximal gap, the prime pn that begins the maximal
gap, (log pn)2, and 2e−γ (log pn)2.

row n Gn pn (log n)2 (log pn)2 2e−γ (log n)2 2e−γ (log pn)2

1 1 1 2 0 0.4805 0 0.5395
2 2 2 3 0.4805 1.2069 0.5395 1.3553
3 4 4 7 1.9218 3.7866 2.1580 4.2520

4 9 6 23 4.8278 9.8313 5.4212 11.0398
5 30 14 113 11.5681 22.3482 12.9901 25.0952
6 217 34 1327 28.9433 51.7058 32.5010 58.0614
7 49749629143526 1132 1693182318746371 994.6470 1229.6 1116.9 1380.7

Only for n = 1 and n = 2 is Gn > 2e−γ (log pn)2.

to the corresponding moments of samples of size n from an exponential distribution Exp(1/ log n), as conjectured in (19). Visually,
the agreement in Figure 1 between the exact moments and the asymptotic moments of Exp(1/ log n) is remarkable.

7.2. Maximal gaps

We compare the first 80 known maximal gaps (now including the initial gap of size 1) [37] with four asymptotic models: (33), (32),
(36), and (35). These results on maximal gaps are more extensive and more detailed than those in Table 1. The tabulation lists three
sequences:

1. the indices of primes after which a maximal gap occurs
n = 1, 2, 4, 9, 24, 30, 99, 154, 189, 217, 1183, . . . (OEIS A005669),

2. the corresponding maximal gaps
Gn := pn+1 − pn = 1, 2, 4, 6, 8, 14, 18, 20, 22, 34, 36, . . . (OEIS A005250), and

3. the primes after which a maximal gap occurs
pn = 2, 3, 7, 23, 89, 113, 523, 887, 1129, 1327, 9551, . . . (OEIS A002386).

I partially verified the Wikipedia tabulation in two ways. First, Marek Wolf (personal communication, 2022-11-10) generously
sent me his tabulation of the first 74 maximal gaps Gn (not including G1), their indices n, and their beginning primes pn. Second,
using MATLAB, I calculated these three sequences directly for all primes less than 106. My results and Wolf ’s agreed exactly, as far as
they went, with the Wikipedia tabulation [37].

Figure 2 plots, as a function of n, the maximal gap size Gn among the first n gaps; and the values of the four conjectured asymptotic
expressions (log n)2; (log pn)2; 2e−γ (log n)2, where 2e−γ ≈ 1.1229; and 2e−γ (log pn)2. The majority of points (n, Gn) (blue solid dots
in Figure 2) fall slightly below the conjectured asymptotic behavior (n, (log n)2) (solid black line in Figure 2) derived here from the
conjectured asymptotically exponential distribution of gaps. The form of Wolf ’s conjecture in (40) falls slightly below (n, (log n)2)
and often closer to the points (n, Gn) than (n, (log n)2). However, the seven exceptional values of n with Gn > 2e−γ (log n)2 in
Table 2 suggest that lim supn→∞ Gn/[2e−γ (log n)2] may exceed 1. The available numerical results neither confirm nor reject the

https://oeis.org/A005669
https://oeis.org/A005250
https://oeis.org/A002386
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suggestion implied by Theorem 7 that lim supn→∞ Gn might be asymptotic to 2(log n)2. The asymptotic behavior of Gn remains to
be determined.
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