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A B S T R A C T

We consider the dynamics of a collection of 𝑛 > 1 populations in which each population has its own rate of
growth or decay, fixed in continuous time, and migrants may flow from one population to another over a
fixed network, at a rate, fixed over time, times the size of the sending population. This model is represented
by an ordinary linear differential equation of dimension 𝑛 with constant coefficients arrayed in an essentially
nonnegative matrix. This paper identifies conditions on the parameters of the model (specifically, conditions
on the eigenvalues and eigenvectors) under which the variance of the 𝑛 population sizes at a given time
is asymptotically (as time increases) proportional to a power of the mean of the population sizes at that
given time. A power-law variance function is known in ecology as Taylor’s Law and in physics as fluctuation
scaling. Among other results, we show that Taylor’s Law holds asymptotically, with variance asymptotically
proportional to the mean squared, on an open dense subset of the class of models considered here.
1. Introduction

We consider the dynamics of an ensemble of two or more local
populations with two key features. First, each local population has a
fixed rate of growth or decay specific to that population. This assump-
tion, by itself, gives the exponential model in Cohen (2013). Second,
migration can flow from one local population to another according
to some graph (network) and some rates of migration. This model
excludes immigration from external sources at a fixed or variable rate
to any local population. However, the model takes account of deaths
and emigration (exits from the collection of local populations) at fixed
rates specific to each local population.

This model may be called a subdivided population model or a
metapopulation model, although it does not represent extinction and
recolonization of any local population.

The set of local populations of a metapopulation has, at any given
time, a mean population size (or density) and a variance of population
size (or density). Several ecologists observed that, in many situations,
given a set of observations of sizes of local populations at different
times, the variance (over the spatial locations) of the size of the local
populations is approximately a power-law function of their mean size
(over the spatial locations) at each given time (Taylor, 2019). This
power-law variance function became known as a spatial Taylor’s Law
(TL) in ecology, named after the last ecologist who discovered it. A
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temporal Taylor’s Law (TL) in ecology (which we do not consider
further here) computes, separately for each local population, the mean
and variance of population size over time and asserts that the pairs of
mean and variance, one for each population, approximate a power law.
The power-law dependence of the variance (or standard deviation) on
the mean has also been observed in the physical sciences (where it is
commonly called fluctuation scaling), demography, finance, computer
engineering, and other fields (Eisler et al., 2008).

Here we give sufficient conditions for our model of exponentially
changing local populations with internal migration to satisfy a spatial
TL asymptotically, that is, with an increasingly close approximation to
a power law, after a long time, for a fixed number 𝑛 of local popula-
tions. We give sufficient conditions for the variance to be proportional
asymptotically to the square of the mean. Equivalently, the coefficient
of variation (defined as the standard deviation divided by the mean) is
asymptotically constant. These conditions relate to the eigenvalues and
eigenvectors of the model parameters (see Sections 3 and 4). Further,
we show that almost all (in a sense we specify precisely) models
of exponentially changing local populations with internal migration
obey TL asymptotically with an asymptotically constant coefficient of
variation (see Section 5).
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2. A model of local populations with exponential growth and
internal migration

To describe the model of 𝑛 ≥ 2 local populations in detail, we let
𝑁𝑖(𝑡) be the population density of population 𝑖 = 1,… , 𝑛 at time 𝑡 ≥ 0
where 𝑁𝑖(0) > 0, i.e. each population is assumed to be initially positive,
and we let 𝐍(0) ∶= [𝑁1(0) 𝑁2(0) … 𝑁𝑛(0)]𝑇 > 𝟎 be the vector of
population densities at time 𝑡 = 0. We define the matrices

𝑅 ∶= diag[𝑟1,… , 𝑟𝑛] ∈ R𝑛×𝑛, −∞ < 𝑟𝑖 < ∞, 𝑖 = 1,… , 𝑛, (1)

and 𝑀 = [𝑚𝑖𝑗 ] ∈ R𝑛×𝑛,

𝑀 ∶=

⎡

⎢

⎢

⎢

⎢

⎣

−
∑

𝑗≠1 𝑚𝑗1 𝑚12 … 𝑚1𝑛
𝑚21 −

∑

𝑗≠2 𝑚𝑗2 … 𝑚2𝑛
⋮ ⋮
𝑚𝑛1 𝑚𝑛2 … −

∑

𝑗≠𝑛 𝑚𝑗𝑛

⎤

⎥

⎥

⎥

⎥

⎦

with 𝑚𝑖𝑗 ≥ 0 if 𝑖 ≠ 𝑗.

(2)

We refer to 𝑅 in (1) and 𝑀 in (2) as the rate matrix and migration
matrix, respectively, and to their sum 𝐴 ∶= 𝑅 + 𝑀 as the coefficient
matrix. The rate 𝑟𝑖 of 𝑅 gives the instantaneous rate of change (growth
or decline) of population 𝑖. For 𝑖 ≠ 𝑗, the entry 𝑚𝑖𝑗 of 𝑀 describes the
instantaneous rate at which individuals from population 𝑗 migrate to
population 𝑖, which is linear in the size of population 𝑗 and independent
of the size of population 𝑖. All of these rates (of change and migration)
are per individual of the source population. We suppose the population
densities satisfy the equation
𝑑𝐍(𝑡)
𝑑𝑡

∶= 𝐴𝐍(𝑡). (3)

hen the population densities obey

(𝑡) = 𝑒𝐴𝑡𝐍(0). (4)

e refer to a set of populations 𝐍(𝑡) that evolve according to Eq. (3) as
he exponential metapopulation model with internal migration, or the EM
odel, with coefficient matrix 𝐴, and initial population densities 𝐍(0).
he matrix 𝑀 , which gives the migration rates in this model, can be
epresented by a weighted graph 𝐺 = 𝐺(𝑀) (for example, Fig. 1(left)).
his graph of migrations 𝐺 ∶= (𝑉 ,𝐸, 𝜔) has vertices 𝑉 ∶= {1,… , 𝑛}

representing the model’s populations and edges 𝐸 where the edge 𝑒𝑖𝑗
rom vertex 𝑗 to vertex 𝑖 is in 𝐸 if the weight 𝜔(𝑒𝑖𝑗 ) = 𝑚𝑖𝑗 ≠ 0, i.e. if
here is migration from population 𝑗 to population 𝑖 (see Fig. 1).

xample 1. Consider the EM model with the graph of migrations given
y the graph 𝐺 ∶= (𝑉 ,𝐸, 𝜔) in Fig. 1(left) where 𝑉 ∶= {1, 2,… , 30}
onsists of thirty distinct populations. We let each edge have unit
eight so that the migration matrix 𝑀 = [𝑚𝑖𝑗 ] is given by

𝑖𝑗 ∶=

{

1 if 𝑒𝑖𝑗 = 𝑒𝑗𝑖 ∈ 𝐸,
0 otherwise.

e let the rate matrix 𝑅 = diag[𝑟1,… , 𝑟𝑛] be generated by choosing
ach rate uniformly from the interval 𝑟𝑖 ∈ [−20, 0] for 𝑖 = 1, 2,… , 30.
hoosing each initial population in the interval 𝑁𝑖(0) ∈ (0, 10] results

n the population dynamics shown in Fig. 1(center) for 𝐍(𝑡).

An 𝑛×𝑛 real matrix with nonnegative off-diagonal elements is said to
e essentially nonnegative (or equivalently, a Metzler matrix Mitkowski,
008). Any real matrix 𝐴 = [𝑎𝑖𝑗 ] ∈ R𝑛×𝑛 can be decomposed into the
um of a rate matrix 𝑅 and a migration matrix 𝑀 if and only if 𝐴 is
ssentially nonnegative: 𝑎𝑖𝑗 ≥ 0 for all 𝑖 ≠ 𝑗. This decomposition is

unique with

𝑀 =

⎡

⎢

⎢

⎢

⎢

−
∑

𝑗≠1 𝑎𝑗1 𝑎12 … 𝑎1𝑛
𝑎21 −

∑

𝑗≠2 𝑎𝑗2 … 𝑎2𝑛
⋮ ⋮

∑

⎤

⎥

⎥

⎥

⎥
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⎣

𝑎𝑛1 𝑎𝑛2 … − 𝑗≠𝑛 𝑎𝑗𝑛 ⎦

l

and 𝑅 = diag[∑𝑛
𝑖=1 𝑎𝑖1,… ,

∑𝑛
𝑖=1 𝑎𝑖𝑛]. Instead of considering sums of

rate and migration matrices, we can equivalently consider essentially
nonnegative coefficient matrices 𝐴 ∈ R𝑛×𝑛. We denote the set of
essentially nonnegative coefficient matrices by A. An EM model can
be described as a pair (𝐴,𝐍(0)) for a coefficient matrix 𝐴 ∈ A and
an initial population vector 𝐍(0). Each EM model evolves according
to (3) and (4). We have 𝑒𝐴𝑡 ≥ 0 for all 𝑡 ≥ 0 if and only if 𝐴 is an
essentially nonnegative matrix (Kaczorek, 1997). Hence, for 𝐍(0) > 0,
the metapopulation 𝐍(𝑡) ≥ 0 for all 𝑡 ≥ 0, although this may not be true
for 𝑡 < 0 (cf. Fig. 1).

3. Taylor’s law

An asymptotic spatial Taylor’s Law states that the variance of pop-
ulation densities in a collection of local populations is asymptotic to a
power function of the average (or mean) of population densities in the
limit of large time. A natural way to define the mean and the variance
for the EM model is to give population 𝑖 the weight 𝑤𝑖 = 1∕𝑛 so that
each population has the same weight regardless of its density. With
such weights, the average population density at time 𝑡 is given by

E(𝐍(𝑡)) ∶= 1
𝑛

𝑛
∑

𝑖=1
𝑁𝑖(𝑡) =

1
𝑛

𝑛
∑

𝑖=1
[𝑒𝐴𝑡𝐍(0)]𝑖. (5)

Using the same weights, the variance of the population density at time
𝑡 is defined to be

V(𝐍(𝑡)) ∶= E
(

𝐍(𝑡)−E(𝐍(𝑡))
)2 = 1

𝑛

𝑛
∑

𝑖=1
[𝑒𝐴𝑡𝐍(0)]2𝑖 −

(

1
𝑛

𝑛
∑

𝑖=1
[𝑒𝐴𝑡𝐍(0)]𝑖

)2

. (6)

Taylor’s Law is said to hold asymptotically for the EM model (𝐴,𝐍(0))
if there exist real constants 𝑎 > 0 and 𝑏 such that

lim
𝑡→∞

(

logV(𝐍(𝑡)) − 𝑏 logE(𝐍(𝑡))
)

= log 𝑎. (7)

In this paper, we investigate the class of EM models (𝐴,𝐍(0)) for which
TL equation (7) holds.

3.1. Visualizing dynamics

To visualize the dynamics of an EM model, define a finite-time
approximation 𝑏(𝑡) to 𝑏, following Cohen (2013):

𝑏(𝑡) ∶=
𝑑V(𝐍(𝑡))

𝑑𝑡 E(𝐍(𝑡))
𝑑E(𝐍(𝑡))

𝑑𝑡 V(𝐍(𝑡))
=

𝑑 log[V(𝐍(𝑡))]
𝑑 log[E(𝐍(𝑡))]

, (8)

hich is well defined when V(𝐍(𝑡)) ≠ 0, E(𝐍(𝑡)) ≠ 0, and 𝑑E(𝐍(𝑡))∕𝑑𝑡 ≠
. Using Eqs. (5) and (6) in Eq. (8) gives

(𝑡) =
𝑑 log[ 1

𝑛2
∑

𝑖<𝑗 (𝑁𝑖(𝑡) −𝑁𝑗 (𝑡))2]

𝑑 log[ 1𝑛
∑𝑛

𝑖=1 𝑁𝑖(𝑡)]
(9)

= 2

(
∑

𝑖<𝑗 (𝑁𝑖(𝑡) −𝑁𝑗 (𝑡))(𝑁 ′
𝑖 (𝑡) −𝑁 ′

𝑗 (𝑡))
)(
∑𝑛

𝑖=1 𝑁𝑖(𝑡)
)

(
∑

𝑖<𝑗 (𝑁𝑖(𝑡) −𝑁𝑗 (𝑡))2)(
∑𝑛

𝑖=1 𝑁
′
𝑖 (𝑡))

. (10)

For instance, using the EM model with coefficient matrix 𝐴 = 𝑅+𝑀 and
the initial population 𝐍(0) from Example 1, Fig. 1(right) suggests that
lim𝑡→∞ 𝑏(𝑡) = 2. We confirm that suggestion mathematically to show
that TL equation (7) holds asymptotically with 𝑏 = 2 for this EM.

A helpful referee, Lee Altenberg, gave an example of functions
V(𝐍(𝑡)) and E(𝐍(𝑡)) for which lim𝑡→∞ 𝑏(𝑡) = 2 but Taylor’s law cannot
e satisfied. These functions were not derived from any EM model
ut were created to show that, in general, lim𝑡→∞ 𝑏(𝑡) = 2 does not
mply Taylor’s Law equation (7). Hence we prove Taylor’s Law directly
rom Eq. (7) and use 𝑏(𝑡) for illustration only.

Altenberg’s example deserves to be stated. Let V(𝐍(𝑡)) ∶= 𝑉 (𝑡) =
xp(2𝑡2)𝑣0, 𝑣0 > 0 and E(𝐍(𝑡)) ∶= 𝐸(𝑡) = exp[𝑡(𝑡 + 1)]𝑚0, 𝑚0 > 0. Then
og𝑉 (𝑡) = 2𝑡2 + log 𝑣0, log𝐸(𝑡) = 𝑡(𝑡 + 1) + log𝑚0, and 𝑑 log𝑉 (𝑡)∕𝑑𝑡 = 4𝑡,
log𝐸(𝑡)∕𝑑𝑡 = 2𝑡+ 1. Hence 𝑏(𝑡) ∶= 𝑑 log𝑉 (𝑡)∕𝑑 log𝐸(𝑡) = 4𝑡∕(2𝑡+ 1). So
im 𝑏(𝑡) = 2. However, log𝑉 (𝑡) − 2 log𝐸(𝑡) = 2𝑡2 + log 𝑣 − 2(𝑡(𝑡 +
𝑡→∞ 0
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Fig. 1. Left: The graph of interactions 𝐺 ∶= (𝑉 ,𝐸, 𝜔) of the EM model in Example 1. Here 𝑉 ∶= {1, 2,… , 30} and each undirected edge 𝑒𝑖𝑗 ∈ 𝐸 is given unit weight 𝜔(𝑒𝑖𝑗 ) ∶= 1.
Center: The population dynamics of 𝐍(𝑡) when each initial population 𝑁𝑖(0) is chosen uniformly in (0, 10]. Right: The finite-time approximation 𝑏(𝑡) of 𝑏 converges to 2. For this
EM model, TL holds asymptotically with asymptotic exponent 𝑏 = 2.
1) + log𝑚0) = log 𝑣0 − 2 log𝑚0 − 2𝑡, which is not constant in 𝑡 and
does not converge to a constant. So Taylor’s Law does not hold in this
construction.

3.2. Spectral analysis of asymptotic convergence to Taylor’s law

Cohen (2013) showed that TL holds asymptotically if there is no
migration, i.e. 𝑀 = 0, and 𝑟1 > 𝑟2 > ⋯ > 𝑟𝑛 for arbitrary population
weights 𝑤𝑖. Here we take a spectral approach to prove an asymptotic
spatial TL for a much broader class of systems described by EM models
with uniform population weights 𝑤𝑖 = 1∕𝑛. Instead of writing the
solution of Eq. (3) as a matrix exponential, as in Eq. (4), we write
the solution as a linear combination of the eigenvectors or generalized
eigenvectors of the coefficient matrix 𝐴. Following the standard linear
algebraic solution to systems of ordinary linear differential equations,
we let

𝜎(𝐴) ∶= {𝜆𝑗 = 𝛼𝑗 + 𝑖𝛽𝑗 ∈ C ∶ 𝑗 = 1,… , 𝑛}

be the eigenvalues of 𝐴 = [𝑎𝑖𝑗 ]. For the eigenvalue 𝜆 ∈ 𝜎(𝐴), the
time-dependent vector

𝐗(𝑡) ∶= 𝑒𝜆𝑡
(

𝑡𝑘−1

(𝑘 − 1)!
𝐱𝑘 +⋯ + 𝑡

1!
𝐱2 + 𝐱1

)

(11)

corresponding to a Jordan block 𝐽 (𝜆) ∈ C𝑘×𝑘 of 𝐴 is a solution
to Eq. (3). Here the vectors {𝐱𝑗}𝑘𝑗=1 are linearly independent where 𝐱𝑘
is an eigenvector and the others are generalized eigenvectors of 𝐴.

Complex eigenvalues occur in conjugate pairs: if 𝜆+ = 𝛼 + 𝑖𝛽 where
𝛽 ≠ 0, then its conjugate 𝜆− = 𝛼 − 𝑖𝛽 is also an eigenvalue of 𝐴. In this
case, the eigenvectors 𝐱𝑗 ∶= 𝐮𝑗 + 𝑖𝐰𝑗 in Eq. (11) for 𝑗 = 1,… , 𝑘 are also
complex. Taking their real and imaginary parts, we have the two real
solutions

𝐗+(𝑡) ∶=𝑒𝛼𝑡
[

sin(𝛽𝑡)
(

𝑡𝑘−1

(𝑘 − 1)!
𝐮𝑘 +⋯ + 𝑡

1!
𝐮2 + 𝐮1

)

+ cos(𝛽𝑡)
(

𝑡𝑘−1

(𝑘 − 1)!
𝐰𝑘 +⋯ + 𝑡

1!
𝐰2 + 𝐰1

)]

, (12)

𝐗−(𝑡) ∶=𝑒𝛼𝑡
[

cos(𝛽𝑡)
(

𝑡𝑘−1

(𝑘 − 1)!
𝐮𝑘 +⋯ + 𝑡

1!
𝐮2 + 𝐮1

)

− sin(𝛽𝑡)
(

𝑡𝑘−1

(𝑘 − 1)!
𝐰𝑘 +⋯ + 𝑡

1!
𝐰2 + 𝐰1

)]

(13)

to Eq. (3) corresponding to the conjugate eigenvalues 𝜆±. Using Eqs.
(11)–(13), the collective set of solutions corresponding to each Jordan
block gives a fundamental set of real solutions to Eq. (3), which we
write as 𝐗(𝑡) ∶= {𝐗1(𝑡),… ,𝐗𝑛(𝑡)}. Thus, any solution to Eq. (3) can be
written as

𝐍(𝑡) = 𝑐1𝐗1(𝑡) +⋯ + 𝑐𝑛𝐗𝑛(𝑡)

where the constants 𝑐1,… , 𝑐𝑛 can be determined using the initial pop-
ulations 𝐍(0) (cf. Proposition 2.22 in Chicone, 2008).
120
To determine whether TL holds asymptotically for an EM model, we
use the notion of a leading eigenvalue and leading eigenvector. These
are often referred to as the Perron root and Perron vector, respectively,
for nonnegative irreducible matrices.

Definition 3.1 (Leading Eigenvalues and Eigenvectors). A coefficient
matrix 𝐴 = [𝑎𝑖𝑗 ] with eigenvalues 𝜎(𝐴) = {𝛼𝑗 + 𝑖𝛽𝑗}𝑛𝑗=1 has a leading
eigenvalue 𝜆1 = 𝛼1 + 𝑖𝛽1 if 𝜆1 is real, i.e., 𝛽1 = 0, and 𝜆1 > 𝛼𝑗 for 𝑗 =
2,… , 𝑛. In this case, 𝜆1 is simple and the corresponding eigenspace is
spanned by a single nonzero vector 𝐱1. We call 𝐱1 the leading eigenvector
of 𝐴 if all of its components are nonnegative.

Assuming the coefficient matrix 𝐴 has a leading eigenvalue 𝜆1 with
leading eigenvector 𝐱1, then the solution to Eq. (4) can be written as

𝐍(𝑡) = 𝑐1𝑒
𝜆1𝑡𝐱1 +

𝑛
∑

𝑗=2
𝑐𝑗 𝑡

𝑝𝑗 𝑒𝛼𝑗 𝑡𝑓𝑗 (𝛽𝑗 𝑡)𝐱𝑗 , (14)

where each 𝑝𝑗 is a nonnegative integer, each 𝐱𝑗 ∈ R𝑛 is a nonzero
vector, and the function 𝑓𝑗 is either 𝑓𝑗 (𝑡) = 1, 𝑓𝑗 (𝑡) = cos(𝑡), or
𝑓𝑗 (𝑡) = sin(𝑡) using the principle of superposition. In Eq. (14), the initial
term 𝑐1𝑒𝜆1𝑡𝐱1 has the leading coefficient 𝑐1 and contains the leading
eigenvalue 𝜆1 and leading eigenvector 𝐱1. The leading coefficient 𝑐1
must be real because the leading eigenvalue, leading eigenvector, and
solution Eq. (14) are all real.

Not every coefficient matrix has a leading eigenvalue and leading
eigenvector. But if 𝐴 has a leading eigenvalue 𝜆1, then it has a leading
eigenvector 𝐱1.

Lemma 3.2 (Leading Eigenvalues and Vectors for Coefficient Matrices). If
a coefficient matrix 𝐴 = [𝑎𝑖𝑗 ] has a leading eigenvalue 𝜆1, then it has a
leading eigenvector 𝐱1.

Proof. Suppose 𝐴 = [𝑎𝑖𝑗 ] is a coefficient matrix. Let 𝑚 ∶= min1≤𝑖≤𝑛 𝑎𝑖𝑖
and 𝐴 ∶= 𝐵 + diag[𝑚,… , 𝑚] = 𝐵 +𝑚𝐼 . Define the spectral radius 𝜌(𝐵) of
a matrix 𝐵 ∈ R𝑛×𝑛 as

𝜌(𝐵) ∶= max{|𝜆| ∶ 𝜆 ∈ 𝜎(𝐵)}.

Then 𝐵 is a nonnegative matrix with spectral radius 𝜌(𝐵) ∈ 𝜎(𝐵), and
there is a nonnegative nonzero vector 𝐱1 such that 𝐵𝐱1 = 𝜌(𝐵)𝐱1 (see
Theorem 8.3.1 in Horn and Johnson, 1990). We claim that

𝜎(𝐴) = {𝜆 + 𝑚 ∶ 𝜆 ∈ 𝜎(𝐵)}, (15)

meaning that the spectrum 𝜎(𝐴) is a translation of the spectrum 𝜎(𝐵)
by 𝑚. To see this, note that if 𝜆 ∈ 𝜎(𝐵) then there is a nonzero vector
𝐯 ∈ R𝑛 such that 𝐵𝐯 = 𝜆𝐯. Hence,

𝐴𝐯 = (𝐵 + 𝑚𝐼)𝐯 = 𝜆𝐯 + 𝑚𝐯 = (𝜆 + 𝑚)𝐯 (16)

implying 𝜆 + 𝑚 ∈ 𝜎(𝐴), which verifies Eq. (15).
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Since 𝐴 has a leading eigenvalue 𝜆1, 𝜆1 = 𝜌(𝐵) + 𝑚 as 𝜌(𝐵) is the
igenvalue of 𝐵 with largest real part. Using Eq. (16) it also follows
hat 𝐴𝐱1 = (𝜌(𝐵) + 𝑚)𝐱1 so that 𝐱1 is an eigenvector associated with
1 = 𝜌(𝐵) +𝑚. Then 𝜆1 ≠ 𝜆𝑗 for 𝑗 ≠ 1 since its real part is strictly larger

than all other eigenvalues and is therefore simple. Thus 𝐱1 is a leading
eigenvector of 𝐴 as its entries are nonnegative. □

The following theorem gives our most general account of when TL
holds for a given EM model. We say a vector 𝐱 ∈ R𝑛 is constant if
all its elements are equal, i.e., if it is a scalar multiple of the vector
𝟏 ∶= [1 … 1]𝑇 with all components equal to 1.

Theorem 3.3 (Taylor’s Law for the EM Model). Let 𝐴 = [𝑎𝑖𝑗 ] be a
coefficient matrix for the EM model with initial population 𝐍(0). If

(a) the real leading coefficient 𝑐1 ≠ 0;
(b) the matrix 𝐴 has a leading eigenvalue 𝜆1; and
(c) the leading eigenvector 𝐱1 is not constant, then the EM model satisfies

Taylor’s Law asymptotically with 𝑏 = 2.

Proof. Suppose the EM model (𝐴,𝐍(0)) with coefficient matrix 𝐴 = [𝑎𝑖𝑗 ]
has leading eigenvalue 𝜆1 and leading eigenvector 𝐱1 and conditions
(a)–(c) hold. Then the solution to the differential equation 𝑑𝐍(𝑡)∕𝑑𝑡 =
𝐴𝐍(𝑡) in Eq. (14) can be written as the function 𝐍(𝑡) = 𝑒𝜆1𝑡(𝑐1𝐱1 + 𝐅(𝑡))
where

𝐅(𝑡) ∶=
𝑛
∑

𝑗=2
𝑐𝑗 𝑡

𝑝𝑗 𝑒(𝛼𝑗−𝜆1)𝑡𝑓𝑗 (𝛽𝑗 𝑡)𝐱𝑗 . (17)

As 𝜆1 − 𝛼𝑗 > 0 for all 𝑗 = 2,… , 𝑛, we have

lim
𝑡→∞

𝐅(𝑡) = lim
𝑡→∞

𝑛
∑

𝑗=2

𝑐𝑗 𝑡
𝑝𝑗𝑓𝑗 (𝛽𝑗 𝑡)

𝑒(𝜆1−𝛼𝑗 )𝑡
𝐱𝑗 = 𝟎, (18)

because the polynomial and trigonometric terms in the numerator are
dominated by the exponential growth of the denominator in each term.

Using Eq. (14), the 𝑖th component of 𝐍(𝑡) can be written as 𝑁𝑖(𝑡) =
𝜆1𝑡(𝑐1𝑥1𝑖 + 𝐹𝑖(𝑡)) where 𝑥𝑗𝑖 is the 𝑖th component of the vector 𝐱𝑗 . This,
ogether with Eqs. (5) and (6), yields

(𝐍(𝑡)) ∶= 1
𝑛

𝑛
∑

𝑖=1
𝑁𝑖(𝑡) =

𝑒𝜆1𝑡

𝑛

𝑛
∑

𝑖=1
(𝑐1𝑥1𝑖 + 𝐹𝑖(𝑡))

nd

(𝐍(𝑡)) ∶= 1
𝑛2

∑

𝑖<𝑗
(𝑁𝑖(𝑡)−𝑁𝑗 (𝑡))2 =

𝑒2𝜆1𝑡

𝑛2
∑

𝑖<𝑗
((𝑐1𝑥1𝑖+𝐹𝑖(𝑡))−(𝑐1𝑥1𝑗+𝐹𝑗 (𝑡)))2.

Substituting E(𝐍(𝑡)) and V(𝐍(𝑡)) into Eq. (7), it follows that TL holds
symptotically if lim𝑡→∞ 𝑊𝑏(𝑡) = 0, where

𝑊𝑏(𝑡) ∶= log

[

𝑒2𝜆1𝑡

𝑛2
∑

𝑖<𝑗
((𝑐1𝑥1𝑖 + 𝐹𝑖(𝑡)) − (𝑐1𝑥1𝑗 + 𝐹𝑗 (𝑡)))2

]

− 𝑏 log

[

𝑒𝜆1𝑡

𝑛

𝑛
∑

𝑖=1
(𝑐1𝑥1𝑖 + 𝐹𝑖(𝑡))

]

− log 𝑎

= (2 − 𝑏)(𝜆1𝑡 − log 𝑛) + log

[

∑

𝑖<𝑗
((𝑐1𝑥1𝑖 + 𝐹𝑖(𝑡)) − (𝑐1𝑥1𝑗 + 𝐹𝑗 (𝑡)))2

]

− 𝑏 log

[ 𝑛
∑

𝑖=1
(𝑐1𝑥1𝑖 + 𝐹𝑖(𝑡))

]

− log 𝑎.

By (18), lim𝑡→∞ 𝐹𝑖(𝑡) = 0 for all 𝑖 = 1,… , 𝑛. For 𝑏 = 2, as 𝑐1 ≠ 0 by
condition (a), we have, in the limit,

lim
𝑡→∞

𝑊2(𝑡) = log

[

∑

𝑖<𝑗
((𝑐1𝑥1𝑖) − (𝑐1𝑥1𝑗 ))2

]

− 2 log

[ 𝑛
∑

𝑖=1
(𝑐1𝑥1𝑖)

]

− log 𝑎

= log

[

𝑐21
∑

𝑖<𝑗
(𝑥1𝑖 − 𝑥1𝑗 )2

]

− 2 log

[

𝑐1
𝑛
∑

𝑖=1
𝑥1𝑖

]

− log 𝑎

= log

[
∑

𝑖<𝑗 (𝑥1𝑖 − 𝑥1𝑗 )2
(
∑𝑛 )2

]

− log 𝑎.
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𝑖=1 𝑥1𝑖 i
e let

∶=

(

∑

𝑖<𝑗
(𝑥1𝑖 − 𝑥1𝑗 )2

)

∕

( 𝑛
∑

𝑖=1
𝑥1𝑖

)2

. (19)

hen 𝑎 > 0 since, by assumption Theorem 3.3(c), the leading eigen-
ector 𝐱1 is not constant, so ∑

𝑖<𝑗 (𝑥1𝑖 − 𝑥1𝑗 )2 ≠ 0. Also, as 𝐱1 is an
igenvector, it follows that 𝐱1 ≠ 𝟎, and as a leading eigenvector its
ntries all have the same sign and may, without loss of generality, be
ade nonnegative. Hence, 𝑎 > 0 is well defined and

lim
→∞

𝑊2(𝑡) = log

[
∑

𝑖<𝑗 (𝑥1𝑖 − 𝑥1𝑗 )2
(
∑𝑛

𝑖=1 𝑥1𝑖
)2

]

− log

[
∑

𝑖<𝑗 (𝑥1𝑖 − 𝑥1𝑗 )2
(
∑𝑛

𝑖=1 𝑥1𝑖
)2

]

= 0.

Thus TL holds asymptotically with 𝑏 = 2. □

In the EM model in Example 1, the coefficient matrix 𝐴 has a
nonzero leading eigenvalue 𝜆1 ≈ 0.0735651 with a non-constant leading
eigenvector 𝐱1 ≠ 𝟏. For the initial condition 𝐍(0) shown in Fig. 1(cen-
ter), 𝑐1 ≠ 0. Hence, TL holds asymptotically for this model with 𝑏 = 2,
as suggested by Fig. 1(right).

If the leading eigenvalue 𝜆1 = 0 but the other assumptions of
Theorem 3.3 are satisfied, as in Example 2, then TL may hold for a
range of values of 𝑏. This range always includes 𝑏 = 2, by Theorem 3.3,
and each value of 𝑏 has its corresponding value of 𝑎.

Example 2 (Zero Leading Eigenvalue). Consider the EM model (𝐴,𝐍(0))
with coefficient matrix given by

𝐴 ∶=
⎡

⎢

⎢

⎣

−2 3 1
1 −5 4
1 2 −5

⎤

⎥

⎥

⎦

.

This matrix has the leading eigenvalue 𝜆1 = 0 and non-constant leading
eigenvector 𝐱1 = [17 9 7]𝑇 . For the arbitrary initial condition 𝐍(0) =
[𝑁1(0), 𝑁2(0), 𝑁3(0)]𝑇 > 0, the leading coefficient is

𝑐1 = (𝑁1(0) +𝑁2(0) +𝑁3(0))∕33 ≠ 0,

which can be found by solving for 𝑐1 in the linear system of equations
𝑐1𝐱1 + 𝑐2𝐱2 + 𝑐3𝐱3 = 𝐍(0) where 𝐱2, 𝐱3 are the other eigenvectors of
𝐴 (cf. Eq. (14)). By Theorem 3.3, TL holds asymptotically for this EM
model with 𝑎 = 56∕363, 𝑏 = 2, and any nonzero initial population 𝐍(0).
That 𝑎 = 56∕363 follows from Eq. (19) in the proof of Theorem 3.3 and
that 𝐱1 = [17 9 7]𝑇 . As 𝜆1 = 0, a slight modification of the proof of
Theorem 3.3 shows that TL holds asymptotically for any 𝑏 ∈ R with

𝑎 = 𝑛2−𝑏
∑

𝑖<𝑗 (𝑥1𝑖 − 𝑥1𝑗 )2

(
∑𝑛

𝑖=1 𝑥1𝑖)2
= 𝑛2−𝑏 56

363
.

However, the expectation

E(𝐍(𝑡)) = (𝑁1(0) +𝑁2(0) +𝑁3(0))∕3

is constant so that 𝑑E(𝐍(𝑡))∕𝑑𝑡 = 0 for all 𝑡. This results in a division
y zero in Eq. (8). Consequently, 𝑏(𝑡) does not exist at any time 𝑡. That
s, it is not always the case that we can write 𝑏 = lim𝑡→∞ 𝑏(𝑡) for some
inite constant 𝑏 for which TL holds asymptotically.

If an EM model has an essentially nonnegative matrix with leading
igenvalue 𝜆1 = 0, then Eq. (14) can be used to show that lim𝑡→∞ 𝐍(𝑡) =
1𝐱1. In this case lim𝑡→∞ 𝑑E(𝐍(𝑡))∕𝑑𝑡 = 0, which suggests why lim𝑡→∞ 𝑏(𝑡)
ay not exist even if the constant 𝑏 ∈ R does (see Eq. (8)). If Part (c)

f Theorem 3.3 does not hold, then the situation is more complicated.
his is discussed in more detail in the following section.

Part (a) of Theorem 3.3 requires that the leading coefficient 𝑐1
e nonzero and it is currently an open question as to whether or
ot there is an EM model for which 𝑐1 = 0. In the present state
f our understanding, to guarantee that 𝑐1 ≠ 0 requires additional
ssumptions. The additional assumption in Corollary 1 of Theorem 3.3
s that the coefficient matrix 𝐴 is a normal matrix. A matrix 𝐴 = [𝑎 ] ∈
𝑖𝑗
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R𝑛×𝑛 is normal if it commutes with its transpose, that is, if 𝐴𝐴𝑇 = 𝐴𝑇𝐴.
If the coefficient matrix in an EM model is normal, then 𝑐1 ≠ 0.

Corollary 1 (Normal Matrices and Taylor’s Law). Let 𝐴 = [𝑎𝑖𝑗 ] be a
normal coefficient matrix for the EM model with initial population 𝐍(0).
If

(a) the matrix 𝐴 has a leading eigenvalue 𝜆1; and

(b) the leading eigenvector 𝐱1 is not constant; then the EM model satisfies
Taylor’s Law asymptotically with 𝑏 = 2.

Proof. If 𝐴 ∈ R𝑛×𝑛 is normal, then it has an orthogonal eigenbasis
𝐱1,… , 𝐱𝑛 and the solution to Eq. (3) is

𝐍(𝑡) = 𝑐1𝑒
𝜆1𝑡𝐱1 +⋯ + 𝑐𝑛𝑒

𝜆𝑛𝑡𝐱𝑛,

where 𝐱𝑗 is an eigenvector associated with the eigenvalue 𝜆𝑗 ∈ C of 𝐴
(see Eq. (11)). Hence the initial population vector is 𝐍(0) = 𝑐1𝐱1 +⋯ +
𝑛𝐱𝑛. Since 𝐴 is assumed to have a leading eigenvalue 𝜆1, Lemma 3.2
mplies that 𝐴 has the leading eigenvector 𝐱1. Because 𝐍(0) is assumed
o be strictly positive, 𝐱1 is nonnegative. Because the vectors 𝐱1,… , 𝐱𝑛
re an orthogonal eigenbasis, we have 0 < 𝐱𝑇1 𝐍(0) = 𝑐1‖𝐱1‖22. Given
hat 𝐱1 is a nonzero eigenvector, 𝑐1 must also be real and nonzero and
t follows from Theorem 3.3 that TL holds asymptotically with 𝑏 = 2 in
he associated EM model. □

xample 3 (Exponential Model). In the original exponential model (Co-
en, 2013), the coefficient matrix is the diagonal rate matrix 𝐴 =
iag[𝑟1,… , 𝑟𝑛] ∈ R𝑛×𝑛 without internal migration, and it is assumed
hat 𝑟1 > 𝑟2 > ⋯ > 𝑟𝑛. In this case, the matrix 𝐴 is normal with
eading eigenvalue 𝜆1 = 𝑟1 with non-constant leading eigenvector 𝐱1 =
1 0 … 0]𝑇 . The main result in Cohen (2013), that TL holds for the
xponential model with lim𝑡→∞ 𝑏(𝑡) = 2, is therefore a special case of
orollary 1 if the population weights are 𝑤𝑖 = 1∕𝑛.

In Section 5, we show that the conditions of Theorem 3.3, which
nsure that TL holds asymptotically with 𝑏 = 2, specify an open dense
ubset of EM models, i.e., are satisfied for nearly every EM model we
onsider.

In an EM model, the total population 𝑃 (𝑡) =
∑𝑛

𝑖=1 𝑁𝑖(𝑡) may grow or
ecrease over time through migration. However, if the migration matrix

has columns that sum to zero, as in Example 2, then

′(𝑡) =
𝑛
∑

𝑖=1
𝑁 ′

𝑖 (𝑡) =
𝑛
∑

𝑖=1
𝑟𝑖𝑁𝑖(𝑡)

nd the total population does not increase or decrease due to migration
s 𝑃 ′(𝑡) depends only on the rate matrix 𝑅 = diag[𝑟1,… , 𝑟𝑛]. A special
ase of this is discussed in Altenberg (2010) where 𝑀 = 𝑃 − 𝐼 for a
olumn-stochastic matrix 𝑃 . The EM models that have migration ma-
rices with zero column sums are special cases of the models considered
n Theorem 3.3 and, as such, satisfy Taylor’s Law with 𝑏 = 2 if (a)–(c)
old.

. Perron Frobenius and Taylor’s law

In the previous section, our primary assumption regarding the coef-
icient matrix 𝐴 ∶= 𝑅+𝑀 was only that it was essentially nonnegative,
ith no restrictions on the structure of migrations in 𝑀 . In this section,
e assume also that 𝐴 and 𝑀 are irreducible. By definition, the
igration matrix 𝑀 is irreducible if and only if it is possible to migrate

rom any population to any other population directly or via some se-
uence of intermediate populations. Equivalently, the associated graph
f migrations is strongly connected: there is a path from any vertex to
ny other vertex in the graph.

Irreducibility of the coefficient matrix affects the spectrum, as
hown by the Perron Frobenius theorem. Although the Perron Frobe-
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ius theorem contains more results than parts (𝑎)–(𝑏) below, we use C
only the results stated here to prove the next theorem, which extends
Theorem 3.3 to irreducible coefficient matrices.

Theorem 4.1 (Perron Frobenius Theorem, in Part). Let 𝐵 ∈ R𝑛×𝑛 be a
nonnegative irreducible matrix. Then

(a) the spectral radius 𝜌(𝐵) is a simple eigenvalue of 𝐵; and

(b) any eigenvector 𝐱1 corresponding to the eigenvalue 𝜌(𝐵) has all strictly
positive elements, i.e. 𝐱1 > 0.

The eigenvalue 𝜌(𝐵) of a nonnegative irreducible matrix 𝐵 is some-
times called its Perron root and the corresponding eigenvector its Perron
vector.

Theorem 4.2 (Irreducible Matrices and Taylor’s Law). Let 𝐴 ∶= [𝑎𝑖𝑗 ] be
an irreducible essentially nonnegative coefficient matrix for the EM model
with initial population 𝐍(0). Then 𝐴 has a positive leading eigenvalue 𝜆1
and positive leading eigenvector 𝐱1. Additionally, if

(a) the real leading coefficient 𝑐1 ≠ 0; and

b) the leading eigenvector 𝐱1 is not constant,
then the EM model satisfies Taylor’s Law asymptotically with 𝑏 = 2.

Proof. Suppose 𝐴 is an irreducible essentially nonnegative coefficient
matrix and let 𝑚 ∶= min1≤𝑖≤𝑛 𝑎𝑖𝑖. Then the matrix

𝐵 ∶= 𝐴 − diag[𝑚,… , 𝑚] = 𝐴 − 𝑚𝐼

is nonnegative and irreducible. Also, as 𝐴 = 𝐵+𝑚𝐼 , then 𝜎(𝐴) = {𝜆+𝑚 ∶
𝜆 ∈ 𝜎(𝐵)} and 𝐴𝐱 = (𝜆 + 𝑚)𝐱 if 𝐵𝐱 = 𝜆𝐱 (see Eq. (16)).

By the Perron Frobenius theorem, there exists a simple eigenvalue
1 = 𝜌(𝐵) + 𝑚 ∈ 𝜎(𝐴). If 𝜆∗ ∈ 𝜎(𝐵) is not 𝜆1, then 𝜆∗ = 𝑝𝑒𝑖𝜃 where

𝑝 ≤ 𝜌(𝐵) and 𝜃 ∈ [0, 2𝜋). In particular, if 𝑝 = 𝜌(𝐵), then 𝜃 ∈ (0, 2𝜋) since
∗ ≠ 𝜆1. The real part of 𝜆∗ + 𝑚 is then

𝑅𝑒(𝜆∗ + 𝑚) = 𝑅𝑒(𝑝𝑒𝑖𝜃 + 𝑚) = 𝑝 cos(𝜃) + 𝑚 < 𝜌(𝐵) + 𝑚 = 𝜆1,

so 𝜆1 is a leading eigenvalue of 𝐴.
If 𝐱1 is any eigenvector associated with the spectral radius 𝜌(𝐵),

then 𝐱1 > 0 and by the Perron Frobenius theorem, 𝐵𝐱1 = 𝜌(𝐵)𝐱1.
rom Eq. (16) it follows that

𝐱1 = (𝜌(𝐵) + 𝑚)𝐱1 = 𝜆1𝐱1,

o 𝐱1 is a leading eigenvector of 𝐴 as it has positive and therefore
onnegative components.

Since 𝐴 has leading eigenvalue 𝜆1 and leading eigenvector 𝐱1, if
1 ≠ 0 and 𝐱1 is not constant, we have by Theorem 3.3 that TL holds
symptotically with 𝑏 = 2. □

The difference between Theorems 4.2 and 3.3 is that an EM model
ith an irreducible coefficient matrix 𝐴 is guaranteed to have a leading

igenvector and leading eigenvector, but not if 𝐴 is reducible. For
nstance, in Example 1 the coefficient matrix 𝐴 is irreducible as the
ssociated graph of migrations 𝐺 is strongly connected. Hence 𝐴 has
oth a leading eigenvalue and leading eigenvector.

To describe when TL holds asymptotically for an EM model with
≠ 2, we define the notion of a second leading eigenvalue.

efinition 4.3 (Second Leading Eigenvalue). A coefficient matrix 𝐴 ∶=
𝑎𝑖𝑗 ] with eigenvalues 𝜎(𝐴) ∶= {𝛼𝑗 + 𝑖𝛽𝑗}𝑛𝑗=1 and leading eigenvalue
1 = 𝛼1 has a second leading eigenvalue 𝜆2 ∶= 𝛼2 + 𝑖𝛽2 if 𝜆2 is real,
.e. 𝛽2 = 0, and 𝜆2 > 𝛼𝑗 for all 𝑗 = 3,… , 𝑛.

Alternatively, a coefficient matrix 𝐴 has a second leading eigenvec-
or if it has a strictly positive spectral gap 𝜆1 − 𝜆2 > 0, where 𝜆1, 𝜆2 ∈ R.
f 𝐴 has a constant leading eigenvector, then TL may still hold but we
ay get a constant 𝑏 ≠ 2, different from 𝑏 = 2 in Theorem 3.3 and

orollary 1.
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Proposition 1 (Constant Eigenvectors and Taylor’s Law). Let 𝐴 ∶= [𝑎𝑖𝑗 ]
be an irreducible coefficient matrix for the EM model with initial population
𝐍(0). If 𝐴 has a second leading eigenvalue 𝜆2 where

(a) the coefficients 𝑐1, 𝑐2 ≠ 0;

(b) the leading eigenvalue 𝜆1 ≠ 0; and

(c) the leading eigenvector 𝐱1 is constant,
then the EM model satisfies Taylor’s Law asymptotically with 𝑏 = 2𝜆2∕𝜆1 ≠
2.

We cannot claim that 2𝜆2∕𝜆1 < 2 because 𝜆1 could be negative. For
example, if 𝜆1 = −1∕2, 𝜆2 = −1, then 2𝜆2∕𝜆1 = 4.

Proof. From the proof of Theorem 3.3, we can write 𝑊𝑏(𝑡) ∶= (2 −
𝑏)(𝜆1𝑡 − log 𝑛) + 𝜈(𝑡) − 𝑏𝜇(𝑡) − log 𝑎 where

𝜈(𝑡) ∶= log

[

∑

𝑖<𝑗
((𝑐1𝑥1𝑖 + 𝐹𝑖(𝑡)) − (𝑐1𝑥1𝑗 + 𝐹𝑗 (𝑡)))2

]

,

𝜇(𝑡) ∶= log

[ 𝑛
∑

𝑖=1
(𝑐1𝑥1𝑖 + 𝐹𝑖(𝑡))

]

.

For 𝜇(𝑡),

lim
𝑡→∞

𝜇(𝑡) = log

[ 𝑛
∑

𝑖=1
(𝑐1𝑥1𝑖)

]

.

For 𝜈(𝑡), Eq. (17) implies

𝐹𝑖(𝑡) − 𝐹𝑗 (𝑡) =
𝑛
∑

𝓁=2
𝑐𝓁𝑡

𝑝𝓁 𝑒(𝛼𝓁−𝜆1)𝑡𝑓𝑗 (𝛽𝓁𝑡)(𝑥𝓁𝑖 − 𝑥𝓁𝑗 ),

so that

𝜈(𝑡) = log

[

∑

𝑖<𝑗
(𝑐1(𝑥1𝑖 − 𝑥1𝑗 ) + (𝐹𝑖(𝑡) − 𝐹𝑗 (𝑡)))2

]

= log
⎡

⎢

⎢

⎣

∑

𝑖<𝑗

( 𝑛
∑

𝓁=2
𝑐𝓁𝑡

𝑝𝓁 𝑒(𝛼𝓁−𝜆1)𝑡𝑓𝑗 (𝛽𝓁𝑡)(𝑥𝓁𝑖 − 𝑥𝓁𝑗 )

)2
⎤

⎥

⎥

⎦

= log
⎡

⎢

⎢

⎣

∑

𝑖<𝑗

( 𝑛
∑

𝓁=2
𝑐𝓁𝑡

𝑝𝓁 𝑒(𝛼𝓁−𝜆1)𝑡𝑓𝑗 (𝛽𝓁𝑡)(𝑥𝓁𝑖 − 𝑥𝓁𝑗 )

)2
⎤

⎥

⎥

⎦

+ log(𝑒2(𝜆2−𝜆1)𝑡) − log(𝑒2(𝜆2−𝜆1)𝑡)

= log
⎡

⎢

⎢

⎣

∑

𝑖<𝑗

( 𝑛
∑

𝓁=2
𝑐𝓁𝑡

𝑝𝓁 𝑒(𝛼𝓁−𝜆2)𝑡𝑓𝑗 (𝛽𝓁𝑡)(𝑥𝓁𝑖 − 𝑥𝓁𝑗 )

)2
⎤

⎥

⎥

⎦

+ 2(𝜆2 − 𝜆1)𝑡.

The second equality follows from assumption (c) that 𝐱1 is a constant
vector, i.e. 𝑥1𝑖 = 𝑥1𝑗 for all 𝑖, 𝑗.

Recall that 𝜆2 is the second leading eigenvalue of 𝐴 and is therefore
a simple real eigenvalue of 𝐴 where the corresponding eigenspace is
spanned by a single nonzero eigenvector 𝐱2 ∈ R𝑛. As such 𝑋2(𝑡) ∶=
𝑐2𝑒𝜆2𝑡𝐱2 is a solution to Eq. (3) so that 𝑝2 = 0, 𝑓2(𝑡) = 1, and 𝐺2(𝑡) =
(𝜆2 − 𝜆1). Thus

𝜉(𝑡) ∶=
∑

𝑖<𝑗

( 𝑛
∑

𝓁=2
𝑐𝓁𝑡

𝑝𝓁 𝑒(𝛼𝓁−𝜆2)𝑡𝑓𝑗 (𝛽𝓁𝑡)(𝑥𝓁𝑖 − 𝑥𝓁𝑗 )

)2

=
∑

𝑖<𝑗

(

𝑐2(𝑥2𝑖 − 𝑥2𝑗 ) +
𝑛
∑

𝓁=3
𝑐𝓁𝑡

𝑝𝓁 𝑒(𝛼𝓁−𝜆2)𝑡𝑓𝑗 (𝛽𝓁𝑡)(𝑥𝓁𝑖 − 𝑥𝓁𝑗 )

)2

.

Assuming that 𝐴 has a second leading eigenvalue, 𝜆2 = 𝛼2 and 𝜆2 > 𝛼𝑗
for 𝑗 = 3,… , 𝑛, we have

lim
𝑡→∞

𝜉(𝑡) = 𝑐22
∑

𝑖<𝑗
(𝑥2𝑖 − 𝑥2𝑗 )2.

Setting 𝑏 = 2𝜆2∕𝜆1, then combining our results for 𝜈(𝑡) and 𝜇(𝑡), we
have

lim 𝑊 (𝑡) = lim
[

(2 − 𝑏)(𝜆 𝑡 − log 𝑛) + log[𝜉(𝑡)]
123

𝑡→∞ 𝑏 𝑡→∞ 1 h
+ 2(𝜆2 − 𝜆1)𝑡 − 𝑏𝜇(𝑡) − log 𝑎
]

=
(

2 −
2𝜆2
𝜆1

)

log 𝑛 + log

[

𝑐22
∑

𝑖<𝑗
(𝑥2𝑖 − 𝑥2𝑗 )2

]

−
2𝜆2
𝜆1

log

[

𝑐1
𝑛
∑

𝑖=1
𝑥1𝑖

]

− log 𝑎.

If we choose 𝑎 to be

𝑎 ∶=
𝑛
(

2− 2𝜆2
𝜆1

)

𝑐22
∑

𝑖<𝑗 (𝑥2𝑖 − 𝑥2𝑗 )2

(

𝑐1
∑𝑛

𝑖=1 𝑥1𝑖
)

2𝜆2
𝜆1

,

then we claim that 𝑎 > 0. This follows from the fact that 𝐱1 is a constant
igenvector and 𝑐1 ≠ 0, implying 𝑐1

∑𝑛
𝑖=1 𝑥1𝑖 ≠ 0, so the denominator of

𝑎 is nonzero and 𝑎 is defined. The numerator is also nonzero as 𝑛 > 0,
𝑐1 ≠ 0, and 𝐱2 is not constant. Because all quantities are squared, we
have 𝑎 > 0.

Using this value of 𝑎 and 𝑏 ∶= 2𝜆2∕𝜆1, we have lim𝑡→∞ 𝑊𝑏(𝑡) = 0.
ince 𝜆2 ≠ 𝜆1 ≠ 0, TL holds asymptotically with 𝑏 = 2𝜆2∕𝜆1 ≠ 2. □

The main difference between Theorem 3.3 and Proposition 1 is that
n the latter we assume the leading eigenvector 𝐱1 is constant. An
xample follows.

xample 4 (Constant Leading Eigenvector). Consider the EM model
𝐴,𝐍(0)) with coefficient matrix

∶=
⎡

⎢

⎢

⎣

1 1 1
1 2 0
2 1 0

⎤

⎥

⎥

⎦

.

his matrix is irreducible, has leading eigenvalue 𝜆1 = 3, second leading
igenvalue 𝜆2 = 1, third eigenvalue 𝜆3 = −1. The matrix also has
he constant leading eigenvector 𝐱1 = 𝟏. For the initial population
ector 𝐍(0)𝛿 ∶= [1, 2, 3 + 𝛿]𝑇 the coefficients 𝑐1, 𝑐2 ≠ 0 for small
ositive 𝛿 > 0. Proposition 1 implies that TL holds asymptotically in
his case with lim𝑡→∞ 𝑏(𝑡) = 2∕3 as shown in Fig. 2(right). However,
or the initial condition 𝐍(0)0 = [1, 2, 3]𝑇 , the scalar 𝑐2 = 0 and
im𝑡→∞ 𝑏(𝑡) = 2𝜆3∕𝜆1 = −2∕3 (Fig. 2(right)).

If we add 𝜖 > 0 to any entry of 𝐴, the resulting perturbed matrix 𝐴𝜖
oes not have a constant leading eigenvector. In particular, if we add 𝜖
o both 𝑎1,2 and 𝑎1,3, then in the perturbed EM model (𝐴𝜖 ,𝐍(0)0), both
he leading coefficient 𝑐1 and the leading eigenvalue 𝜆1 are not zero (cf.
xample 5). Hence, by Theorem 4.2, 𝑏 = 2 for arbitrarily small 𝜖 > 0
Fig. 2 (right)).

Example 4 suggests that the behavior of an EM model (𝐴,𝐍(0))
ith irreducible 𝐴 and constant leading eigenvector depends on which

oefficients 𝑐𝑖 are zero or nonzero.
In Theorems 3.3, 4.2, Proposition 1, and Example 4, the constant

can be written entirely in terms of the eigenvalues of 𝐴. How-
ver, which combination of eigenvalues depends on both the leading
igenvector and the initial population vector 𝐍(0).

. The prevalence of Taylor’s law for the EM model

Taylor’s Law with 𝑏 = 2 does not hold for every EM model. Here
e show that Taylor’s Law with 𝑏 = 2 is the typical behavior of an EM
odel with a typical coefficient matrix 𝐴 ∶= [𝑎𝑖𝑗 ] and initial vector of
opulation densities 𝐍(0).

Let A be the set of essentially nonnegative 𝑛 × 𝑛 matrices. Define
𝑇𝐿 as the set of matrices 𝐴 ∈ A that have a leading eigenvalue and a

eading eigenvector that satisfy the assumptions of Theorem 3.3(a)–(c).
et M be the set of all EM models, that is (𝐴,𝐍(0)) ∈ M if 𝐴 ∈ A and
(0) > 0. Let M𝑇𝐿 ⊂ M be the set of EM models where the coefficient
atrix 𝐴 ∈ A𝑇𝐿. By Theorem 3.3, M𝑇𝐿 is a subset of M on which TL
olds with 𝑏 = 2.
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Fig. 2. Left: The population dynamics 𝐍(𝑡) for the EM model in Example 4 with a constant leading eigenvector. Solid lines correspond to the unperturbed initial population vector
𝐍(0)0 ∶= [1, 2, 3]𝑇 and dashed lines correspond to the perturbed initial population vector 𝐍(0)𝛿 ∶= [1, 2, 3 + 𝛿] where 𝛿 ∶= 0.01. Right: The functions 𝑏(𝑡) are plotted in red for the
unperturbed initial population vector where lim𝑡→∞ 𝑏(𝑡) = −2∕3 and in blue for the perturbed initial population vector for which lim𝑡→∞ 𝑏(𝑡) = 2∕3. The green curve plots 𝑏(𝑡) for
he perturbed EM model in Example 5 with coefficient matrix 𝐴𝜖 with 𝜖 ∶= 0.01, which has a non-constant leading eigenvector and lim𝑡→∞ 𝑏(𝑡) = 2.
o

For two EM models (𝐴1,𝐍(0)1) and (𝐴2,𝐍(0)2) ∈ M, define addition

and scalar multiplication by

(𝐴1,𝐍(0)1) + (𝐴2,𝐍(0)2) ∶= (𝐴1 + 𝐴2,𝐍(0)1 + 𝐍(0)2); and
(𝐴1,𝐍(0)1) ∶= (𝑐𝐴1, 𝑐𝐍(0)1) for 𝑐 ∈ R.

ot every linear combination 𝛼(𝐴1,𝐍(0)1) + 𝛽(𝐴2,𝐍(0)2) is an EM
odel, but this combination is an EM model under certain conditions,

.g. 𝛼, 𝛽 ≥ 0. For an EM model (𝐴,𝐍(0)), define the metric

(𝐴,𝐍(0))‖𝐸𝑀 ∶= max{|||𝐴|||, ‖𝐍(0)‖},

here ||| ⋅ ||| is a matrix norm and ‖ ⋅‖ a vector norm. This norm induces
topology on the set M of EM models. Under this norm, the set M𝑇𝐿

s an open dense subset of M.

heorem 5.1 (Prevalence of Taylor’s Law for the EM Model). The setM𝑇𝐿
s an open dense set of M. Thus, on an open dense set of EM models, TL
olds asymptotically with 𝑏 = 2.

roof. We show first that the coefficient matrices that have a leading
igenvalue and leading eigenvector form an open dense set in the
et of all coefficient matrices. We then prove a similar result for the
nitial population vectors that result in a nonzero leading coefficient
1. Combining the two results will prove the theorem.

Let 𝐴 ∈ A be an essentially nonnegative matrix and let 𝐽𝜖 ∈ R𝑛×𝑛

be a matrix in which all entries are 𝜖 > 0 except that a single entry
of 𝐽𝜖 is zero. Define 𝐴𝜖 ∶= 𝐴 + 𝐽𝜖 . Because 𝐴 has nonnegative off-
diagonal entries and 𝐽𝜖 ≥ 0, 𝐴𝜖 also has nonnegative off-diagonal
entries, implying that 𝐴𝜖 ∈ A. Second, as 𝐽𝜖 is irreducible, 𝐴𝜖 is also
irreducible and Theorem 4.2 states that 𝐴𝜖 has a leading eigenvalue 𝜆𝜖
and leading eigenvector 𝐱𝜖 .

Suppose that 𝐴 has no constant eigenvectors. As the eigenvectors
of a matrix depend continuously on the entries of the matrix, 𝐴𝜖 has
constant no eigenvectors for small enough 𝜖 > 0 and therefore no
constant leading eigenvector. If 𝐴 has a constant eigenvector, then 𝐴𝟏 =
𝜆𝟏 and 𝐴 has constant row sums 𝜆 for some 𝜆 ∈ R. Then for any 𝜖 > 0,
𝐴𝜖 does not have constant row sums because one row of 𝐽𝜖 is 𝜖 less than
the others. Consequently, 𝐴𝜖 cannot have constant eigenvectors and
therefore does not have a constant leading eigenvector. Thus, for small
enough 𝜖, the matrix 𝐴𝜖 has a leading eigenvalue with a non-constant
leading eigenvector implying 𝐴 ∈ A𝑇𝐿. Additionally, |||𝐴𝜖 − 𝐴||| = |||𝐽𝜖|||
can be made arbitrarily small by letting 𝜖 → 0+. Thus, arbitrarily close
to the matrix 𝐴 ∈ A is a matrix 𝐴𝜖 ∈ A𝑇𝐿 implying A𝑇𝐿 is dense in A.

To show that A𝑇𝐿 is an open subset of A, we observe, as above, that
the eigenvectors of a matrix are continuous functions of the entries of
the matrix. Thus, if 𝐴 ∈ A𝑇𝐿 and �̃� ∈ A, then for small enough 𝛿 > 0,

̃ ̃
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if |||𝐴−𝐴||| < 𝛿, then 𝐴 has a non-constant leading eigenvector as 𝐴 has
a non-constant leading eigenvector implying �̃� ∈ A𝑇𝐿. Thus A𝑇𝐿 is an
pen set of matrices in A.

We now consider how a perturbation of the initial population vector
𝐍(0) affects the leading coefficient 𝑐1. Using Eqs. (11)–(13) at 𝑡 = 0, the
initial population vector 𝐍(0) is

𝐍(0) = 𝑐1𝐱1 + 𝑐2𝐱2 +⋯ + 𝑐𝑛𝐱𝑛,

where 𝐱1,… , 𝐱𝑛 is a (generalized) eigenbasis of 𝐴 forming a basis of
R𝑛. For 𝐜 ∶= [𝑐1 𝑐2 ⋯ 𝑐𝑛]𝑇 and 𝛷 ∶= [𝐱1 ⋯ 𝐱𝑛], the initial population
vector 𝐍(0) = 𝛷𝐜. Because the columns of 𝛷 form a basis of R𝑛, 𝛷 is
invertible and 𝐜 = 𝛷−1𝐍(0) so that 𝑐1 = (𝛷−1)1𝐍(0) where (𝛷−1)1 is the
first row of 𝛷−1.

Suppose that 𝑐1 = 0. Because 𝛷−1 is nonsingular, at least one
entry (𝛷−1)1𝑖 of (𝛷−1)1 is nonzero. Let 𝐳𝜖 ∈ R𝑛 be the vector with 𝑖th
component 𝜖 > 0 and all other components zero. Then the perturbed
initial population vector 𝐍(0)𝜖 ∶= 𝐍(0) + 𝐳𝜖 is strictly positive as 𝐍(0) is
strictly positive and

𝑐1 ∶= (𝛷−1)1𝐍(0)𝜖 = (𝛷−1)1𝑖𝜖 ≠ 0.

Hence, for the perturbed initial population vector 𝐍(0)𝜖 , the leading
coefficient 𝑐1 is nonzero. Now ‖𝐍𝜖

0 − 𝐍(0)‖ = ‖𝐳𝜖‖ can be made
arbitrarily small by letting 𝜖 → 0+ and the size ‖𝐳𝜖‖ of 𝐳𝜖 is continuous
in 𝜖. Therefore the set of initial population vectors for which 𝑐1 ≠ 0 is
an open dense subset of the set of all initial population vectors.

Thus, for (𝐴,𝐍(0)) ∈ M, the EM model (𝐴𝜖 ,𝐍(0)𝜖) ∈ M𝑇𝐿 for small
enough 𝜖 > 0. Additionally,

‖(𝐴,𝐍(0)) − (𝐴𝜖 ,𝐍(0)𝜖)‖𝐸𝑀 = ‖(𝐽𝜖 , 𝐳𝜖)‖𝐸𝑀 = max{|||𝐽𝜖|||, ‖𝐳𝜖‖}.

As lim𝜖→0+ max{|||𝐽𝜖|||, ‖𝐳𝜖‖} = 0 and this maximum is a continuous
function of 𝜖 ≥ 0, M𝑇𝐿 forms a dense subset of M. The set M𝑇𝐿 is also
an open subset of M using the same argument and the fact that A𝑇𝐿 is
an open set of A and the set of initial populations vectors 𝐍(0) > 0 for
which 𝑐1 ≠ 0 is an open subset of the set of positive initial population
vectors. □

Roughly speaking, TL with 𝑏 = 2 holds for the vast majority of EM
models. More precisely, for any EM model, either TL holds with 𝑏 = 2
or TL holds with 𝑏 = 2 for an arbitrarily small, non-zero perturbation
of the model. The following example illustrates the latter alternative.

Example 5. In Example 4, the EM model (𝐴,𝐍(0)) has 𝑏 = 2𝜆3∕𝜆1 =
−2∕3 for the initial population vector 𝐍0 ∶= [1 2 3]𝑇 . The unperturbed
model has a constant leading eigenvector but the perturbed version of
the model (𝐴𝜖 ,𝐍(0)) with

𝐴𝜖 ∶=
⎡

⎢

⎢

1 1 + 𝜖 1 + 𝜖
1 2 0

⎤

⎥

⎥

⎣ 2 1 0 ⎦
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𝐱

for 𝜖 > 0 has the nonzero leading eigenvalue 𝜆𝜖 = 1 +
√

4 + 3𝜖 with
on-constant leading eigenvector

𝜖 = [3(1 + 𝜖), 1 +
√

4 + 3𝜖,−1 + 2
√

4 + 3𝜖]𝑇 .

For any initial population vector 𝐍(0) > 0, the leading coefficient 𝑐1 ≠ 0.
Thus, by Theorem 3.3, for any 𝜖 > 0, the perturbed model (𝐴𝜖 ,𝐍(0))
obeys Taylor’s Law asymptotically with 𝑏 = 2. Fig. 2(right) shows in
green that lim𝑡→∞ 𝑏(𝑡) = 2.

6. Conclusion

This paper identifies the conditions under which the dynamics of a
linear metapopulation model or subdivided population model, which
we call the EM model, converge asymptotically to Taylor’s Law. The
EM model’s key features are that (i) each population experiences a fixed
rate of growth or decay and (ii) there is a network of fixed migration
rates between local populations in the metapopulation. Theorems 3.3
and 4.2, Proposition 1, and Corollary 1 relate the eigenvalues and
eigenvectors of an EM model to when TL holds asymptotically and to
the value of the slope 𝑏 in Eq. (7). Theorem 5.1 shows that, on an open
dense set of EM models, TL holds asymptotically with 𝑏 = 2. Our results
raise several open questions.

First, can these results be extended to nonlinear metapopulation
models? In such models, the dynamics near attracting hyperbolic fixed
points are topologically conjugate to the dynamics of a linear system via
the Hartman–Grobman theorem (Chicone, 2008; Perko, 2001). If this
linear system satisfies the conditions given in our results, does TL hold
asymptotically for the original nonlinear system near such points? The
condition Eq. (7) for Taylor’s Law will probably have to be replaced
by the requirement that there exist a finite 𝑏 and finite 𝑎 such that
V(𝐍(𝑡))∕E(𝐍(𝑡))𝑏 → 𝑎 as 𝑡 → ∞, as in studies of Taylor’s Law for
heavy-tailed probability distributions.

Second, when TL holds asymptotically with 𝑏 = 2 for a given model,
what is the speed of convergence of log𝑉 (𝑡) − 𝑏 log𝐸(𝑡) to log 𝑎 or
of (log𝑉 (𝑡) − log 𝑎)∕ log𝐸(𝑡) to 𝑏? We conjecture that convergence is
exponentially fast. If true, this would suggest that TL, in the systems
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where it holds asymptotically, would be quickly observed in many cases
and that TL with 𝑏 = 2 could be compared to real-world data.

Third, do all or some of our results hold when uniform weights 𝑤𝑖 =
1∕𝑛 are replaced by arbitrary positive constant or changing weights?
For example, weights might be proportional to the area, current mag-
nitude, economic product, or political influence of a population, or to
the reciprocal of these quantities.
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