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COVID-19 cases and deaths in the United States follow Taylor’s
law for heavy-tailed distributions with infinite variance
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The spatial and temporal patterns of severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) cases and COVID-19 deaths in the United States are poorly understood.
We show that variations in the cumulative reported cases and deaths by county, state, and
date exemplify Taylor’s law of fluctuation scaling. Specifically, on day 1 of each month
from April 2020 through June 2021, each state’s variance (across its counties) of cases is
nearly proportional to its squared mean of cases. COVID-19 deaths behave similarly.
The lower 99% of counts of cases and deaths across all counties are approximately
lognormally distributed. Unexpectedly, the largest 1% of counts are approximately
Pareto distributed, with a tail index that implies a finite mean and an infinite variance.
We explain why the counts across the entire distribution conform to Taylor’s law with
exponent two using models and mathematics. The finding of infinite variance has
practical consequences. Local jurisdictions (counties, states, and countries) that are
planning for prevention and care of largely unvaccinated populations should anticipate
the rare but extremely high counts of cases and deaths that occur in distributions with
infinite variance. Jurisdictions should prepare collaborative responses across boundaries,
because extremely high local counts of cases and deaths may vary beyond the resources
of any local jurisdiction.

COVID-19 | lognormal–Pareto distribution | Taylor’s law | fluctuation scaling | variance function

By 9 May 2022, 226 countries and territories reported more than 517 million confirmed
cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and more than
6.27 million deaths. The United States reported more confirmed cases (83.6 million) and
more deaths (1,025,000) than any other country (1).

We report that cumulative counts of cases and deaths by county in states of the United
States are consistent with Taylor’s power law of fluctuation scaling (henceforth TL), which
will be explained below. The exponent of TL is not distinguishable from two, which
means that the coefficient of variation of counts by county is not distinguishable from
a constant across states on any given date. The counties with the lowest 99% of counts
have a distribution of counts well approximated by the lognormal distribution, while
the counties with the highest 1% of counts have a distribution of counts consistent
with a Pareto distribution with an infinite variance. Simple statistical models based on
the lognormal–Pareto distribution reproduce TL scaling with exponent equal to two.
Mathematical results explain the observed and simulated TL scaling in multiple samples
from heavy-tailed distributions. Planning for prevention and care in a largely unvaccinated
population should anticipate the rare but extremely high counts of cases and deaths that
occur in distributions with infinite variance.

We now describe the data and TL. We test TL, the lognormal model for the lowest
99% of counts, and the Pareto model for the extreme upper tail, and give evidence for
an infinite variance of counts. We then review our empirical and theoretical findings.
SI Appendix reports simulations and mathematical analyses of models that interpret the
empirical findings. We state precisely and prove mathematically that multiple samples
from heavy-tailed distributions obey TL with exponent two under certain conditions.
SI Appendix also gives additional discussion.

1. Data

In the United States, The New York Times has tabulated cumulative cases and cumulative
deaths at the end of each day since the first reported confirmed case on 20 January 2021
(2). Cumulative cases and cumulative deaths are reported according to their location in
a primary subdivision of the United States (the 50 states, plus possessions, territories,
and Washington, D.C., all referred to as “states” henceforth) and, within each state, by
secondary subdivision (county, parish, borough, or other equivalents of county, all referred
to as “counties” henceforth). From now on, “cases” refer to cumulative cases and “deaths”
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refer to cumulative deaths on a given date. We shall use “count”
or “counts” to refer to either cases or deaths.

We downloaded the file us-counties.csv with 1,436,628 lines of
data on 19 June 2021. All calculations use Matlab (version 2021a).
We select the first day of each of the 15 mo from April 2020
through June 2021 (keeping 47,004 lines of data). We exclude
county–days with reported counts of zero (keeping 46,956 lines
of data for positive cases and 37,649 lines for positive deaths),
and we sort the counties by state. There were 843 month-state
combinations, an average of 56.2 = 843/15 states each month
for 15 mo. We then exclude month–state combinations with six
or fewer counties, leaving 718 month–state combinations with
an average of 47.9 = 718/15 states each month for 15 mo. We
then compute the means and the variances of counts over the
counties within each state on each of the 15 dates. Because each
remaining state has seven or more counties, no remaining month–
state combination has zero mean or zero variance over the counties
within a state.

We attempt no adjustments for possible underreporting of
cases or deaths due to COVID-19. If, as seems likely, different
jurisdictions had different propensities to test, systematic data
that would make it possible to adjust for such differences are
not available. High counts of cases could either overwhelm local
testing capacity, resulting in undercounts of tested cases, or could
elicit supplemental test resources, resulting in unusually high
reported cases. Such possible limitations of the data seem unlikely
to have generated the systematic patterns we shall describe.

2. Taylor’s Law (TL)

On each first day of 15 mo, the (mean, variance) pairs, one
point for each retained state on that date, closely approximate
TL, for both cases and deaths (Fig. 1). Specifically, on each date,
each state’s sample variance of the count (over its counties) is
approximately proportional to some power of that state’s sample
mean of the count (over its counties). Equivalently, the logarithm
of a state’s sample variance is approximately a linear function of
the logarithm of that state’s sample mean. On log–log coordinates,
there is no visual indication of systematic curvature. The ranges of
the axes of all panels are the same within each figure, to make it
easy see that, as time passes and the counts increase, the cloud of
observed (mean, variance) pairs shifts from the lower left corner
to the upper right corner.

In statistical language, TL says that the counts have a power
variance function (3–5). Explicitly, for real constants k > 0 and
b, both independent of the state i , but depending on the date and
whether the counts are cases or deaths, TL proposes, and we find
empirically, that

sample variance of state i ≈ k × (sample mean of state i)b ,
i = 1, 2, . . . . [1]

Let log = log10 here and throughout the data analysis, and let
a = log10 k . (In SI Appendix, the simulations use log10, and the
mathematical theorems and proofs use the natural logarithm.)
Then the power-law form of TL in Eq. 1 is equivalent to the linear
log–log form of TL displayed in Fig. 1,

log(sample variance of state i)≈
a + b × log(sample mean of state i), i = 1, 2, . . . [2]

or the ratio form of TL,

sample variance of state i/(sample mean of state i)b ≈ k ,

i = 1, 2, . . . . [3]

The exponent b in Eqs. 1 and 3 is the same as the slope b
in Eq. 2, so b may be called either the slope or the exponent of
TL. These specifications of TL intentionally leave vague the error
model behind the approximation ≈.

TL is an empirical regularity widely observed in many sci-
ences, including ecology, infectious disease epidemiology, human
demography, financial statistics, earth sciences, and other physical
sciences (6, 7).

The Poisson distribution, a common model of purely random
variation in counts, has a variance equal to its mean. As the mean
of a Poisson distribution increases to larger values, the Poisson
distribution increasingly approximates a normal distribution with
variance equal to the mean. Both the Poisson distribution and
its normal approximation with variance equal to the mean fol-
low TL with k = b = 1, a = 0. If states had different average
counts per county and a Poisson distribution of counts over the
counties within each state, then the states’ means and variances
of the counts would approximate TL with k = b = 1, a = 0.
Graphically, on (log mean, log variance) coordinates, a family of
Poisson distributions with varying mean will lie on or near a line
of slope one through the origin. Fig. 1 shows that the Poisson
distribution does not describe even approximately how the sample
variance of counts by county within states relates to the sample
mean. We infer that other sources of variation besides purely
random fluctuation influence the counts, such as heterogeneity
or contagion.

Only once in Fig. 1 does the 95% CI of the slope exclude b = 2.
For deaths in April 2020, the estimated slope is 3.003 with 95%
CI (2.685, 3.321). In all the remaining 29 instances of TL (29 =
15 mo × 2 counts (cases or deaths) −1), the estimated slope b
of TL in Eq. 2 is statistically indistinguishable from two. When
b = 2, the ratio (sample variance)/(sample mean)2 is independent
of any positive rescaling of the original measurements.

In every month, for both cases and deaths, the lower bound of
the 95% CI of the slope b exceeds one, excluding Poisson variation
among counties in cases and deaths.

The parameters a, b of the log–log form of TL Eq. 2 (Fig. 2)
show no substantial trends over time. For both counts, early in
the period of observation, the intercept a rises slightly while the
slope b falls slightly, as if the fitted straight line that represents
TL were rotating slightly clockwise. In the second half of the
period of observation, there is no suggestion of change in the TL
parameters.

3. Lognormal Model of TL with Slope Two

To understand why TL holds and why the slope b in Eq. 2
approximates two (except for deaths in April 2020), we observe
that the spread of infection could be modeled by a variety of
stochastic multiplicative processes. For example, the supercritical
discrete generation Galton–Watson branching process with finite
mean > 1 and finite variance > 0 of the offspring distribution
satisfies TL with slope two asymptotically in time (ref. 8, p. 33).
The supercritical continuous-time birth and death process with a
birth rate per individual that strictly exceeds the death rate per
individual also satisfies TL with slope two asymptotically in time
(ref. 8, pp. 33–34). These and other similar examples provide
prototypes of explanations of why TL holds with slope two in the
COVID-19 counts. But the details of transmission of infection
and death from COVID-19 are not adequately described by these
simple models.

A more robust explanation is required that does not depend on
the details of transmission. The lognormal and Weibull distribu-
tions are limiting distributions of large families of mechanisms,
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Fig. 1. Cumulative US COVID-19 cases (Upper) and deaths (Lower) by state are well described by TL. Each blue × marker shows, on log–log coordinates, the
(mean, variance) of the number of cases across counties within one state. The yellow straight line fitted by ordinary least squares to the blue × markers (log
mean, log variance) is the estimated TL. In all 15 mo, R2 is between 0.90 and 0.92 for cases and between 0.87 and 0.91 for deaths. The estimated slope b of TL
is the top left figure in each panel. An approximate 95% CI of the slope is given in parentheses below the estimated slope b. As the months pass, the estimates
of b become increasingly and remarkably close to two. The red dots in a straight line near the bottom of each panel show a hypothetical variance equal to
the mean, as in a family of Poisson distributions with parameters equal to the mean count of each state. The similarity in the bottom five panels reflects the
temporary slowdown in new COVID-19 cases in the first half of 2021.

thanks to the central limit theorem (9). For example, Yule-type
multiplicative growth and division processes converge asymp-
totically in time to the lognormal distribution and the Weibull
distribution under different conditions (10).

So far, we have analyzed the distribution of counts over counties
within each state separately. Because any single state has few
counties for the purpose of discriminating between lognormal
and Weibull distributions or of examining the upper tail of the
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Fig. 2. Intercept a (panels 1 and 3) and slope b (panels 2 and 4) of TL Eq. 2 fitted to cumulative US COVID-19 cases (panels 1 and 2) and deaths (panels 3 and
4). The solid blue line joins the point estimate of the parameter on each date. The upper and lower error bars show the 95% CI. The horizontal dashed red line
shows the average value of the point estimates of the parameter over the period of observation. In panels 2 and 4 for the slope, the horizontal dash-dotted
black line shows b = 2. This line falls within the CI in every month (except for deaths in April 2020) and nearly coincides with the dashed red line for b̄.

survival curve, we now (temporarily) analyze the distribution of
counts over all counties within the United States. In this analysis,
all counties with a positive count are considered, regardless of the
state in which they occur.

Fig. 3 plots, on log–log coordinates, the empirical survival
curve Pr(X > x ) of the count X as a function of the positive
number x for all US counties with positive count on day 1 of each
of 15 mo, along with the survival curves of lognormal and Weibull
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Fig. 3. Empirical survival curve Pr(X > x) as a function of x = cumulative COVID-19 cases (Upper) and deaths (Lower), for all US counties included in the previous
analyses, on log–log coordinates. The solid blue curve is the lognormal distribution fitted by maximum likelihood to all counties, including those in the upper
tail. The dotted red curve is the Weibull distribution fitted by maximum likelihood to all counties, including those in the upper tail. Each black dot (x, P(X > x))
represents the count x in one U.S. county and the fraction P(X > x) of all counties with a count larger than x.

distributions fitted by maximum likelihood to the counts of all the
counties included in each panel. If cases were Pareto distributed,
the empirical survival curve would be a downward sloping straight

line on log–log coordinates. The plots are clearly concave on
log–log coordinates, not linear. The curvature appears to increase
as the months pass. Both the lognormal and the Weibull survival
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curves describe roughly 99% or more of the empirical survival
curve (corresponding to the interval from 100 at the top of the
vertical axis down to 10−2). However, the Weibull survival curves
fall off much faster than both the empirical survival curves and the
lognormal survival curves. Henceforth, we disregard the Weibull
distribution as a model for these data.

The lognormal distribution, while far better than the Weibull, is
imperfect: For the largest values of the threshold x , the lognormal
survival curve always falls off faster than the empirical survival
curve. This discrepancy means that extremely large counts have
higher probability in the data than predicted by the best-fitting
lognormal distribution. Extremely high counts are more likely
than the lognormal model would predict, despite the good agree-
ment with the lognormal model for 99% of counts. In the top
percentile upper tail where the fitted lognormal drops below the
data, the empirical survival curve appears to fall roughly linearly
on log–log coordinates, like a Pareto distribution. We examine
the top percentile upper tail of the empirical survival curve in
Section 4.

A positive-valued random variable Y (μ,σ2) with real param-
eters μ and σ2 ≥ 0 is lognormal if log(Y (μ,σ2)) is normal with
mean μ and variance σ2. The mean and the variance of Y (μ,σ2)
are

E [Y (μ,σ2)] = exp(μ+ σ2/2), [4]

var [Y (μ,σ2)] = [exp(σ2)− 1] exp(2μ+ σ2)

= [exp(σ2)− 1]{E [Y (μ,σ2)]}2. [5]

This variance function Eq. 5 of the lognormal distribution
can exhibit various behaviors, depending on the relation between
σ and μ (Appendix in ref. 11). If each state’s distribution of
counts is well approximated by a lognormal distribution, and if
the parameter μ of Y (μ,σ2) changes while σ2 remains constant
(or varies little, compared to variation in μ) from state to state
on a given date, then the coefficient [exp(σ2)− 1] on the right
side of Eq. 5 remains constant (or varies little) while the mean
E [Y (μ,σ2)] changes. Then the variance changes in proportion
to the square of the mean. Thus, if σ2 is constant (or varies little)
and if μ varies from state to state on a given date by amounts that
are large compared to the variation in σ2, this variance function
Eq. 5 obeys TL with b = 2.

To see whether the counts, state by state, support this proposed
explanation of our empirical finding in Fig. 1 that TL holds with
b ≈ 2 in 29 of 30 cases, we return to data analysis at the state
level. We fit lognormal distributions by maximum likelihood to
all the positive counts per county of each state on each date
separately. Fig. 4 plots, for each date, the state-specific estimates of
the parameter μ on the abscissa and, on the ordinate, σ (the square
root of the parameter σ2, to get both axes on the same scale).

For cases (Fig. 4, Upper), the slope of a straight line fitted by
ordinary least squares to the points (μ,σ), one point per state,
does not differ significantly from zero in every month after April
2020. The cloud of points moves to the right from μ ∈ (0, 6) in
April 2020 to μ ∈ (6, 11) in June 2021, while σ ∈ (0, 3) over the
entire period. At each date, and over all months, μ ranges much
more widely than σ.

For deaths (Fig. 4, Lower), the slope of a straight line fitted
by ordinary least squares to the points (μ,σ), one point per
state, declines steadily from April 2020 through November 2020.
From October 2020 through June 2021, the 95% CI of the slope
includes zero. The cloud of points moves to the right from μ ∈
(0, 3) in April 2020 to μ ∈ (1, 8) in June 2021, while σ ∈ (0, 3)
over the entire period. Again, at each date, and over all months, μ
ranges more widely than σ. The slope of σ as a linear function of
μ exceeds zero only early in the pandemic.

To a first approximation, the model of a lognormal distribution
with fixed parameter σ2 and changing parameter μ describes
the empirical lognormal parameter estimates well for cases in all
months except April 2020, and well for deaths from October 2020
onward, thereby explaining why, in most cases, TL holds with
b ≈ 2.

This explanation is incomplete in at least three respects. First,
the model leaves open the question of why the lognormal parame-
ters behave as they do. Second, the model does not interpret why,
in the early months of the epidemic, σ is larger in states with larger
μ. For cases, the increase of σ with μ is limited to April 2020. For
deaths, the increase of σ with μ is more dramatic and extends
over several early months. Third, the model does not interpret
why, for both counts in every month, the extreme upper tail of
the empirical survival curve of all counties in the United States
falls like a Pareto distribution, more slowly than the lognormal
distribution.

The observation that, in the early months of the epidemic, σ is
larger in states with larger μ explains why TL slopes are larger than
two in the early months. When σ is larger in states with larger μ,
it is obvious from the variance function Eq. 5 that the variance
will increase faster than the square of the expectation, and a fitted
TL will have an estimated slope larger than two. For example
(Appendix in ref. 11), if σ2 = μ, then TL holds approximately,
and its slope is 2 + 2/3, while, if μ is constant and only σ2 varies,
then TL holds approximately with slope four, as for tornadoes
(SI Appendix). These examples provide a qualitative insight into
why, in the early months, TL slopes larger than two are associated
with σ being larger in states with larger μ (for cases, April 2020;
for deaths, April 2020 through roughly October 2020).

4. Lognormal–Pareto Model for the Survival
Curves of Counts

The survival curves of counts in all counties of the United States
(Fig. 3) are consistently well described by a lognormal distribution
for the lower 99% or more of values of the count. For the
highest ∼1% of counts, the empirical survival curves all fall
more slowly than the fitted lognormal survival curves. On log–
log coordinates, the empirical survival curves fall approximately
linearly. This combination of lognormal and Pareto behavior was
known for decades from graphical examples (ref. 12, pp. 110–111
and figures 1 and 2; ref. 13, p. 219 and figure 1; ref. 14, pp. 3, 5,
and 6 and figures 1–3) before it was formalized and named the
lognormal–Pareto distribution (15–17). The lognormal–Pareto
distribution (in its version with a continuous and differentiable
probability density function [pdf ]) is specified by a threshold
θ > 0, a tail index α > 0, and a scatter σ > 0. For x > 0, its
pdf f (x ) := rf1(x ;μ,σ

2, θ) + (1− r)f2(x ; θ,α), r ∈ (0, 1) is a
weighted sum of a lognormal distribution right-truncated at θ
with pdf

f1(x ;μ,σ
2, θ) : =

[
Φ((log(θ)− μ)/σ)xσ

√
2π

]−1

exp{−((log(θ)− μ)/σ)2/2}1{0<x≤θ}

and a Pareto distribution with left threshold θ and pdf
f2(x ; θ,α) := αθαx−(α+1)1{θ<x}. Because f (x ) is required
to be continuous and differentiable in x , parameters r and μ are
functions of the other parameters (16, 17).

To examine in greater detail the upper tail of the survival curves
in Fig. 3, we plot log Pr(X > x ) as a function of log x for only
the counties with the highest 1% of cases (Fig. 5, Upper) or deaths
(Fig. 5, Lower). The number of such counties ranges from a low of
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Fig. 4. Lognormal distributions are fitted by maximum likelihood to the cases (Upper) or deaths (Lower) per county within each state separately, that is, fitted
to x1j , . . . , xrj ,j separately for each state j = 1, . . . , c, where rj is the number of counties in state j. Each panel plots the lognormal parameter σj of each state j
as a function of the lognormal μj (blue × markers). To a first approximation, μj varies over a considerably wider range than does σj. A solid red straight line is
fitted using ordinary least squares. The slope of the fitted line is given in the upper left corner of each panel. The 95% CI, given below the slope, includes zero
for all months except April 2020.

six (once only, for deaths in April 2020, before COVID-19 deaths
had spread widely) to 32 (Fig. 6). On each date, we consider the
counts x (of cases or deaths) of all counties regardless of state.

In each panel of Fig. 5, the horizontal axis is labeled, on the
left, with the lowest count included in the largest 1% of counts
and, on the right, with the highest count. On visual inspection,
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Fig. 5. Top percentile of the empirical survival curve Pr(X > x) as a function of the cumulative count x of COVID-19 cases (Upper) or COVID-19 deaths (Lower)
of one county on that date, on log–log coordinates. Each county is represented by one blue ×. The orange straight line is fitted by the method of ref. 21.

a linear relationship of log Pr(X > x ) to log x seems reasonable,
as specified in a Pareto distribution. If this linear relationship is
written log Pr(X > x ) = β − α log x ,α is called the tail index (or
simply the index) of the Pareto distribution. The value of the tail
index determines whether the Pareto distribution (and hence also
the lognormal–Pareto distribution) has finite or infinite mean (in

case α > 1 or α ∈ (0, 1], respectively) and, if the mean is finite,
whether the variance is finite or infinite (in case α > 2 or α ∈
(1, 2), respectively).

For the counties with the largest 1% of counts, we estimate α
using the Hill estimator (ref. 18 and ref. 19, p. 69, section 3.2.2).
Let X(1) ≥ . . .≥ X(m+1) be the m + 1 largest order statistics of

8 of 10 https://doi.org/10.1073/pnas.2209234119 pnas.org
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Fig. 6. For each month (horizontal axis), Hill estimates (ref. 18 and ref. 19, p. 69, section 3.2.2) (vertical axis) of the tail index α (red diamond markers, red
solid line) of the empirical survival curve Pr(X > x) for the counties with the largest 1% of cases (Upper) and deaths (Lower), and 95% CIs (solid blue lines) of the
point estimates of α based on 1,000 bootstrap samples with replacement of the counties with the largest 1% of counts. The number with each data point is the
number of counties in the top 1% of counties on that date; it corresponds to m + 1 in Eq. 6.

all counts Xk , k = 1, . . . ,n of the n counties on a given date.
Since the Pareto model describes only the largest counts, inference
about α will be based on only the largest 1% of counts. The
maximum likelihood estimator of α based on the largest 1% of
counts on a given date is (using the natural logarithm here)

α̂=

[
1

m

m∑
k=1

log(X(k))− log(X(m+1))

]−1

. [6]

Empirically, all estimates α̂ fall in (1, 2), with one exception
(Fig. 6). For cases, the lowest α̂= 1.17 was based on the 22
counties with the highest cases among the 2,214 US counties with
reported cases on 1 April 2020. For cases, all remaining α̂ are based
on 29 to 32 counties and fall between 1.26 (in May 2020) and
1.62 (in July 2020). For deaths, the lowest estimate of α̂= 0.99
on 1 April 2020 was based on only six counties, the top 1% of
the 573 counties in the United States with reported deaths. All
remaining estimates of α̂ for deaths are based on 15 to 31 counties
and fall between 1.49 (in May 2020) and 1.93 (in January 2021).
When the Pareto component of a lognormal–Pareto distribution
has α ∈ (1, 2), the whole distribution has a finite mean and an
infinite variance.

These results pose the challenge of reconciling a Pareto dis-
tribution of the largest counts, having tail index α in (1, 2),
with TL, having slope or exponent b ≈ 2. The simulations and
mathematical analyses in SI Appendix (Theorem 3) meet this
challenge.

5. Summary of Simulations and Mathematical
Analyses in SI Appendix

SI Appendix describes simulations that give evidence that TL with
slope two holds for samples with the largest means drawn from
heavy-tailed distributions. One simulation assumes independent
observations, which is mathematically convenient but empirically
implausible. A second simulation considers moderately and highly
dependent observations. SI Appendix then states and proves three
theorems inspired by the simulations and gives an example. These
results are the mathematical heart of the paper. We then review
our main theoretical findings and some of their limitations.

6. Discussion

Here we review and discuss our main empirical findings and
some of their limitations. We also propose a practical consequence
of our findings for planning the management of COVID-19

PNAS 2022 Vol. 119 No. 38 e2209234119 https://doi.org/10.1073/pnas.2209234119 9 of 10
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cases and deaths, especially in largely unvaccinated populations.
SI Appendix gives some examples of other empirical data that
could be, but have not yet been, analyzed using our approach in
this paper.

We have demonstrated striking regularities in the variability
among counties within states of reported counts of cumulative
SARS-CoV-2 cases and cumulative COVID-19 deaths. In the
United States, on the first day of each of 15 mo from April 2020
through June 2021, omitting the first few months of the pan-
demic, the variance of cases and, separately, deaths is nearly pro-
portional to the square of the mean count of cases or deaths (across
the counties within each state or other primary administrative unit
of the United States). The approximately power-law relationship
of the variance to the mean illustrates TL, a widespread pattern in
ecology and epidemiology. To our knowledge, this pattern has not
been recognized previously for SARS-CoV-2 cases and COVID-
19 deaths.

The estimated slope b of TL closely approximates two after the
first few months, for both cases and deaths. The slope b = 2 is
the only positive value of b such that the coefficient of variation
(SD divided by mean) is the same for all samples. Only for slope
b = 2 is TL Eq. 2 scale invariant, with the same parameters a, b
regardless of the scale on which observations are measured (for-
mally, if σ2

X = aμ2
X and c > 0, then σ2

cX = aμ2
cX ). For example,

if b = 2, then the parameters a, b are the same whether counts are
measured in terms of individuals or millions of individuals.

We estimate that the largest 1% of counts of cases and deaths by
county on each date are approximately Pareto distributed and that
the upper tail of the empirical survival curve of counts by county
has a tail index α between one and two. If that is correct, the
underlying distributions of cases and deaths, except for, possibly,
deaths in April 2020, have finite mean and infinite variance. This
finding has implications for planning prevention and care: Facility
and resource planning should prepare for rare but extremely high
counts. No single county, state, region, or country can prepare in
isolation for unboundedly high counts. Cooperative exchanges of
support should be planned cooperatively.

Beare and Toda (20) analyzed The New York Times cumulative
counts of cases by county on 31 March 2020, the day before the

first observation we use here. The left portion of their survival
curve, log Pr{X > x} as a function of log x , is concave, and hence
not Pareto: Figure 1 of ref. 20 qualitatively resembles each panel in
our Fig. 5. They found that the upper tail of the distribution of the
number of cases for the top 6.2% of counties by number of cases
reasonably approximated a straight line (on log–log coordinates)
with estimated tail index 0.930 (SE 0.081). Hence their estimated
tail index did not differ from one but was clearly less than two. Our
estimate of the tail index of the top 1% of counties by number of
cases on 1 April 2020 (Fig. 5, first panel), lies between 1.1 and 1.2,
not far from the results of Beare and Toda (20). Our calculations
were completed before we learned of ref. 20. In all months (except
for deaths in April 2020), our estimated tail index of cases is greater
than one but less than two.

Heavy-tailed distributions have also been used in modeling
COVID-19 superspreader events, in which a primary infected
individual infects an exceptionally large number of secondary
individuals. That different use is not pursued here.

Our data analysis suffers from multiple limitations, some due
to the data used and some due to our analyses. For example, we
made no effort to estimate or correct underreporting of cases or
deaths. We did not examine case fatality rates. We did not relate
counts to the population at risk, whether treated as a population
total or adjusted for age structure.

6.1. Data, Materials, and Software Availability. Previously published data
were used for this work (https://raw.githubusercontent.com/nytimes/covid-19-
data/master/us-counties.csv).
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Supporting Information Text15

In this Appendix, Section 1 describes simulations of heavy-tailed counts that give evidence that TL with slope 2 holds for16

the largest means and variances. One simulation assumes independent observations, which is mathematically convenient but17

empirically implausible. A second simulation considers moderately and highly dependent observations. Section 2 states three18

theorems inspired by the simulations and gives an example as a special case of one of the theorems. Section 3 proves the19

theorems. Section 4 gives some examples of other empirical data that could be, but have not yet been, analyzed using our20

approach in this paper.21

1. Simulating multiple samples from heavy-tailed distributions22

Here we report simulations that strongly suggest that TL (Main text Eq. [2]) with slope b ≈ 2 holds in the extreme upper tail23

of a heavy-tailed (including but not limited to Pareto) distribution of counts with tail index α between 0 and 2. Our idealized24

statistical model assumes c > 1 states, each with r = c counties. This idealization ignores that, in reality, different states have25

different numbers of counties and that the number of states only approximates the average number of counties per state.26

We consider a general setting of a data matrix for our simulations and theoretical results. Specifically, let X := (Xij)r×c be27

an r × c matrix. (Mnemonic: r for rows, here the number of counties per state; c for columns, here the number of states.)28

We interpret the jth column X:j of X as the counts in the counties of state j, for j = 1, . . . , c. Collectively, the columns of29

X give a collection of c samples (one sample per state), each sample containing r observations, here COVID-19 counts (one30

observation per county). To study the asymptotic theory behind TL, we let the sample size in each column grow without limit,31

r → ∞, and c converges to infinity with r. We emphasize this relation by writing c = c(r). We have one such matrix for cases,32

another for deaths. We assume that the element (or count) Xij in row i and column j is a positive regularly varying (RV) rv33

with (upper tail) index α between 0 and 2.34

By definition, X is regularly varying with index α (and we write X ∈ RV (α)) if and only if35

∀t > 0, lim
x→∞

Pr(X > tx)
Pr(X > x) = 1

tα
. [1]36

The RV rvs include the lognormal-Pareto, the Pareto, the stable, and many other distributions.37

The sample mean and the sample variance of the jth column X:j of X are, by definition,38

X̄:j := r−1
r∑

i=1

Xij , v̂ar(X:j) := (r − 1)−1
r∑

i=1

(Xij − X̄:j)2, j = 1, . . . , c. [2]39

If this collection of c sample means and c sample variances approximates Main text Eq. [2], then we say that TL holds.40

We simulate RV (α) rvs in four ways to confirm that the extreme upper tail index is independent of the regularly varying
distribution being simulated. Let N be normally distributed with mean 0 and variance 1 and let U, U1, U2, U3 be independent
rvs uniformly distributed on (0, 1). For every element Xij of the r × c matrix X independently, we compute

Xij
d= |N |−1/α ∈ RV (α) (power of |N |) [3]

Xij
d= U−1/α ∈ RV (α) (Pareto with domain [1, ∞)) [4]

Xij
d= (U1U2)−1/α ∈ RV (α) (product of two iid Paretos) [5]

Xij
d= (U1U2U3)−1/α ∈ RV (α) (product of three iid Paretos) [6]

We first verify that all four methods are in RV (α). Method Eq. (3) is in RV (α) by (1, p. 10, Corollary 4.4). The product41

Eq. (5) of two iid Pareto rvs X, Y with left threshold 1 and tail index α is in RV (α) because P (XY > x) = (α log x + 1)x−α.42

The product Eq. (6) of three (or any finite number of) iid Pareto rvs with tail index α is in RV (α) by (2, p. 4499, Lemma 3).43

For the simulations in Figure S1, we set α = 1/2, 1, 3/2 and r = c = 100 and 1000. In general, the estimated slope on log-log44

coordinates of the five largest (mean, variance) pairs is close to 2, and is closer to 2 for the larger sample size and the smaller α.45

This model assumes statistical independence both among observations within columns (counts of counties within states) and46

among observations in different columns (counts of counties in different states). This mathematically convenient assumption47

seems empirically implausible.48

In the next simulation, instead of rc independent modeled counts Xij , we simulate dependent modeled counts Xij . As for49

the simulations in Figure S1, we set α = 1/2, 1, 3/2 and r = c = 100, 1000. In Figure S2, each observation is the product of a50

Pareto rv with tail index α times the exponential of a Normal(0, 1) rv that is correlated with every other Normal(0, 1) rv in51

the same simulation with correlation ρ = 0, 0.5, 0.9. This model is analyzed in Theorem 2 in Section 2 below.52

The simulation results in Figure S2 suggest, as before, that regardless of the correlation ρ ∈ [0, 1), regardless of α ∈ (0, 2), in53

some limit as r = c → ∞, the extreme upper tail of the variance function is increasingly well approximated by TL (Main text54

Eq. [2]) with intercept a = log10 r and slope b = 2. The following mathematical results make this claim more precise and prove55

it (apart from the special case α = 1).56
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Fig. S1. For independent observations (counts), the empirical survival curves (rows 1, 3) of one simulation of rc = 104 (row 1) or rc = 106 (row 3) observations by each of
four methods of simulation Eq. (3)–Eq. (6); and sample variance functions (rows 2, 4) of one simulation of X of size r × c = 102 × 102 (row 2) or r × c = 103 × 103

(row 4) by each of the same four methods of simulation. The vector of rc simulated values used for each empirical survival curve is rearranged into an r × c matrix X for each
variance function, but each method, sample size, and value of α is simulated independently. Straight lines are fitted to the five observations with the largest means. The
intercept a and slope b of each line are in the top left corner of each variance-function panel in the same order as the four methods of simulation are listed in the top right corner
of each empirical survival curve panel.
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Fig. S2. For dependent observations (counts), the empirical survival curves (rows 1, 3) of one simulation of rc = 104 (row 1) or rc = 106 (row 3) observations and sample
variance functions (rows 2, 4) of one simulation of X of size r × c = 102 × 102 (row 2) or r × c = 103 × 103 (row 4). In each panel, each observation is the product of a
Pareto rv with tail index α times the exponential of a Normal(0, 1) rv that is correlated with every other Normal(0, 1) rv in the same X with correlation ρ = 0, 0.5, 0.9.
This model is analyzed in Theorem 2. The vector of rc simulated values used for each empirical survival curve is rearranged into an r × c matrix X for each variance function,
but each correlation, sample size, and value of α is simulated independently. Straight lines are fitted to the five observations with the largest means. The intercept a and slope
b of each line are in the top left corner of each variance-function panel in the same order as the correlations listed in the top right corner of each empirical survival curve panel.
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2. Mathematical theorems and example57

This mathematical section supports, clarifies, and extends the conjectures based on the simulations just reported. The theorems58

demonstrate that TL (Main text Eq. [2]) with slope b = 2 describes the variance function of (log mean, log variance) pairs59

with the largest sample means in a sufficiently large matrix of observations of nonnegative RV (α) rvs, α ∈ (0, 1) ∪ (1, 2),60

asymptotically as the sample size and the magnitude of the sum of the observations get large.61

The case α = 1 remains open mathematically, although the simulation results suggest that α = 1 is not qualitatively62

different from α ∈ (0, 1) ∪ (1, 2). The theorems also show that TL describes the variance function of the upper tails of means63

and variances in the presence of certain forms of dependence and heterogeneity of marginal distributions between and within64

samples. Proofs are in Section 3.65

In this Section 2, log refers to the natural logarithm. The base of the logarithm has no effect on the slope b in TL (Main66

text Eq. [2]), though the intercept does depend on the base. We assume the background on regularly varying and stable laws67

in (1). The sample mean and the sample variance of the jth column X:j of X are defined in Eq. (2) in Section 1.68

Theorems 1 and 2 assume 0 < α < 1. Theorem 1 assumes that the elements of the matrix X are identically distributed,69

that different columns are identically distributed, and that elements within each column are, conditionally on a σ-field G,70

independent. Theorem 1, Eq. (9), guarantees that, with probability converging to one, TL (Main Text Eq. [2]) holds with71

b = 2 as r → ∞ for those columns X:j of X with sample sums rX̄:j that exceed some large threshold x(r). The theshold x(r)72

will converge to infinity at some rate as specified in the theorems.73

Theorem 3 assumes 1 < α < 2, an assumption consistent with our analysis of COVID-19 counts, so the expectation of any74

one observation is finite. Then Eq. (12) guarantees the same version of TL when the sum of the sample elements is sufficiently75

larger than the expectation of any one observation.76

Theorem 1. Let every element Xij , i = 1, . . . , r; j = 1, . . . , c of the array X be nonnegative and have the same distribution in77

RV (α), 0 < α < 1, and assume that all columns are equally distributed. Assume also that the entries within each column are,78

conditionally on a σ-field G, independent. Let x(r) be a sequence of thresholds satisfying79

lim
r→∞

x(r) = ∞ and lim
r→∞

r Pr(X11 > x(r)) = 0. [7]80

Let the number c of columns depend on the number r of rows in such a way that the function c = c(r) → ∞ and satisfies81

lim
r→∞

c(r)r2E

[
max

i=1,...,r

([
1

x(r)

∫ x(r)

0
Pr
(
Xi,1 > x

∣∣ G
)

dx

]2)]
= 0. [8]82

Then for any ε > 0,83

lim
r→∞

Pr
(∣∣∣∣log v̂ar(X:j)

r(X̄:j)2

∣∣∣∣ > ε for some j = 1, . . . , c(r) such that rX̄:j > x(r)
)

= 0. [9]84

Remark: As noted above, Eq. (9) implies that with probability approaching one, log v̂ar(X:j) ≈ log(r) + 2 log(X̄:j) for those85

columns j in which the sample mean is large, i.e., X̄:j > x(r)/r.86

Example: a special case of Theorem 1. For 0 < α < 1, let X be Pareto with survival function Pr(X > x) = x−α for
x ≥ 1. Let every element Xij , i = 1, . . . , r; j = 1, . . . , c of the array X be iid as X. Then an example of x(r) is x(r) = rp for
any p > 1/α > 1, because if p > 1/α, then 0 > 1 − αp and

r Pr(X > x(r)) = r Pr(X > rp) = r(rp)−α = r1−αp → 0 as r → ∞.

This satisfies Eq. (7). An example of c(r) is c(r) = rq for any 0 < q < 2αp − 2 (and here 2αp − 2 > 0 because p > 1/α), since
under these assumptions, in Eq. (8) we have, with G being the trivial σ-field, Pr

(
Xi,1 > x

∣∣ G
)

= Pr(Xi,1 > x) and hence

E

(
max

i=1,...,r

[
1

x(r)

∫ x(r)

0
Pr
(
Xi,1 > x

∣∣ G
)

dx

]2)

=
[

1
x(r)

∫ x(r)

0
Pr
(
X > x

)
dx

]2

=
[

1
rp

∫ rp

1
x−α dx

]2

=
[

1 − rp(α−1)

(1 − α)rpα

]2

and

c(r)r2
[

1 − rp(α−1)

(1 − α)rpα

]2

∼ (rq)(r2)(r−2αp)
(1 − α)2 = rq+2(1−αp))

(1 − α)2 → 0 as r → ∞.

This satisfies Eq. (8).87

The next theorem is another illustration of Theorem 1.88
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Theorem 2. Let {Zij | i = 1, . . . , r; j = 1, . . . , c} be iid Pareto-distributed with tail index α ∈ (0, 1). Let {Gij} be Gaussian89

with mean 0 and covariance function γ(·, ·), i.e., Cov(Gij , Gi′j′ ) = γ(i − i′, j − j′), independent of the Pareto random variables.90

Given G = σ(Gij , i = 1, . . . , r; j = 1, . . . , c), the process Xij := ZijeGij is conditionally independent. Then Xij are identically91

distributed and regularly varying with index α. Moreover, if x(r) and c(r) are chosen as in the Example above, then Eq. (9)92

holds.93

The process Xij := ZijeGij is sometimes referred to as a stochastic volatility (SV) random field. In this case, the volatility94

process σij = eGij is assumed to be a stationary log-Gaussian random field, while the noise terms Zij are iid and heavy-tailed.95

The random field version generalizes the notion of a SV process that is commonly used for modeling financial time series such96

as log-returns, e.g., (3). Basic properties of heavy-tailed SV processes can be found in (4) and extensions of these models to97

the spatial (random field) setting in (5) and (6); the latter includes environmental applications. The idea is to scale the noise98

Zij by a random process σij = eGij that allows dependence among the rows and columns of the data matrix X. While the SV99

random field is strictly stationary, the sample paths can have very non-stationary looking realizations. This feature makes100

them flexible models for many phenomena.101

Theorem 3. Suppose the elements Xij of the r × c matrix X are nonnegative, iid, and in RV (α), 1 < α < 2. Let x(r) satisfy102

lim
r→∞

x(r) = ∞ and lim
r→∞

r Pr(X11 > x(r)) = 0. [10]103

Let the number c of columns depend on the number r of rows in such a way that the function c = c(r) → ∞ and satisfies104

lim
r→∞

c(r)r2(Pr(X11 > x(r))
)2 = 0. [11]105

Then for any ε > 0,106

lim
r→∞

Pr
(∣∣∣∣log v̂ar(X:j)

r(X̄:j)2

∣∣∣∣ > ε for some j = 1, . . . , c(r) such that r
(
X̄:j − EX11

)
> x(r)

)
= 0. [12]107

3. Proofs of mathematical theorems108

A. Proof of Theorem 1.109

Proof. The probability in Eq. (9) does not exceed

c(r) Pr
(∣∣∣∣log v̂ar(X:1)

r(X̄:1)2

∣∣∣∣ > ε, rX̄:1 > x(r)
)

[13]

=c(r) Pr

(∣∣∣∣∣log

[ ∑r

i=1 X2
i,1(∑r

i=1 Xi,1
)2 − 1

r

]∣∣∣∣∣ > ε,

r∑
i=1

Xi,1 > x(r)

)

≤c(r) Pr

(
log
(∑r

i=1 Xi,1
)2∑r

i=1 X2
i,1

> ε/2,

r∑
i=1

Xi,1 > x(r)

)
,

with the last inequality valid for large r.110

Next we prove that111

lim
r→∞

c(r) Pr

(
r∑

i=1

Xi,1 > x(r), Xi,1 ≤ x(r)
4 , i = 1, . . . , r

)
= 0. [14]112

Indeed, let

T1 = inf

{
n = 1, 2, . . . , r :

n∑
i=1

Xi,1 >
x(r)

4

}
,

T2 = inf

{
n = T1 + 1, . . . , r :

n∑
i=T1+1

Xi,1 >
x(r)

4

}
,

and T2 = ∞ if either infimum is over an empty set. Then the probability in Eq. (14) is bounded above by

Pr
(

T2 < ∞, Xi,1 ≤ x(r)
4 , i = 1, . . . , r

)
[15]

≤E

[
Pr

(
r∑

i=1

Xi,1 >
x(r)

4 , Xi,1 ≤ x(r)
4 , i = 1, . . . , r

∣∣∣∣ G

)]2

.
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Using Markov’s inequality,113

Pr

(
r∑

i=1

Xi,1 >
x(r)

4 , Xi,1 ≤ x(r)
4 , i = 1, . . . , r

∣∣∣∣ G

)
≤ Pr

(
r∑

i=1

Xi,11
(

Xi,1 ≤ x(r)
4

)
>

x(r)
4

∣∣∣∣ G

)
114

≤
E
[∑r

i=1 Xi,11 (Xi,1 ≤ x(r)/4)
∣∣ G
]

(x(r)/4)115

≤ 4r

x(r) max
i=1,...,r

E

[
Xi,11

(
Xi,1 ≤ x(r)

4

)∣∣∣∣ G
]

116

≤ 4r

x(r) max
i=1,...,r

∫ x(r)/4

0
Pr
(
Xi,1 > x | G

)
dx.117

Now Eq. (14) follows from Eq. (15) and Eq. (8).118

Next, for any δ > 0,

c(r) Pr
(
Xi,1 > δx(r) for 2 or more of i = 1, . . . , r

)
[16]

≤c(r)r(r − 1)
2 max

i=1,...,r
E
[
Pr
(
Xi,1 > δx(r)

∣∣ G
)]2

≤c(r)r2 max
i=1,...,r

E

[
1

δx(r)

∫ δx(r)

0
Pr
(
Xi,1 > x

∣∣ G
)

dx

]2

→ 0

as r → ∞ by assumption Eq. (8).119

It follows from Eq. (13), Eq. (14) and Eq. (16) that for any 0 < τ < 1

Pr
(∣∣∣∣log v̂ar(X:j)

r(X̄:j)2

∣∣∣∣ > ε for some j = 1, . . . , c(r) such that rX̄:j > x(r)
)

[17]

≤c(r) Pr

(
log
(∑r

i=1 Xi,1
)2∑r

i=1 X2
i,1

> ε/2, and for some j = 1, . . . , r,

Xj,1 > (1 − τ)x(r) and
r∑

i=1

1(i ̸= j)Xi,1 ≤ τx(r)

)
+ o(1).

On the event described in the probability in the right side of Eq. (17), let J be the unique j satisfying the condition in that120

event. Then121

1 ≤
(∑r

i=1 Xi,1
)2∑r

i=1 X2
i,1

=
X2

J,1 + 2XJ,1
∑r

i=1 1(i ̸= J)Xi,1 +
(∑r

i=1 1(i ̸= J)Xi,1
)2∑r

i=1 X2
i,1

122

≤ 1 +
2
∑r

i=1 1(i ̸= J)Xi,1

XJ,1
+
(∑r

i=1 1(i ̸= J)Xi,1
)2

X2
J,1

123

≤ 1 + 2τ

1 − τ
+ τ2

(1 − τ)2 = 1
(1 − τ)2 ,124

and if τ > 0 is small enough, the logarithm of 1/(1 − τ)2 does not exceed ϵ/2. This proves the claim of the theorem.125

B. Proof of Theorem 2.126

Proof. To show Xi1 has Pareto-like tails, note that

Pr(Xi1 > x) = Pr(Zi1eGi1 > x) = x−αE
[
eαGi1 1{eGi1 <x}

]
+ Pr(eGi1 > x)

and since eGi1 has all moments, we have, as x → ∞,

xα Pr(Xi1 > x) → EeαGi1 .

Also,127

1
x(r)

∫ x(r)

0
P (Xi1 > x | G)dx = 1

x(r)

∫ x(r)

0
x−αeαGi1 1{eGi1 <x}dx + 1

x(r) min{eGi1 , x(r)}128

≤ KeαGi1 x(r)−α ,129
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where K is a generic constant whose value may change from line to line. It follows that130

c(r)r2E

[
max

i=1,...,r

([
1

x(r)

∫ x(r)

0
Pr
(
Xi,1 > x

∣∣ G
)

dx

]2)]
≤ Kc(r)r2x(r)−2αE

[
max

i=1,...,r
{e2αGi1 }

]
. [18]131

We next show that there exists a constant d1 > 2
√

2ασ, where σ2 = γ(0, 0), such that132

E

[
max

i=1,...,r
{e2αGi1 }

]
≤ exp{d1(log r)1/2} [19]133

for all large r. Condition Eq. (9) follows easily by applying this bound together with Eq. (18). We have134

E

[
max

i=1,...,r
{e2αGi1 }

]
=

∫ ∞

0
Pr( max

i=1,...,r
{e2αGi1 } > x)) dx135

=
∫ ∞

0
Pr( max

i=1,...,r
{Gi1} > log x/(2α)) dx136

≤ exp{d1(log r)1/2} + r

∫ ∞

exp{c(log r)1/2}
Pr(G11 > log x/(2α)) dx137

≤ exp{d1(log r)1/2} + rK

∫ ∞

exp{d1(log r)1/2}
exp{−(log x)2/(8α2σ2)} dx138

where we have used the relation 1 − Φ(x) ∼ x−1ϕ(x) as x → ∞, Φ(x) is the standard normal distribution, and ϕ(x) = Φ′(x).139

By a change of variables, the second term is equal to140

rK

∫ ∞

d1(log r)1/2/(2ασ)
exp{−y2/2 + 2ασy} dy ≤ rK

∫ ∞

d1(log r)1/2/(2ασ)
exp{−d2y2/2} dy141

≤ rK exp{−d2d2
1(log r)/(8α2σ2)} ,142

where the first inequality follows for any 0 < d2 < 1 and r large. By choosing d2 sufficiently close to 1 such that d2d2
1/(8α2σ2) > 1,

the bound of the last term is
rKo(r−1) = o(1) .

This establishes the bound in Eq. (19) and completes the proof.143

C. Proof of Theorem 3.144

Proof. The probability in Eq. (12) does not exceed

c(r) Pr
(∣∣∣∣log v̂ar(X:1)

r(X̄:1)2

∣∣∣∣ > ε, rX̄:1 > rEX11 + x(r)
)

[20]

=c(r) Pr

(∣∣∣∣∣log

[ ∑r

i=1 X2
i,1(∑r

i=1 Xi,1
)2 − 1

r

]∣∣∣∣∣ > ε,

r∑
i=1

Xi,1 > rEX11 + x(r)

)

≤c(r) Pr

(
log
(∑r

i=1 Xi,1
)2∑r

i=1 X2
i,1

> ε/2,

r∑
i=1

Xi,1 > rEX11 + x(r)

)
,

with the last inequality valid for large r.145

Next we prove that146

lim
r→∞

c(r) Pr

(
r∑

i=1

Xi,1 > rEX11 + x(r), Xi,1 ≤ x(r)
4 , i = 1, . . . , r

)
= 0. [21]147

Indeed, let

T1 = inf

{
n = 1, 2, . . . , r :

n∑
i=1

(Xi,1 − EX11) >
x(r)

4

}
,

T2 = inf

{
n = T1 + 1, . . . , r :

n∑
i=T1+1

(Xi,1 − EX11) >
x(r)

4

}
,
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and T2 = ∞ if either infimum is over an empty set. Then the probability in Eq. (21) is bounded above by

Pr
(

T2 < ∞, Xi,1 ≤ x(r)
4 , i = 1, . . . , r

)
[22]

≤

[
Pr

(
r∑

i=1

(Xi,1 − EX11) >
x(r)

4 , Xi,1 ≤ x(r)
4 , i = 1, . . . , r

)]2

.

By the assumptions, the law of X11 is in the domain of attraction of an α-stable law with 1 < α < 2. Therefore, there is a
q > 0 such that, for all r sufficiently large,

P r

(
r∑

i=1

(Xi,1 − EX11) < 0

)
≥ q.

Therefore, if (Yi,1) is an independent copy of (Xi,1), then

qP r

(
r∑

i=1

(Xi,1 − EX11) >
x(r)

4 , Xi,1 ≤ x(r)
4 , i = 1, . . . , r,

)

≤P r

(
r∑

i=1

(Xi,1 − EX11) >
x(r)

4 , Xi,1 ≤ x(r)
4 , i = 1, . . . , r,

)
P r

(
r∑

i=1

(Yi,1 − EY11) < 0

)

=P r

(
r∑

i=1

(Xi,1 − EX11) >
x(r)

4 , Xi,1 ≤ x(r)
4 , i = 1, . . . , r,

r∑
i=1

(Yi,1 − EY11) < 0

)

≤ Pr

(
r∑

i=1

(Xi,1 − Yi,1) >
x(r)

4 , Xi,1 ≤ x(r)
4 , i = 1, . . . , r

)
.

Now using Markov’s inequality,

Pr

(
r∑

i=1

(Xi,1 − EX11) >
x(r)

4 , Xi,1 ≤ x(r)
4 , i = 1, . . . , r

)

≤q−1 Pr

(
r∑

i=1

(Xi,1 − Yi,1) >
x(r)

4 , Xi,1 ≤ x(r)
4 , i = 1, . . . , r

)

≤q−1 Pr

(
r∑

i=1

(
Xi,1 ∧ x(r)/4 − Yi,1 ∧ x(r)/4

)
>

x(r)
4

)

≤q−1 E
[∑r

i=1

(
Xi,1 ∧ x(r)/4 − Yi,1 ∧ x(r)/4

)]2

(x(r)2/16)

= 16r

qx(r)2 E
(
X1,1 ∧ x(r)/4 − Y1,1 ∧ x(r)/4

)2

≤ 32r

qx(r)2 E
(
X1,1 ∧ x(r)/4

)2
.

By Karamata’s theorem, E
[
(X11)+ ∧ x(r)/4

]2 ∼ α
2−α

x2(r) Pr(X11 > x(r)/4)/16, from which Eq. (21) follows from Eq. (11)148

and Eq. (22).149

The rest of the argument is identical to that in Theorem 1.150

Our derivations of TL with b = 2 for the extreme upper tail of positive regularly varying distributions with tail index151

α ∈ (0, 1) ∪ (1, 2) extend related previous findings that assumed finite means and finite variances (7–10).152

Our theoretical analyses leave room for further development. For example, we have no results on α = 1, on the speed of153

convergence to 2 of the slope b of TL for the extreme upper tail, or on variable sample sizes rj , j = 1, . . . , c. More realistic154

models are needed to describe the dependence spatially (among counties within and between states) and temporally (from day155

to day, month to month, year to year) in the counts of cases and deaths.156
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4. Supplementary discussion: Other examples of the same data structure157

The data structure analyzed here is a large set of c samples, and each sample contains a large number of observations158

rj , j = 1, . . . , c. In the simplest case, which we simulate and analyze mathematically here, each sample has rj = r observations.159

To show that our simulations and mathematical analysis have scientific relevance beyond COVID-19, we give some published160

examples of the same or very similar data structures in ecology (vole population density), census counts (U.S. county human161

populations), meteorology (tornados in outbreaks), and age-specific human death rates. None of these empirical studies of TL162

checked whether the upper extremes of their data could usefully be described as heavy-tailed.163

Cohen and Saitoh (12) reported annual trapping measurements of the population abundance of a vole (then an economically164

important rodent pest of cultivated forests) in Hokkaido, Japan, at 85 forest stations from 1962 to 1992, giving a 31 × 85165

matrix of abundances, one row per year, one column per trapping station. They tested and confirmed a temporal TL and a166

spatial TL. They demonstrated that the time-series at different stations (the columns of the data matrix) were correlated, but167

not with the same correlation for all pairs of stations. Using an autoregressive time series model, they showed that, at each168

station, each year’s abundance was influenced by the abundance of at least the two prior years. Thus their rectangular array of169

counts demonstrates dependence between columns (correlations between different trapping stations) and within columns (serial170

autocorrelations).171

Xu and Cohen (11) analyzed the censused counts of numbers of people in every county (or equivalent) that has ever existed172

in every territory or state of the United States that has ever been censused in any of the 23 U.S. decennial censuses from 1790173

through 2010. As not every county was censused 23 times, these data do not fill a rectangular matrix but may be thought of as174

occupying an array with 23 rows, one row per census, and 4,128 columns, one column per county. An element in the array is175

blank if a county was not included in a census. Xu and Cohen (11) tested temporal TLs, spatial TLs, and spatial hierarchical176

TLs and quadratic generalizations of these log-linear variance functions. They demonstrated temporal and spatial dependence177

of the county population time series.178

Tippett and Cohen (13) showed that, for the years 1954-2014, in the continental United States, in outbreaks consisting179

of multiple tornadoes (of intensity F1+ on the Fujita or Enhanced Fujita scales) closely spaced in time, the annual mean180

number of tornadoes per outbreak rose on average from year to year, and the annual variance of the number of tornadoes per181

outbreak increased on average from year to year more than four times faster. The variance function was well described by182

TL Main text Eq. [2] when outbreaks were grouped by year (analogous to state in our COVID-19 study), and the mean and183

variance of the numbers of tornadoes were computed for the outbreaks (analogous to our counties) in each year. There were no184

statistically significant trends in the number of F1+ tornadoes per year or in the number of outbreaks, but the tornadoes were185

increasingly clustered into outbreaks. In terms of our matrix model, c = 61 is the number of years of observation. The number186

rj of outbreaks in each year j = 1, . . . , c averaged between 22 and 25 (13, Figure 2a).187

Tippett and Cohen (13) did not study the possible temporal and spatial dependence among the number of tornadoes in188

different outbreaks. They noted that the Fujita-kilometers values (another measure of the intensity of a tornado outbreak) “for189

the 1974 Super Outbreak and the 25-28 April 2011 tornado outbreak are more than 26 standard deviations above the mean of190

the data on an arithmetic scale and more than six standard deviations above the mean of the log-transformed data, when191

means and standard deviations are calculated after withholding the two extreme values.” The upper percentiles of the annual192

distribution of tornadoes per outbreak increased much faster than the lower percentiles (14).193

In the age-specific death rates of 12 countries with high-quality human mortality data, separately by sex and country,194

from 1960 to 2009, the variance over years (corresponding to counties in our COVID-19 study) of death rates at a given age195

(corresponding to states in our COVID-19 study) was well described by a power function of the mean over years of death rates196

at that age, with one (mean over time, variance over time) pair for each age group from 0 to 100+ (Bohk, Rau and Cohen (15)).197

This is TL. The estimated slope of Main text Eq. [2] satisfied 1.5 < b̂ < 2 but differed from country to country. The Gompertz198

model of human mortality, which asserts that the age-specific death rate grows exponentially with age, predicts TL with slope199

b = 2 when the modal age at death in the Gompertz model increases linearly with time and the growth rate of mortality with200

age is constant in time (16). That the latter assumption is empirically false helps explain why the estimated slope of TL was201

generally less than the value 2 theoretically predicted from the Gompertz model. Bohk, Rau and Cohen (15, 16) did not model202

the dependence of age-specific death rates over time and across ages.203

SI Dataset S1 (us-counties.csv)204

NewYorkTimes. nytimes covid-19-data public. Accessed 19 June 2021. https://raw.githubusercontent.com/nytimes/covid-205

19-data/master/us-counties.csv.206
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