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Abstract

Taylor's law (TL) describes the relationship between the variance and mean

of population density: log10(variance) ≈ log10(a) + b � log10(mean), a > 0.

This study analyzed the temporal TL, for which mean and variance are calcu-

lated over time, separately for each population in a collection of populations,

considering the effects of the parameters of the Gompertz model (a second-

order autoregressive time-series model) and the skewness of the density

frequency distribution. Time series of 162 populations of the gray-sided vole

in Hokkaido, Japan, spanning 23–31 years, satisfied the temporal TL:

log10(variancej) ≈ 0.199 + 1.687 � log10(meanj). This model explained 62% of

the variation of log10(variancej). An extended model with explanatory variables

log10(meanj), the density-dependent coefficient for 1-year lag (α1,j), that for

2-year lag (α2,j), the density-independent variability (σj
2), and the skewness

(γj), explained 93.9% of the log10(variancej) variation. In the extended model,

the coefficient of log10(meanj) was 1.949, close to the null value (b = 2) of the

TL slope. The standardized partial regression coefficients indicated that

density-independent effects (σj
2 and γj) dominated density-dependent effects

(α1,j and α2,j) apart from log10(meanj). The negative correlations observed

between σj
2 and log10(meanj), and between γj and log10(meanj), played an

essential role in explaining the difference between the estimated slope of TL

(b = 1.687) and the null slope (b = 2). The effects of those explanatory

variables on log10(variancej) were interpreted based on the theory of a second-

order autoregressive time-series model.
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1 | INTRODUCTION

Taylor's law (TL, Taylor, 1961) is an empirical rule describing
the relationship between the variance and mean of popula-
tion density in a set of populations. It has been verified in var-
ious ecological systems and many other fields (Taylor, 1986,
2019). TL asserts that the variance is approximately a

power-law function of its mean: variance ≈ a � (mean)b,
a > 0. It is often represented in the logarithmic form:

log10 varianceð Þ≈ log10 að Þþb� log10 meanð Þ: ð1Þ

The variance and mean of population density can be
calculated temporally and spatially. In the temporal TL,
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for each population separately, the variance and mean
are calculated over observations of population density at
different times. In the spatial TL, for each time separately,
the variance and mean are calculated over observations of
population density of spatially different populations. The
temporal TL particularly gains interest in relation to popu-
lation dynamics, and the slope b can be taken as a measure
of the variation (from one population to another) in the
magnitude of temporal population fluctuations as a func-
tion of the variation in the magnitude of the time-averaged
population. The population-specific residuals in the tempo-
ral TL were proposed as a measure of stability in crop yields
(Döring et al., 2015), and modified forms have been used to
explore extinction risk in small-sized populations (Pertoldi
et al., 2008; Reed & Hobbs, 2004). The temporal mean of
population density may depend primarily on average habi-
tat quality over time, while the temporal variance may
depend on the internal dynamics of population fluctuation
or environmental fluctuation over time or both, indepen-
dently or in interaction. Therefore, analyses of the temporal
variance–mean relationship may contribute to understand-
ing not only the temporal TL but also population dynamics
and population–environment interactions. This study inves-
tigated the temporal variance–mean relationship in relation
to population dynamics.

Varied models (Ballantyne, 2005; Cohen, 2013;
Kilpatrick & Ives, 2003) lead to a TL slope b = 2. However,
most observed slopes satisfy 1 < b < 2 (Cobain et al., 2019;
Linnerud et al., 2013; Taylor & Woiwod, 1980, but see
Zhao et al., 2019). These empirical slopes may be inter-
preted to suggest, in the temporal TL, that most popula-
tions fluctuate around a mean density as a result of
regulatory forces inside or outside of the system in which
the populations are involved, and the effect of forces may
increase with rising mean density. Little evidence had
accumulated by 1982 that the degree of density dispersion
declined at high densities (Anderson et al., 1982). Reed
and Hobbs (2004) demonstrated that the coefficient of var-
iation (CV, equal to standard deviation divided by mean)
became significantly weaker as the temporal mean popula-
tion size increased in 2387 populations from 203 species.
Although this negative relationship of density dispersion
to mean density may reduce the slope compared to the
null value of b = 2, an extended analysis, including other
factors associated with the variance–mean ratio, should be
carried out to assess the role of that negative relationship
in TL. The relative importance of factors that affect the TL
slope is poorly studied (Zhao et al., 2019), although many
factors have been proposed as influential on TL slopes
(e.g., species interaction: Kilpatrick & Ives, 2003, reproduc-
tive correlation: Ballantyne & Kerkhoff, 2007, habitat size:
Mellin et al., 2010, demographic stochasticity: Linnerud
et al., 2013, environmental variability: Cobain et al., 2019).

Cohen and Xu (2015) theoretically propose a baseline
slope of TL based on their random sampling model, in
which the TL slope is proportional to the skewness of the
density frequency distribution when the mean and vari-
ance are constant. However, the baseline slope has not
been fully utilized. Zhao et al. (2019) suggest population
skewness, CV, and synchrony as useful analytical tools to
understand how multiple ecological factors influence TL.

Although TL performs well describing the variance–
mean relationship, the mean population density is not
the only factor that may influence the variation of density
variance. Cohen and Saitoh (2016) found that the
density of 85 populations of the gray-sided vole, Myodes
rufocanus (Sundevall, 1846), in Hokkaido satisfied
the temporal TL (as well as a spatial TL) with
log10(variance) ≈ 0.216 + 1.613 � log10(mean) with mod-
erate goodness of fit (R2 = 0.607). This motivated us to
explore variables other than log10(mean) to explain the
variation of log10(variance). Saitoh and Cohen (2018) sug-
gested that the variance and mean of population density
could be predicted from the density-dependent coeffi-
cients and density-independent parameters of the
second-order autoregressive model based on Box and
Jenkins (1970). Cohen and Xu (2015) showed mathemati-
cally that, assuming independent and identically distrib-
uted observations of population density, the TL slope
could be predicted from the skewness and CV of popula-
tion densities (see also Zhao et al., 2019). These theories
tell us that the density-dependent coefficients, density-
independent parameters, and the skewness of population
density may help to explain the variation of log10(variance)
besides log10(mean).

Here we report on the effects of mean densities, the
density-dependent coefficients for 1-year and 2-year lags,
the density-independent variability, and the skewness on
the temporal variance of densities for 162 populations
of the gray-sided vole. We show that the divergence of the
empirical slope of the temporal TL from the null value
(b = 2, which holds when the coefficient of variation is con-
stant for different values of the temporal mean) can largely
be explained by the interaction between mean densities and
the density-independent variables. These results may con-
tribute to understanding why most empirical temporal TL
slopes are less than the null slope, b = 2.

2 | MATERIALS AND METHODS

2.1 | Study design and data

Hokkaido is the northernmost island of Japan (78,073 km2).
The gray-sided vole, Myodes rufocanus (Sundevall, 1846),
is the commonest species of rodents on this island
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(Kaneko et al., 1998), regarded as a pest species for forest
plantations. The Japanese Government Forest Agency
surveyed rodent abundance in natural forests for manage-
ment purposes (Kaneko et al., 1998); the details of the
rodent survey were described previously (Saitoh et al., 1997,
1998; Stenseth et al., 2003). The data analyzed in this study
come from 162 gray-sided vole populations for which long
time series (≥23 years) were accumulated in Hokkaido;
85 for 31 years (1962–1992), 19 for 27 years (1966–1992),
and 58 for 23 years (1970–1992). Cohen and Saitoh (2016)
and Saitoh and Cohen (2018) reported TL using a part of
this data set: 85 time series spanning 31 years (1962–1992).

The 162 studied populations were widely distributed
in the Hokkaido mainland (Figure 1). Saitoh et al. (1998)
grouped those populations into seven groups according
to geographic proximity and topographic characteristics.
Populations in Group I and II were located in the Teshio
and Kitami mountains, respectively; those in Group III
were located in the Okhotsk area; those in Group IV were
located in the Yubari mountains; those in Group V
were located in the Kamikawa-Taisetsu mountains; those
in Group VII were located in the west-side of the Hidaka
mountains; and those in Group VIII were located in the
mountainous parts of the Oshima peninsula. Some neigh-
boring populations were grouped into different groups
because the backbone of mountains or other topographic
characteristics separated them. The populations of Group
VI were not included in the analyses because their time
series frequently recorded zeros. Two time series of
Group VIII were excluded because their density-
dependent coefficients (see Section 2.3) were not success-
fully estimated.

The warm sea current runs along the western coast of
Hokkaido. The east coast is influenced by the cold sea
current. The Okhotsk area has mixed influences from
warm and cold sea currents. Therefore, the temperature
of Hokkaido shows a decreasing gradient from southwest
to northeast (Stenseth et al., 1998). The annual mean
temperatures significantly varied among the study areas
(Kruskal–Wallis rank sum test, χ2 = 39.7, df = 2,
p = 2.4 � 10�9, Figure S1): the southern areas for Group
VIII, mean [range] = 8.2�C [6.8–9.7]; the western areas
for Group I, IV, and VII, mean [range] = 5.8�C [4.5–7.5];
the eastern and inland areas for Group II, III, and V,
mean [range] = 5.0�C [4.0–6.4]. These three areas had
statistically significantly different temperatures (Dwass–
Steel–Critchlow–Fligner test, p < 1.0 � 10�4).

Most natural forests of Hokkaido are classified as
“pan mixed forest” with conifers and broad-leaved trees,
whereas the Oshima peninsula, holding Group VIII,
harbors temperate deciduous forests (Tatewaki, 1958).
Conspicuous regional differences in mammalian fauna
have not been reported.

2.2 | Temporal Taylor's law

For each location j, the mean and variance were
calculated over observations of population density (Nt,j)
at different times t. The density estimation is described in
the next section. One data point [log10(temporal meanj),
log10(temporal variancej)] was plotted for each location j.
Ordinary least-squares regression (OLS) was used to esti-
mate the parameters of the temporal TL, by fitting
Equation (1) to log10(temporal meanj) and log10(temporal
variancej) of the vole populations. This method of esti-
mating the parameters of the temporal TL implicitly
assumes that the residuals (observed minus predicted
values of the variance) from the linear relationship in
Equation (1) are homoscedastic and independently
distributed.

FIGURE 1 The map of the study area (the Hokkaido

mainland). Mountain ridges illustrated by gray run north–south in

the middle of the island, and the southwestern part (the Oshima

peninsula) holds another mountain. The studied populations

(N = 162), illustrated by different colored symbols, were grouped

into seven groups according to geographic proximity and

topographic characteristics by Saitoh et al. (1998). Populations in

Group I and II are located in the Teshio and Kitami mountains;

those in Group III are located in the Okhotsk area; those in Group

IV are located in the Yubari mountains; those in Group V are

located in the Kamikawa-Taisetsu mountains; those in Group VII

are located in the west-side of the Hidaka mountains; those in

Group VIII are located in the mountainous parts of the Oshima

peninsula. Some neighboring populations were grouped into

different groups because the backbone of mountains or other

topographic characteristics separated them. A figure in parentheses

is the number of populations for each group. The populations of

Group VI were not included in the analyses because their time

series frequently recorded zeros.
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2.3 | Gompertz model

We used the Gompertz model, Equation (2), to describe
the population dynamics of the gray-sided vole. In this
model, for each population j = 1, …, 162, xt,j = ln(Nt,j)
was the natural logarithm of the empirically estimated
density Nt,j in year t = 1962, …, 1992 (or 1966–1992,
1970–1992); μj was the temporal sample mean of xt,j in
population j, and Xt,j = xt,j – μj was the centered density
on the natural logarithmic scale in population j. The
Gompertz model supposes that

Xt,j ¼ 1þα1,j
� ��Xt�1,jþα2,j�Xt�2,jþNormal 0,σj2

� �
,

ð2Þ

where for each population j, the parameters α1,j and α2,j
are the coefficient of density dependence for a 1-year lag
and for a 2-year lag, respectively. Although an autore-
gressive model can have an order higher than two (mean-
ing that Xt,j could depend on more than the two most
recent prior values), most time series on microtine rodents
have an order of approximately two (Stenseth, Bjørnstad, &
Falck, 1996), and Stenseth, Bjornstad, and Saitoh (1996)
confirmed that the second-order autoregressive model
(Equation 2) was a parsimonious model for the studied
populations. We used the Bayesian approach to estimate
the densities and parameters under the assumption that Xt,j

came from a normal distribution with mean = (1 + α1,j)
Xt�1,j + α2,jXt�2,j and variancej = σj

2.
We linked the observation data (Volet,j: the number

of voles captured at time t in location j) with the Gom-
pertz model by assuming that Volet,j is Poisson-distrib-
uted with mean shown in parenthesis on the right below:

Volet,j � Poisson Trapt,j� exp μjþXt,j

� �� �
,

where Trapt,j represents trapping effort (the number of
trap-nights). Fitting the Gompertz model (Equation 2) to
the centered time series Xt,j = xt,j – μj yielded Bayesian
estimates of Xt,j, α1,j, α2,j, μj, and σj. Population density
(Nt,j) was defined as the number of voles captured per
150 trap-nights (50 snap traps for three consecutive
nights on a 0.5 ha survey plot) and was obtained by mul-
tiplying exp(μj + Xt,j) by 150.

We programmed the model into RStan (Stan Develop-
ment Team, 2022). The model parameters were estimated
by 9000 iterations (after a 9000 iteration “burn in”) under
thin = 3 and chains = 4, although robust estimates were
obtained under lower quantities of iterations and chains
for most populations. This procedure was basically the
same as in our previous works (Cohen & Saitoh, 2016;
Saitoh, 2020; Saitoh & Cohen, 2018). We tested the validity

of a gamma distribution (0.001, 0.001), which we used pre-
viously, for the non-informative prior distribution for σj,
because Gelman (2006) suggested that a gamma distribu-
tion might cause a biased estimate for a very small σj and
recommended instead a uniform distribution (0, 100).
Using the 85 populations studied previously, which
belonged to Groups I, II, and V in this study, we compared
the parameter estimates between these two non-
informative prior distributions. The gamma distribution
provided consistently and slightly lower estimates com-
pared to the uniform distribution (Figure S2). In most
cases (>94%), the 95% credible intervals were smaller for
parameter estimates from the gamma distribution than
those from the uniform distribution. Therefore, we
adopted estimates from the gamma distribution. The raw
counts of voles trapped and the trapping effort (the num-
ber of trap-nights), the current Bayesian estimates of popu-
lation densities, the locations of studied populations, and
the program code using RStan are available in Supporting
Information of this study.

2.4 | Theoretical predictions

We obtained theoretical predictions for the mean and vari-
ance of density of population j (on both the natural loga-
rithmic and linear scales) from the population-specific
density-dependent coefficients (α1,j and α2,j) and density-
independent parameter (σj

2) of the Gompertz model
(Box & Jenkins, 1970, pp. 58–63). Asymptotically for large
time t, the variance zj

2 of Xt,j is, for every population j:

zj
2 ¼ 1�α2,j

1þα2,j
� σ2j

1�α2,j
� �2� 1þα1,j

� �2 : ð3Þ

The formula in Equation (3) corrects a typographical
error in the first displayed equation of appendix G of
Saitoh and Cohen (2018), where SD should have an expo-
nent 2. Population density on the linear scale (Nt,j) is,
asymptotically for large time t, lognormally distributed
with modeled mean, for every j,

E Nt,j
� �¼ exp μjþ

zj2

2

� �
ð4Þ

and modeled variance, for every j,

Var Nt,j
� �¼ exp 2μjþ zj

2
� �

� exp zj
2

� ��1
� �

: ð5Þ

From Equations (4) and (5), the relationship of Var(Nt,j)
to E(Nt,j) is, for every j:

4 SAITOH and COHEN
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ln Var Nt,j
� �� �¼ 2� ln E Nt,j

� �� �þ ln exp zj
2

� ��1
� �� �

:

ð6Þ

As zj2 becomes large, the ratio of exp zj2
� ��1 to exp zj2

� �
approaches 1, and then the ratio of ln exp zj2

� ��1
� �

to
ln exp zj2

� �� �¼ zj2 approaches 1. Further, the natural log-
arithm is converted to the logarithm with base 10, which
is compatible with Equation (1):

ln 10ð Þ� log10 Var Nt,j
� �� �¼ 2� ln 10ð Þ� log10 E Nt,j

� �� �þ zj
2:

Because ln(10) ≈ 2.3, the following relationship holds
asymptotically for large z2j :

log10 Var Nt,j
� �� �� 2� log10 E Nt,j

� �� �þ 1
2:3

� z2j : ð7Þ

The skewness (γ) was defined following Cohen and
Xu (2015):

γ� m3

m2
3=2

,

where m2 and m3 are the second and third central
moments, respectively (Table 1). The skewness (γ) was
calculated using the package “e1071” 1.7-12 (Meyer
et al., 2022) in the R statistical environment.

2.5 | Multiple linear regression analyses

Multiple linear regression analyses were carried out
to identify factors influential on the variation of
log10(variancej) using log10(meanj), the Gompertz
model parameters α1,j, α2,j, and σj

2, and skewness of
population densities (γj) as explanatory variables, con-
sidering the effects of the seven geographic groups. The
analyses were extended to include all pairwise products
of these five quantities (log10(meanj), α1,j, α2,j, σj

2, and
γj) as explanatory variables. Less influential explana-
tory variables were removed by the backward stepwise
method using the stepAIC function in the package
“MASS” of R, and the model with the smallest AIC was
regarded as a best model. The multicollinearity among
variables was tested using the variance inflation factor.
Significant multicollinearity was not observed between
individual variables (see Section 3). However, to mini-
mize the effects of multicollinearity among products of
explanatory variables, we centered all quantitative vari-
ables in models including multiplicative terms of quan-
titative explanatory variables. Variables were not
centered in the models including multiplicative terms

of quantitative and categorical (Group) explanatory
variables.

All statistical analyses were carried out in R version
4.2.2 (R Core Team, 2022).

3 | RESULTS

3.1 | Temporal Taylor's law

The temporal TL described the relationship of log10(var-
iancej) to log10(meanj) of population density of the
162 observed populations moderately well (Figure 2,
Model-0 using R notation for a linear model:
log10(variancej) � log10(meanj)), with slope b ± standard
error = 1.687 ± 0.104: log10(variancej) = 0.199 (± SE
0.084) + 1.687 � log10(meanj) (Adjusted R2 = 0.620,
Table S1). The lower and upper limits of the 95% confi-
dence interval of slope estimate were 1.482 and 1.892,
respectively. Quadratic regression revealed no statistically
significant evidence of nonlinearity (Table S1).

The temporal TL was also supported by each
seven geographic group with the following variations (see
Table S1 for the detailed results):

log10(variancej) = 0.237 + 1.489 � log10(meanj) for
Group I,

TABLE 1 A list of variables and parameters used in this study.

log10(a): the intercept of the logarithmic form of the temporal
TL, Equation (1)

b: the slope of the logarithmic form of the temporal TL,
Equation (1)

Nt,j: an estimate of the density of population j in year t:
Nt,j = exp(μj + Xt,j) � 150 (counts per 150 trap-nights)

xt,j: the natural logarithm of Nt,j

μj: the sample temporal mean of the logarithmic density (xt,j)
for population j

Xt,j: the centered logarithmic density (Xt,j = xt,j � μj)

m2: the second central moment (sum over t of [Nt,j � mean
(N � ,j)]2, divided by number of years)

m3: the third central moment (sum over t of [Nt,j � mean
(N � ,j)]3, divided by number of years)

α1,j: the coefficient of density dependence for a 1-year lag for
population j

α2,j: the coefficient of density dependence for a 2-year lag for
population j

σj
2: the variance of the normal distribution of the error term for
population j

γj: the skewness of the frequency distribution of densities in the
natural scale for population j

SAITOH and COHEN 5

 1438390x, 0, D
ow

nloaded from
 https://esj-journals.onlinelibrary.w

iley.com
/doi/10.1002/1438-390X

.12176 by T
est, W

iley O
nline L

ibrary on [20/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



log10(variancej) = 0.554 + 1.284 � log10(meanj) for
Group II,
log10(variancej) = 0.015 + 2.187 � log10(meanj) for
Group III,
log10(variancej) = 0.382 + 1.610 � log10(meanj) for
Group IV,
log10(variancej) = 0.260 + 1.672 � log10(meanj) for
Group V,
log10(variancej) = 0.422 + 1.580 � log10(meanj) for
Group VII, and
log10(variancej) = –0.011 + 1.690 � log10(meanj) for
Group VIII.

To test Group effects, Model-0 was modified to Model-1
(log10(variancej) � log10(meanj) + Group) and Model-2

(log10(variancej) � log10(meanj) + Group + log10(meanj) �
Group). The comparison between Model-1 and Model-2
demonstrated no significant Group effect on the TL slopes
(analysis of variance [ANOVA], F = 0.911, p = 0.489,
Table S2), although the slope estimates varied from 1.284 to
2.187 and did not fall in the 95% CI of the slope (1.482–
1.892) for overall populations. The comparison between
Model-0 and Model-1 showed highly significant differences
in the intercepts among Groups (ANOVA, F = 15.082,
p = 1.5 � 10�13).

No significant nonlinearity was evident for any geo-
graphic group (Table S1).

3.2 | Population dynamics and density
dependence

The vole counts per 150 trap-nights ranged from 0.05 to
73.26. The populations of Group II with the lowest TL
slope exhibited an apparent oscillation with similar peak
densities (Figure 3). In contrast, the peak densities of the
Group III populations with the steepest TL slope greatly
varied over the years. Population fluctuations of Group
IV and VIII appeared milder than others. Their mean
and variance of population densities were low, and their
TL slopes were similarly moderate (b = 1.610 for Group
IV and b = 1.690 for Group VIII). The relation of popula-
tion dynamics patterns to the geographic location was
unclear.

The synchrony of population dynamics, represented
by the pairwise cross-correlation coefficient between pop-
ulation growth rates (Pearson's correlation coefficient,
Bjørnstad et al. 1999) within a geographic group, varied
significantly among the groups (Kruskal–Wallis rank
sum test, χ2 = 660.39, df = 6, p < 2 � 10�16). It was high-
est in Group II with the lowest TL slope. Group III popu-
lations with the steepest TL slope showed similar
population synchrony to Group II (Figure 3). The popula-
tion synchrony was outstanding in eastern and inland
populations in general. The mean population synchrony
of the seven groups was not significantly associated with
the group-specific temporal TL slopes (Pearson's correla-
tion test, rp = 0.105, p = 0.823).

The estimated mean of the density-dependent coeffi-
cient for 1-year lag (α1,j) ranged from �1.551 to 0.280 with
mean = �0.826, while that for 2-year lag (α2,j) ranged
from �0.767 to 0.580 with mean = �0.149 (Figure 4).
These estimates extensively overlapped among the
162 populations, although α1,j of Group VIII populations
were higher than others. The mean of α1,j was �0.376 for
Group VIII populations, which was significantly higher
than others (Figure 5, Kruskal–Wallis rank sum test,
χ2 = 69.278, df = 6, p = 5.8 � 10�13). The mean of α1,j

FIGURE 2 The temporal Taylor's law (TL): the relationship of

log10(temporal variancej) to log10(temporal meanj) in

162 populations of the Hokkaido vole. Each population is plotted

according to its variance and mean. The 162 populations are

grouped into seven groups (Group I–V, VII, and VIII, see the study

area map in Figure 1), illustrated by different symbols and colors

(see the legend on the panel). The black bold line denotes the

global temporal TL for all 162 populations: log10(variancej) = 0.199

+ 1.687 � log10(meanj). The group-specific temporal TLs are

illustrated by different colors corresponding to the symbol

colors, except for Group V with light gray. The temporal

TL showed the following variations: log10(variancej) = 0.237

+ 1.489 � log10(meanj) for Group I, log10(variancej) = 0.554

+ 1.284 � log10(meanj) for Group II, log10(variancej) = 0.015

+ 2.187 � log10(meanj) for Group III, log10(variancej) = 0.382

+ 1.610 � log10(meanj) for Group IV, log10(variancej) = 0.260

+ 1.672 � log10(meanj) for Group V, log10(variancej) = 0.422

+ 1.580 � log10(meanj) for Group VII, and log10(variancej)

= �0.011 + 1.690 � log10(meanj) for Group VIII. The details of the

TL analyses are available in Table S1.
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was close to �1 (�0.921), when excluding Group VIII
populations. The upper limits of the 95% credible interval
(95%CI) of α1,j were lower than zero in 124 of 134 popula-
tions (92.5%) for six groups excluding Group VIII, while
the significant populations for α1,j were limited to seven
out of 28 for Group VIII (25.0%, Figure S3).

The populations of Group I exhibited the largest varia-
tion of α2,j, covering the total range of this coefficient
(Figure 4 and Figure 5). The mean of α2,j for Group I was
0.045, which was significantly higher than others (Kruskal–
Wallis rank sum test, χ2 = 25.957, df = 6, p = 0.0002).

Populations for which the upper limits of the 95% credible
interval (95%CI) of α2,j were lower than zero were
restricted to 19 populations (11.7%, Figure S3). The
Group II populations most frequently exhibited signifi-
cant effects in α2,j (38.1%), while no significant popula-
tions were found for α2,j in Group III.

The parameter for density-independence (σj
2) also

showed considerable variation among the seven groups
(Figure 5, Kruskal–Wallis rank sum test, χ2 = 73.004,
df = 6, p = 9.7 � 10�14). Group VIII and Group III popu-
lations showed the lowest and highest σj

2, respectively.

FIGURE 3 The population

dynamics of the 162 studied populations.

The populations are grouped into seven

groups according to geographic

proximity and topographic

characteristics (see Figure 1). Population

densities (counts per 150 trap-nights) in

the linear scale are represented by a line

for each population in each group. The

length of time series varied between

groups: 31 years for 31 populations of

Group I (a), 29 populations of Group II

(b), and 25 populations of Group V (e),

27 years for 19 populations of Group III

(c), 23 years for 10 populations of Group

IV (d), 20 populations of Group VII (f),

28 populations of Group VIII (g). The

boxplot (h) indicates the synchrony of

population dynamics, represented by the

pairwise cross-correlation coefficient

between population growth rates within

a geographic group. The black lines in

the boxes are the medians, and the box

size is the interquartile range (IQR). The

upper and lower whisker represents the

maximum and minimum within

4 � IQR, respectively. The points

outside of 4 � IQR are plotted as single

points. Different letters denote a

statistically significant difference

between geographic groups (Kruskal–
Wallis rank sum test and Dwass–Steel–
Critchlow–Fligner test).
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The group means of α1,j, α2,j and σj
2 were not associ-

ated with the group-specific TL slopes (rp = 0.011,
p = 0.981 for α1,j, rp = �0.037, p = 0.938 for α2,j, and
rp = 0.542, p = 0.209 for σj

2).
To assess the uncertainty of the model coefficients

and parameter, the SEs of the estimates were examined.
The SEs of α1,j and α2,j were highly correlated (rp = 0.936,
p < 2 � 10�16). The SEs of σj

2 showed significant but
moderate associations to the SE of α1,j and also to the SE
of α2,j (rp = 0.438, p = 5.3 � 10�9 for the SE of α1,j and
rp = 0.375, p = 9.1 � 10�7 for the SE of α2,j). Therefore, it
may not be adequate to represent the uncertainty of the
model coefficients and parameter by one index.

3.3 | Frequency distribution of
population density

The densities Nt,j on the linear scale from 162 populations
ranged from 0.05 to 73.26 individuals per 150 trap-nights,
with the mean = 6.774 and the skewness = 2.598. Smaller

values were more frequent and very large values were rare
(Figure 6a). The distribution was approximated by a
negative-binomial distribution. The parameters of the neg-
ative binomial distribution were estimated by the method
of moments, which gives the desired number of successes
or shape parameter = 0.925 = mean2/(variance � mean)
and the probability of success = 0.120 = mean/variance.
The Weibull distribution (shape = 1, scale = 7.5) also
showed a good agreement with the frequency distribution.
The median (4.32) was smaller than the mean.

FIGURE 4 Density-dependent coefficients of the observed

populations. The 162 populations are plotted according to the

density-dependent coefficients based on the second-order

autoregressive model (the Gompertz model). Inside the triangle, the

dynamics is either point stability or damped fluctuations. The

fluctuations will be persistent if any level of stochasticity is present.

The dynamics is cyclic on the left side of 1 + α1 = 0 or below the

semicircle. The lines given are contours representing the periodicity

in a continuous fashion inside the semicircle from the 3-year cycle

(left-most) to 10-year cycle (right-most). Parameters outside the

triangle lead to divergence (an unsustainable population). This

figure is a modification of fig. 3.2 in Box and Jenkins (1970). The

studied populations, illustrated by different colored symbols, were

grouped into seven groups according to geographic proximity and

topographic characteristics (see Figure 1). A figure in parentheses is

the number of populations in each group. The variance of

population densities predicted from Equation (5) was below zero

for two populations denoted by asterisks. FIGURE 5 Boxplots for density-dependent coefficients

(α1,j and α2,j) and a density-independent parameter (σj
2) of the

seven geographic groups based on a second-order autoregressive

model (the Gompertz model). (a): density-dependent coefficients

for 1-year lag (1 + α1,j), (b) density-dependent coefficients for

2-year lag (α2,j), and (c) a density-independent parameter (σj
2).

The black lines in the boxes are the medians, and the box size is the

interquartile range (IQR). The upper and lower whisker represents

the maximum and minimum within 4 � IQR, respectively. The

points outside of 4 � IQR are plotted as single points. Different

letters denote a statistically significant difference among geographic

groups (Kruskal–Wallis rank sum test and Dwass–Steel–Critchlow–
Fligner test).
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The skewness for each population (γj) ranged from
0.087 to 3.834. The mean of local skewnesses γj, 1.499,
was smaller than the overall skewness, 2.598. Although
the density distribution was closer to the normal distribu-
tion on the natural logarithmic scale than the linear
scale, it was skewed to the left (skewness = �0.439).

The density frequency distribution varied between
the seven geographic groups (Figure 6b–h). Although the
frequency in the smallest bin (Nt,j < 1) was the largest in
five of the seven groups, the frequency in the second bin
was the largest in Group I, and the frequencies in the first
three bins were similar in Group VIII. The negative-
binomial distribution appeared better to approximate the
density frequency distribution for Group I and VIII than
the Weibull distribution. In contrast, the Weibull distri-
bution appeared better for Group II. The skewnesses of
the seven geographic groups were not associated with the
group means and variance of population densities
(rp = �0.159, p = 0.733 for mean density and rp = 0.288,
p = 0.470 for density variance). However, a significant
correlation was detected between the group-specific
skewness and the TL slope (rp = 0.775, p = 0.041).

The log–log survival plot for population densities and
the survival probabilities for the largest 10% of population
densities (the 10% tail slope) were analyzed to assess the
density frequency distribution further, following Cohen
et al. (2022). The log–log survival plot was concave for over-
all populations (Figure S4). The Weibull survival curve fitted
the empirical survival pattern well, while the empirical sur-
vival curve fell off faster than the lognormal survival curve.

The 10% tail slopes of the seven geographic groups
become progressively more negative from the lowest to
the highest mean density, including two exceptions
(Figure S4): �2.436 (Group IV) > �3.622 (Group VIII)
“<” –2.348 (Group VII) > �5.071 (Group III) > �7.041
(Group II) “<” –4.674 (Group I) > �7.501 (Group V).
The 10% tail slopes and group density means were statis-
tically significantly negatively correlated (Spearman's
rank correlation test, ρ = �0.786, p = 0.048). These
results indicate that the density distributions in these vole
populations are not heavy-tailed, but are consistent with
finite means, variances, and several finite higher
moments. This behavior differed from the distributions of
COVID-19 cases and deaths in United States counties,
which satisfied a spatial TL and had a distribution with
finite mean but infinite variance (Cohen et al., 2022).

3.4 | Variables explaining variation in
the variance

The temporal variance of population densities on the lin-
ear scale ranged from 3.166 to 347.961 in the

162 populations, and the log10(variancej) variation was
explained moderately well by log10(meanj) (the temporal
TL, Figure 2). We explored here a more comprehensive
model than the temporal TL to explain the log10(variancej)
variation, carrying out multiple linear regression ana-
lyses using log10(variancej) as a response variable and
log10(meanj), α1,j, α2,j, σj

2, and γj (skewness) as explana-
tory variables; Model-10: log10(variancej) � log10(meanj)
+ α1,j + α2,j + σj

2 + γj.
Model-10 explained a high proportion of the log10

(variancej) variation (Adjusted R2 = 0.939, Table 2).
Increasing α2,j significantly lowered log10(variancej),
while other explanatory variables positively affected
log10(variancej). The standardized partial regression
coefficients demonstrated the prominent effect of log10
(meanj) and the small effect of the density dependent
coefficients (α1,j and α2,j): log10(meanj): 0.912, α1,j:
0.031, α2,j: �0.099, σj

2: 0.350, and γj: 0.349. Although
pairwise correlations between the explanatory vari-
ables were significant for two of ten pairs (Figure S5,
the correlations between α1,j and γj and between σj

2

and γj), multicollinearity between individual variables,
tested by variance inflation factors, was not significant
(log10(meanj): 1.113, α1,j: 1.188, α2,j: 1.075, σj

2: 1.168,
γj: 1.179).

Considering the uncertainty of the estimates of the
Gompertz model parameters, 1/(the averages of SEs
for α1,j and α2,j) were used as the weights in the
multiple linear regression analysis. In a separate analysis,
1/(the SEs of σj

2) were used as the weights. These pro-
vided similar results to those of Model-10, but the model
performance, assessed by R2, was not improved by
weighting (Table S3).

To test the effect of geographic groups, Model-10 was
modified into Model-11 and Model-12.

Model�11 : log10 variancej
� �� log10 meanj

� �þα1,j

þα2,jþσj
2þ γjþGroup:

Model�12 : log10 variancej
� �� log10 meanj

� �þα1,jþα2,j

þσj
2þ γjþGroupþGroup� log10 meanj

� �
þGroup�α1,jþGroup�α2,jþGroup�σj

2

þGroup� γj:

The comparison between Model-10 and Model-11
demonstrated no significant Group effects on the inter-
cepts (ANOVA, F = 1.607, p = 0.149, Table S4), while
the comparison between Model-11 and Model-12 showed
significant differences in the coefficients of the explana-
tory variables among Groups (ANOVA, F = 2.588,
p = 0.0001).
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FIGURE 6 The frequency distribution of population densities in the linear scale. (a) Overall populations include 4482 densities from

162 populations. The distribution was well approximated by the negative binomial distribution with size = 0.925, the probability of

success = 0.120 (the solid curve) and the Weibull distribution with shape = 1, scale = 7.5 (the dashed curve). (b) 31 populations for 31 years

of Group I, approximated by the negative binomial distribution with size = 1.257, the probability of success = 0.143 (the solid curve) and the

Weibull distribution with shape = 1.5, scale = 6.5 (the dashed curve). (c) 29 populations for 31 years of Group II, approximated by the

negative binomial distribution with size = 1.236, the probability of success = 0.149 (the solid curve) and the Weibull distribution with

shape = 1, scale = 7.5 (the dashed curve). (d) 19 populations for 27 years of Group III, approximated by the negative binomial distribution

with size = 0.585, the probability of success = 0.083 (the solid curve) and the Weibull distribution with shape = 1, scale = 3.75 (the dashed curve).

(e) 10 populations for 23 years of Group IV, approximated by the negative binomial distribution with size = 0.707, the probability of

success = 0.135 (the solid curve) and the Weibull distribution with shape = 1, scale = 3.5 (the dashed curve). (f) 25 populations for 31 years of

Group V, approximated by the negative binomial distribution with size = 0.919, the probability of success = 0.102 (the solid curve) and the Weibull

distribution with shape = 1, scale = 6.5 (the dashed curve). (g) 20 populations for 23 years of Group VII, approximated by the negative binomial

distribution with size = 0.623, the probability of success = 0.091 (the solid curve) and the Weibull distribution with shape = 1, scale = 4.9 (the

dashed curve). (h) 28 populations for 23 years of Group VIII, approximated by the negative binomial distribution with size = 1.491, the probability

of success = 0.225 (the solid curve) and the Weibull distribution with shape = 1, scale = 6.5 (the dashed curve).
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The model was further extended to include all explan-
atory variables and pairwise products of the five quanti-
ties using centered variables (sometimes called
“multiplicative terms”).

Model�13 : log10 variancej
� �� log10 meanj

� �þα1,jþα2,j

þσj
2þ γjþ log10 meanj

� ��α1,j

þ log10 meanj
� ��α2,jþ log10 meanj

� �
�σj

2þ log10 meanj
� �� γjþα1,j�α2,j

þα1,j�σj
2þα1,j� γjþα2,j�σj

2þα2,j

� γjþσj
2� γj:

To test the effect of geographic groups, Model-13 was
compared to the following two models, Model-14 and
Model-15.

Model�14 : log10 variancej
� �� log10 meanj

� �þα1,j

þα2,jþσj
2þ γjþGroupþ log10 meanj

� �
�α1,jþ log10 meanj

� ��α2,jþ log10 meanj
� �

�σj
2þ log10 meanj

� �� γjþα1,j�α2,jþα1,j

�σj
2þα1,j� γjþα2,j�σj

2þα2,j� γjþσj
2� γj:

Model�15 : log10 variancej
� �� log10 meanj

� �þα1,j

þα2,jþσj
2þ γjþ log10 meanj

� ��α1,j

þ log10 meanj
� ��α2,jþ log10 meanj

� �
�σj

2þ log10 meanj
� �� γjþα1,j�α2,jþα1,j

�σj
2þα1,j� γjþα2,j�σj

2þα2,j� γjþσj
2

� γjþGroupþGroup� log10 meanj
� �

þGroup�α1,jþGroup�α2,jþGroup

�σj
2þGroup� γj:

Model-13 explained a high proportion of the log10
(variancej) variation, and Adjusted R2 slightly increased

from 0.939 of Model-10 to 0.942 (Table S5). All indepen-
dent explanatory variables (log10(meanj), α1,j, α2,j, σj

2,
and γj) showed significant effects, but the only significant
multiplicative term was σj

2 � γj among the 11 multiplicative
terms. The comparison between Model-14 and Model-15
demonstrated significant differences in the coefficients
of the explanatory variables among Groups (ANOVA,
F = 2.607, p = 0.0002), while the comparison between
Model-13 and Model-14 showed no significant Group
effects on the intercepts (ANOVA, F = 1.403,
p = 0.217).

Since the Group effects on the coefficients of the
explanatory variables were not negligible, Model-13 was
fitted separately to the overall populations and the popu-
lations of the seven geographic groups, and the best
model with the smallest AIC was selected by the function
of stepAIC. In the model selection for overall populations,
ΔAIC was lower than two in 43 models. Five independent
variables (log10(meanj), α1,j, α2,j, σj

2, and γj) were involved
in all ten models with the smallest ten AIC (Table S6). The
product of σj

2 � γj was retained in all models, while
other multiplicative terms occurred intermittently. The
best model consisted of the five independent variables
and the four multiplicative terms (log10(meanj) � α1,j,
log10(meanj) � α2,j, α2,j � γj, and σj

2 � γj).
The model selection showed consistent results on

independent variables in the seven geographic groups; all
five variables (log10(meanj), α1,j, α2,j, σj

2, and γj) were
involved in all but one of the selected models; α1,j
was removed in Group II (Table 3). In contrast, the selec-
tion of multiplicative terms was inconsistent among
the seven groups. Eight products (log10(meanj) � α1,j,
log10(meanj) � α2,j, log10(meanj) � σj

2, α1,j � α2,j, α1,j � σj
2,

α2,j � σj
2, α2,j � γj, and σj

2 � γj) were included in the
selected models of some but not all groups. Five of the
seven selected models included log10(meanj) � α1,j, and
four models included α1,j � α2,j, α2,j � σj

2, and σj
2 � γj.

Other multiplicative terms were found in fewer than four

TABLE 2 The results of the

multiple linear regression analysis using

the model for log10(variancej) with five

independent explanatory variables.

Model-10: log10(variancej) � log10(meanj) + α1,j + α2,j + σj
2 + γj.

Coefficients Estimate SE t-value p

(Intercept) �0.529 0.045 �11.648 <2 � 10�16

log10(meanj) 1.949 0.044 44.560 <2 � 10�16

α1,j 0.036 0.024 1.468 0.144

α2,j �0.138 0.028 �4.946 1.9 � 10�6

σj
2 0.166 0.010 16.719 <2 � 10�16

γj 0.182 0.011 16.592 <2 � 10�16

Note: Regression coefficient estimates (Estimate), standard error (SE), t value, and p-value for t-test are
given. See Table 1 for the details of explanatory variables. Residual standard error: 0.093 on 156 degrees of
freedom. Multiple R2: 0.941, Adjusted R2: 0.939. F-statistic: 500.5 on 5 and 156 DF, p-value: <2 � 10�16.
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selected models. Therefore, we considered Model-10 with
the five independent variables without multiplicative terms
(Table 2) most consistent to explain the variation in
log10(variancej).

All effects of log10(meanj), σj
2, and γj, which were

highly significant in explaining variancej, were positive
in Model-10 (Table 2). To realize b < 2, the increase of
log10(variancej) should slow as log10(meanj) increases.
Thus, negative relationships between σj

2 and log10(meanj)
and between γj and log10(meanj) were expected and
observed (Pearson's correlation test, σj

2-log10(meanj):
rp = �0.148; γj-log10(meanj): rp = �0.157, Figure S5).

3.5 | Test of theoretical predictions

The mean and variance of population density in each
local population j were predicted from the density-
dependent coefficients (α1,j and α2,j) and density-
independent parameter (σj

2) (Equations 3–5). The mean
densities were predicted within the realistic range from
0.00009 to 43.1 on the linear scale, in comparison with
the observed range (2.2–20.8). In contrast, the predicted
variance unrealistically widely ranged from �1.6 to
7.5 � 106 on the linear scale, while the observed range
was between 3.1 and 348.0. The predicted variances of
two populations of Group VIII were below 0 (namely, the
two populations outside the triangle in Figure 4), and
those of six populations (two of Group III, three of Group
VII, and one population of Group VIII) exceeded 10,000.
When excluding these unrealistic predicted variances, the
predicted variances and means from the remaining
154 populations satisfied the temporal TL (log10(Var(Nt,-

j)) = 0.351 (± SE 0.182) + 2.224 (±SE 0.195) � log10(E
(Nt,j), R

2 = 0.457, and the 95% confidence interval of the
slope 2.224 was 1.838–2.610 (Figure 7a). The slope was
significantly steeper for the predicted values than for the
observed ones (Table S6) because of the high predicted
variances (Figure 7d).

The predicted variances of log(Nt,j), which are necessary
to predict the mean and variance of population densities
from the Gompertz model parameters (zj

2, Equation 3),
showed a clear relationship to the observed ones ([observed
variance of log(Nt,j)] = 0.146 + 0.627 � zj

2, R2 = 0.880,
Figure 7b, and the 95% confidence interval of the slope
0.627 was 0.590–0.664), although zj

2 were consistently
higher than the observed variances. A similar pattern was
observed in the relationship between the predicted and
observed means; most predicted means were higher than
the observed means ([observed meanj] = 0.964 + 0.640 �
[predicted meanj], R2 = 0.587, Figure 7c, and the 95%
confidence interval of the slope 0.640 was 0.554–0.725). In
contrast, on the linear scale (Figure 7d), the predictedT
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variances were widely scattered under the isoline, although
the relationship between the predicted and observed vari-
ances was statistically supported ([observed variancej]
= 38.697 + 0.014 � [predicted variancej], t = 3.467,
p = 0.0007, R2 = 0.067, Figure 7d, and the 95% confidence
interval of the slope 0.014 was 0.006–0.022).

The deviation of the predicted meanj and variancej
from the observed ones consistently depended on σj

2 but
not density-dependent coefficients (Table S7). Larger

deviations in predicted meanj were found in populations
with larger σj

2, and predicted variancej also showed
larger deviations from the observed variancej in popula-
tions with higher σj

2.
The predicted variance of Xt,j by Equation (3) (zj

2)
ranged from 0.320 to 4.396. It can be proved that the dif-
ference between zj

2 and ln(exp(zj
2) – 1) must be less than

0.145 when zj
2 ≥ 2, and this relationship was empirically

confirmed (Figure S6). The model (Equation 7) exhibited

FIGURE 7 Comparisons between the observed and predicted Taylor's law (TL) characteristics from 154 populations. The predicted

values were calculated using the parameters of the second-order autoregressive model (see Equations 3–5 in the main text). Eight

populations were excluded from analyses because their predicted variances were unrealistically extreme (predicted variance <0 from two

populations and predicted variance >10,000 from six populations). Solid and open circles denote the populations with σj ≤ 1 and σj > 1,

respectively. For (b), (c), and (d), broken lines are the isoline (y = x), while solid lines represent a significant linear relationship between

observed and predicted values. (a) The relationship of the predicted variance to the predicted mean of population density. Each point

represents the relationship of log10(Var(Nt,j)) to log10(E(Nt,j)). Observed populations are also plotted with shaded circles. A solid line

represents a significant linear relationship for predicted values, while a broken line is the observed TL line. (b) The observed variances of the

centered logarithmic density (Xt,j) are plotted as a function of the predicted ones (zj
2). (c) The observed means on the linear scale are plotted

as a function of the predicted ones on the linear scale. (d) The observed variances on the linear scale are plotted as a function of the

predicted ones on the linear scale. The scales differ between x- and y-axes.
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an excellent performance (Figure S7): log10(Var(Nt,j)) =

�0.371 + 2.036 � log10(E(Nt,j)) + 0.555 � zj
2 (F = 7648,

p < 2 � 10�16, Adjusted R2 = 0.990). The coefficient
2.036 of log10(E(Nt,j)) (SE = 0.026, with 95% confidence
interval 1.984–2.088) was close to and included the
theoretical prediction (2.0), and the coefficient 0.555 for
zj
2 (SE = 0.006, with 95% confidence interval 0.542–

0.567) was also not far from the predicted value
(1/2.3 = 0.435). The highly accurate performance of the
model using ln(exp(zj

2) – 1) instead of zj
2 was confirmed:

log10(Var(Nt,j)) = 1.3 � 10�15 + 2.0 � log10(E(Nt,j)) + 0.434 �
ln(exp(zj

2) – 1) (Adjusted R2 ≈ 1).

4 | DISCUSSION

Taylor's law describes one relationship between the vari-
ance and mean of population density for a population
assembly and is usually tested by an ordinary least-
squares regression method. Αlthough some models pre-
dict that the temporal TL slope equals 2 (Ballantyne, 2005;
Cohen, 2013; Kilpatrick & Ives, 2003), most observed
slopes satisfy 1 < b < 2 (Taylor & Woiwod, 1980,
Linnerud et al., 2013, Cobain et al., 2019, but see
Tippett & Cohen, 2016; Zhao et al., 2019). This wide-
spread discrepancy between empirical populations and
some theory can be solved by understanding how vari-
ables other than log10(mean) influence log10(variance).
Many factors have been proposed as influential on TL
slopes (e.g., species interaction: Kilpatrick & Ives, 2003,
reproductive correlation: Ballantyne & Kerkhoff, 2007,
habitat size: Mellin et al., 2010, demographic stochasti-
city: Linnerud et al., 2013, environmental variability:
Cobain et al., 2019). Identifying influential variables
should contribute to understanding how those biologi-
cal factors work. Saitoh and Cohen (2018) and Cohen
and Xu (2015) suggest that the density-dependent
coefficients, density-independent parameters of the
second-order autoregressive model and the skewness of
population density can help to explain the variation of
log10(variance) beyond the variation explained by
log10(mean).

The 162 observed populations satisfied the temporal
TL with slope b = 1.687 (Figure 2). The studied popula-
tions were distributed approximately 420 km from south
to north and 390 km from west to east (Figure 1). The
seven geographic groups varied widely in population
dynamics (Figure 3) and density dependence (Figure 4
and Figure 5). The south-western populations of Group
IV and Group VIII showed lower population densities
and weaker density dependence for 1-year lag (higher α1,j).
Although the temporal TL slopes varied between the
groups ranging from 1.284 to 2.187, those slopes did

not significantly differ from the overall slope
(b = 1.687). Therefore, the TL model for the overall
populations was robust. However, the proportion of
the log10(variancej) variation explained by log10(mean)
was moderate (0.62), suggesting that other variables
than log10(mean) also influence log10(variance).

4.1 | Variables that influence the
variance

Table 2 demonstrated that the density-independent
parameters σj

2 and γj were particularly significantly asso-
ciated with log10(variancej) in addition to log10(meanj).
All effects of σj

2, γj, and log10(meanj) were positive on
log10(variancej). If log10(meanj) is not associated with σj

2

and γj, then log10(variancej) would increase with the
increase of log10(meanj) along the null expectation for
the temporal TL slope = 2. To realize the empirically
observed slope (b < 2), the increase of log10(variancej)
should slow as log10(meanj) increases. The negative rela-
tionships between σj

2 and log10(meanj) and between γj
and log10(meanj) in the studied populations (Figure S5)
worked as the mechanism that reduced the increase of
log10(variancej) with the increase of log10(meanj).

The density-dependent effects for 2-year lag (α2,j) neg-
atively affected log10(variancej) and could regulate the
effect of log10(meanj) on log10(variancej). However,
the magnitude of α2,j effects was inferior to that of σj

2 and
γj. Another density-dependent effect (α1,j) had minor
influence on log10(variancej).

A limitation of this study is that several of our statisti-
cal comparisons should be interpreted descriptively
rather than probabilistically when the data violate the
assumptions of these tests. For example, the Kruskal–
Wallis rank sum test, a one-way analysis of variance
based on ranks, assumes that all observations are inde-
pendent within and among samples. Because of syn-
chrony among some of the vole populations, the
assumption that all observations are independent does
not always hold. In the absence of independent observa-
tions, a low p-value must be interpreted as a descriptive indi-
cator that some populations have higher densities (or other
statistics) than other populations, rather than as a probabilis-
tically precise statement. The Dwass–Steel–Critchlow–
Fligner test, which is used after the Kruskal–Wallis test gives
a “significant” result, is subject to the same caveats.

Another limitation of our statistical analysis is that
OLS regression of log variance as a function of log mean
assumes that the values of log mean are known without
error, whereas in fact both log mean and log variance are
subject to sampling variation. However, the sampling
variation of log mean is likely to be very much less than
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the sampling variation of log variance. The resulting bias
in estimating the slope b is likely to be small. Visual
inspection of the data points and regression lines sup-
ports the conclusion that OLS regression of the log
moments gives reasonable, if not statistically optimal,
results.

4.2 | Variability and skewness

The parameter σj
2 represents the amount of variation of

population density that the Gompertz model could not
capture. It is derived from various sources that can push
population density away from the mean density, which
the Gompertz model interprets as an equilibrium density.
The potential sources include environmental variability,
density-independent interactions in a population, genetic
drift of local populations leading to phenotypic variation
in responses to density and the environment, and interac-
tions of any or all of these factors. Evolutionary effects
may be minor in the studied populations because the
time series lasted only 23–31 years. Among ecological
effects, three forms of stochasticity are widely held to
influence population dynamics: demographic, environ-
mental, and catastrophic effects (Lande, 1993). Demo-
graphic stochasticity is relevant to only very small
populations, and catastrophic events are rare. Therefore,
environmental variability may be the primary source of
σj
2 for the studied populations. Sæther et al. (2016)

suggest that population dynamics with small population
sizes are primarily influenced by environment-driven var-
iation in recruitment, whereas close to the carrying
capacity, variation in population growth is more strongly
influenced by density-dependent mortality. This mecha-
nism can explain the negative relationship between σj

2

and log10(meanj).
The frequency distribution of overall population den-

sities was approximated by a negative binomial distribu-
tion (Figure 6a). The most frequent (modal) density class
was the lowest bin of the histogram, and the distribution
was highly right-skewed. The geographic groups with
higher densities than the overall average (Group I, II,
and V) showed lower skewness. However, a population
with a high mean density did not always show a lower
skewness. The populations of Group IV and VIII with
low mean densities showed lower skewness. Although
the skewness decreased with the increase in mean den-
sity in general, this pattern may depend on the situation.

Taylor (1984) observed that insect populations at
progressively higher densities conformed to different
frequency distributions (e.g., Poisson, negative binomial,
and lognormal) with identical slope b. Cohen and Xu
(2015) verify that the TL slope can be predicted from the

sample skewness and the sample coefficient of variation
of population density under the assumption of indepen-
dent and identically distributed observations. Although
the studied populations did not satisfy this assumption,
the skewness (γj) significantly influenced the variation of
log10(variancej), and the negative correlation of γj and
log10(meanj) might be critical in determining the TL
slope b. Another approach independent of Cohen and Xu
(2015) is necessary to understand the effect of skewness
on the variance of population density observed in this
study.

Cohen (2020) showed that, as a result of rescaling and
translation, any family of frequency distributions of pop-
ulation densities with positive means and positive vari-
ances can be made to obey TL or any other relation of
variance to mean in a metapopulation or other collection
of populations (see also Mallmin, 2022). However, there
is still little empirical information about how actual den-
sity distributions are associated with the TL slope b.
Future studies should examine further the associations
between population dynamics and the frequency distri-
bution of population density and the mean–variance rela-
tionship of the frequency distribution.

4.3 | Null and empirical slopes

Equation (7) tells us that the mean population density
alone cannot explain the variation of density variance
and that the potential coefficient of the mean population
density is two, which is the null value of the TL slope.
This study validated Equation (7) using the empirical
data. The coefficient of the mean density (1.949) was
close to the null value in the model of Table 2, which
explained the great majority of the variation of popula-
tion density variance (Adjusted R2 = 0.939). When
removing other explanatory variables than the mean den-
sity, leaving only TL, the coefficient of log10(mean) = the
TL slope (1.687) was below the null value, and the good-
ness of fit of the model decreased (Adjusted R2 = 0.620).
If these relationships hold beyond the single example
studied here, when the effects of the variables listed in
Table 2 were significant, the TL slope b would be
below two.

Most predicted values based on Equations (3)–(5)
were higher than the observed values, and higher vari-
ances of population density may have caused the steeper
TL slope in the predicted values (Figure 7). Those predic-
tions require the lognormal distribution of population
density and a long length of time series for an asymptotic
value. These requirements were not satisfied in reality.
The log–log survival plot showed that the population
densities of the studied populations diverged from the
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lognormal distribution (Figure S4), and the lengths of
time series were limited (23–31 years). The deviation
of the predicted values from the observed ones was evi-
dent in populations with σj > 1. Five of six populations of
which variances were unrealistically high (>10,000)
showed high σj ranging from 1.676 to 2.042, and σj of the
remaining one was 0.997. Since σj is squared in the pro-
cess of the variance prediction, the discrepancy between
observed and predicted variances may be escalated by
σj > 1. In addition, unrealistic predicted variances came
from the time series with a shorter length (two from
27 years and six from 23 years). These results suggest that
the observed σj may be overestimated by the short length
of the time series, or the second-order autoregressive
model may not sufficiently capture the characteristics of
the population dynamics of the studied populations. We
should improve parameter estimation techniques and
population dynamics models.

To understand the empirical results in Table 2 theo-
retically, we combine Equations (3) and (7). This combi-
nation expresses log10(variancej) in terms of log10(meanj)
and the parameters of the Gompertz model, for all popu-
lations j, asymptotically for large time t and asymptoti-
cally for large z2j

log10 Var Nt,j
� �� �¼ 2� log10 E Nt,j

� �� �þ 1
2:3

�1�α2,j
1þα2,j

� σ2j
1�α2,j
� �2� 1þα1,j

� �2 :

From the first term on the right, 2� log10 E Nt,j
� �� �

, it is
obvious that log10(variancej) should be proportional to
two times log10(meanj), when all else is held constant.
Table 2 gives the linear coefficient of log10(meanj)
as 1.949.

In the second term on the right are the three Gom-
pertz parameters. For qualitative analysis, we approxi-
mated α1,j ≈ –1, because the observed α1,j was around �1
in most populations. When α1,j –1, it disappears from the
expression for zj

2 and from the second term on the right.
Thus, in Table 2, we expect the small coefficient and
insignificant role of α1,j. With this approximation, the sec-
ond term on the right becomes

1
2:3

�1�α2,j
1þα2,j

� σ2j
1�α2,j
� �2� 1þα1,j

� �2 ≈ 1
2:3

�1�α2,j
1þα2,j

� σ2j
1�α2,j
� �2

¼ 1
2:3

� σ2j
1�α22,j

:

Furthermore, assuming α2,j is constant at the average
(�0.149), the second term can be simplified as follows:

log10 Var Nt,j
� �� �¼ 2� log10 E Nt,j

� �� �þ0:445�σ2j :

The empirical model (log10(variancej) log10(meanj)
+ σj

2) gave the coefficients of log10(meanj) and σ2j as
1.830 and 0.213, respectively.

As α22,j increases from 0 to 1, the denominator 1�α22,j
decreases from 1 to 0 so the ratio σ2j = 1�α22,j

� �
increases

from σ2j to infinity. Figure S3B shows that a majority of
values of α2,j are between �1 and 0. As α2,j increases from
�1 to 0, the ratio σ2j = 1�α22,j

� �
decreases. Since the

decreasing effect on σ2j = 1�α22,j
� �

as α2,j increases from
�1 to 0 dominates the increasing effect on σ2j = 1�α22,j

� �
as α2,j increases from 0 to 1, the positive effect of σj

2 on
log10(variancej) is reduced by the increase of α2,j. There-
fore, the negative coefficient of α2,j in Table 2 can be the-
oretically interpreted.

The effect of skewness on log10(variancej) can be
also qualitatively explained. When Nt,j is lognormally
distributed, the skewness of Nt,j is given as

εj ¼ exp z2j
� �

þ2
� �

exp z2j
� �

�1
� �1=2

. Therefore, the

skewness is included into Equation (6) by replacing
the term of exp(zj

2) –1 of Equation (6) with a term con-

taining εt: exp z2j
� �

�1¼ ε2j

exp z2jð Þþ2ð Þ2.

ln Var Nt,j
� �� �¼ 2� ln E Nt,j

� �� �þ ln
ε2j

exp z2j
� �

þ2
� �2

0
B@

1
CA

¼ 2� ln E Nt,j
� �� �þ2� ln εj

� ��2� ln exp z2j
� �

þ2
� �

,

log10 Var Nt,j
� �� �¼ 2� log10 E Nt,j

� �� �þ2� log10 εj
� ��2

� log10 exp z2j
� �

þ2
� �

:

The accurate performance of this model was con-
firmed using the parameter estimates of the 162 vole
populations: log10(Var(Nt,j)) = 2.7 � 10�16 + 2.0 �
log10(E(Nt,j)) + 2.0 � εj – 2.0 � log10(exp(zj

2) + 2)
(F = 4.1 � 1031, p < 2 � 10�16, Adjusted R2 ≈ 1), but
Table 2 gave the coefficient of γj as 0.182 instead of
2 for εt.

The linear model used in Table 2 is a crude approxi-
mation to the real relationship that is nonlinear, and the
exact agreement between theoretical and empirical coeffi-
cients is not expected. However, as discussed above, the
effects of the parameters of the Gompertz model and
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the skewness of population density on the density vari-
ance, which were empirically demonstrated, can be theo-
retically interpreted.

AUTHOR CONTRIBUTIONS
Takashi Saitoh conceived the ideas of this study and ana-
lyzed the data; Joel E. Cohen developed theoretical
modeling. Both authors contributed critically to the man-
uscript and gave final approval for publication.

ACKNOWLEDGMENTS
Hayato Iijima helped Takashi Saitoh to model the
dynamics of populations. Roseanne Benjamin assisted
Joel E. Cohen during this work. The manuscript was
greatly improved by the suggestions and comments from
the reviewers (Nigel G. Yoccoz and anonymous).

CONFLICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.

ORCID
Takashi Saitoh https://orcid.org/0000-0003-4085-5014
Joel E. Cohen https://orcid.org/0000-0002-9746-6725

REFERENCES
Anderson, R. M., Gordon, D. M., Crawley, M. J., & Hassel, M. P.

(1982). Variability in the abundance of animal and plant spe-
cies. Nature, 296(5854), 245–248. https://doi.org/10.1038/
296245a0

Ballantyne, F. I. (2005). The upper limit for the exponent of Taylor's
power law is a consequence of deterministic population growth.
Evolutionary Ecology Research, 7(8), 1213–1220.

Ballantyne, F. I., & Kerkhoff, A. J. (2007). The observed range for
temporal mean-variance scaling exponents can be explained by
reproductive correlation. Oikos, 116(1), 174–180. https://doi.
org/10.1111/j.2006.0030-1299.15383.x

Box, G. E. P., & Jenkins, G. (1970). Time series analysis and control.
Holden-Day.

Cobain, M. R. D., Brede, M., & Trueman, C. N. (2019). Taylor's
power law captures the effects of environmental variability on
community structure: An example from fishes in the North
Sea. Journal of Animal Ecology, 88(2), 290–301. https://doi.org/
10.1111/1365-2656.12923

Cohen, J. E. (2013). Taylor's power law of fluctuation scaling and
the growth-rate theorem. Theoretical Population Biology, 88,
94–100. https://doi.org/10.1016/j.tpb.2013.04.002

Cohen, J. E. (2020). Every variance function, including Taylor's
power law of fluctuation scaling, can be produced by any
location-scale family of distributions with positive mean and vari-
ance. Theoretical Ecology, 13, 1–5. https://doi.org/10.1007/s12080-
019-00445-7 correction 2022 Theoretical Ecology, 15, 93–94.

Cohen, J. E., Davis, R. A., & Samorodnitsky, G. (2022). COVID-19
cases and deaths in the United States follow Taylor's law for
heavy-tailed distributions with infinite variance. Proceedings of
the National Academy of Sciences, 119(38), e2209234119.
https://doi.org/10.1073/pnas.2209234119

Cohen, J. E., & Saitoh, T. (2016). Population dynamics, synchrony,
and environmental quality of Hokkaido voles lead to temporal
and spatial Taylor's laws. Ecology, 97(12), 3402–3413. https://
doi.org/10.1002/ecy.1575

Cohen, J. E., & Xu, M. (2015). Random sampling of skewed distri-
butions implies Taylor's power law of fluctuation scaling. Pro-
ceedings of the National Academy of Sciences of the United States
of America, 112(25), 7749–7754. https://doi.org/10.1073/pnas.
1503824112

Döring, T. F., Knapp, S., & Cohen, J. E. (2015). Taylor's power law
and the stability of crop yields. Field Crops Research, 183,
294–302. https://doi.org/10.1016/j.fcr.2015.08.005

Gelman, A. (2006). Prior distributions for variance parameters in
hierarchical models (comment on article by Browne and
Draper). Bayesian Analysis, 1(3), 515–534. https://doi.org/10.
1214/06-ba117a

Kaneko, Y., Nakata, K., Saitoh, T., Stenseth, N. C., &
Bjornstad, O. N. (1998). The biology of the vole Clethrionomys
rufocanus: A review. Researches on Population Ecology, 40(1),
21–37. https://doi.org/10.1007/bf02765219

Kilpatrick, A. M., & Ives, A. R. (2003). Species interactions can
explain Taylor's power law for ecological time series. Nature,
422, 65–68. https://doi.org/10.1038/nature01471

Lande, R. (1993). Risks of population extinction from demographic
and environmental stochasticity and random catastrophes. The
American Naturalist, 142(6), 911–927. https://doi.org/10.1086/
285580

Linnerud, M., Sæther, B., Grøtan, V., Engen, S., Noble, D. G., &
Freckleton, R. P. (2013). Interspecific differences in stochastic
population dynamics explains variation in Taylor's temporal
power law. Oikos, 122(8), 1207–1216. https://doi.org/10.1111/j.
1600-0706.2012.20517.x

Mallmin, E. (2022). Comments on: “Every variance function … can
be produced by any location-scale family…”. Theoretical Ecol-
ogy, 15(4), 283–284. https://doi.org/10.1007/s12080-022-00547-9

Mellin, C., Huchery, C., Caley, M. J., Meekan, M. G., &
Bradshaw, C. J. A. (2010). Reef size and isolation determine the
temporal stability of coral reef fish populations. Ecology, 91(11),
3138–3145. https://doi.org/10.1890/10-0267.1

Meyer, D., Dimitriadou, E., Hornik, E., Weingessel, A., Leisch, F.,
Chang, C.-C., & Lin, C.-C. (2022). package ‘e1071’ 1.7-12.
https://CRAN.R-project.org/package=e1071

Pertoldi, C., Bach, L. A., & Loeschcke, V. (2008). On the brink
between extinction and persistence. Biology Direct, 3(1), 47.
https://doi.org/10.1186/1745-6150-3-47

R Core Team. (2022). R: A language and environment for statistical
computing. R Foundation for Statistical Computing https://
www.R-project.org/

Reed, D. H., & Hobbs, G. R. (2004). The relationship between
population size and temporal variability in population
size. Animal Conservation, 7(1), 1–8. https://doi.org/10.1017/
s1367943004003476

Sæther, B.-E., Grøtan, V., Engen, S., Coulson, T., Grant, P. R.,
Visser, M. E., Brommer, J. E., Grant, R., Gustafsson, L.,
Hatchwell, B. J., Jerstad, K., Karell, P., Pietinäinen, H.,
Roulin, A., Røstad, O. W., & Weimerskirch, H. (2016). Demo-
graphic routes to variability and regulation in bird populations.
Nature Communications, 7, 1–8. https://doi.org/10.1038/
ncomms12001

SAITOH and COHEN 17

 1438390x, 0, D
ow

nloaded from
 https://esj-journals.onlinelibrary.w

iley.com
/doi/10.1002/1438-390X

.12176 by T
est, W

iley O
nline L

ibrary on [20/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0003-4085-5014
https://orcid.org/0000-0003-4085-5014
https://orcid.org/0000-0002-9746-6725
https://orcid.org/0000-0002-9746-6725
https://doi.org/10.1038/296245a0
https://doi.org/10.1038/296245a0
https://doi.org/10.1111/j.2006.0030-1299.15383.x
https://doi.org/10.1111/j.2006.0030-1299.15383.x
https://doi.org/10.1111/1365-2656.12923
https://doi.org/10.1111/1365-2656.12923
https://doi.org/10.1016/j.tpb.2013.04.002
https://doi.org/10.1007/s12080-019-00445-7
https://doi.org/10.1007/s12080-019-00445-7
https://doi.org/10.1073/pnas.2209234119
https://doi.org/10.1002/ecy.1575
https://doi.org/10.1002/ecy.1575
https://doi.org/10.1073/pnas.1503824112
https://doi.org/10.1073/pnas.1503824112
https://doi.org/10.1016/j.fcr.2015.08.005
https://doi.org/10.1214/06-ba117a
https://doi.org/10.1214/06-ba117a
https://doi.org/10.1007/bf02765219
https://doi.org/10.1038/nature01471
https://doi.org/10.1086/285580
https://doi.org/10.1086/285580
https://doi.org/10.1111/j.1600-0706.2012.20517.x
https://doi.org/10.1111/j.1600-0706.2012.20517.x
https://doi.org/10.1007/s12080-022-00547-9
https://doi.org/10.1890/10-0267.1
https://cran.r-project.org/package=e1071
https://doi.org/10.1186/1745-6150-3-47
https://www.r-project.org/
https://www.r-project.org/
https://doi.org/10.1017/s1367943004003476
https://doi.org/10.1017/s1367943004003476
https://doi.org/10.1038/ncomms12001
https://doi.org/10.1038/ncomms12001


Saitoh, T. (2020). Effects of environmental synchrony and density-
dependent dispersal on temporal and spatial slopes of Taylor's
law. Population Ecology, 62(3), 300–316. https://doi.org/10.
1002/1438-390x.12051

Saitoh, T., & Cohen, J. E. (2018). Environmental variability and
density dependence in the temporal Taylor's law. Ecological
Modelling, 387, 134–143. https://doi.org/10.1016/j.ecolmodel.
2018.07.017

Saitoh, T., Stenseth, N. C., & Bjornstad, O. N. (1997). Density
dependence in fluctuating grey-sided vole populations. Jour-
nal of Animal Ecology, 66(1), 14. https://doi.org/10.2307/
5960

Saitoh, T., Stenseth, N. C., & Bjørnstad, O. N. (1998). The popula-
tion dynamics of the vole Clethrionomys rufocanus in
Hokkaido, Japan. Researches on Population Ecology, 40(1),
61–76. https://doi.org/10.1007/BF02765222

Stan Development Team. (2022). RStan: The R interface to Stan. R
package version 2.21.7. https://mc-stan.org/

Stenseth, N. C., Bjørnstad, O. N., & Falck, W. (1996). Is spacing
behaviour coupled with predation causing the microtine den-
sity cycle? A synthesis of current process-oriented and pattern-
oriented studies. Proceedings of the Royal Society of London.
Series B: Biological Sciences, 263(1376), 1423–1435. https://doi.
org/10.1098/rspb.1996.0208

Stenseth, N. C., Bjornstad, O. N., & Saitoh, T. (1996). A gradient
from stable to cyclic populations of Clethrionomys rufocanus in
Hokkaido, Japan. Proceedings of the Royal Society of London.
Series B: Biological Sciences, 263(1374), 1117–1126. https://doi.
org/10.1098/rspb.1996.0164

Stenseth, N. C., Bjørnstad, O. N., & Saitoh, T. (1998). Seasonal forc-
ing on the dynamics of Clethrionomys rufocanus: Modeling geo-
graphic gradients in population dynamics. Researches on
Population Ecology, 40, 85–95. https://doi.org/10.1007/bf02765224

Stenseth, N. C., Viljugrein, H., Saitoh, T., Hansen, T. F.,
Kittilsen, M. O., Bølviken, E., & Glöckner, F. (2003). Seasonal-
ity, density dependence, and population cycles in Hokkaido
voles. Proceedings of the National Academy of Sciences of the
United States of America, 100(20), 11478–11483. https://doi.org/
10.2307/3147817?ref=search-gateway:db87af07ac2a9ce9b811f7
71a3acc438

Tatewaki, M. (1958). Forest ecology of the islands of the north
Pacific Ocean. Journal of the Faculty of Agriculture, Hokkaido
University, 50, 371–486. http://hdl.handle.net/2115/44083

Taylor, L. R. (1961). Aggregation, variance and the mean. Nature,
189, 732–735. https://doi.org/10.1038/189732a0

Taylor, L. R. (1984). Assessing and interpreting the spatial distribu-
tions of insect populations. Annual Review of Entomology, 29,
321–357. https://doi.org/10.1146/annurev.ento.29.1.321

Taylor, L. R. (1986). Synoptic dynamics, migration and the
Rothamsted insect survey—Presidential-address to the British-
Ecological-Society, December 1984. Journal of Animal Ecology,
55(1), 1–38. https://doi.org/10.2307/4690

Taylor, L. R., & Woiwod, I. P. (1980). Temporal stability as a
density-dependent species characteristic. Journal of Animal
Ecology, 49(1), 209–224. https://doi.org/10.2307/4285

Taylor, R. A. J. (2019). Taylor's power law: Order and pattern in
nature. Elsevier Academic Press.

Tippett, M. K., & Cohen, J. E. (2016). Tornado outbreak variability
follows Taylor's power law of fluctuation scaling and increases
dramatically with severity. Nature Communications, 7(1),
10668. https://doi.org/10.1038/ncomms10668

Zhao, L., Sheppard, L. W., Reid, P. C., Walter, J. A., &
Reuman, D. C. (2019). Proximate determinants of Taylor's law
slopes. Journal of Animal Ecology, 88(3), 484–494. https://doi.
org/10.1111/1365-2656.12931

SUPPORTING INFORMATION
Additional supporting information can be found online
in the Supporting Information section at the end of this
article.

How to cite this article: Saitoh, T., & Cohen,
J. E. (2024). Quantifying factors that explain the
slopes of the temporal Taylor's law of Hokkaido
vole populations. Population Ecology, 1–18. https://
doi.org/10.1002/1438-390X.12176

18 SAITOH and COHEN

 1438390x, 0, D
ow

nloaded from
 https://esj-journals.onlinelibrary.w

iley.com
/doi/10.1002/1438-390X

.12176 by T
est, W

iley O
nline L

ibrary on [20/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1002/1438-390x.12051
https://doi.org/10.1002/1438-390x.12051
https://doi.org/10.1016/j.ecolmodel.2018.07.017
https://doi.org/10.1016/j.ecolmodel.2018.07.017
https://doi.org/10.2307/5960
https://doi.org/10.2307/5960
https://doi.org/10.1007/BF02765222
https://mc-stan.org/
https://doi.org/10.1098/rspb.1996.0208
https://doi.org/10.1098/rspb.1996.0208
https://doi.org/10.1098/rspb.1996.0164
https://doi.org/10.1098/rspb.1996.0164
https://doi.org/10.1007/bf02765224
https://doi.org/10.2307/3147817?ref=search-gateway:db87af07ac2a9ce9b811f771a3acc438
https://doi.org/10.2307/3147817?ref=search-gateway:db87af07ac2a9ce9b811f771a3acc438
https://doi.org/10.2307/3147817?ref=search-gateway:db87af07ac2a9ce9b811f771a3acc438
http://hdl.handle.net/2115/44083
https://doi.org/10.1038/189732a0
https://doi.org/10.1146/annurev.ento.29.1.321
https://doi.org/10.2307/4690
https://doi.org/10.2307/4285
https://doi.org/10.1038/ncomms10668
https://doi.org/10.1111/1365-2656.12931
https://doi.org/10.1111/1365-2656.12931
https://doi.org/10.1002/1438-390X.12176
https://doi.org/10.1002/1438-390X.12176

	Quantifying factors that explain the slopes of the temporal Taylor's law of Hokkaido vole populations
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Study design and data
	2.2  Temporal Taylor's law
	2.3  Gompertz model
	2.4  Theoretical predictions
	2.5  Multiple linear regression analyses

	3  RESULTS
	3.1  Temporal Taylor's law
	3.2  Population dynamics and density dependence
	3.3  Frequency distribution of population density
	3.4  Variables explaining variation in the variance
	3.5  Test of theoretical predictions

	4  DISCUSSION
	4.1  Variables that influence the variance
	4.2  Variability and skewness
	4.3  Null and empirical slopes

	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	REFERENCES


