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We generalize Taylor’s law for the variance of light-tailed distribu-
tions to many sample statistics of heavy-tailed distributions with
tail index α in (0, 1), which have infinite mean. We show that, as
the sample size increases, the sample upper and lower semivari-
ances, the sample higher moments, the skewness, and the kurtosis
of a random sample from such a law increase asymptotically in
direct proportion to a power of the sample mean. Specifically, the
lower sample semivariance asymptotically scales in proportion to
the sample mean raised to the power 2, while the upper sample
semivariance asymptotically scales in proportion to the sample
mean raised to the power (2 −α)/(1 −α)> 2. The local upper
sample semivariance (counting only observations that exceed the
sample mean) asymptotically scales in proportion to the sample
mean raised to the power (2 −α2)/(1 −α). These and additional
scaling laws characterize the asymptotic behavior of commonly
used measures of the risk-adjusted performance of investments,
such as the Sortino ratio, the Sharpe ratio, the Omega index, the
upside potential ratio, and the Farinelli–Tibiletti ratio, when re-
turns follow a heavy-tailed nonnegative distribution. Such power-
law scaling relationships are known in ecology as Taylor’s law and
in physics as fluctuation scaling. We find the asymptotic distribu-
tion and moments of the number of observations exceeding the
sample mean. We propose estimators of α based on these scaling
laws and the number of observations exceeding the sample mean
and compare these estimators with some prior estimators of α.

stable law | semivariance | Pareto | Taylor’s law | power law

Heavy-tailed nonnegative random variables with infinite mo-
ments, such as nonnegative stable laws with index α in

(0,1), have theoretical and practical importance [e.g., Carmona
(1), Feller (2), Resnick (3), and Samorodnitsky and Taqqu (4)].
Heavy-tailed nonnegative random variables with some or all in-
finite moments have been claimed to arise empirically in finance
[operational risks in Nešlehová et al. (5)], economics [income
distributions in Campolieti (6) and Schluter (7); returns to tech-
nological innovations in Scherer et al. (8) and Silverberg and
Verspagen (9)], demography [city sizes in Cen (10)], linguistics
[word frequencies in Bérubé et al. (11)], and insurance [eco-
nomic losses from earthquakes in Embrechts et al. (12) and
Ibragimov et al. (13)]. Partial reviews are in Carmona (1) and
Ibragimov (14).

Brown et al. (15) (hereafter BCD) showed that when a ran-
dom sample is drawn from a nonnegative stable law with index
α ∈ (0, 1), the sample variance is asymptotically (as the sample
size n goes to ∞) proportional to the sample mean raised to a
power that is an explicit function of α (Eqs. 11 and 13). This
relationship generalizes to stable laws with infinite moments a
widely observed power-law relationship between the variance
and the mean in families of distributions with finite population
mean and finite population variance. This power-law relationship
is commonly known as Taylor’s law in ecology [Taylor (16, 17)]
and as fluctuation scaling in physics [Eisler et al. (18)].

To the two ingredients combined by BCD (nonnegative stable
laws with infinite moments and Taylor’s law), this paper adds

two more ingredients. We establish scaling relationships that
generalize the usual Taylor’s law, for light-tailed distributions,
to many functions of the sample in addition to the variance,
including all positive absolute and central moments, upper and
lower semivariances, and several measures of risk-adjusted in-
vestment performance such as the Sortino, Sharpe, and Farinelli–
Tibiletti ratios. In addition, based on these scaling relationships,
we propose several estimators of the index α of a nonnegative
stable law with infinite first moment.

Section 1 defines most of the sample functions studied here.
Section 2 gives background on Taylor’s law, semivariances, and
nonnegative stable laws, including key prior results from BCD.
Section 3 establishes that the lower sample semivariance, the
upper sample semivariance, the local lower sample semivariance,
and the local upper sample semivariance are asymptotically each
a power of the sample mean with explicitly given exponents.
These results are the core of the paper. When investment re-
turns obey a nonnegative heavy-tailed law with index α ∈ (0, 1),
these results reveal the asymptotic behavior of the Sharpe ra-
tio, the Sortino ratio, and the Farinelli–Tibiletti ratio. Section
4 extends these results to higher central and noncentral mo-
ments and various indices of volatility. Section 5 analyzes the
number of observations from a stable law or an approximately
stable (i.e., regularly varying) law that exceed the sample mean.

Significance

Many quantities are extremely large extremely rarely. Exam-
ples include income, wealth, financial returns, insurance losses,
firm size, and city population size; earthquake magnitude,
hurricane energy, tornado outbreaks, precipitation, and flood-
ing; and pest outbreaks, infectious epidemics, and forest fires.
When such a quantity is modeled as a nonnegative random
variable with a heavy upper tail, the probability of an observa-
tion larger than some threshold falls as a small power (the “tail
index”) of the threshold. When the tail index is small enough,
the mean and all higher moments of the random quantity are
infinite. Surprisingly, the sample mean and the sample higher
moments obey orderly scaling laws, which we prove and apply
to estimating the tail index.
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Section 6 proposes and compares estimators of α by simulation.
SI Appendix gives all proofs of results stated in the text and
additional numerical simulations.

1. Preliminary

Let d→ mean “converges in distribution to.” Let
p→ mean “con-

verges in probability to.” Let a.s.−→ mean “converges almost surely
to.”

Let X be a real-valued nonnegative random variable. Let n be a
positive integer and assume thatn > 1. For i = 1, . . . ,n , letXi be
independent and identically distributed as X. For any real h ≥ 0,
the hth (raw) sample moment is defined as

M ′
h :=

1

n

n∑
i=1

X h
i . [1]

Thus, M ′
1 is the sample mean. For any nonnegative integer h, the

hth sample central moment is defined as

Mh :=
1

n

n∑
i=1

(Xi −M ′
1)

h . [2]

Clearly, M1 = 0, and M2 is the sample variance normalized by n.
The sample variance normalized by n − 1 is defined as

vn :=
1

n − 1

n∑
i=1

(Xi −M ′
1)

2. [3]

Obviously, vn =M2n/(n − 1) and vn/M2
a.s.−→ 1 as n →∞.

The lower sample semivariance and the upper sample semi-
variance are defined as

v−
n :=

1

n − 1

∑
i:Xi≤M ′

1

(Xi −M ′
1)

2,

v+
n :=

1

n − 1

∑
i:Xi>M ′

1

(Xi −M ′
1)

2, [4]

so that vn = v−
n + v+

n . Define N−
n as the number of values of Xi

that do not exceed the sample mean and N+
n as the number of

values of Xi that (strictly) exceed the sample mean:

N−
n := #{i : Xi ≤M ′

1}, N+
n := #{i : Xi >M ′

1}. [5]

Then, N−
n N+

n > 0 unless Xi =M ′
1 for all i = 1, . . . ,n . The local

lower sample semivariance and the local upper sample semivari-
ance are defined only when N−

n > 0 and N+
n > 0, respectively,

as

v−∗
n :=

1

N−
n

∑
i:Xi≤M ′

1

(Xi −M ′
1)

2,

v+∗
n :=

1

N+
n

∑
i:Xi>M ′

1

(Xi −M ′
1)

2. [6]

The local upper sample semivariance v+∗
n is the more math-

ematically challenging sequence to analyze because it depends
on the asymptotic behavior of the number of observations that
exceed the sample mean. Our result, Theorem 9, may be of
independent interest in the study of heavy-tailed distributions.

For the remainder of this article, we assume two restrictions
on X without further restatement. First, we assume that X takes
only nonnegative values. Second, to assure that P(N+

n = 0) =
0, we assume that X is not atomic [i.e., for all real a, we as-
sume that P(X = a) = 0]. Then, P(N+

n = 0) = 0 and conversely;
for otherwise, if P(X = a)> 0 for some a, then P(N+

n = 0)≥
{P(X = a)}n > 0. Under the assumption that X is not atomic,

P(N−
n N+

n > 0) = 1, and v−∗
n and v+∗

n are well defined almost
surely (a.s.); also, v−

n = N−
n v−∗

n /(n − 1), v+
n = N+

n v+∗
n /(n − 1),

and vn = (N−
n v−∗

n +N+
n v+∗

n )/(n − 1) a.s. The assumption that
X is not atomic also plays an important role in Theorems 5 and
8(3), Remark 2, and Corollaries 6(3) and 8.

Alternatively, we could assume that X is not constant (i.e., not
a degenerate random variable with all probability mass concen-
trated at a single value). If X is atomic but not a constant, then
P(N−

n N+
n > 0)→ 1 as n →∞, but P(N−

n N+
n > 0) �= 1. Never-

theless, similar asymptotic results could still be proved.
The infinite sequences of random variables defined in Eqs. 1 to

6 (one random variable for each n = 1, 2, . . .) exist a.s., whether
or not X has any finite moments. Our goal here is to show that, if
X is a stable distribution (or an approximately stable distribution
under Definition 1) with support (0,∞) and index α ∈ (0, 1),
then as n →∞, the quantities in Eqs. 1 to 6 and other related
quantities defined in section 3, when divided by some power b of
the sample mean M ′

1, converge in distribution, in probability or
almost surely, depending on the case. Here, b may depend on α
and on which quantity is being examined.

2. Background and Prior Results
Taylor’s law [Taylor (16)] says that the sample variance vn scales
approximately in direct proportion to a nonzero power b (positive
or negative) of the sample mean M ′

1. Taylor’s law is a widely
confirmed empirical pattern in ecology and other sciences [Taylor
(17)], nearly always with b > 0 and often with b ∈ (1, 2). Tay-
lor’s law holds also for the mean and variance of some single-
parameter probability distributions, in addition to holding for
the sample mean and sample variance. For example, for varying
values of the population mean μ, the population variance σ2

varies according to Taylor’s law σ2 = aμb with a = 1, b = 1 for
the Poisson distribution and a = 1, b = 2 for the exponential
distribution.

The semivariances, especially the lower, have important appli-
cations in agricultural and financial economics [Berck and Hihn
(19), Bond and Satchell (20), Hogan and Warren (21), Jin et
al. (22), Liagkouras and Metaxiotis (23), Nantell and Price (24),
Porter (25), Turvey and Nayak (26), and van de Beek et al. (27)].
We know no prior proofs that the sample semivariances of a
nonnegative stable law satisfy Taylor’s law.

Higher moments include skewness and kurtosis in statistics
and the Farinelli–Tibiletti ratio in finance. Power-law scaling
relationships for moments other than the sample variance are
generalized Taylor’s laws [Giometto et al. (28)]. Generalized
Taylor’s laws are less widely studied empirically or theoretically.

Every stable random variable X with support (0,∞) has
Laplace transform [Feller (2), pp. 448–449]

L (s) := E(e−sX ) = e−(cs)α , [7]

for s ≥ 0, 0< α < 1, and c > 0. We say that X d
= F (c,α) when

the distribution of X has Laplace transform Eq. 7, and then we
say that X has index α. We have X

d
= F (c,α)

d
= cF (1,α). Such a

heavy-tailed distribution has an infinite mean. Consequently, the
sample mean, sample variance, sample semivariances, and sam-
ple higher moments are not estimators of population moments,
and the normal central limit theorem does not apply.

IfX d
= F (c,α) for some 0< α < 1, c > 0, the survival function

of X evaluated at t ∈ (0,∞) is defined as F (c,α)(t) := 1−
F (c,α)(t). By Feller (2, p. 448), if 0< α < 1 and c > 0, then as
t →∞,

F (c,α)(t)
/ cαt−α

Γ(1− α)
→ 1. [8]

Many distributions on (0,∞) satisfy Eq. 8 but are not of the
special form F (c,α) in Eq. 7.
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Definition 1. X
d≈ F (c,α) and FX

d≈ F (c,α) both mean that a
nonnegative random variable X has a distribution function FX

that satisfies Eq. 8: that is, as t →∞,

{1− FX (t)}
/ cαt−α

Γ(1− α)
→ 1. [9]

When Eq. 9 holds, we say that X is approximately stable.

For α ∈ (0, 1) and real g > α, h > α, define

α(g , h) :=
g − α

h − α
, α∗ := α(2, 1) =

2− α

1− α
. [10]

If g > h , then α(g , h)> g/h . Consequently, α∗ > 2. If g < h ,
then α(g , h)< g/h < 1. Thus if, as we shall prove below, α(g , h)
is the exponent b in Taylor’s law for a stable nonnegative law with
index α ∈ (0, 1) and if g ≥ 2h or g < h , then the exponent b must
fall outside the interval (1, 2) that is commonly (although not uni-
versally) observed in many ecological applications [Cohen et al.
(29, 30)].

Among other results, BCD (ref. 15, p. 663, proposition 2)
showed that if X d

= F (1,α), then as n →∞,

Wn :=
vn

M ′α∗
1

d→W , [11]

where E(Wn) = 1− α, Var(Wn) = {E(Wn)}2{1 + 2α/(n −
1)}, and the limiting random variable W has P(0<W <∞) = 1.
W has a finite mean and a finite SD, both of which equal 1− α.
Moreover, for all h = 1, 2, . . . ,E(W h

n )→ E(W h). The second
and third moments of W are

E(W 2) = 2{E(W )}2, E(W 3) =

(
6− α

(5− 2α)

)
{E(W )}3,

[12]

while for an exponentially distributed random variable Y,
E(Y 3) = 6{E(Y )}3 (ref. 15, p. 666).

For general c > 0 in Eq. 7, BCD showed that vn/M
′α∗
1

d→
c−

α
1−αW , where W is the limiting random variable in Eq. 11.

Consequently, for any c > 0, BCD showed that as n →∞,

log vn
logM ′

1

p→ α∗. [13]

Thus, for large n, with arbitrarily high probability, (log vn)/(logM ′
1)

will be close to α∗, regardless of c > 0. This scaling relationship
is an asymptotic form of Taylor’s law with exponent b = α∗ > 2.

BCD further argued without detailed proofs that X
d≈ F (c,α)

satisfies Eq. 13.
A common sample statistic used to compare the effectiveness

of investments is the well-known Sharpe ratio [Sharpe (31)]
(M ′

1 − rf )/v
1/2
n for the period rates of return of a security,

where rf is a zero-risk reference: for example, the London in-
terbank offered rate. In signal processing, the Sharpe ratio (with
rf = 0) is a useful but biased estimator of the signal-to-noise
ratio [Miller and Gehr (32)]. In statistics, the reciprocal of the
Sharpe ratio (with rf = 0) is called the coefficient of variation.

If the period rate of return has a distribution X
d≈ F (c,α),

where 0< c <∞ and 0< α < 1, then the Sharpe ratio con-
verges in probability to zero as n →∞. Why? Eq. 11 implies
that, as n →∞, M ′α∗

1 /vn
d→ 1/W , so M

′α∗/2
1 /v

1/2
n

d→ 1/W 1/2.
However, M ′α∗/2

1 =M ′
1 ×M

′(α∗/2)−1
1 , and because α∗ > 2 (as

noted just after Eq. 10), the second factor M ′(α∗/2)−1
1 goes a.s. to

∞. Therefore, the Sharpe ratio (M ′
1 − rf )/v

1/2
n must converge in

probability to zero. Asymptotically, for large n, the Sharpe ratio
reveals no information about the distribution.

Inspired by Taylor’s law in Eq. 13, one may consider log(M ′
1 −

rf )/ log vn as a modified financial ratio, which converges
to 1/α∗ = (1− α)/(2− α) in probability. Because (1− α)/
(2− α) is decreasing in α over (0, 1), the smaller α is, the
heavier the distribution, so the larger the risk. The original
Sharpe ratio is quasiconcave, scale invariant, and distribution
based [Eling et al. (33)]. The modified ratio is also distribution
based and reveals the tail index α for large-enough n. Because
of the logarithmic transformation, the modified ratio is not scale
invariant. However, both numerator and denominator diverge
to infinity. The effect of finite scaling becomes negligible for
large sample sizes, and hence, the ratio is Fα-asymptotically

scale invariant.* In other words, when X
d≈ F (c,α), the modified

ratio is asymptotically invariant with respect to c. The modified
Sharpe ratio is Fα-asymptotically quasiconcave.† The proof is in
SI Appendix. Thus, asymptotically with large sample size n, the
modified Sharpe ratio inherits all the properties of the original
Sharpe ratio. We discuss this using semivariances and partial
moments for the financial ratios in the following sections.

3. Taylor’s Laws for Semivariances
A. Lower Semivariances and Sortino Ratio. The lower semivariance
of any nonnegative random variable with infinite expectation is
almost surely asymptotic to the square of the sample mean.

Theorem 1 (Taylor’s law for the lower semivariance). Let X be
a nonnegative random variable with E(X ) =∞. Then, as n →∞,

v−
n

M ′2
1

a.s.−→ 1. [14]

This theorem does not assume X is stable or approximately
stable.

The Sortino ratio [Sortino and Price (34)] is another sample
statistic used to compare the risks and rewards in some period
of a set of investments such as individual equities, mutual
funds, trading systems, or investment managers. It is defined as
(M ′

1 − rf )/sd , where M ′
1 is the sample mean of the period

rate of return X, rf is a threshold or reference point or target
return, the zero-risk rate of return or minimal acceptable return,
which we take to be zero, and sd := (v−

n )1/2 is the downside
risk, equal to the square root of the lower sample semivariance
v−
n of the period rate of return [e.g., Sortino and Price (34)

and Rollinger and Hoffman (35)]. Under our assumption that
P(0< X <∞) = 1, one might interpret X as the ratio of
final price to initial price, so that 0< X < 1 would represent
a loss, while X > 1 would represent a gain. The possible
use of n instead of n − 1 in the denominator of Eq. 4 is
immaterial for large samples. Eq. 14 shows that if the period
rate of return X is a nonnegative random variable with an
infinite mean, then the Sortino ratio converges a.s. to one
as n →∞. When the mean is infinite, asymptotically, for
large n, the Sortino ratio reveals no information about the
distribution.

Similar to our modified Sharpe ratio for heavy-tailed distri-
butions, for the Sortino ratio, we consider the ratio between
the logarithm of the sample mean minus rf and the logarithm
of the sample lower semivariance, namely log(M ′

1 − rf )/ log v−
n .

Theorem 1 and Slutsky’s theorem imply that a power law with
exponent 2 relates the lower semivariance to the sample mean.
So Taylor’s law holds between the sample mean and the lower
semivariance.

*Fα-asymptotic scale invariance is defined in SI Appendix, section D.
†Fα-asymptotic quasiconcavity is defined in SI Appendix, section D.
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Corollary 1. Let X be a nonnegative random variable with
E(X ) =∞. As n →∞,

log v−
n

logM ′
1

a.s.−→ 2. [15]

The modified Sortino ratio is Fα-asymptotically quasiconcave
and Fα-asymptotically scale invariant, like the original Sortino
ratio; proofs are in SI Appendix. However, from Corollary 1, the
limiting value of the modified Sortino ratio is independent of the
tail index α.

We now extend Taylor’s law to the local lower semivariance
v−∗
n . The local lower semivariance differs from the lower semi-

variance by a factor equal to the ratio N−
n /n . We show that

N−
n /n → 1 almost surely if E(X ) =∞.
Lemma 1. Let X be a nonnegative random variable with E(X ) =

∞. Then, with N−
n defined in Eq. 5, as n →∞,

N−
n

n
a.s.−→ 1. [16]

Corollary 1 and Lemma 1 imply that a power law with exponent
2 relates the local lower semivariance to the sample mean.

Corollary 2. Let X be a nonnegative random variable with
E(X ) =∞. Then, as n →∞,

log v−∗
n

logM ′
1

a.s.−→ 2. [17]

If X is approximately stable with infinite expectation, then
Lemma 1 and Corollaries 1 and 2 imply further results that will be
useful later for studying the local upper semivariance and upper
semivariance.

Corollary 3. Let X
d≈ F (1,α), 0< α< 1. Let α∗ := (2−

α)/(1− α) as defined in Eq. 10. Then, as n →∞,

v−
n

M ′α∗
1

a.s.−→ 0 and
v−∗
n

M ′α∗
1

a.s.−→ 0. [18]

B. Upper Semivariances. Although the asymptotic values of the
ratios in Eqs. 15 and 17 are both two, which is independent ofα, if
one replaces the lower or local lower semivariances by the upper
or local upper semivariances, respectively, Taylor’s law continues
to hold, and it depends on α.

Theorem 2. Let X
d≈ F (1,α), 0< α< 1. Then, as n →∞,

log v+
n

logM ′
1

p→ α∗ and
log v+∗

n

logM ′
1

p→ α∗ + α=
2− α2

1− α
. [19]

Inspired by Taylor’s law in Eq. 19, one may consider
ratios between the logarithm of the sample mean minus
rf and the logarithm of either the sample upper or local
upper semivariances, namely log(M ′

1 − rf )/ log v+
n and log

(M ′
1 − rf )/ log v+∗

n , respectively, which converge in probability
to 1/α∗ = (1− α)/(2− α) and (1− α)/(2− α2), respectively.
Because (1− α)/(2− α) and (1− α)/(2− α2) are both
decreasing in α, the smaller α is, the heavier the distribution
is, and the larger these ratios are asymptotically. The asymptotic
properties and proofs are in SI Appendix, Proposition D.3.

4. Fluctuation Scaling for Higher Moments
In this section, we show that the sample higher moments are
proportional to a power of the sample mean. These relations
imply power-law relations between sample higher moments used
in financial ratios such as the Farinelli–Tibiletti ratio (36).

A. Higher Sample Moments, Skewness, and Kurtosis.

Theorem 3. If X
d≈ F (1,α), 0< α< 1, and h > α, then, as

n →∞,

M ′
h

(M ′
1)

α(h,1)

d→{Γ(1− α)}
h−1
1−α

Uh

V α(h,1)
,

where the random vector (Uh ,V ) has the joint Laplace transform

E(e−sUh−tV ) = exp
{
−
∫ ∞

0

{rh(y , s, t)}−αe−y dy

}
,

for s, t , y > 0, and rh(y , s, t) is the unique positive root of the
equation sx h + tx − y = 0.

The ratio in Theorem 3 may not be a practically useful financial
ratio sinceα is usually unknown. However, the following Theorem
4 and its corollaries heavily depend on it. The following remark
uses the joint moment-generating function to give the marginal
distributions of Uh and V.

Remark 1. In the joint Laplace transform defined in Theorem
3, if we set t = 0, then rh(y , s, 0) = (y/s)1/h and

E(e−sUh ) = exp
{
−
∫ ∞

0

{
(y/s)1/h

}−α

e−y dy

}
.

Hence, Uh follows the distribution F ({Γ(1− α/h)}h/α,α/h).
On the other hand, if we set s = 0, then rh(y , 0, t) = y/t and

E(e−tV ) = exp
{
−
∫ ∞

0

{(y/t)}−α e−y dy

}
.

Hence, V follows the distribution F ({Γ(1− α)}1/α,α).
These results follow Albrecher et al. (ref. 37, remark 2.1) by

the arguments in their proof. The following theorem shows that
Taylor’s law holds for raw moments.

Theorem 4. If X
d≈ F (1,α), 0< α< 1, h1 > α, and h2 > α,

then as n →∞,

logM ′
h2

logM ′
h1

p→ α(h2, h1).

In particular, for h > α, as n →∞,

logM ′
h

logM ′
1

p→ α(h, 1).

For a positive integer h > 1, the ratio between the central
moment Mh and the α(h, 1) power of the sample mean M ′

1

converges to a distribution given in Corollary 4.

Corollary 4. If X
d≈ F (1,α), 0< α< 1, and h > 1 is a positive

integer, then as n →∞,

Mh

(M ′
1)

α(h,1)

d→{Γ(1− α)}
h−1
1−α

Uh

V α(h,1)
,

where the random vector (Uh ,V ) is specified in Theorem 3.

Theorem 5. If X
d≈ F (1,α), 0< α < 1, and h > 1 is a positive

integer, then as n →∞,

log |Mh |
logM ′

1

p→ α(h, 1).

For any positive integers h1 > 1 and h2 > 1, as n →∞,

log |Mh2 |
log |Mh1 |

p→ α(h2, h1).
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For the raw moments, we have generalized Theorem 3 for the
ratio of two raw moments with orders both larger than α.

Theorem 6. If X
d≈ F (1,α), 0< α < 1, and both h1, h2 > α,

then as n →∞,

M ′
h2

(M ′
h1
)α(h2,h1)

d→{Γ(1− α)}
h2−h1
h1−α

Uh2

(Uh1)
α(h2,h1)

,

where (Uh1 ,Uh2) has the joint Laplace transform

E(e−sUh2
−tUh1 ) = exp

{
−
∫ ∞

0

{rh2,h1(y , s, t)}−αe−y dy

}
,

with y > 0, s > 0, t > 0, and rh2,h1(y , s, t) is the unique positive
root x of sx h2 + tx h1 − y = 0. Moreover, as n →∞,

logM ′
h2

logM ′
h1

p→ α(h2, h1).

Corollary 5. If X
d≈ F (1,α), 0< α < 1, and h2 ≥ h1 > 1 are

positive integers, then as n →∞,

n
h1−h2

h1
Mh2

(Mh1)
h2/h1

d→ Uh2

(Uh1)
h2/h1

,

where (Uh1 ,Uh2) is defined in Theorem 6.
Remark 2. From Corollary 5, it is clear that the skewness

M3/(vn)
3/2 and the kurtosis M4/(vn)

2 diverge to infinity, yet
the scaled skewness and the scaled kurtosis have distributions,
asymptotically as n →∞,

M3

n1/2(vn)3/2
d→ U3

(U2)3/2
and

M4

n(vn)2
d→ U4

(U2)2
,

where the joint distributions of (U2,U3) and (U2,U4) are defined
in Theorem 6. The limiting distribution of M4/{n(vn)2} matches
the result derived in Cohen et al. (ref. 38, equation 3.9). More-
over, by Slutsky’s theorem, as n →∞,

log |M3|
log[(vn)3/2]

p→ 2

3
α(3, 2) and

logM4

log[(vn)2]
p→ 1

2
α(4, 2).

B. Central Lower and Local Lower Partial Moments.
Definition 2. Define c+ := max{0, c} for c ∈ R. For h > 0,

define

M−
h :=

1

n

n∑
i=1

[(M ′
1 − Xi)+]

h , M−∗
h :=

nM−
h

N−
n

.

Theorem 7. Let X be a nonnegative random variable with
E(X ) =∞, and let h > 0. Then, as n →∞,

M−
h /(M ′

1)
h a.s.−→ 1 and logM−

h − h logM ′
1

a.s.−→ 0.

Corollary 6. Let X be a nonnegative random variable with
E(X ) =∞. Then, as n →∞,

1) M−
1 /M ′

1
a.s.−→ 1;

2) for h > 1, M−
h /(M ′

1)
α(h,1) a.s.−→ 0;

3) for h > 0,

logM−
h

logM ′
1

a.s.−→ h and
logM−∗

h

logM ′
1

a.s.−→ h.

C. Central Upper Moments and Local Upper Moments.
Definition 3. For h > 0, define the hth central upper moments

and central local upper moments:

M+
h :=

1

n

n∑
i=1

[(Xi −M ′
1)+]

h , M+∗
h :=

nM+
h

N+
n

.

Theorem 8 (central upper moments). Let X
d≈ F (1,α),

0< α < 1. Then, as n →∞,

1) for 0< h < 1, M+
h /(M ′

1)
h p→ 0;

2) for h ≥ 1,

M+
h

(M ′
1)

α(h,1)

d−→ {Γ(1− α)}
h−1
1−α

Uh

V α(h,1)
,

where the random vector (Uh ,V ) has the joint Laplace trans-
form defined in Theorem 3;

3) for h ≥ 1,

logM+
h

logM ′
1

p→ α(h, 1) and
logM+∗

h

logM ′
1

p→ h − α2

1− α
. [20]

D. Omega Index, Upside Potential Ratio, and Farinelli–Tibiletti Ratio.
Farinelli–Tibiletti (36) extended the Sharpe ratio to an index
including asymmetrical information on the volatilities above and
below the benchmark rf ∈ R. Their index ΦFT is defined by

ΦFT(rf , p, q) :=
[E[(X − rf )+]

p ]1/p

[E[(rf − X )+]q ]1/q
.

The Omega index, introduced by Cascon et al. (39), isΦFT(rf , 1, 1)
with p = q = 1. The upside potential index, introduced by
Sortino et al. (40), isΦFT(rf , 1, 2)with p = 1 and q = 2. The ratio
ΦFT(rf , p, q) may not be well defined since the expectations may
not exist for the heavy-tailed distributions. However, one can
define an empirical version of the Farinelli–Tibiletti ratio by

Φn
FT(rf , p, q) :=

[ 1
n

∑n
i=1[(Xi − rf )+]

p ]1/p

[ 1
n

∑n
i=1[(rf − Xi)+]q ]1/q

.

The following corollary shows that both Φn
FT(rf , p, q) and

Φn
FT(M

′
1, p, q) converge to ∞ in probability.

Corollary 7. If X
d≈ F (1,α), 0< α< 1, rf > 0, p > 1, and

q > 1, then as n →∞, Φn
FT(rf , p, q)

p→∞ and Φn
FT(M

′
1, p, q)

p→
∞.

A modification of the usual Farinelli–Tibiletti ratio might have
the ratio of the logarithm of the numerator to the logarithm
of the denominator in ΦFT(rf , p, q). However, for a fixed rf >
0, the numerator converges to infinity in probability, while the
denominator is bounded above with probability one. Therefore,
this ratio diverges to infinity.

We propose as an alternative to the Farinelli–Tibiletti ratio:

ΦFTlog(p, q) := p logM−
q /(q logM+

p ),

which is the ratio of the logarithm of the numerator to that of the
denominator in ΦFT(M

′
1, p, q). The following corollary describes

generalized Taylor’s laws for the ratio of the logarithm of the
upper central moment to the logarithm of the lower central
moment.

Corollary 8. If X
d≈ F (1,α), 0< α < 1, p ≥ 1, and q ≥ 1, then

as n →∞,

logM+
p

logM−
q

p→ p − α

q(1− α)
.
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Corollary 8 implies that

ΦFTlog(p, q)
p→ p(1− α)/(p − α),

which is decreasing in α for p ≥ 1, q ≥ 1. Therefore, the
smaller α is, the heavier the distribution is, and the larger the
risk is. Our modified Farinelli–Tibiletti ratio ΦFTlog(p, q) is
asymptotically scale invariant and distribution based, like the
original Farinelli–Tibiletti ratio, and satisfies Fα-asymptotic
quasiconcavity (SI Appendix).

5. Number of Observations Exceeding Sample Mean of Stable
Law
A. Asymptotic Distributions and Moments of N+

n /nα. In a sample
of size n from an approximately stable law with index α ∈ (0, 1),
asymptotically the number of observations above the sample
mean scales as nα and has a distribution given by Theorem 9. To
prove this result, we use Einmahl (ref. 41, corollary 2.1) together
with SI Appendix, Lemma C.1.

Theorem 9. If X
d≈ F (1,α), 0< α< 1, and U

d
= F (1,α), then

as n →∞,

N+
n

nα

d→ V :=
U−α

Γ(1− α)
.

The asymptotic moments of N+
n /nα are the moments of V

defined in Theorems 9 and 10.
Theorem 10. Let U d

= F (1,α), 0< α < 1, V := U−α/Γ(1−
α), and ε

d
= Exp(1) (an exponential random variable with mean

and parameter 1), where ε is independent of U.

1) U−αεα
d
= Exp(1).

2) For integer K > 0,

E[U−Kα] =
K !

Γ(1 +Kα)
,

E[V K ] =
K !

Γ(1 +Kα){Γ(1− α)}K .

Specifically, when K = 1, then E[U−α] = {Γ(1 + α)}−1 and
E[V ] = {Γ(1 + α)Γ(1− α)}−1; whenK = 2, thenE[U−2α] =
2{Γ(1 + 2α)}−1, E[V 2] = 2{Γ(1 + 2α){Γ(1− α)}2}−1.
Hence

Var(U−α) =
2

Γ(1 + 2α)
− 1

{Γ(1 + α)}2 ,

Var(V ) =
1

{Γ(1− α)}2Var(U
−α).

3) SD(V )< E[V ]. For example, when α= 1/2, E[V 2] = 2/π,
E[V ] = 2/π, Var(V ) = 2

π
(1− 2

π
). Numerically, SD(V )≈

0.48097, E[V ]≈ 0.63662, where here “≈ ” means the numer-
ical approximation is inexact.

4) For K ≥ 2, E[V K ]<K !(E[V ])K .
5) V ≤st ε [i.e., by the definition of the stochastic ordering ≤st ,

P(V > t)≤ P(ε > t) for all t ∈ R].

Part 1 of Theorem 10 is not well known. The moment results
in part 2 of Theorem 10 are derived using fractional calculus by
Wolfe (42). Because the logarithm of the moment-generating
function of a nonnegative random variable is a convex function
of the moment (by Artin’s theorem) [Marshall and Olkin (ref.
43, theorem B.8)], it follows that logE(U−xα) = logΓ(1 + x )−
logE(W x ) is concave in x ∈ [1,∞).

The distribution of U−α approximates the standard exponen-
tial distribution Exp(1) when α→ 0.

Corollary 9. Let U d
= F (1,α). Then, as α→ 0,

U−α d→ Exp(1).

6. Numerical Experiments
A. Tail Estimators. The preceding results describe the asymptotic
ratio of the logarithm of the sample mean to the logarithm of
various forms of the sample variance, such as the ordinary sample
variance vn , the upper semivariance v+

n , the local upper semivari-
ance v+∗

n , and the lower semivariance v−
n when a random sample

is from an approximately stable F (1,α) satisfying Eq. 9. Most of
these ratios (apart from that for the lower semivariance) depend
asymptotically only on α. Based on these results, we propose
estimators of the index α. We define the ratios R1,R2,R3, and
RL where

R1 :=
log vn
logM ′

1

p→ 2− α

1− α
, R2 :=

log v+
n

logM ′
1

p→ 2− α

1− α
,

R3 :=
log v+∗

n

logM ′
1

p→ 2− α2

1− α
, RL :=

log v−
n

logM ′
1

a.s.−→ 2.

The results generalize to F (c,α) for c > 0 because as noted

after Eq. 9, X /c
d≈ F (1,α) if and only if X

d≈ F (c,α) for c > 0.
Applying the continuous mapping theorem to the above results
for the variance, the upper semivariance, and the local upper
semivariance yields three consistent estimators of α:

B1 :=
2− R1

1− R1
, B2 :=

2− R2

1− R2
,

B3 :=
R3 −

√
R2

3 − 4(R3 − 2)

2
.

The Hill estimator [Hill (44)] is a traditional tail-index esti-
mator, which requires the largest k observations where k →∞
and k/n → 0 as n →∞. However, k depends on the unknown
parameters such asα and the series representation of the survival
function [Hall (45)]. In practice, the number k is based on the
“stable” point in the Hill plot, which may not always be available.
Gomes and Guillou (46) give a comprehensive review.

Theorem 9 implies that N+
n /n converges to zero in probability,

which motivates the choice of k = N+
n + 1 in the Hill estimator:(

1

k

n∑
i=n−k+1

log(X(i))− log(X(n−k+1))

)−1

,

where X(i) is the ith-order statistic, 1≤ i ≤ n . We evaluate this
choice of k = N+

n + 1 in the Hill estimator, denoted by HI.N,
numerically. We also replace the smallest (n − k) order statistics
in the original Hill estimator by the sample mean M ′

1 to obtain a
new Hill-type estimator:

HI.M :=

⎛
⎝ 1

N+
n

∑
Xi>M ′

1

log(Xi/M
′
1)

⎞
⎠

−1

.

From Bergström (47), the survival function of the stable law
for 0< α< 1 is

F (1,α)(x ) =

∫ ∞

x

− 1

π

∞∑
k=1

(−1)k

k !
(sinπαk)

Γ(ak + 1)

tak+1
dt

=
1

π

∞∑
k=1

(−1)k+1

k !
(sinπαk)

Γ(ak)

x ak

= Cx−α[1 +Dx−α + o(x−α)],

where C > 0 and D �= 0. From Hall (45), it is optimal to choose k
tending to infinity at a rate of order n2α/(2α+α) = n2/3. We also
consider this choice k = n2/3 for another Hill-type estimator,
denoted by HI.Opt, and we compare the behavior with other
estimators.
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Table 1. Bias (×103; average of [estimate minus true α]) for tail-
index estimators B1, B2, B3, HI.N, HI.M, HI.Opt, and MHB3 with
sample size n = 104 from F(1,α)

α B1 B2 B3 HI.N HI.M HI.Opt MHB3

0.1 −5.24 −3.87 −3.00 10.25 135.16 −0.92 −5.82
0.2 −11.96 −6.88 −3.79 −9.31 73.52 −1.73 −9.65
0.3 −19.43 −8.55 −2.38 −25.60 30.89 −2.05 −12.03
0.4 −27.72 −9.75 0.63 −32.82 4.87 −1.54 −13.44
0.5 −35.03 −8.91 5.96 −29.40 −5.30 1.42 −12.56
0.6 −43.76 −10.44 9.41 −24.21 −8.21 6.67 −10.26
0.7 −50.27 −11.28 12.19 −10.06 0.13 19.37 −3.26
0.8 −53.49 −12.55 11.48 31.58 37.82 51.80 7.30
0.9 −50.31 −13.69 5.46 204.26 208.27 153.44 5.45

In our simulations, we generate 104 independent random sam-
ples, each with sample size n, from F (1,α) by using the rstable
function from the R package stabledist with arguments for the
tail-index parameter alpha = α, the skewness parameter beta
= 1, the scale parameter gamma = |1− i tan(πα/2)|−1/α, the
location parameter delta = 0, and parameterization pm = 1.
Setting pm = 1 specifies that we use the parameterization of
stable laws in Samorodnitsky and Taqqu (4). For each random
sample, we calculate the six estimators B1,B2,B3, HI.N, HI.M,
and HI.Opt. Then, we estimate the bias as the average of the
104 differences between each estimator of α and the true α.
We estimate the mean squared error (MSE) as the average of
104 squared differences between each estimator of α and the
true α.

In Table 1 for bias and Table 2 for MSE, the sample size is
n = 104. According to the bias estimates in Table 1, B1 tends
to underestimate α, while B2 and B3 reduce the bias from B1

by introducing the upper semivariance, which focuses more on
larger numbers. B3 has smaller bias than B2 for most of the α
except α= 0.7 and 0.8. In Table 2, B3 has smaller MSE than B1

and B2. Estimators HI.N and HI.M do not perform as well as B3.
The estimator HI.Opt with the optimal choice of k = n2/3 for

the Hill estimator has the smallest bias, when α≤ 0.6, and MSE,
when α≤ 0.7. However, B3 from Taylor’s law of the local semi-
variance has better performance, especially much smaller bias,
than HI.Opt for α≥ 0.8. Since HI.Opt tends to overestimate α,
especially when α≥ 0.7, we defined the estimator MHB3 to be

Table 2. MSE (×103) (mean squared [estimate minus true α]) for
tail-index estimators B1, B2, B3, HI.N, HI.M, HI.Opt, and MHB3 with
sample size n = 104 from F(1,α)

α B1 B2 B3 HI.N HI.M HI.Opt MHB3

0.1 0.14 0.15 0.11 2.61 20.06 0.02 0.10
0.2 0.53 0.58 0.35 4.73 9.13 0.09 0.31
0.3 1.13 1.23 0.71 7.33 6.31 0.19 0.57
0.4 1.86 1.96 1.16 9.15 6.39 0.34 0.85
0.5 2.60 2.66 1.76 9.12 6.76 0.54 1.15
0.6 3.47 3.20 2.32 7.93 6.13 0.84 1.53
0.7 4.15 3.38 2.60 6.46 5.30 1.52 1.94
0.8 4.32 3.05 2.28 6.97 6.67 4.35 2.13
0.9 3.59 2.10 1.33 57.51 58.26 26.36 1.33

the minimum of B3 and HI.Opt. This MHB3 not only reduces
the bias dramatically but also improves the MSE of B3 for α
close to 1.

The advantages of B3 and MHB3 gradually vanish when sam-
ple size increases because k = n2/3 is an asymptotically optimal
choice. However, for sample sizes smaller than 104, B3 and
MHB3 can improve HI.Opt even more. More comparisons are
in SI Appendix for sample sizes n = 102, 103, and 105. On the
other hand, although the behavior of B1, B2, and B3 depends
on c in F (c,α), one sees similar patterns in bias and MSE. B3

and MHB3 still have better bias and MSE for α≥ 0.8 for small
sample sizes. More comparisons are in SI Appendix for F (2,α)
and F (0.5,α).

Tables in SI Appendix also show that both bias and MSE de-
crease when sample size increases, as expected of consistent
estimators and as proved in Corollary 1.

B. Asymptotic Distribution of N+
n /nα. To illustrate Theorem 9, we

generate 103 independent random samples from F (1,α) with
sample size n = 106 and calculate N+

n /nα for each random
sample. We use the 103 values ofN+

n /nα to estimate the distribu-
tion of N+

n /nα. To estimate the distribution of U−α/Γ(1− α),
we generate 103 independent random values U1, . . . ,U103 from
F (1,α) and calculate the corresponding U−α

i /Γ(1− α) for i =
1, . . . , 103. Then, we use the 103 values of U−α

i /Γ(1− α) to
estimate the distribution of U−α/Γ(1− α). The histograms and
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Fig. 1. Histogram and quantile–quantile plot of N+
n /nα and U−α/Γ(1 − α) for α = 0.25. The P value of the KS test is 0.1995.
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Fig. 2. Histogram and quantile–quantile plot of N+
n /nα and U−α/Γ(1 − α) for α = 0.50. The P value of the KS test is 0.9135.

quantile–quantile plots of N+
n /nα and U−α/Γ(1− α) with

α= 0.25 and α= 0.5 are in Figs. 1 and 2, respectively. The
histograms mostly overlap. The P values of the two-sample
Kolmogorov–Smirnov (KS) test are 0.1995 and 0.9135, respec-
tively. These observations support the convergence of N+

n /nα in
distribution.

As expected, the speed of convergence ofN+
n /nα in Theorem 9

depends on α. Similarly, the speeds of convergence of the
moment ratios in Theorems 3 and 6 also depend on both α
and the orders of the moments. We discuss the sample sizes
required to see the convergence in distributions in Theorems 3,
6, and 9 in SI Appendix. From our simulation results, smaller α

and higher-order moments result in faster convergence in distri-
bution for the ratios of the moments.

Data Availability. Computer code has been deposited in GitHub
(https://github.com/cftang9/TLHM). Readers can generate the tables and
figures using the R code there.
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Section A proves the assertions in Section 3 of the main text (semivariances). Section B does the same for Section 4 (higher1

moments). Section C does the same for Section 5 (number of observations that exceed the sample mean). Section D establishes2

the asymptotic properties of the modified financial ratios, such as quasi-concavity, scale-invariance, monotonicity, and sensitivity3

to the tail index of the distribution. Section E amplifies the results of Section 6 with more simulation results for the tail-index4

estimators. Section F examines the effects of sample size on the convergence of some distributions and statistics. Section G5

gives the references used in these Supplementary Materials.6

The indicator function I(A) of an event A is defined as

I(A) :=
{

1, if event A occurs;
0, if event A does not occur.

Let d→ mean “converges in distribution to”. Let p→ mean “converges in probability to”. Let a.s.−→ mean “converges almost surely7

to”.8

A. Proofs in Section 3: semivariances9

Proof of Theorem 1. For a > 0, define

Nn(a) := #{Xi ≤ a|i ∈ {1, . . . , n}}. [S.1]

By definition,

I(M ′
1 > a) =

{
1, if M ′

1 > a;
0, if M ′

1 ≤ a.
[S.2]

If Xi ≤ a, then

(Xi −M ′
1)2 = (M ′

1 −Xi)2 ≥ (M ′
1 − a)2I(M ′

1 > a),

hence

(Xi −M ′
1)2

M ′2
1

=
(

1 − Xi
M ′

1

)2

≥
(

1 − a

M ′
1

)2

I(M ′
1 > a), [S.3]

and therefore

v−
n

M ′2
1

= 1
n− 1

∑
i:Xi≤M′

1

(Xi −M ′
1)2

M ′2
1

≥ Nn(a)
n− 1

(
1 − a

M ′
1

)2

I(M ′
1 > a). [S.4]

The inequality in Eq. (S.4) is obtained by first omitting from the summation any term in which a < Xi ≤ M ′
1, and then using10

the inequality Eq. (S.3) to replace each term in which Xi ≤ a by its lower bound. Eq. (S.4) is a convenient lower bound.11

By the strong law of large numbers for nonnegative random variables with mean +∞, M ′
1

a.s.−→ ∞ as n → ∞. Consequently,
for fixed a, as n → ∞,

I(M ′
1 > a) a.s.−→ 1, [S.5](

1 − a

M ′
1

)2
a.s.−→ 1. [S.6]
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According to the strong law of large numbers, for fixed a, as n → ∞,

Nn(a)
n− 1

a.s.−→ FX(a) := P(X ≤ a). [S.7]

From Eq. (S.4), Eq. (S.5), Eq. (S.6), and Eq. (S.7), for any a > 0,

lim inf
n→∞

v−
n

M ′2
1

≥ FX(a) a.s.. [S.8]

Letting a → ∞, Eq. (S.8) gives

lim inf
n→∞

v−
n

M ′2
1

≥ 1 a.s.. [S.9]

According to a similar argument of Brown et al. (1, p. 665), for a given M ′
1, the maximal value of v−

n is attained when any
n − 1 of Xis equal 0 and the one remaining Xi equals nM ′

1. For such values, v−
n = (n − 1)M ′2

1 /(n − 1) = M ′2
1 . Thus in all

cases, v−
n ≤ M ′2

1 and

lim sup
n→∞

v−
n

M ′2
1

≤ 1 a.s.. [S.10]

From Eq. (S.9) and Eq. (S.10), v−
n /M

′2
1

a.s.−→ 1 as n → ∞.12

Proof of Corollary 1. From Theorem 1, as n → ∞,

log v−
n

logM ′
1

= log[v−
n /(M ′

1)2]
logM ′

1
+ log(M ′

1)2

logM ′
1

a.s.−→ 0 + 2 = 2.

13

Proof of Lemma 1. For any a > 0, by definition,

N−
n

n
≥ Nn(a)

n
I(M ′

1 > a). [S.11]

Hence, for all a > 0,

lim inf
n→∞

N−
n

n
≥ FX(a), [S.12]

and, letting a → ∞,

lim inf
n→∞

N−
n

n
≥ 1. [S.13]

But by definition N−
n /n ≤ 1. Therefore, N−

n /n
a.s.−→ 1 as n → ∞.14

Proof of Corollary 2. From Eq. (16) in Lemma 1, N−
n /n

a.s.−→ 1 as n → ∞. By Corollary 1, as n → ∞, we have

log v−∗
n

logM ′
1

= log v−
n + log(n/N−

n )
logM ′

1

a.s.−→ 2 + 0 = 2.

15

Proof of Corollary 3. We write

v−
n

M ′α∗
1

= v−
n

M ′2
1
M

′−(α∗−2)
1 .

From Theorem 1, v−
n /M

′2
1

a.s.−→ 1 as n → ∞. Since M ′
1

a.s.−→ ∞ and α∗ = (2 − α)/(1 − α) > 2, it follows that M ′−(α∗−2)
1

a.s.−→ 016

as n → ∞. Thus v−
n /M

′α∗
1

a.s.−→ 0. From Lemma 1, N−
n /n

a.s.−→ 1, so v−∗
n /M ′α∗

1
a.s.−→ 0 as n → ∞.17

By the standard definition, a sequence of random variables Yn indexed by n is defined to be Op(1), and we write Yn = Op(1),18

if for any ϵ > 0, there exist Mϵ, 0 < Mϵ < ∞ and Nϵ, 0 < Nϵ < ∞ such that P(|Yn| > Mϵ) < ϵ for all n > Nϵ. If Yn
d→ Y ,19

then Yn = Op(1), but the converse does not hold. We write Yn = op(1) if, for any ϵ > 0, P(|Yn| > ϵ) → 0 as n → ∞.20
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Lemma A.1. Let X1, . . . , Xn be a random sample from FX
d
≈ F (1, α), 0 < α < 1, satisfying Eq. (9). Given 0 < ϵ < 1, define

qϵ > 0 to be the quantile of F (1, α) such that F (1, α)(qϵ) = ϵ. Define bn := qϵn
(1−α)/α. Then as n → ∞,

sup
t≥bn

∣∣∣∣∑n

i=1 I(Xi > t)
nα

− n1−α{1 − FX(t)}
∣∣∣∣ p−→ 0.

Proof of Lemma A.1. Because X is non-atomic and nonnegative, qϵ > 0 so bn → ∞ since 0 < α < 1. From Einmahl (2, p. 80,
Corollary 1), for any positive sequences kn ≤ n and mn such that kn → ∞, kn/n → 0 and mn/k

1/2
n → ∞ as n → ∞,

sup
t≥F−1

X
(1−kn/n)

n

mn

∣∣∣∣∑n

i=1 I(Xi > t)
n

− {1 − FX(t)}
∣∣∣∣ p−→ 0,

where F−1
X is the quantile function of FX . We choose kn = n{1 − FX(bn)} = n{1 − FX(qϵn(1−α)/α)} and mn = nα. Then

mn

k
1/2
n

= nα

[n{1 − FX(qϵn(1−α)/α)}]1/2 = nα

nα/2

(
1

n1−α{1 − FX(qϵn(1−α)/α)}

)1/2

.

From Eq. (9), by Definition 1, n1−α{1 − FX(qϵn(1−α)/α)} → {qαϵ Γ(1 − α)}−1 > 0. Further, nα/nα/2 → ∞ as n → ∞ since21

0 < α < 1. Therefore mn/k
1/2
n → ∞ as n → ∞. Applying Einmahl (2, p. 80, Corollary 1) gives the claimed limit.22

We clarify that the quantile qϵ is specific to the particular stable law F (α, 1) with the Laplace transform in Eq. [7], so23

F (α, 1)(qϵ) = ϵ for 0 < ϵ < 1. By contrast, F−1
X is the quantile function of the distribution FX of any random variable X that24

satisfies Eq. [9].25

Lemma A.2. Let X1, . . . , Xn and X∗
1 , . . . , X

∗
n be two independent random samples from FX

d
≈ F (1, α) with α ∈ (0, 1). Let

these samples have sample means M ′
1 and M ′∗

1 , respectively. Then∑n

i=1 I(Xi > M ′∗
1 )

nα
= Op(1),

(∑n

i=1 I(Xi > M ′∗
1 )

nα

)−1

= Op(1). [S.14]

We clarify that M ′∗
1 is the sample mean of the second sample {X∗

i }ni=1 and I(Xi > M ′∗
1 ) = 1 if and only if the element Xi26

of the first sample {Xi}ni=1 exceeds the sample mean M ′∗
1 of the second sample {X∗

i }ni=1.27

Proof. Given 0 < ϵ < 1, define qϵ > 0 to be the quantile of F (1, α) such that F (1, α)(qϵ) = ϵ. Define bn := qϵn
(1−α)/α. Then

bn → ∞ as n → ∞ because 0 < α < 1. To show n−α∑n

i=1 I(Xi > M ′∗
1 ) = Op(1), we let C > 0 be any positive constant and

let FM′∗
1

be the distribution of M ′∗
1 . Since X1, . . . , Xn and M ′∗

1 are independent,

P
(∑n

i=1 I(Xi > M ′∗
1 )

nα
> C

)
=
∫ bn

0
P
(∑n

i=1 I(Xi > t)
nα

> C

)
dFM′∗

1
(t) +

∫ ∞

bn

P
(∑n

i=1 I(Xi > t)
nα

> C

)
dFM′∗

1
(t). [S.15]

The first term on the right side of Eq. (S.15) is bounded above by FM′∗
1

(bn), where

FM′∗
1

(bn) = P
(∑

i=1 X
∗
i

n
≤ qϵn

(1−α)/α
)

= P
(∑

i=1 X
∗
i

n1/α ≤ qϵ

)
→ F (1, α)(qϵ) = ϵ,

because n−1/α∑n

i=1 X
∗
i

d−→ F (1, α) as n → ∞ from Albrecher et al. (3, p. 362, Remark 2.1). For an upper bound for the
second term on the right side of Eq. (S.15), we observe that∫ ∞

bn

P
(∑n

i=1 I(Xi > t)
nα

> C

)
dFM′∗

1
(t) ≤ P

(∑n

i=1 I(Xi > bn)
nα

> C

)
.

Therefore it suffices to show that n−α∑n

i=1 I(Xi > bn) = Op(1). From Lemma A.1, as n → ∞,∣∣∣∣∑n

i=1 I(Xi > bn)
nα

− n1−α{1 − FX(bn)}
∣∣∣∣ p→ 0.

Because bn = qϵn
(1−α)/α, we have n1−α{1 − FX(bn)} = (bαn/qαϵ ){1 − FX(bn)} → {qαϵ Γ(1 − α)}−1 as n → ∞. Therefore∑n

i=1 I(Xi > bn)
nα

p→ {qαϵ Γ(1 − α)}−1
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as n → ∞ and n−α∑n

i=1 I(Xi > bn) = Op(1).28

A similar calculation replacing qϵ by q1−ϵ proves the second claim in Lemma A.2 as follows. For 0 < ϵ < 1, recall that qϵ is
the quantile of X such that F (1, α)(qϵ) = ϵ. Here we define bn := q1−ϵn

(1−α)/α. Then bn → ∞ and, for a given C > 0, in this
case

P

((∑n

i=1 I(Xi > M ′∗
1 )

nα

)−1

> C

)

=
∫ bn

0
P
(∑n

i=1 I(Xi > t)
nα

<
1
C

)
dFM′∗

1
(t) +

∫ ∞

bn

P
(∑n

i=1 I(Xi > t)
nα

<
1
C

)
dFM′∗

1
(t). [S.16]

For the second term on the right side of Eq. (S.16),∫ ∞

bn

P
(∑n

i=1 I(Xi > t)
nα

<
1
C

)
dFM′∗

1
(t) ≤ 1 − FM′∗

1
(bn).

Because n−1/α∑n

i=1 X
∗
i

d−→ F (1, α), we have, as n → ∞,

1 − FM′∗
1

(bn) = P
(∑

i=1 X
∗
i

n
> q1−ϵn

(1−α)/α
)

= P
(∑

i=1 X
∗
i

n1/α > q1−ϵ

)
→ 1 − F (1, α)(q1−ϵ) = ϵ.

For the first term on the right side of Eq. (S.16), when 0 ≤ t ≤ bn,

P
(∑n

i=1 I(Xi > t)
nα

<
1
C

)
≤ P

(∑n

i=1 I(Xi > bn)
nα

<
1
C

)
.

From Lemma A.1, as n → ∞, ∑n

i=1 I(Xi > bn)
nα

p→ {qα1−ϵΓ(1 − α)}−1.

Therefore, for large enough C > 0 such that C−1 < {qα1−ϵΓ(1 − α)}−1, we have P
(
n−α∑n

i=1 I(Xi > bn) < C−1) → 0 as29

n → ∞.30

Lemma A.3. Let X1, . . . , Xn be a random sample of size n from the distribution satisfying X
d
≈ F (c, α), c > 0, 0 < α < 1,

with sample mean M ′
1. Then, with N+

n defined in Eq. (5),

N+
n

nα
:=
∑n

i=1 I(Xi > M ′
1)

nα
= Op(1),

(
N+
n

nα

)−1

= Op(1).

Proof of Lemma A.3. Consider k > 1 independent random samples, each of size n, from FX :

{X(1)
1 , · · · , X(1)

n }, {X(2)
1 , · · · , X(2)

n }, . . . , {X(k)
1 , · · · , X(k)

n },

having sample means M ′(1)
1 , . . . ,M

′(k)
1 , respectively. Let

Ĩ := I

(
M ′

1 > min
1≤j≤k

M
′(j)
1

)
.

Recall that N+
n := #{i : Xi > M ′

1} (Eq. (5)) and define Nn(a) :=
∑n

i=1 I(Xi > a) for a ∈ R with

Nn

(
M

′(j)
1

)
=

n∑
i=1

I(Xi > M
′(j)
1 ), j = 1, . . . , k;

Nn

(
min

1≤j≤k
M

′(j)
1

)
=

n∑
i=1

I

(
Xi > min

1≤j≤k
M

′(j)
1

)
.

Then N+
n = N+

n Ĩ +N+
n (1 − Ĩ) with

N+
n (1 − Ĩ) = N+

n I{M ′
1 ≤ min

1≤j≤k
M

′(j)
1 }. [S.17]
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Next,

N+
n Ĩ = #{i : Xi > M ′

1}I{M ′
1 > min

1≤j≤k
M

′(j)
1 }

≤ #{i : Xi > min
1≤j≤k

M
′(j)
1 }I{M ′

1 > min
1≤j≤k

M
′(j)
1 }

=
{

max
1≤j≤k

#{i : Xi > M
′(j)
1 }

}
I{M ′

1 > min
1≤j≤k

M
′(j)
1 } (see below)

=
{

max
1≤j≤k

Nn

(
M

′(j)
1

)}
I{M ′

1 > min
1≤j≤k

M
′(j)
1 }

≤ max
1≤j≤k

Nn

(
M

′(j)
1

)
. [S.18]

The equality #{i : Xi > min1≤j≤kM
′(j)
1 } =

{
max1≤j≤k #{i : Xi > M

′(j)
1 }

}
holds because min1≤j≤kM

′(j)
1 is the smallest

member among {M ′(1)
1 , . . . ,M

′(k)
1 }, so for all 1 ≤ j ≤ k,

#{i : Xi > min
1≤j≤k

M
′(j)
1 } ≥ #{i : Xi > M

′(j)
1 }.

Therefore, the inequality above still holds for the maximum on the right-hand side, that is

#{i : Xi > min
1≤j≤k

M
′(j)
1 } ≥ max

1≤j≤k
#{i : Xi > M

′(j)
1 }.

On the other hand, because max1≤j≤k #{i : Xi > M
′(j)
1 } is the largest number among {#{i : Xi > M

′(1)
1 }, . . . ,#{i : Xi >

M
′(k)
1 }}, then

max
1≤j≤k

#{i : Xi > M
′(j)
1 } ≥ #{i : Xi > M

′(j)
1 },

for all 1 ≤ j ≤ k. Therefore,

max
1≤j≤k

#{i : Xi > M
′(j)
1 } ≥ #{i : Xi > min

1≤j≤k
M

′(j)
1 }

because min1≤j≤kM
′(j)
1 is still a member of {M ′(1)

1 , . . . ,M
′(k)
1 }. Since we have proved the weak inequality in both directions,31

we have the equality max1≤j≤k #{i : Xi > M
′(j)
1 } = #{i : Xi > min1≤j≤kM

′(j)
1 }.32

From Eq. (S.17) and Eq. (S.18),

N+
n ≤ max

(
max

1≤j≤k
Nn(M ′(j)

1 ), N+
n I{M ′

1 ≤ min
1≤j≤k

M
′(j)
1 }

)
. [S.19]

For M > 0, N+
n I(M ′

1 ≤ min1≤j≤kM
′(j)
1 ) > nαM implies that I(M ′

1 ≤ min1≤j≤kM
′(j)
1 ) = 1. Therefore

P
(
N+
n I(M ′

1 ≤ min1≤j≤kM
′(j)
1 )

nα
> M

)
≤ P

(
I{M ′

1 ≤ min
1≤j≤k

M
′(j)
1 } = 1

)
.

Because M ′
1,M

′(1)
1 , . . . ,M

′(k)
1 are independent and identically distributed, I(M ′

1 ≤ min1≤j≤kM
′(j)
1 ) = 1 if and only if M ′

1 is
the smallest number among M ′

1,M
′(1)
1 , . . . ,M

′(k)
1 , which has probability 1/(k + 1). Therefore,

P
(
N+
n I(M ′

1 ≤ min1≤j≤kM
′(j)
1 )

nα
> M

)
≤ 1
k + 1 . [S.20]

Furthermore, because the sample {X1, . . . , Xn} is independent of M ′(1)
1 , . . . ,M

′(k)
1 , it is also true that Nn(M ′(1)

1 ), . . . , Nn(M ′(k)
1 )

are identically distributed and for 1 ≤ j ≤ k,

P
(
Nn(M ′(1)

1 )
nα

> M

)
= P

(
Nn(M ′(j)

1 )
nα

> M

)
. [S.21]

Since P (max{Yl, l = 1, . . . ,m} > t) = P (∪1≤l≤m{Yl > t}) ≤
∑n

l=1 P ({Yl > t}) , from Eq. (S.19), Eq. (S.20), and Eq. (S.21),
we have

P
(
N+
n

nα
> M

)
≤ P

(
n−αN+

n I(M ′
1 ≤ min

1≤j≤k
M

′(j)
1 ) > M

)
+

{ ∑
1≤j≤k

P(n−αNn(M ′(j)
1 ) > M)

}

≤ P
(
I{M ′

1 ≤ min
1≤j≤k

M
′(j)
1 } = 1

)
+

{ ∑
1≤j≤k

P(n−αNn(M ′(j)
1 ) > M)

}
≤ 1
k + 1 + kP

(
n−αNn(M ′(1)

1 ) > M
)
.
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Given ϵ > 0, we can choose a large enough k to make 1/(k+ 1) small enough so that 1/(k+ 1) < ϵ/2. For the chosen k, because33

Nn(M ′(1)
1 ) = Op(1) from Lemma A.2, we can further choose M large enough that P(n−αNn(M ′(1)

1 ) > M) < ϵ/2k for a large34

enough n, and then P(n−αN+
n > M) < ϵ.35

Proof of Theorem 2. Since vn = v−
n + v+

n , it follows from Eq. (18) for v−
n and from Eq. (11) for vn that v+

n /(M ′
1)α

∗ d→ W as
n → ∞. Hence as n → ∞,

log v+
n − α∗ logM ′

1
d→ logW. [S.22]

Dividing both sides of Eq. (S.22) by logM ′
1, and employing a version of Slutsky’s theorem (Arnold (4, p. 242, Corollary

6.8(c))), gives, as n → ∞,
log v+

n

logM ′
1

− α∗ p→ 0,

which is the first part of Eq. (19). According to Lemma A.3, N+
n /n

α = Op(1) and nα/N+
n = Op(1). Then

Op(1) = log(N+
n /n

α) = logN+
n − α logn,

Op(1) = log(nα/N+
n ) = − logN+

n + α logn,

so as n → ∞,

logN+
n

logn
p→ α,

log N+
n
n

logn
p→ α− 1,

log n

N+
n

logn
p→ 1 − α. [S.23]

Recall that n−( 1−α
α

)M ′
1
d→ F (1, α) as n → ∞ [Feller (5, p. 448)]. Then logM ′

1 − ( 1−α
α

) logn = Op(1) and

logM ′
1

logn
p→ 1 − α

α
. [S.24]

From Eq. (S.23) and Eq. (S.24), as n → ∞,

log(n/N+
n )

logM ′
1

= log(n/N+
n )/ logn

logM ′
1/ logn

p→ 1 − α

(1 − α)/α = α. [S.25]

From the definition Eq. (6) of the local upper semivariance,

v+∗
n = v+

n

(
n− 1
N+
n

)
. [S.26]

Eq. (S.26), Eq. (S.25), and Eq. (19) give, as n → ∞,

log v+∗
n

logM ′
1

= log(v+
n )

logM ′
1

+ log((n− 1)/N+
n )

logM ′
1

p→ 2 − α

1 − α
+ α = 2 − α2

1 − α
,

which is the second part of Eq. (19).36

B. Proofs in Section 4: higher moments37

We assume 0 < α < 1 throughout. To prove Theorem 3, we recall a standard definition and prove a lemma.38

Definition B.1. For two sequences bn, cn such that bn → ∞ and cn → ∞ as n → ∞, define bn ∼ cn to mean that39

limn→∞ bn/cn = 1.40

Define an as a sequence of nonnegative numbers such that 1 −FX(an) ∼ n−1 where FX
d
≈ F (1, α) as in Definition 1, Eq. (9).41

Thus an ∼ {n/Γ(1 − α)}1/α.42

Lemma B.1. Given s > 0, t > 0, y > 0, and h1, h2 > 0, the equation sxh2 + txh1 − y = 0 has exactly one positive root43

x = rh2,h1 (y, s, t) and the equation sxh2/ah2
n + txh1/ah1

n − y = 0 has exactly one positive root x = anrh2,h1 (y, s, t).44

Proof. The function sxh2 +txh1 −y is strictly increasing in x > 0 because it has a positive first derivative s·h2x
h2−1+t·h1x

h1−1 >
0 for x > 0. When x = 0, then sxh2 + txh1 − y = −y < 0. When x = (y/t)1/h1 > 0, then sxh2 + txh1 − y > txh1 − y = 0 . The
unique positive root must be in the interval (0, (y/t)1/h1 ). If x = anrh2,h1 (y, s, t), then

sxh2/ah2
n + txh1/ah1

n − y = s{anrh2,h1 (y, s, t)}h2/ah2
n + t{anrh2,h1 (y, s, t)}h1/ah1

n − y

= s{rh2,h1 (y, s, t)}h2 + t{rh2,h1 (y, s, t)}h1 − y = 0.
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Proof of Theorem 3. The first part of the proof of the convergence in distribution briefly follows the proof of Albrecher et al. (3,
p. 361, Theorem 2.1) and Brown et al. (1). For X1

d= FX and h > 0, we calculate the following integral by integration by parts:

1 − E[e−θXh
1 −ψX1 ] =

∫ ∞

0
(1 − e−θxh−ψx) dFX(x) =

∫ ∞

0
{1 − FX(x)}(hθxh−1 + ψ)e−θxh−ψx dx.

Set y = θxh + ψx. Then

1 − E[e−θXh
1 −ψX1 ] =

∫ ∞

0
[1 − FX{rh(y, θ, ψ)}]e−y dy, [S.27]

where x = rh(y, θ, ψ) is the only positive root of θxh + ϕx− y = 0. Setting θ = s/ahn and ψ = t/an, we write

E(e−s(1/ah
n)
∑n

i=1
Xh

i −t(1/an)
∑n

i=1
Xi ) = exp{n logE(e−s(1/ah

n)Xh
1 −t(1/an)X1 )}.

Because an → ∞ as n → ∞, we have E(e−s(1/ah
n)Xh

1 −t(1/an)X1 ) → 1 as n → ∞. Then by Taylor’s expansion of the log function,

exp{n logE(e−s(1/ah
n)Xh

1 −t(1/an)X1 )} ∼ exp{−n(1 − E[e−s(1/ah
n)Xh

1 −t(1/an)X1 ])}

= exp
{

−n
∫ ∞

0

[
1 − FX

{
anrh(y, s/ahn, t/an)

}]
e−y dy

}
.

The last equality holds because of Eq. (S.27). Lemma B.1 shows that rh(y, s/ahn, t/an)/an = rh(y, s, t), where x = rh(y, s, t) is
the unique positive root of sxh + tx− y = 0. Then for every positive integer n,

1 − FX
{
rh(y, s/ahn, t/an)

}
= 1 − FX

{
an
rh(y, s/ahn, t/an)

an

}
= 1 − FX {anrh(y, s, t)} .

From Eq. (9) and an ∼ {n/Γ(1 − α)}1/α, we have

1 − FX {anrh(y, s, t)} ∼ {anrh(y, s, t)}−α

Γ(1 − α) ∼
Γ(1−α)

n
{rh(y, s, t)}−α

Γ(1 − α) = 1
n

{rh(y, s, t)}−α.

On the other hand, sxh + tx− y < 0 when x = 0 and sxh + tx− y > tx− y = 0 when x = y/t. Then 0 < rh(y, s, t) < y/t
because sxh + tx − y is strictly increasing in x > 0. Because

∫∞
0 {y/t}−αe−y dy = tαΓ(1 − α) < ∞, by the dominated

convergence theorem, the limit of the joint Laplace transform of ( n

ah
n
M ′
h,

n
an
M ′

1) exists and is given by

lim
n→∞

E
(
e

−(s/ah
n)
∑n

i=1
Xh

i −(t/an)
∑n

i=1
Xi

)
= exp

{
−
∫ ∞

0
{rh(y, s, t)}−αe−y dy

}
. [S.28]

We conclude that
(
n

ah
n
M ′
h,

n
an
M ′

1

)
d→ (Uh, V ) as n → ∞ where (Uh, V ) has the joint Laplace transform Eq. (S.28). Therefore

by Slutsky’s theorem, as n → ∞, for h > α,

M ′
h

(M ′
1)α(h,1) = ahn/n

(an/n)α(h,1)

n

ah
n
M ′
h

( n
an
M ′

1)α(h,1)
d→ {Γ(1 − α)}

h−1
1−α · Uh

V α(h,1) .

Lemma B.2. Under the assumptions of Theorem 3,

M ′
h

(M ′
1)α(h,1) = Op(1), (M ′

1)α(h,1)

M ′
h

= Op(1).

Proof. From Theorem 3, as n → ∞,

M ′
h

(M ′
1)α(h,1)

d→ {Γ(1 − α)}
h−1
1−α

Uh
V α(h,1) ,

(M ′
1)α(h,1)

M ′
h

d→ {Γ(1 − α)}
1−h
1−α

V α(h,1)

Uh
.

Then it suffices to show that, for any ϵ > 0,

lim
ϵ→0

P
(

Uh
V α(h,1) < ϵ

)
= 0, lim

ϵ→0
P
(
V α(h,1)

Uh
< ϵ

)
= 0.
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Given ϵ > 0 and c > 0,

P
(

Uh
V α(h,1) ≤ ϵ

)
= P

(
Uh

V α(h,1) ≤ ϵ, V α(h,1) ≤ c
)

+ P
(

Uh
V α(h,1) ≤ ϵ, V α(h,1) > c

)
= P

(
Uh ≤ V α(h,1)ϵ, V α(h,1) ≤ c

)
+ P

(
Uh ≤ V α(h,1)ϵ, V α(h,1) > c

)
≤ P

(
Uh ≤ cϵ, V α(h,1) ≤ c

)
+ P

(
Uh ≤ V α(h,1)ϵ, V α(h,1) > c

)
≤ P (Uh ≤ cϵ) + P

(
V α(h,1) > c

)
= P (Uh ≤ cϵ) + P

(
V > c1/α(h,1)) .

Choose c = 1/ϵ1/2. Then

P
(

Uh
V α(h,1) ≤ ϵ

)
≤ P

(
Uh ≤ ϵ1/2)+ P

(
V > ϵ−1/2α(h,1))

= P
(

Uh
{Γ(1 − α/h)}h/α

≤ ϵ1/2

{Γ(1 − α/h)}h/α

)
+ P

(
V

{Γ(1 − α)}1/a >
ϵ−1/2α(h,1)

{Γ(1 − α)}1/α

)
.

Recall Remark 1 that Uh
d= F ({Γ(1−α/h)}h/α, α/h) and V d= F ({Γ(1−α)}1/α, α). Therefore, Uh/{Γ(1−α/h)}h/α d= F (1, α/h),

V/{Γ(1 − α)}1/α d= F (1, α), and

P
(

Uh
V α(h,1) ≤ ϵ

)
≤ F (1, α/h)

(
ϵ1/2

{Γ(1 − α/h)}h/α

)
+
{

1 − F (1, α)
(

ϵ−1/2α(h,1)

{Γ(1 − α)}1/α

)}
.

Feller (5, p. 448, XIII(6.1), (6.2)) states that ex
−α/h

F (1, α/h)(x) → 0 as x → 0 and xα{1 − F (1, α)(x)} → 1
Γ(1−α) as x → ∞.45

Therefore F (1, α/h)
(

ϵ1/2

{Γ(1−α/h)}h/α

)
→ 0, 1 − F (1, α)

(
ϵ−1/2α(h,1)

{Γ(1−α)}1/α

)
→ 0, and hence P

(
Uh

V α(h,1) ≤ ϵ
)

→ 0 as ϵ → 0. Using the46

similar arguments, we also have P
(
V α(h,1)

Uh
≤ ϵ
)

→ 0 as ϵ → 0.47

Proof of Theorem 4. From Theorem 3, for h > α, by Slutsky’s theorem, as n → ∞,

logM ′
h

logM ′
1

= log{M ′
h/(M ′

1)α(h,1)}
logM ′

1
+ log(M ′

1)α(h,1)

logM ′
1

p→ α(h, 1)

because M ′
1 and logM ′

1 diverge to infinity, and logM ′
h/(M ′

1)α(h,1) is bounded in probability from Lemma B.2. Using this result
for h1, h2 > α gives, by Slutsky’s theorem, as n → ∞,

logM ′
h2

logM ′
h1

=
logM ′

h2

logM ′
1

logM ′
1

logM ′
h1

p→ h2 − α

1 − α

1 − α

h1 − α
= h2 − α

h1 − α
.

48

To prove Corollary 4, we need a lemma.49

Lemma B.3. For all positive integers j ≤ h and h > 1, and for any 0 < α < 1, j − (h− j)α(j, 1) − α(h, 1) < 0.50

Proof. (i) When 1 < j < h,

j − (h− j)α(j, 1) − α(h, 1) = j(1 − α)
1 − α

− (h− j)(j − α)
1 − α

− h− α

1 − α

<
h(1 − α)

1 − α
− hj − hα− j2 + jα

1 − α
− h− α

1 − α
(because j < h, (1 − α) > 0)

= (1 − α)−1{h− hα− hj + hα+ j2 − jα− h+ α}

= (1 − α)−1{h− hj + j2 − jα− h+ α}

< (1 − α)−1{h− j2 + j2 − jα− h+ α} (because j < h)
= (1 − α)−1{−jα+ α}

= (1 − α)−1α{−j + 1}
< 0.

(ii) When j = 1 ≤ h, α(j, 1) = 1. Since we assume h > 1, 2 − h ≤ 0. Then

j − (h− j)α(j, 1) − α(h, 1) = 2 − h− h− α

1 − α
≤ −h− α

1 − α
< 0.

(iii) When 0 < j = h,

j − (h− j)α(j, 1) − α(h, 1) = h− α(h, 1) = h− h− α

1 − α
= h− hα− h+ α

1 − α
= α(1 − h)

1 − α
< 0.

51
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Proof of Corollary 4. Assuming that h > 1 is an integer, the binomial expansion gives

Mh

(M ′
1)α(h,1) = M ′

h

(M ′
1)α(h,1) +

h∑
j=1

(−1)j
(
h

j

)
(M ′

j)h−j(M ′
1)j

(M ′
1)α(h,1) ,

where

(M ′
j)h−j(M ′

1)j

(M ′
1)α(h,1) = (M ′

1)j−(h−j)α(j,1)−α(h,1)
(

M ′
j

(M ′
1)α(j,1)

)h−j

.

Lemma B.3 shows that the exponent of M ′
1, namely j − (h − j)α(j, 1) − α(h, 1), is negative for integers 1 ≤ j ≤ h and

h > 1. Therefore as n → ∞, (M ′
1)j−(h−j)α(j,1)−α(h,1) p→ 0. From Lemma B.2, {M ′

j/(M ′
1)α(j,1)}h−j is bounded in probability.

Therefore as n → ∞ ∣∣∣∣ Mh

(M ′
1)α(h,1) − M ′

h

(M ′
1)α(h,1)

∣∣∣∣ ≤
h∑
j=1

(
h

j

)
(M ′

j)h−j(M ′
1)j

(M ′
1)α(h,1)

p→ 0 [S.29]

and
Mh

(M ′
1)α(h,1)

d→ {Γ(1 − α)}
h−1
1−α

Uh
V α(h,1) .

52

Proof of Theorem 5. From Corollary 4, by Slutsky’s theorem, as n → ∞,

logMh

logM ′
1

= log{Mh/(M ′
1)α(h,1)}

logM ′
1

+ log(M ′
1)α(h,1)

logM ′
1

p→ α(h, 1)

because M ′
1 and logM ′

1 diverge to infinity and log{Mh/(M ′
1)α(h,1)} is bounded in probability from Lemma B.2. Since hi, i = 1, 2

are assumed to be positive integers, hi > 1, i = 1, 2, so from the first result in Theorem 5, we derive the second result in
Theorem 5 because, by Slutsky’s theorem, as n → ∞,

logMh2

logMh1
= logMh2

logM ′
1

logM ′
1

logMh1

p→ h2 − α

1 − α

1 − α

h1 − α
= h2 − α

h1 − α
.

53

To prove Theorem 6, we need the following lemma.54

Lemma B.4. If X d= FX such that 1 − FX(x) ∼ x−αℓ(x) where ℓ is a slowly varying function, i.e., limx→∞ ℓ(tx)/ℓ(x) = 1 for
any t > 0, and further ℓ is such that limx→∞ ℓ(x) = L, and if h2 ≥ h1 > α are two positive real numbers, then as n → ∞,

M ′
h2

(M ′
h1

)α(h2,h1)
d→ L

h1−h2
h1−α

Uh2

(Uh1 )α(h2,h1) ,

where the random vector (Uh1 , Uh2 ) has a joint Laplace transform with s > 0, t > 0,

E(e−sUh2 −tUh1 ) = exp
{

−
∫ ∞

0
{rh2,h1 (y, s, t)}−αe−y dy

}
,

and x = rh2,h1 (y, s, t) is the unique positive root of sxh2 + txh1 − y = 0 for y > 0.55

Proof of Lemma B.4. Define the sequence an, n = 1, 2, . . . as the solutions of n−1 = 1 − FX(an). Then an → ∞. Following the
line of argument in the proof of Theorem 3, we integrate by parts, with θ > 0, ψ > 0:

1 − E
[
e−θXh2

1 −ψXh1
1

]
=
∫ ∞

0
(1 − e−θxh2 −ψxh1 ) dFX(x)

=
∫ ∞

0
{1 − FX(x)}(h2θx

h2−1 + h1ψx
h1−1)e−θxh2 −ψxh1

dx.

Define y := θxh2 + ψxh1 . If x > 0, then y > 0 and

1 − E
[
e−θXh2

1 −ψXh1
1

]
=
∫ ∞

0

(
1 − FX{rh2,h1 (y, θ, ψ)}

)
e−y dy,
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where x = rh2,h1 (y, θ, ψ) is the positive root of θxh2 + ϕxh1 − y = 0. Set θ = s/ah2
n and ψ = t/ah1

n . Because
E(e−s(1/ah2

n )Xh2
1 −t(1/ah1

n )Xh1
1 ) → 1 as n → ∞, we approximate logE(e−s(1/ah2

n )Xh2
1 −t(1/ah1

n )Xh1
1 ) by

E(e−s(1/ah2
n )Xh2

1 −t(1/ah1
n )Xh1

1 ) − 1 (by the first-order Taylor expansion). Then

E

(
exp

{
−(s/ah2

n )
n∑
i=1

Xh2
i − (t/ah1

n )
n∑
i=1

Xh1
i

})
= exp{n logE(e−s(1/ah2

n )Xh2
1 −t(1/ah1

n )Xh1
1 )}

∼ exp{−n(1 − E[e−s(1/ah2
n )Xh2

1 −t(1/ah1
n )Xh1

1 ])}

= exp
{

−
∫ ∞

0
n
[
1 − FX

{
rh2,h1 (y, s/ah2

n , t/a
h1
n )
}]
e−y dy

}
.

From Lemma B.1, a−1
n rh2,h1 (y, s/ah2

n , t/a
h1
n ) = rh2,h1 (y, s, t), which implies that

1 − FX
{
rh2,h1 (y, s/ah2

n , t/a
h1
n )
}

= 1 − FX{ana−1
n rh2,h1 (y, s/ah2

n , t/a
h1
n )} = 1 − FX{anrh2,h1 (y, s, t)}.

Because 1 − FX(x) ∼ x−αℓ(x),

n[1 − FX{anrh2,h1 (y, s, t)}] ∼ n{anrh2,h1 (y, s, t)}−αℓ{anrh2,h1 (y, s, t)}.

From the definition of the slowly varying function, because the constant rh2,h1 (y, s, t) > 0 and an → ∞ as n → ∞, we have

n{anrh2,h1 (y, s, t)}−αℓ{anrh2,h1 (y, s, t)} ∼ n{anrh2,h1 (y, s, t)}−αℓ(an) = n{rh2,h1 (y, s, t)}−αa−α
n ℓ(an).

By our earlier definition, a−α
n ℓ(an) ∼ 1 − FX(an) = n−1. Therefore

n{rh2,h1 (y, s, t)}−αa−α
n ℓ(an) ∼ n{rh2,h1 (y, s, t)}−αn−1 = {rh2,h1 (y, s, t)}−α.

Hence,

lim
n→∞

E

(
exp

{
−(s/ah2

n )
n∑
i=1

Xh2
i − (t/ah1

n )
n∑
i=1

Xh1
i

})
= exp

{
−
∫ ∞

0
{rh2,h1 (y, s, t)}−αe−y dy

}
.

Therefore,
(

n

a
h2
n

M ′
h2 ,

n

a
h1
n

M ′
h1

)
converges to (Uh2 , Uh1 ) in distribution as n → ∞. By Slutsky’s theorem, for h1, h2 > α,

M ′
h2

(M ′
h1

)α(h2,h1) = ah2
n /n(

ah1
n /n

)α(h2,h1)

n

a
h2
n

M ′
h2(

n

a
h1
n

M ′
h1

)α(h2,h1)
d→ L

h1−h2
h1−α

Uh2

(Uh1 )α(h2,h1)

as n → ∞ because limn→∞ ℓ(an) = limx→∞ ℓ(x) = L.56

Proof of Theorem 6. Theorem 6 is a special case of Lemma B.4 with L = {Γ(1 − α)}−1.57

Proof of Corollary 5. We first show that, for a positive integer h > 1, as n → ∞,

Mh

M ′
h

p→ 1. [S.30]

Indeed, the binomial expansion of Mh gives

Mh

M ′
h

= 1 +
h∑
j=1

(−1)j
(
h

j

)
(M ′

j)h−j(M ′
1)j

M ′
h

,

where

(M ′
j)h−j(M ′

1)j

M ′
h

=
(M ′

j)h−j(M ′
1)j

(M ′
1)α(h,1)

(M ′
1)α(h,1)

M ′
h

.

From Eq. (S.29), we have (M ′
j)h−j(M ′

1)j/(M ′
1)α(h,1) = op(1). From Lemma B.2, we also have (M ′

1)α(h,1)/M ′
h = Op(1).

Therefore, (M ′
j)h−j(M ′

1)j/M ′
h = op(1) and∣∣∣∣Mh

M ′
h

− 1
∣∣∣∣ ≤

h∑
j=1

(
h

j

)
(M ′

j)h−j(M ′
1)j

M ′
h

=
h∑
j=1

(
h

j

)
op(1)Op(1) = op(1).
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This proves Eq. (S.30). We showed in Lemma B.4 and Theorem 6 that
(

n

a
h1
n

M ′
h1 ,

n

a
h2
n

M ′
h2

)
d→ (U1, U2) as n → ∞. So by the

continuous mapping theorem, as n → ∞,

nM ′
h2

(nM ′
h1

)
h2
h1

= ah2
n

(ah1
n )

h2
h1

n

a
h2
n

M ′
h2(

n

a
h1
n

M ′
h1

)h2
h1

= 1 ·
n

a
h2
n

M ′
h2(

n

a
h1
n

M ′
h1

)h2
h1

d→ U1

(U2)
h2
h1

.

Therefore, for positive integers h2 ≥ h1 > 1, applying Eq. (S.30) and the result immediately above gives

n
h1−h2

h1
Mh2

(Mh1 )h2/h1
= Mh2

M ′
h2

·

 nM ′
h2

(nM ′
h1

)
h2
h1

 ·
(
M ′
h1

Mh1

)h2
h1 d→ 1 · Uh1

(Uh2 )
h2
h1

· 1 = Uh1

(Uh2 )
h2
h1

,

as n → ∞ by Slutsky’s Theorem. Now

log |Mh2 |
log |Mh1 | =

log(|Mh2/M
′
h2 |) + logM ′

h2

log(|Mh1/M
′
h1

|) + logM ′
h1

=

log(|Mh2/M
′
h2

|)
logM′

h1
+

logM′
h2

logM′
h1

log(|Mh1/M
′
h1

|)

logM′
h1

+ 1
.

By the continuous mapping theorem, Eq. (S.30) implies log(|Mh1/M
′
h1 |) p→ 0 while logM ′

h1
a.s.→ ∞ as n → ∞. Therefore

log(|Mh1/M
′
h1 |)/logM ′

h1

p→ 0 and log(|Mh2/M
′
h2 |)/logM ′

h1

p→ 0 as both are close to 0 with probability approaching to 1 as
n → ∞. Theorem 4 gives (logM ′

h2 )/logM ′
h1

p→ α(h1, h2) as n → ∞. Therefore, another application of Slutsky’s Theorem
gives, as n → ∞,

log |Mh2 |
log |Mh1 |

p→ 0 + α(h2, h1)
0 + 1 = α(h2, h1).

58

Proof of Theorem 7. This proof is a general version of the proof of Theorem 1. Denote c+ = max(c, 0) for c ∈ R. If 0 < Xi ≤ a,
then, because Theorem 7 assumes h > 0,

[(M ′
1 −Xi)+]h ≥ [(M ′

1 − a)+]hI(M ′
1 > a) = (M ′

1 − a)hI(M ′
1 > a),

hence

[(M ′
1 −Xi)+]h

M ′h
1

=

[(
1 − Xi

M ′
1

)
+

]h
≥
(

1 − a

M ′
1

)h
I(M ′

1 > a). [S.31]

Therefore

M−
h

M ′h
1

= 1
n

n∑
i=1

[(M ′
1 −Xi)+]h

(M ′
1)h

≥ Nn(a)
n

(
1 − a

M ′
1

)h
I(M ′

1 > a). [S.32]

The inequality in Eq. (S.32) is obtained by omitting from the summation any term in which a < Xi ≤ M ′
1 and then using the59

inequality Eq. (S.31) to replace each term in which Xi ≤ a by its lower bound. Eq. (S.32) is a convenient lower bound.60

By the strong law of large numbers for random variables with an infinite mean, M ′
1

a.s.→ ∞ as n → ∞. Consequently, for
fixed a, as n → ∞, I(M ′

1 > a) a.s.→ 1, and (
1 − a

M ′
1

)h
a.s.→ 1. [S.33]

From Eq. (S.32), Eq. (S.5), Eq. (S.33), and Eq. (S.7), for all a > 0,

lim inf
n→∞

M−
h

M ′h
1

≥ F (a) a.s.. [S.34]

Letting a → ∞ in Eq. (S.34) gives

lim inf
n→∞

M−
h

M ′h
1

≥ 1 a.s.. [S.35]
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Brown et al. (1, p. 665, for h = 2) give an argument that is independent of h > 0 to show that for a given M ′
1 > 0, the

maximal value of M−
h is attained when any n− 1 of the Xis equal 0 and the one remaining Xi equals nM ′

1. For such values,
M−
h = (n− 1)M ′h

1 /n ≤ M ′h
1 . Thus in all cases, M−

h ≤ M ′h
1 and

lim sup
n→∞

M−
h

(M ′
1)h ≤ 1 a.s.. [S.36]

From Eq. (S.35) and Eq. (S.36), M−
h /(M

′
1)h a.s.−→ 1 and logM−

n − h logM ′
1

a.s.−→ 0 as n → ∞.61

Proof of Corollary 6. The first claim is a special case in Theorem 7 when h = 1. For the second claim, note that

M−
h

(M ′
1)α(h,1) =

M−
h

(M ′
1)h

1
(M ′

1)α(h,1)−h . [S.37]

From Theorem 7, the first factor on the right side of Eq. (S.37), M−
h

(M′
1)h , converges a.s. to 1 as n → ∞. In the second factor62

on the right side of Eq. (S.37), the exponent in the denominator is α(h, 1) − h = α · (h− 1)/(1 − α) > 0 because h > 1 and63

0 < α < 1. Hence 1
(M′

1)α(h,1)−h converges to 0 a.s. as n → ∞. According to Slutsky’s theorem, the ratio in Eq. (S.37) converges64

to 0 a.s. as n → ∞.65

For the third claim, we write

logM−
h

logM ′
1

=
logM−

h − h logM ′
1

logM ′
1

+ h logM ′
1

logM ′
1

=
logM−

h − h logM ′
1

logM ′
1

+ h.

From Theorem 7, logM−
h

−h logM′
1

logM′
1

converges to 0 a.s. as n → ∞. Again, according to Slutsky’s theorem, logM−
h /logM ′

1

converges to h a.s. as n → ∞. By definition, M−∗
h = nM−

h /N
−
n . Hence

logM−∗
h

logM ′
1

= logn/N−
n

logM ′
1

+
logM−

h

logM ′
1
.

From Lemma 1, N−
n /n converges to 0 a.s. as n → ∞. Due to Slutsky’s theorem, logM−∗

h /logM ′
1 converges to h a.s. as66

n → ∞.67

Theorem B.1. Consider a random sample X1, . . . , Xn from FX satisfying Eq. (9), i.e., such that X
d
≈ F (c, α). Then as68

n → ∞,69

1. for 0 < h < 1,

1
n

∑n

i=1 |Xi −M ′
1|h

(M ′
1)h − 1 = op(1) and

M+
h

(M ′
1)h = op(1);

2. for h = 1,

1
n

∑n

i=1 |Xi −M ′
1|h

(M ′
1)h

a.s.−→ 1 and M+
1

M ′
1

a.s.−→ 1;

3. for h > 1,

1
n

∑n

i=1 |Xi −M ′
1|h

(M ′
1)α(h,1) − M ′

h

(M ′
1)α(h,1) = op(1) and

M+
h

(M ′
1)α(h,1) − M ′

h

(M ′
1)α(h,1) = op(1).

To prove this result, we establish a useful lemma.70

Lemma B.5. For any real numbers 0 < r ≤ 1 and x and y,
∣∣|x|r − |y|r

∣∣ ≤
∣∣x− y

∣∣r.71

Proof. Here we apply the cr-inequality (6, pp. 319-320, Theorem (8)): for any real numbers x, y ∈ R and r > 0, |x+ y|r ≤72

cr(|x|r + |y|r) where cr = 1 when 0 < r ≤ 1 and cr = 2r−1 when 1 ≤ r < ∞.73

Lemma B.5 assumes 0 < r ≤ 1. From the cr-inequality, |x|r = |x− y + y|r ≤ |x− y|r + |y|r and then |x|r − |y|r ≤ |x− y|r.74

Exchanging x and y gives |y|r − |x|r ≤ |x− y|r. The two inequalities imply that
∣∣|x|r − |y|r

∣∣ ≤
∣∣x− y

∣∣r.75
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Proof of Theorem B.1. 1. When 0 < h < 1, we write

∣∣∣∣ 1
n

∑n

i=1 |Xi −M ′
1|h

(M ′
1)h − 1

∣∣∣∣ = 1
(M ′

1)h

∣∣∣∣∣ 1n
n∑
i=1

(|Xi −M ′
1|h − (M ′

1)h)

∣∣∣∣∣ .
From Lemma B.5, ∣∣∣∣∣ 1n

n∑
i=1

(|Xi −M ′
1|h − (M ′

1)h)

∣∣∣∣∣ ≤ 1
n

n∑
i=1

∣∣|M ′
1 −Xi|h − (M ′

1)h
∣∣

≤ 1
n

n∑
i=1

∣∣M ′
1 −Xi −M ′

1
∣∣h = 1

n

n∑
i=1

Xh
i = M ′

h,

where the penultimate equality follows because all Xi ≥ 0. From Lemma B.2, M ′
h/(M ′

1)α(h,1) = Op(1). Because
M ′

1
a.s.−→ ∞ as n → ∞,

M ′
h

(M ′
1)h = M ′

h

(M ′
1)α(h,1)

(M ′
1)α(h,1)

(M ′
1)h = Op(1)(M ′

1)α(h,1)−h = Op(1)(M ′
1)

α(h−1)
1−α = op(1),

as the exponent is negative.76

2. When h = 1, the identities |Xi −M ′
1| = (Xi −M ′

1)+ + (M ′
1 −Xi)+ and Xi −M ′

1 = (Xi −M ′
1)+ − (M ′

1 −Xi)+ imply that
|Xi −M ′

1| = (Xi −M ′
1)+ + (M ′

1 −Xi)+ = {Xi −M ′
1 + (M ′

1 −Xi)+} + (M ′
1 −Xi)+ = Xi −M ′

1 + 2(M ′
1 −Xi)+. Then

1
n

n∑
i=1

|Xi −M ′
1|h = 1

n

n∑
i=1

(Xi −M ′
1) + 2

n

n∑
i=1

(M ′
1 −Xi)+ = 2

n

n∑
i=1

(M ′
1 −Xi)+ = 2M−

1 .

From Theorem 7, M−
1 /M

′
1

a.s.→ 1 as n → ∞. So n−1∑n

i=1 |Xi − M ′
1|/M ′

1
a.s.→ 2 as n → ∞. But M+

1 = M−
1 because77

M1 = M+
1 −M−

1 and M1 = 0 by definition Eq. (2). Thus M+
1 /M

′
1

a.s.→ 1 as n → ∞.78

3. When h > 1, let ⌊h⌋ be the largest integer not greater than h. If h = ⌊h⌋, then as above,

1
n

n∑
i=1

|Xi −M ′
1|h = 1

n

n∑
i=1

{(Xi −M ′
1)+}h + 1

n

n∑
i=1

{(M ′
1 −Xi)+}h

= 1
n

n∑
i=1

(Xi −M ′
1)h + 1

n

n∑
i=1

{1 + (−1)h}(M ′
1 −Xi)h+ = Mh + {1 + (−1)h}M−

h .

From Eq. (S.29) in the proof of Corollary 4 , we have
∣∣∣ Mh

(M′
1)α(h,1) − M′

h

(M′
1)α(h,1)

∣∣∣ = op(1). On the other hand, from Theorem

7, M−
h /M

′h
1

p→ 1 as n → ∞. Therefore, as n → ∞,

∣∣∣∣ 2M−
h

(M ′
1)α(h,1)

∣∣∣∣ =
2M−

h

(M ′
1)α(h,1) = 2

M−
h

(M ′
1)hM

′h−α(h,1)
1

p→ 2 · 1 · 0 = 0

since M ′
1

a.s.−→ ∞ as n → ∞ and h− α(h, 1) < 0 for h > 1. Hence

∣∣∣∣ 1
n

∑n

i=1 |Xi −M ′
1|h

(M ′
1)α(h,1) − M ′

h

(M ′
1)α(h,1)

∣∣∣∣ =
∣∣∣∣Mh + {1 + (−1)h}M−

h

(M ′
1)α(h,1) − M ′

h

(M ′
1)α(h,1)

∣∣∣∣
≤
∣∣∣∣ Mh

(M ′
1)α(h,1) − M ′

h

(M ′
1)α(h,1)

∣∣∣∣+
∣∣∣∣ 2M−

h

(M ′
1)α(h,1)

∣∣∣∣ = op(1). [S.38]
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But if h > ⌊h⌋, then∣∣∣∣ 1
n

∑n

i=1 |Xi −M ′
1|h

(M ′
1)α(h,1) − M ′

h

(M ′
1)α(h,1)

∣∣∣∣ = 1
n(M ′

1)α(h,1)

∣∣∣∣∣
n∑
i=1

(|Xi −M ′
1|h −Xh

i )

∣∣∣∣∣
= 1
n(M ′

1)α(h,1)

∣∣∣∣∣
n∑
i=1

(|Xi −M ′
1|h −X

h−⌊h⌋
i |Xi −M ′

1|⌊h⌋) + (Xh−⌊h⌋
i |Xi −M ′

1|⌊h⌋ −Xh
i )

∣∣∣∣∣
= 1
n(M ′

1)α(h,1)

∣∣∣∣∣
n∑
i=1

{
(|Xi −M ′

1|h−⌊h⌋ −X
h−⌊h⌋
i )|Xi −M ′

1|⌊h⌋
}

+
{
X
h−⌊h⌋
i (|Xi −M ′

1|⌊h⌋ −X
⌊h⌋
i )

}∣∣∣∣∣
≤ 1
n(M ′

1)α(h,1)

∣∣∣∣∣
n∑
i=1

(|Xi −M ′
1|h−⌊h⌋ −X

h−⌊h⌋
i )|Xi −M ′

1|⌊h⌋

∣∣∣∣∣+ 1
n(M ′

1)α(h,1)

∣∣∣∣∣
n∑
i=1

X
h−⌊h⌋
i (|Xi −M ′

1|⌊h⌋ −X
⌊h⌋
i )

∣∣∣∣∣
≤ 1
n(M ′

1)α(h,1)

n∑
i=1

∣∣∣|Xi −M ′
1|h−⌊h⌋ −X

h−⌊h⌋
i

∣∣∣ |Xi −M ′
1|⌊h⌋ + 1

n(M ′
1)α(h,1)

n∑
i=1

X
h−⌊h⌋
i

∣∣∣|Xi −M ′
1|⌊h⌋ −X

⌊h⌋
i

∣∣∣ (because Xi ≥ 0)

≤ 1
n(M ′

1)α(h,1)

n∑
i=1

{∣∣−M ′
1|h−⌊h⌋∣∣ |Xi −M ′

1|⌊h⌋}+ 1
n(M ′

1)α(h,1)

n∑
i=1

X
h−⌊h⌋
i | −M ′

1|⌊h⌋

= (M ′
1)h−⌊h⌋

(M ′
1)α(h,1)

(
1
n

n∑
i=1

|Xi −M ′
1|⌊h⌋

)
+ (M ′

1)⌊h⌋

(M ′
1)α(h,1)

(
1
n

n∑
i=1

X
h−⌊h⌋
i

)

= (M ′
1)h−⌊h⌋(M ′

1)α(⌊h⌋,1)

(M ′
1)α(h,1)

( 1
n

∑n

i=1 |Xi −M ′
1|⌊h⌋

(M ′
1)α(⌊h⌋,1)

)
+ (M ′

1)⌊h⌋(M ′
1)α(h−⌊h⌋,1)

(M ′
1)α(h,1)

(
1
n

∑n

i=1 X
h−⌊h⌋
i

(M ′
1)α(h−⌊h⌋,1)

)
.

Since ⌊h⌋ is a positive integer, from Eq. (S.38) and Lemma B.2, we have

1
n

∑n

i=1 |Xi −M ′
1|⌊h⌋

(M ′
1)α(⌊h⌋,1) =

( 1
n

∑n

i=1 |Xi −M ′
1|⌊h⌋

(M ′
1)α(⌊h⌋,1) − M ′

h

(M ′
1)α(h,1)

)
+ M ′

h

(M ′
1)α(h,1) = op(1) +Op(1) = Op(1).

In addition, since h− ⌊h⌋ > 0, from Lemma B.2, we also have

Op(1) =
1
n

∑n

i=1 X
h−⌊h⌋
i

(M ′
1)α(h−⌊h⌋,1) =:

M ′
h−⌊h⌋

(M ′
1)α(h−⌊h⌋,1) .

Therefore, we claim∣∣∣∣ 1
n

∑n

i=1 |Xi −M ′
1|h

(M ′
1)α(h,1) − M ′

h

(M ′
1)α(h,1)

∣∣∣∣ ≤ (M ′
1)h−⌊h⌋+α(⌊h⌋,1)−α(h,1)Op(1) + (M1)⌊h⌋+α(h−⌊h⌋,1)−α(h,1)Op(1) = op(1).

To verify this claim, we check that h− ⌊h⌋ + α(⌊h⌋, 1) − α(h, 1) < 0 and ⌊h⌋ + α(h− ⌊h⌋, 1) − α(h, 1) < 0 for h > ⌊h⌋:

h− ⌊h⌋ + α(⌊h⌋, 1) − α(h, 1) = h− ⌊h⌋ + ⌊h⌋ − α

1 − α
− h− α

1 − α

= (h− ⌊h⌋)(1 − α)
1 − α

+ ⌊h⌋ − α

1 − α
− h− α

1 − α

= h− hα− ⌊h⌋ + α⌊h⌋ + ⌊h⌋ − α− h+ α

1 − α

= −hα+ α⌊h⌋
1 − α

= α(⌊h⌋ − h)
1 − α

< 0

and

⌊h⌋ + α(h− ⌊h⌋, 1) − α(h, 1) = ⌊h⌋ + h− ⌊h⌋ − α

1 − α
− h− α

1 − α

= ⌊h⌋ − α⌊h⌋ + h− ⌊h⌋ − α− h+ α

1 − α
= −α⌊h⌋

1 − α
< 0.

Because M ′
1

a.s.−→ ∞ as n → ∞, the last claimed equality holds.79
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Proof of Theorem 8. For 0 < h < 1, from Theorem B.1, M+
h /(M

′
1)h = op(1). For h = 1, from Theorem B.1, M+

h /M
′
1

p→ 1
as n → ∞. For h > 1, from Theorem B.1, M+

h /(M
′
1)α(h,1) − M ′

h/(M ′
1)α(h,1) = op(1). From Theorem 3, M ′

h/(M ′
1)α(h,1) d→

{Γ(1 − α)}
h−1
1−αUh/V

α(h,1) as n → ∞. Therefore, by Slutsky’s theorem, for h > 1, as n → ∞,

M+
h

(M ′
1)α(h,1) =

(
M+
h

(M ′
1)α(h,1) − M ′

h

(M ′
1)α(h,1)

)
+ M ′

h

(M ′
1)α(h,1)

d→ 0 + {Γ(1 − α)}
h−1
1−α

Uh
V α(h,1) .

Consequently,

logM+
h − α(h, 1) logM ′

1 = Op(1). [S.39]

Dividing both sides of Eq. (S.39) by logM ′
1, and employing Slutsky’s theorem, (Arnold (4, p. 242, Corollary 6.8(c)))

logM+
h

logM ′
1

− α(h, 1) p→ 0, [S.40]

because logM ′
1

a.s.−→ ∞ as n → ∞. Definition 3 of the local upper centered moments is

M+∗
h = M+

h

(
n

N+
n

)
. [S.41]

Eq. (S.25) gives [log(n/N+
n )]/logM ′

1
p→ α as n → ∞. Therefore, from Eq. (S.25) and Eq. (S.40), as n → ∞,

logM+∗
h

logM ′
1

=
logM+

h

logM ′
1

+ log(n/N+
n )

logM ′
1

p→ α(h, 1) + α = h− α2

1 − α
.

81

Proof of Corollary 7. For fixed c > 0, p > 1, and q > 1, if M ′
1 > c, then

ΦnFT(c, p, q) :=
[ 1
n

∑n

i=1[(Xi − c)+]p]1/p

[ 1
n

∑n

i=1[(c−Xi)+]q]1/q
≥

[ 1
n

∑n

i=1[(Xi −M ′
1)+]p]1/p

[ 1
n

∑n

i=1[(M ′
1 −Xi)+]q]1/q

=: ΦnFT(M ′
1, p, q).

Then, given C > 0, we have

P (ΦnFT(c, p, q) > C) = P
(
ΦnFT(c, p, q) > C,M ′

1 > c
)

+ P
(
ΦnFT(c, p, q) > C,M ′

1 ≤ c
)

≥ P
(
ΦnFT(M ′

1, p, q) > C,M ′
1 > c

)
+ P

(
ΦnFT(c, p, q) > C,M ′

1 ≤ c
)

≥ P
(
ΦnFT(M ′

1, p, q) > C
)

+ P
(
M ′

1 > c
)

− 1

+ P
(
M ′

1 ≤ c
)

− P
(
ΦnFT(c, p, q) ≤ C,M ′

1 ≤ c
)

≥ P
(
ΦnFT(M ′

1, p, q) > C
)

− P
(
ΦnFT(c, p, q) ≤ C,M ′

1 ≤ c
)

≥ P
(
ΦnFT(M ′

1, p, q) > C
)

− P
(
M ′

1 ≤ c
)
.

Because M ′
1

a.s.→ ∞ as n → ∞, P(M ′
1 ≤ c) → 0. Therefore, to show that P(ΦnFT(c, p, q) > C) → 1 as n → ∞, it suffices to show

that ΦnFT(M ′
1, p, q)

p→ ∞ as n → ∞. To do so, we write

ΦnFT(M ′
1, p, q) =

(M+
p )1/p

(M−
q )1/q

=
(

M+
p

M
′α(p,1)
1

)1/p

· (M ′
1)

α(p,1)
p

−1 ·
(
M ′q

1

M−
q

)1/q

.

From Lemma B.2, (M+
p /M

′α(p,1)
1 )1/p = Op(1). From Theorem 7,

(
M ′q

1 /M
−
q

)1/q a.s.→ 1. Because {α(p, 1)/p} − 1 = α(p −82

1)/{p(1 − α)} > 0 and because M ′
1

a.s.→ ∞ as n → ∞, we have (M ′
1)

α(p,1)
p

−1 a.s.→ ∞ as n → ∞. Thus Φn
FT(M ′

1, p, q)
p→ ∞ as83

n → ∞, as desired.84

Proof of Corollary 8. Theorem 8 gives (logM+
p )/logM ′

1
p→ α(p, 1) as n → ∞. Because q > 0, Corollary 6.2 gives

(logM ′
1)/logM−

q
p→ 1/q as n → ∞. Then by Slutsky’s theorem, as n → ∞,

logM+
p

logM−
q

=
logM+

p

logM ′
1

logM ′
1

logM−
q

p→ α(p, 1) · 1
q

= p− α

q(1 − α) .
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C. Proofs in Section 5: number of observations that exceed the sample mean86

Lemma C.1. Assume that two independent random samples {Xi}ni=1 and {X∗
i }ni=1 from FX

d
≈ F (1, α) with α ∈ (0, 1)

have sample means, M ′
1 and M ′∗

1 , respectively. Define N
∗
n(a) := #{X∗

i > a|i ∈ {1, . . . , n}} and recall the definition
Nn(a) := #{Xi > a|i ∈ {1, . . . , n}}. Then

Nn(M ′
1)

nα
− N

∗
n(M ′

1)
nα

= op(1).

We clarify that, in both terms on the left side above, M ′
1 is the sample mean of the first sample {Xi}ni=1 and N∗

n(M ′
1) counts87

how many members of the second sample {X∗
i }ni=1 exceed the sample mean M ′

1 of the first sample.88

Proof of Lemma C.1. Define Fn and F
∗
n to be the empirical survival functions of the random samples {Xi}ni=1 and {X∗

i }ni=1,
respectively. By the definitions, Nn(M ′

1)/nα = Fn(M ′
1)n1−α and N

∗
n(M ′

1)/nα = F
∗
n(M ′

1)n1−α. Given ϵ > 0, recall bn :=
qϵn

(1−α)/α as defined in Lemma A.1, where qϵ := F−1(1, α)(ϵ) and F−1(1, α) is the quantile function for F (1, α). Then

P
(∣∣Nn(M ′

1)/nα −N
∗
n(M ′

1)/nα
∣∣ > ϵ

)
= P

(∣∣Fn(M ′
1)n1−α − F

∗
n(M ′

1)n1−α∣∣ > ϵ
)

= P
(∣∣Fn(M ′

1)n1−α − F
∗
n(M ′

1)n1−α∣∣ > ϵ,M ′
1 ≤ bn

)
+ P

(∣∣Fn(M ′
1)n1−α − F

∗
n(M ′

1)n1−α∣∣ > ϵ,M ′
1 > bn

)
≤ P

(
M ′

1 ≤ bn
)

+ P
(∣∣Fn(M ′

1)n1−α − F
∗
n(M ′

1)n1−α∣∣ > ϵ,M ′
1 > bn

)
.

As n → ∞,

P
(
M ′

1 ≤ bn
)

= P
(∑n

i=1 Xi

n
≤ qϵn

1−α
α

)
= P

(∑n

i=1 Xi

n1/α ≤ qϵ

)
→ F (1, α)(qϵ) = ϵ

because
∑n

i=1 Xi/n
1/α d→ F (1, α) as n → ∞ (Albrecher et al. (3, Remark 2.1)). On the other hand,

P
(∣∣Fn(M ′

1)n1−α − F
∗
n(M ′

1)n1−α∣∣ > ϵ,M ′
1 > bn

)
≤ P

(
sup
t>bn

∣∣Fn(t)n1−α − F
∗
n(t)n1−α∣∣ > ϵ,M ′

1 > bn

)
≤ P

(
sup
t>bn

∣∣Fn(t)n1−α − F
∗
n(t)n1−α∣∣ > ϵ

)
≤ P

(
sup
t>bn

∣∣Fn(t)n1−α − FX(t)n1−α∣∣ > ϵ/2
)

+ P
(

sup
t>bn

∣∣FX(t)n1−α − F
∗
n(t)n1−α∣∣ > ϵ/2

)
= 2P

(
sup
t>bn

∣∣Fn(t)n1−α − FX(t)n1−α∣∣ > ϵ/2
)
.

The last equality holds because the two samples are identically distributed. From Lemma A.1, supt>bn

∣∣Fn(t)n1−α − FX(t)n1−α
∣∣89

p→ 0 as n → ∞. Hence 2P
(
supt>bn

∣∣Fn(t)n1−α − FX(t)n1−α
∣∣ > ϵ/2

)
→ 0 as n → ∞. The claim follows.90

Proof of Theorem 9. Let {X1, . . . , Xn} and {X∗
1 , . . . , X

∗
n} be two independent random samples from the same distribution FX

satisfying Eq. (9) with sample means M ′
1 and M ′∗

1 , respectively. Lemma C.1 shows that∑
I(Xi > M ′

1)
nα

−
∑

I(X∗
i > M ′

1)
nα

= op(1).

Because both samples have the same distribution, for all t ∈ R,

P
(∑

I(X∗
i > M ′

1)
nα

≤ t

)
= P

(∑
I(Xi > M ′∗

1 )
nα

≤ t

)
.

Consequently, Lemma C.1 justifies the second equality below:∑
I(Xi > M ′

1)
nα

=
∑

I(Xi > M ′
1)

nα
−
∑

I(X∗
i > M ′

1)
nα

+
∑

I(X∗
i > M ′

1)
nα

= op(1) +
∑

I(X∗
i > M ′

1)
nα

.

Because n−α∑ I(Xi > M ′
1) and n−α∑ I(X∗

i > M ′
1) are identically distributed for every finite sample size n, they must have91

the same limiting distribution.92
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Define

Un :=n−( 1−α
α )M ′∗

1 ,

Z∗
n :=n−α

n∑
i=1

I
(
Xi > n( 1−α

α )Un
)

= n−α
n∑
i=1

I(Xi > M ′∗
1 ).

Then as n → ∞, Un
d→ F (1, α). The conditional distribution of nαZ∗

n given Un = u is

Binomial
(
n, FX

(
n

1−α
α u

))
.

For any t > 0 and for any ϵ > 0, the Laplace transform of Z∗
n satisfies

E
[
e−tZ∗

n

]
= E

[
e−tZ∗

nI(Un ≤ ϵ)
]

+ E
[
e−tZ∗

nI(Un > ϵ)
]
.

For the first term on the right side, Z∗
n ≥ 0 implies E

[
e−tZ∗

nI(Un ≤ ϵ)
]

≤ E [I(Un ≤ ϵ)] = P(Un ≤ ϵ). For the second term
on the right side, using the tower property,

E
[
e−tZ∗

nI(Un > ϵ)
]

= E
[
E
[
e−tZ∗

nI(Un > ϵ)
∣∣∣Un]] .

If u ≤ ϵ, E
[
e−tZ∗

nI(Un > ϵ)|Un = u
]

= 0; and if u > ϵ, then E
[
e−tZ∗

nI(Un > ϵ)|Un = u
]

= E
[
e−tZ∗

n |Un = u
]

and

E
[
e−tZ∗

n

∣∣∣Un = u
]

= E
[
e− t

nα (nαZ∗
n)
∣∣∣Un = u

]
=
(
FX(n

1−α
α u) + FX(n

1−α
α u)e− t

nα

)n
=
(

1 − (1 − e− t
nα )FX(n

1−α
α u)

)n
(due to the conditional Binomial distribution of Z∗

n|Un = u)

=
[

1 −
{
t

nα
+R1n(t)

}{
nα−1u−α

Γ(1 − α) +R2n(u)
}]n

=
[

1 − tu−α

nΓ(1 − α) − t

nα
R2n(u) − nα−1u−α

Γ(1 − α) R1n(t) −R1n(t)R2n(u)
]n
.

Here |R1n(t)| ≤ t2/(2n2α) by the mean value theorem and |R2n(u)| ≤ ϵnα−1u−α/Γ(1 − α) because of Eq. (9) for large enough
n (also see Albrecher et al. (3)). Then∣∣∣ t

nα
R2n(u)

∣∣∣ ≤ ϵt

Γ(1 − α)u
−αn−1,

∣∣∣∣nα−1u−α

Γ(1 − α) R1n(t)
∣∣∣∣ ≤ t2

2Γ(1 − α)u
−αn−α−1,

|R1n(t)R2n(u)| ≤ ϵt2

2Γ(1 − α)u
−αn−α−1.

Let R3n(u, t) := n
{

t
nαR2n(u) + nα−1u−α

Γ(1−α) R1n(t) +R1n(t)R2n(u)
}

. Then

|R3n(u, t)| ≤ 2tϵ+ t2n−α + t2ϵn−α

2Γ(1 − α) u−α ≤ 2tϵ+ tϵ+ tϵ

2Γ(1 − α) u−α = 4tϵ
Γ(1 − α)u

−α

for a large enough n such that tn−α ≤ min{ϵ, 1}. Therefore

E
[
e−tZ∗

n

∣∣∣Un = u
]

=
[

1 − 1
n

{
tu−α

Γ(1 − α) +R3n(u, t)
}]n

,

and [
1 − u−α(t+ 4tϵ)

Γ(1 − α)

]n
≤ E

[
e−tZ∗

n

∣∣∣Un = u
]

≤
[

1 − u−α(t− 4tϵ)
Γ(1 − α)

]n
.

Hence

E
{[

1 − U−α
n (t+ 4tϵ)
Γ(1 − α)

]n
I(Un > ϵ)

}
≤ E

[
e−tZ∗

nI(Un > ϵ)
]

≤ E
{[

1 − U−α
n (t− 4tϵ)
Γ(1 − α)

]n
I(Un > ϵ)

}
.
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Applying the monotone convergence theorem gives

lim
n→∞

E
{[

1 − U−α
n (t+ 4tϵ)
Γ(1 − α)

]n
I(Un > ϵ)

}
≤ lim
n→∞

E
[
e−tZ∗

nI(Un > ϵ)
]

≤ lim
n→∞

E
{[

1 − U−α
n (t− 4tϵ)
Γ(1 − α)

]n
I(Un > ϵ)

}
.

Because (1 − t/n)n → exp(−t) uniformly over [0,∞) and Un
d→ U

d= F (1, α) as n → ∞, the bounded convergence theorem
yields

E
[

exp
{

−U−α(t+ 4tϵ)
Γ(1 − α)

}
I(U > ϵ)

]
≤ lim
n→∞

E
[
e−tZ∗

nI(Un > ϵ)
]

≤ E
[

exp
{

−U−α(t− 4tϵ)
Γ(1 − α)

}
I(U > ϵ)

]
.

Then, for ϵ small enough that t− 4tϵ > 0, as n → ∞ and ϵ → 0,

0 ≤ E
[

exp
{

−U−α(t+ 4tϵ)
Γ(1 − α) I(U ≤ ϵ)

}]
≤ E [I(U ≤ ϵ)] = P(U ≤ ϵ) → 0,

0 ≤ E
[

exp
{

−U−α(t− 4tϵ)
Γ(1 − α) I(U ≤ ϵ)

}]
≤ E [I(U ≤ ϵ)] = P(U ≤ ϵ) → 0,

0 ≤ E
[
e−tZ∗

nI(Un ≤ ϵ)
]

≤ E [I(Un ≤ ϵ)] = P(Un ≤ ϵ) → P(U ≤ ϵ) → 0.

By the bounded convergence theorem, as ϵ → 0,

E
[

exp
{

−U−α(t+ 4tϵ)
Γ(1 − α)

}
I(U > ϵ)

]
→ E

[
exp
{

−t
(

U−α

Γ(1 − α)

)}]
,

E
[

exp
{

−U−α(t− 4tϵ)
Γ(1 − α)

}
I(U > ϵ)

]
→ E

[
exp
{

−t
(

U−α

Γ(1 − α)

)}]
.

Thus we have shown that

lim
n→∞

E
[
e−tZ∗

n

]
= E

[
exp
{

−t
(

U−α

Γ(1 − α)

)}]
.

Because the Laplace transform is unique, we conclude that, as n → ∞,

Z∗
n

d→ U−α

Γ(1 − α) .

93

Proof of Theorem 10. To prove claim 1, from ε
d= Exp(1), we have, for any x ≥ 0, P(ε > x) = e−x. Hence

P
(
ε

U
> t
)

= P(ε > tU) = E
[
e−tU] = L (t) = e−tα ,

since U d= F (1, α). Because U and ε are independent, it follows that

P
((

ε

U

)α
> t
)

= P
(
ε

U
> t1/α

)
= e−(t1/α)α

= e−t.

Thus U−αεα
d= Exp(1), which proves claim 1.94

To prove claim 2, define Wα:=εα. Then, for any x ≥ 0, x not necessarily an integer, by the definition of the gamma function,

E(W x
α ) = E(εxα) =

∫ ∞

0
txαe−tdt = Γ(1 + xα).

Now, from claim 1, (Exp(1))x d= U−xαεxα, and by independence,

E(U−xαW x
α ) = E(U−xα)E(W x

α )
= E(U−xα)Γ(1 + xα) = E[(Exp(1))x] = Γ(1 + x)

or

E(U−xα) = Γ(1 + x)
Γ(1 + xα) = Γ(1 + x)

E(W x
α ) , x ≥ 0.
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To prove claim 3, again defining Wα := εα, we have

E[V 2]
2(E[V ])2 = {Γ(1 + α)}2

Γ(1 + 2α) = (E[Wα])2

E[W 2
α] < 1.

The final inequality holds because W ≥ 0 and for K ≥ 2, E[WK
α ] ≥ (E[Wα])K with equality if and only if W is constant. Since

W is not constant, the inequality is strict. Thus

E[V 2] < 2(E[V ])2 ⇐⇒ Var(V ) < (E[V ])2

⇐⇒ SD(V ) < E[V ].

To prove claim 4, since E(WK
α ) = Γ(1 +Kα), we have, for K ≥ 2,

E[V K ]
K!(E[V ])K = Γ(1 + α)K

Γ(1 +Kα) = (E[Wα])K

E[WK
α ]

< 1.

The argument for the strict inequality is the same as in the proof of claim 3.95

To prove claim 5, we use a random series representation of stable laws (Samorodnitsky and Taqqu (7, p. 22, their Prop.
1.4.1)),

U
d= {Γ(1 − α)}−1/α

∞∑
j=1

S
−1/α
j ,

where {Sj} are the event times from a Poisson process with rate 1 and S1
d= ε is Exp(1). It follows that

U ≥st {Γ(1 − α)}−1/αS
−1/α
1 = {Γ(1 − α)}−1/αε−1/α.

Then U−α ≤st Γ(1 − α)ε, which implies V = U−α/Γ(1 − α) ≤st ε. Thus P(V > t) ≤ e−t for all t > 0.96

Proof of Corollary 9. Claim 1 of Theorem 10 shows that U−αεα
d→ Exp(1). As α → 0, we have εα p→ 1. By Slutsky’s theorem,97

U−α d→ Exp(1).98

D. Asymptotic properties of the modified financial ratios99

A real-valued function f of real n-vectors (n ≥ 1) is defined to be quasi-concave if, and only if, for all X := {X1, . . . , Xn} ∈
Rn, Y := {Y1, . . . , Yn} ∈ Rn, λ ∈ [0, 1], we have f(λX + (1 − λ)Y ) ≥ min{f(X), f(Y )}. For any two random samples
X = {X1, . . . , Xn} and Y = {Y1, . . . , Yn} such that Xi, Yj

d
≈ F (1, α) for some α ∈ (0, 1), i, j = 1, . . . , n, a real-valued function

f of real n-vectors (n ≥ 1) satisfying, for any ϵ ∈ (0, 1) and λ ∈ [0, 1],

P
(
f(λX + (1 − λ)Y )
min{f(X), f(Y )} ≥ 1 − ϵ

)
→ 1

as n → ∞, is said to be Fα-asymptotically quasi-concave. A real-valued function f of a real random n-vector X as just defined
that satisfies, for any ϵ ∈ (0, 1) and c > 0,

P
(∣∣∣∣f(cX)

f(X) − 1
∣∣∣∣ < ϵ

)
→ 1

as n → ∞, is said to be Fα-asymptotically scale-invariant.100

Proposition D.1. Let X be a random sample from F (1, α) for some α ∈ (0, 1). Let X have sample variance σ2
n(X) := vn,101

sample mean X := M ′
1, and sample size n. Then, for the sample X, as n → ∞, the modified Sharpe ratio log(M ′

1 − rf )/ log(vn)102

for rf > 0 is (i) Fα-asymptotically quasi-concave, (ii) Fα-asymptotically scale-invariant, (iii) asymptotically dependent only103

on the tail index α of the distribution, and (iv) asymptotically monotonic with respect to a shift by a constant (Y = X + d,104

0 < d < ∞).105

Proof. (i) Fα-asymptotic quasi-concavity: Let σ2
n(X) be the sample variance of a random sample X with sample mean X

and sample size n. Consider another random sample Y with sample mean Y , sample variance σ2
n(Y ), and the same sample size

n. For λ ∈ [0, 1],

σ2
n(λX + (1 − λ)Y )
= λ2σ2

n(X) + 2λ(1 − λ)Covn(X,Y ) + (1 − λ)2σ2
n(Y )

≤ λ2 max{σ2
n(X), σ2

n(Y )} + 2λ(1 − λ) max{σ2
n(X), σ2

n(Y )} + (1 − λ)2 max{σ2
n(X), σ2

n(Y )}
= max{σ2

n(X), σ2
n(Y )},
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where Covn is the sample covariance between X and Y . The inequality above holds because |Covn(X,Y )| ≤
√
σ2
n(X)σ2

n(Y ) ≤
max{σ2

n(X), σ2
n(Y )}. For λ ∈ [0, 1], we also have

log(λX + (1 − λ)Y − rf )
log σ2

n(λX + (1 − λ)Y ) = log{λ(X − rf ) + (1 − λ)(Y − rf )}
log σ2

n(λX + (1 − λ)Y ) .

If min{σ2
n(X), σ2

n(Y )} > 1 and min{X,Y } > 1 + rf , which hold asymptotically a.s., then because of σ2
n(λX + (1 − λ)Y ) ≤

max{σ2
n(X), σ2

n(Y )}, we have

log{λ(X − rf ) + (1 − λ)(Y − rf )}
log σ2

n(λX + (1 − λ)Y ) ≥ min
{

log{λ(X − rf ) + (1 − λ)(Y − rf )}
log σ2

n(X) ,
log{λ(X − rf ) + (1 − λ)(Y − rf )}

log σ2
n(Y )

}
≥ min

{
log(X − rf )
log σ2

n(X) ,
log(Y − rf )
log σ2

n(Y )

}
.

The last inequality holds because the log function is concave, so log{λ(X − rf ) + (1 − λ)(Y − rf )} is larger than or equal to
log(X − rf ) when λ = 1 or is larger than or equal to log(Y − rf ) when λ = 0. Because X and Y are assumed to be positive
and drawn from F (1, α) with an infinite expectation, as n → ∞, P(min{σ2

n(X), σ2
n(Y )} > rf + 1,min{X,Y } > 1) → 1 because

all σ2
n(X), σ2

n(Y ), X, and Y converge to infinity a.s.. Therefore, given 0 < ϵ < 1, as n → ∞,

P
(

log(λX + (1 − λ)Y − rf )
log σ2

n(λX + (1 − λ)Y )

/
min

{
log(X − rf )
log σ2

n(X) ,
log(Y − rf )
log σ2

n(Y )

}
≥ 1 − ϵ

)
→ 1.

Hence this modified Sharpe ratio is Fα-asymptotically quasi-concave.106

(ii) Fα-asymptotic scale-invariance: Since X is from F (1, α), as n → ∞, X a.s.→ ∞; for any c > 0, cX a.s.→ ∞; and
σ2
n(X) a.s.→ ∞. Then∣∣∣∣ log(X − rf )

log σ2
n(X)

/
log(cX − rf )
log σ2

n(cX)

∣∣∣∣ =
{∣∣∣ log(X − rf )

log(X) + log c

∣∣∣ ·
∣∣∣ log(cX)
log(cX − rf )

∣∣∣}/∣∣∣ log σ2
n(X) + log c

log σ2
n(X)

∣∣∣ p→ 1.

Hence the modified Sharpe ratio is Fα-asymptotically scale-invariant.107

(iii) Distribution-based: The modified Sharpe ratio converges to (2 − α)/(1 − α), which depends only on the tail index α108

of F (1, α).109

(iv) Monotonicity under a constant shift: Consider Y = X + d with 0 < d < ∞. Then X ≤ Y a.s. by definition.
When min{X − rf , Y − rf , σ

2
n(X), σ2

n(Y )} > 1, we have

log(X − rf )
log σ2

n(X) ≤ log(X + d− rf )
log σ2

n(X + d) = log(X + d− rf )
log σ2

n(X) = log(Y − rf )
log σ2

n(Y ) .

Since X a.s.→ ∞ and σ2
n(X) a.s.→ ∞ as n → ∞, and since rf is finite, we have P(min{X − rf , Y − rf , σ

2
n(X), σ2

n(Y )} > 1) → 1.110

Therefore, the modified Sharpe ratio is monotonic with a probability converging to 1 as n → ∞.111

Proposition D.2. For samples from F (1, α), α ∈ (0, 1), the modified Sortino ratios log(M ′
1 − rf )/ log v−

n and log(M ′
1 −112

rf )/ log v−∗
n for rf > 0 are Fα-asymptotically quasi-concave and Fα-asymptotically scale-invariant, but do not depend on the113

distribution, asymptotically as n → ∞. They are asymptotically monotonic with respect to a constant shift.114

Proof. Fα-asymptotic quasi-concavity: Let v−
n (X) denote the lower semivariance of a random sample X with sample mean

X. Consider another random sample Y with sample mean Y and lower semivariance v−
n (Y ). According to Example 1 in

Rockafellar et al. (8), the square root of lower semivariance has the following properties:√
v−
n (X + Y ) ≤

√
v−
n (X) +

√
v−
n (Y ) and

√
v−
n (cX) = c

√
v−
n (X),

for c > 0. Therefore, whenever λ ∈ [0, 1], we have√
v−
n (λX + (1 − λ)Y ) ≤

√
v−
n (λX) +

√
v−
n {(1 − λ)Y } = λ

√
v−
n (X) + (1 − λ)

√
v−
n (Y ) ≤ max

{√
v−
n (X),

√
v−
n (Y )

}
.

Following the lines of the proof in Proposition D.1 that the modified Sharpe ratio is Fα-asymptotically quasi-concave, if
min{X,Y } > rf + 1 and min{v−

n (X), v−
n (Y )} > 1, one can see again that, for 0 < ϵ < 1, the probability that

log(λX + (1 − λ)Y − rf )
log v−

n (λX + (1 − λ)Y )
≥ (1 − ϵ) min

{
log(X − rf )
log v−

n (X)
,

log(Y − rf )
log v−

n (Y )

}
[S.42]

converges to 1 as n → ∞.115

Because X and Y are positive and drawn from distributions with infinite means, it follows that P(min{v−
n (X), v−

n (Y )} >116

1,min{X,Y } > 1 + rf ) → 1 as n → ∞ because X and Y converge to infinity a.s. and v−
n (X) and v−

n (Y ) converge to infinity117

a.s. as n → ∞ by Corollary 1. Therefore, the modified Sortino ratio log(M ′
1 − rf )/ log v−

n is Fα-asymptotically quasi-concave.118

20 | www.pnas.org/cgi/doi/10.1073/pnas.2108031118 Brown et al.

www.pnas.org/cgi/doi/10.1073/pnas.2108031118


For the modified Sortino ratio log(M ′
1 − rf )/ log v−∗

n , we need some properties of the local lower semivariance. Let N−
n (X)

denote the number of observations in X less than or equal to the sample mean X. From the definition of the local lower
semivariance, we have

v−∗
n (λX + (1 − λ)Y ) = nv−

n (λX + (1 − λ)Y )
N−
n (λX + (1 − λ)Y )

, v−∗
n (X) = nv−

n (X)
N−
n (X)

, and v−∗
n (Y ) = nv−

n (Y )
N−
n (Y )

.

We aim to show that, for λ ∈ [0, 1], for 0 < ϵ < 1, as n → ∞, the probability converges to 1 that

log(λX + (1 − λ)Y )
log v−∗

n (λX + (1 − λ)Y )
≥ (1 − ϵ) min

{
log(X − rf )
log v−∗

n (X)
,

log(Y − rf )
log v−∗

n (Y )

}
.

Now

log(λX + (1 − λ)Y )
log v−∗

n (λX + (1 − λ)Y )
= log(λX + (1 − λ)Y )

log v−∗
n (λX + (1 − λ)Y ) + log{n/N−

n (λX + (1 − λ)Y )}
, [S.43]

min
{

log(X − rf )
log v−∗

n (X)
,

log(Y − rf )
log v−∗

n (Y )

}
= min

{
log(X − rf )

log v−
n (X) + log{n/N−

n (X)}
,

log(Y − rf )
log v−

n (Y ) + log{n/N−
n (Y )}

}
. [S.44]

Therefore, if we can show that, as n → ∞, log{n/N−
n (λX + (1 − λ)Y )} p→ 0 in Eq. (S.43), and both log{n/N−

n (X)}119

and log{n/N−
n (Y )} in Eq. (S.44) converge to 0 in probability, then the modified Sortino ratio log(M ′

1 − rf )/ log v−∗
n is120

Fα-asymptotically quasi-concave. Since both samples X and Y are drawn from F (1, α), α ∈ (0, 1), by Lemma 1, both121

log{n/N−
n (X)} and log{n/N−

n (Y )} converge to 0 a.s. as n → ∞. Therefore, log{n/N−
n (λX + (1 − λ)Y )} also converges to 0122

a.s. as n → ∞ from Lemma 1 because λX + (1 − λ)Y has an infinite mean.123

Fα-asymptotic scale-invariance: The proof of Fα-asymptotic quasi-concavity above gives
√
v−
n (cX) = c

√
v−
n (X) and124 √

v−∗
n (cX) = c

√
v−∗
n (X). Then the proofs of the Fα-asymptotic scale-invariance for the modified ratios log(M ′

1 − rf )/ log v−
n125

and log(M ′
1 − rf )/ log v−∗

n are the same as that for the Fα-asymptotic scale-invariance for the modified Sharpe ratio in126

Proposition D.1 if we replace σ2
n by v−

n or v−∗
n , respectively.127

Not distribution-based: Because both log(X − rf )/ log v−
n (X) and log(X − rf )/ log v−∗

n (X) converge to 2 a.s. when X128

comes from F (1, α), α ∈ (0, 1), the modified ratios are not sensitive to α.129

Monotonicity under a constant shift: Consider Y = X + d with 0 < d < ∞. Then X ≤ Y a.s. by definition. When
min{X − rf , Y − rf , v

−
n (X), v−

n (Y )} > 1, we have

log(X − rf )
log v−

n (X)
≤ log(X + d− rf )

log v−
n (X + d)

= log(X + d− rf )
log v−

n (X)
= log(Y − rf )

log v−
n (Y )

. [S.45]

Since X
a.s.−→ ∞ and v−

n (X) a.s.−→ ∞ (from Corollary 1) as n → ∞, and since rf is finite, we have P(min{X − rf , Y −130

rf , v
−
n (X), v−

n (Y )} > 1) → 1 as n → ∞. Also, because v−∗
n

a.s.−→ ∞ (from Corollary 2) as n → ∞, we may replace v−
n in131

Eq. (S.45) by v−∗
n . Therefore, the probability that the modified Sortino ratios are monotonic converges to 1 as n → ∞.132

Proposition D.3. For samples X of size n from F (1, α), α ∈ (0, 1), as n → ∞,
a) the ratio log(M ′

1 − rf )/ log v+
n for rf > 0 (i) is Fα-asymptotically quasi-concave; (ii) is Fα-asymptotically scale-invariant;

(iii) depends only on the tail index α of the distribution; and (iv) is asymptotically monotonic with respect to a constant shift;
and
b) the ratio log(M ′

1 − rf )/ log v+∗
n for rf > 0 (i) satisfies, for 0 < ϵ < 1, 0 ≤ λ ≤ 1, Y = X + d for 0 < d < ∞,

P
(

log(λX + (1 − λ)Y )
log v+∗

n (λX + (1 − λ)Y )
≥ (1 − ϵ) min

{
log(X − rf )
log v+∗

n (X)
,

log(Y − rf )
log v+∗

n (Y )

})
→ 1; [S.46]

(ii) is Fα-asymptotically scale-invariant; (iii) depends on α; and (iv) is asymptotically monotonic with respect to a constant133

shift.134

Proof. a) (i, ii) Fα-asymptotic quasi-concavity and scale-invariance: Let v+
n (X) denote the upper semivariance of the

random sample X. From Example 1 in Rockafellar et al. (8), parallel to the lower semivariance, we have√
v+
n (X + Y ) ≤

√
v+
n (X) +

√
v+
n (Y ) and

√
v+
n (cX) = c

√
v+
n (X).

Therefore, the proofs of quasi-concavity and scale-invariance for log(M ′
1 − rf )/ log v+

n for rf > 0 are the same as those for the135

modified Sortino ratio log(M ′
1 − rf )/ log v−

n in Proposition D.2. Simply replace v−
n by v+

n .136

a) (iii) Distribution-based: The ratio log(M ′
1 − rf )/ log v+

n converges to (2 − α)/(1 − α), which depends only on α.137

a) (iv) Monotonicity under a constant shift: Consider Y = X + d with 0 < d < ∞. Then X ≤ Y a.s. by definition.
When min{X − rf , Y − rf , v

+
n (X), v+

n (Y )} > 1, we have

log(X − rf )
log v+

n (X)
≤ log(X + d− rf )

log v+
n (X + d)

= log(X + d− rf )
log v+

n (X)
= log(Y − rf )

log v+
n (Y )

. [S.47]
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Since X
a.s.−→ ∞ and v+

n (X) p→ ∞ (from Theorem 2) as n → ∞, and since rf is finite, we have P(min{X − rf , Y −138

rf , v
−
n (X), v−

n (Y )} > 1) → 1. Therefore, the ratio log(M ′
1 − rf )/ log v+

n for rf > 0 is asymptotically monotonic with respect to139

a constant shift.140

b)(i) Quasi-concavity under a constant shift: Consider Y = X + d with 0 < d < ∞. Then Yi = Xi + d and

n∑
i=1

I(Xi > X) =
n∑
i=1

I(Yi − d > Y − d) =
n∑
i=1

I(Yi > Y ),

n∑
i=1

I(λXi + (1 − λ)Yi > λX + (1 − λ)Y ) =
n∑
i=1

I(λ(Yi − d) + (1 − λ)Yi > λ(Y − d) + (1 − λ)Y ) =
n∑
i=1

I(Yi > Y ).

Hence N+
n (X + Y ) = N+

n (X) = N+
n (Y ).141

Because c
√
v+
n (X) =

√
v+
n (cX) for c > 0 and

√
v+
n (X + Y ) ≤

√
v+
n (X) +

√
v+
n (Y ) from the definition v+∗

n (X) :=
nv+

n (X)/N+
n (X), we have

1
2
√
v+∗
n (X + Y ) =

√
v+∗
n

(1
2X + 1

2Y
)

=

√
nv+

n

(
1
2X + 1

2Y
)

N+
n

(
1
2X + 1

2Y
) ≤

√
n

N+
n

(
1
2X + 1

2Y
) (√v+

n

(1
2X
)

+
√
v+
n

(1
2Y
))

.

One can check that

N+
n

(1
2X + 1

2Y
)

= N+
n

(1
2(X + Y )

)
= N+

n (X + Y ) ,

N+
n

(1
2X
)

= N+
n (X),

N+
n

(1
2Y
)

= N+
n (Y ).

Then

√
n

N+
n

(
1
2X + 1

2Y
) (√v+

n

(1
2X
)

+
√
v+
n

(1
2Y
))

= 1
2

√
n

N+
n (X + Y )

(√
v+
n (X) +

√
v+
n (Y )

)
= 1

2

√
n

N+
n (X)

(√
v+
n (X)

)
+ 1

2

√
n

N+
n (Y )

(√
v+
n (Y )

)
= 1

2

(√
v+∗
n (X)

)
+ 1

2

(√
v+∗
n (Y )

)
and therefore √

v+∗
n (X + Y ) ≤

(√
v+∗
n (X)

)
+
(√

v+∗
n (Y )

)
.

As in the proof of Proposition D.3 a) (i), using the fact that
√
v+∗
n (cX) = c

√
v+∗
n (X), the ratio log(M ′

1 − rf )/ log v+∗
n satisfies142

Eq. (S.46) as n → ∞.143

b)(ii) Fα-asymptotic scale-invariance: Because
√
v+∗
n (cX) = c

√
v+∗
n (X), the proof of Fα-asymptotic scale-invariance144

for log(M ′
1 − rf )/ log v+∗

n is the same as that for the modified Sortino ratio in Proposition D.2, after replacing v−
n by v+∗

n .145

b)(iii) Distribution-based: As n → ∞, both log(M ′
1 − rf )/ log v+

n and log(M ′
1 − rf )/ log v+∗

n converge in probability to146

(2 − α)/(1 − α), which depends on the tail index α of the distribution.147

b)(iv) Monotonicity under a constant shift: Theorem 2 gives that v+∗
n

p→ ∞ as n → ∞. Replacing v+
n in Eq. (S.47)148

by v+∗
n gives asymptotic monotonicity for large n.149

Proposition D.4. For a random sample of size n from F (1, α), α ∈ (0, 1), as n → ∞, the modified Farinelli-Tibiletti150

ratio ΦFTlog(p, q) := p logM−
q /(q logM+

p ) for p ≥ 1, q ≥ 1 (i) is Fα-asymptotically quasi-concave; (ii) is Fα-asymptotically151

scale-invariant; and (iii) depends on the tail index α of the distribution; but (iv) is not monotonic with respect to a constant152

shift.153

Proof. (i) Fα-asymptotic quasi-concavity: We shall show that, for any 1 ≤ p < ∞ and for any 0 ≤ λ ≤ 1,

{M+
p (λX + (1 − λ)Y )}1/p ≤ max{{M+

p (X)}1/p, {M+
p (Y )}1/p},
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where X = {X1, . . . , Xn} and Y = {Y1, . . . , Yn} as before. To see this, we write the left side as

{M+
p (λX + (1 − λ)Y )}1/p

=

(
1
n

n∑
i=1

[
{(λXi + (1 − λ)Yi − (λX + (1 − λ)Y )}I(λXi + (1 − λ)Yi − (λX + (1 − λ)Y ) > 0)

]p)1/p

=

(
1
n

n∑
i=1

[
{λ(Xi −X) + (1 − λ)(Yi − Y )}I(λ(Xi −X) + (1 − λ)(Yi − Y ) > 0)

]p)1/p

=

(
1
n

n∑
i=1

{
(λUi + (1 − λ)Vi)I(λUi + (1 − λ)Vi > 0)

}p)1/p

,

where Ui := Xi −X and Vi := Yi − Y , and therefore
∑n

i=1 Ui =
∑n

i=1 Vi = 0 by definition. For any p ≥ 1, we have

0 ≤
n∑
i=1

{
(λUi + (1 − λ)Vi) · I(λUi + (1 − λ)Vi > 0)

}p
=

n∑
i=1

{λUi + (1 − λ)Vi} · I(λUi + (1 − λ)Vi > 0) ·
{

(λUi + (1 − λ)Vi)I(λUi + (1 − λ)Vi > 0)
}p−1

=
n∑
i=1

{
[λUi{I(Ui > 0) + I(Ui ≤ 0)} + (1 − λ)Vi{I(Vi > 0) + I(Vi ≤ 0)}] · I(λUi + (1 − λ)Vi > 0)

}
·
{

(λUi + (1 − λ)Vi)I(λUi + (1 − λ)Vi > 0)
}p−1

=
n∑
i=1

[
{λUiI(Ui > 0) + (1 − λ)ViI(Vi > 0)}I(λUi + (1 − λ)Vi > 0)

]
·
[
(λUi + (1 − λ)Vi)I(λUi + (1 − λ)Vi > 0)

]p−1

+
n∑
i=1

[
{λUiI(Ui ≤ 0) + (1 − λ)ViI(Vi ≤ 0)}I(λUi + (1 − λ)Vi > 0)

]
·
[
(λUi + (1 − λ)Vi)I(λUi + (1 − λ)Vi > 0)

]p−1

≤
n∑
i=1

[
{λUiI(Ui > 0) + (1 − λ)ViI(Vi > 0)}I(λUi + (1 − λ)Vi > 0)

]
·
[
{(λUi + (1 − λ)Vi)I(λUi + (1 − λ)Vi > 0)

]p−1
,

where the inequality holds since the obvious inequalities UiI(Ui ≤ 0) ≤ 0 and ViI(Vi ≤ 0) ≤ 0 imply

n∑
i=1

[
{λUiI(Ui ≤ 0) + (1 − λ)ViI(Vi ≤ 0)}I(λUi + (1 − λ)Vi > 0)

]
·
[
(λUi + (1 − λ)Vi)I(λUi + (1 − λ)Vi > 0)

]p−1
≤ 0.

For i = 1, 2, . . . , n, and any 0 ≤ λ ≤ 1, {λUiI(Ui > 0) + (1 − λ)ViI(Vi > 0)} ≥ 0 and I(λUi + (1 − λ)Vi > 0) ≤ 1. Hence

{λUiI(Ui > 0) + (1 − λ)ViI(Vi > 0)}I(λUi + (1 − λ)Vi > 0) ≤ λUiI(Ui > 0) + (1 − λ)ViI(Vi > 0). [S.48]

We next show that, for i = 1, 2, . . . , n, and any 0 ≤ λ ≤ 1,

(λUi + (1 − λ)Vi)I(λUi + (1 − λ)Vi > 0) ≤ λUiI(Ui > 0) + (1 − λ)ViI(Vi > 0). [S.49]

When Ui > 0 and Vi > 0, Eq. (S.49) is trivial. When Ui ≤ 0 and Vi ≤ 0, Eq. (S.49) also holds since 0 ≤ 0. When Ui ≤ 0 and
Vi > 0, then λUi + (1 − λ)Vi > 0 implies Vi > 0 and Eq. (S.49) holds by noting that

0 ≤ (λUi + (1 − λ)Vi)I(λUi + (1 − λ)Vi > 0) ≤ (λ · 0 + (1 − λ)Vi)I(λUi + (1 − λ)Vi > 0)
= {λUiI(Ui > 0) + (1 − λ)ViI(Vi > 0)}I(λUi + (1 − λ)Vi > 0)
≤ λUiI(Ui > 0) + (1 − λ)ViI(Vi > 0),

where the last inequality holds since {λUiI(Ui > 0) + (1 − λ)ViI(Vi > 0)} ≥ 0 and I(λUi + (1 − λ)Vi > 0) ≤ 1. Finally, by154

symmetry, Eq. (S.49) also holds when their roles are interchanged, i.e. Ui > 0 and Vi ≤ 0. Therefore, Eq. (S.49) holds for all155

possible cases.156
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Using Eq. (S.48) and Eq. (S.49), we eventually have the following inequality:

n∑
i=1

[
{λUiI(Ui > 0) + (1 − λ)ViI(Vi > 0)}I(λUi + (1 − λ)Vi > 0)

]
·
[
(λUi + (1 − λ)Vi)I(λUi + (1 − λ)Vi > 0)

]p−1

≤
n∑
i=1

{
λUiI(Ui > 0) + (1 − λ)ViI(Vi > 0)

}
·
{
λUiI(Ui > 0) + (1 − λ)ViI(Vi > 0)

}p−1

=
n∑
i=1

{
λUiI(Ui > 0) + (1 − λ)ViI(Vi > 0)

}p
.

Applying the Minkowski inequality and using λUiI(Ui > 0) ≥ 0 and (1 − λ)ViI(Vi > 0) ≥ 0 for 0 ≤ λ ≤ 1 gives(
n∑
i=1

{
λUiI(Ui > 0) + (1 − λ)ViI(Vi > 0)

}p)1/p

≤

(
n∑
i=1

{λUiI(Ui > 0)}p
)1/p

+

(
n∑
i=1

{(1 − λ)ViI(Vi > 0)}p
)1/p

= λ

(
n∑
i=1

{UiI(Ui > 0)}p
)1/p

+ (1 − λ)

(
n∑
i=1

{ViI(Vi > 0)}p
)1/p

.

By construction, {UiI(Ui > 0)}p = {(Xi −X)I(Xi −X > 0)}p and {ViI(Vi > 0)}p = {(Yi − Y )I(Yi − Y > 0)}p. Hence

{M+
p (λX + (1 − λ)Y )}1/p ≤ λ{M+

p (X)}1/p + (1 − λ){M+
p (Y )}1/p,

which easily yields
{M+

p (λX + (1 − λ)Y )}1/p ≤ max{{M+
p (X)}1/p, {M+

p (Y )}1/p}.

It is straightforward that {M+
p (cX)}1/p = c{M+

p (X)}1/p for c > 0. Therefore, by replacing v−
n by M+

p , we can use the
arguments for the modified Sortino ratio in Proposition D.2 to show that logM ′

1/ logM+
p is Fα-asymptotically quasi-concave.

The modified Farinelli-Tibiletti ratio can be expressed as

p logM−
q

q logM+
p

=
p logM−

q

q logM ′
1

logM ′
1

logM+
p

.

From Corollary 6, p logM−
q

q logM′
1

a.s.−→ p as n → ∞. Therefore, the modified Farinelli-Tibiletti ratio is Fα-asymptotically quasi-concave157

because logM ′
1/ logM+

p is Fα-asymptotically quasi-concave while the constant p does not affect the quasi-concavity.158

(ii)Fα-asymptotic scale-invariance: X is drawn from F (1, α), α ∈ (0, 1). So logM−
q (X) p→ ∞ as n → ∞ because

logM−
q (X)/ logX p→ q > 0 as n → ∞ from Corollary 6.3, and X

a.s.−→ ∞ as n → ∞. From Theorem 8.3, logM+
p (X) p→ ∞ as

n → ∞ because logM+
p (X)/ logX p→ α(h, 1) as n → ∞ and X

a.s.−→ ∞ as n → ∞. Hence, for any c > 0,∣∣∣∣p logM−
q (X)

q logM+
p (X)

/
p logM−

q (cX)
q logM+

p (cX)

∣∣∣∣ =
∣∣∣∣ logM+

p (X)
logM+

p (X) + log c

∣∣∣∣/∣∣∣∣ logM+
q (X) + log c

logM−
q (X)

∣∣∣∣ ,
which converges to 1 in probability as n → ∞ because both logM+

p and logM−
q diverge to infinity in probability as n → ∞.159

This proves Fα-asymptotic scale-invariance.160

(iii) Distribution-based: The modified ratio logM+
p (X)

logM−
q (X)

p→ (p− α)/{q(1 − α)} as n → ∞, which depends on α.161

(iv) Invariance and monotonicity under a constant shift and a positive scaling: Let M+
p (X) and M−

p (X) denote
the upper and the lower pth central partial moments of sample X. Define Y = cX + d, where c > 0 and d > 0. Then

p logM−
q (Y )

q logM+
p (Y )

=
p logM−

q (cX + d)
q logM+

p (cX + d)
=
p logM−

q (cX)
q logM+

p (cX)
=
p logM−

q (X) + p log c
q logM+

p (X) + q log c
=

p logM−
q (X)

q logM+
p (X)

+ p log c
q logM+

p (X)

1 + log c
logM+

p (X)

. [S.50]

When X is drawn from F (1, α), according to Corollary 8, p logM−
q (X)

q logM+
p (X)

p→ {p(1 − α)}/(p− α) as n → ∞. Thus, from Eq. (S.50),162

p logM−
q (Y )

q logM+
p (Y )

p→ {p(1 − α)}/(p − α), the same limit, because log c is a constant and logM+
p converges to infinity a.s. (from163

Theorem 8 and the fact that logM ′
1
a.s.−→ ∞ ) as n → ∞.164

When c = 1 and d > 0, then Y > X element-wise. From Eq. (S.50), p logM−
q (X)

q logM+
p (X)

= p logM−
q (Y )

q logM+
p (Y )

.165
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E. More simulation results for the tail-index estimators166

Here we provide additional comparisons of the tail-index estimators. The main text defines

B1 := 2 −R1

1 −R1
, B2 := 2 −R2

1 −R2
, B3 :=

R3 −
√
R2

3 − 4(R3 − 2)
2

with R1 := log vn/logM ′
1, R2 := log v+

n /logM ′
1 and R3 := log v+∗

n /logM ′
1. The estimator HI.N considers the k largest order167

statistics in the Hill estimator, where k = N+
n + 1, which is the number of observations larger than the sample mean plus one.168

The estimator HI.M replaces the smallest (n− k) order statistics in the Hill estimator by the sample mean M ′
1. The estimator169

HI.Opt is the Hill estimator with k = n2/3. The estimator MHB3 is the minimum of B3 and HI.Opt.170

Tables 1, 3, and 5 are the biases and Tables 2, 4, 6 are the MSEs for the estimators when the underlying distribution is171

F (c, α) with c = 0.5, 1, 2, α = 0.1, 0.2, . . . , 0.9 with respective sample sizes n = 102, 103, 104, 105. HI.N, HI.M, and HI.Opt are172

independent of the choice of c. One sees that for larger sample sizes, the choice of c has negligible influence on the asymptotic173

behavior of the estimators.174

Table 7 and Table 8 provide the bias and MSE of RL which converges to 2 a.s. as n → ∞, by Corollary 1. RL converges175

much more slowly when α is near 1 and much faster when α is close to 0.176

Table 1. Bias (×103) (average of [estimated α minus true α]) for tail-index estimators B1, B2, B3, HI.N, HI.M, HI.Opt, and MHB3 with 104 Monte
Carlo independent samples from F (1, α), for sample sizes n = 102, 103, 104, 105.

α n B1 B2 B3 HI.N HI.M HI.Opt MHB3
0.1 102 -8.19 -5.77 -4.85 28.71 355.02 -1.67 -10.00
0.2 102 -19.08 -9.96 -5.72 21.34 286.41 -1.79 -16.44
0.3 102 -32.94 -13.59 -3.65 5.62 227.71 0.08 -20.40
0.4 102 -48.74 -17.40 1.22 -11.37 179.72 7.34 -19.83
0.5 102 -67.66 -23.07 5.33 -22.42 143.29 19.30 -19.00
0.6 102 -87.89 -30.11 8.06 -20.93 127.39 48.98 -12.55
0.7 102 -109.73 -36.21 9.34 12.50 145.87 110.65 -3.19
0.8 102 -143.81 -44.43 4.65 115.54 241.48 248.13 1.16
0.9 102 -147.70 -56.17 -6.63 479.82 607.47 661.17 -6.74
0.1 103 -6.26 -4.48 -3.65 18.72 208.08 -1.51 -7.52
0.2 103 -14.84 -8.19 -4.81 1.12 139.58 -2.87 -12.78
0.3 103 -24.26 -9.75 -2.44 -15.69 86.75 -2.96 -15.36
0.4 103 -34.98 -11.78 1.36 -31.90 46.89 -0.84 -16.02
0.5 103 -47.37 -13.71 5.84 -40.13 20.39 3.55 -15.44
0.6 103 -57.48 -14.36 11.59 -35.06 11.99 16.86 -9.48
0.7 103 -67.08 -16.48 14.25 -15.90 20.19 46.62 1.32
0.8 103 -75.76 -20.44 11.29 44.06 71.90 109.68 7.95
0.9 103 -82.40 -23.57 2.94 279.43 302.82 313.66 2.91
0.1 104 -5.24 -3.87 -3.00 10.25 135.16 -0.92 -5.82
0.2 104 -11.96 -6.88 -3.79 -9.31 73.52 -1.73 -9.65
0.3 104 -19.43 -8.55 -2.38 -25.60 30.89 -2.05 -12.03
0.4 104 -27.72 -9.75 0.63 -32.82 4.87 -1.54 -13.44
0.5 104 -35.03 -8.91 5.96 -29.40 -5.30 1.42 -12.56
0.6 104 -43.76 -10.44 9.41 -24.21 -8.21 6.67 -10.26
0.7 104 -50.27 -11.28 12.19 -10.06 0.13 19.37 -3.26
0.8 104 -53.49 -12.55 11.48 31.58 37.82 51.80 7.30
0.9 104 -50.31 -13.69 5.46 204.26 208.27 153.44 5.45
0.1 105 -4.25 -3.16 -2.32 4.62 93.62 -0.49 -4.43
0.2 105 -9.90 -5.89 -3.07 -14.72 38.99 -0.93 -7.40
0.3 105 -16.11 -7.62 -2.05 -25.85 6.25 -1.05 -9.19
0.4 105 -22.43 -8.15 0.40 -25.06 -6.58 -0.85 -10.65
0.5 105 -28.54 -7.56 4.50 -18.40 -8.70 0.33 -10.79
0.6 105 -34.65 -7.82 8.08 -12.02 -6.73 2.83 -9.99
0.7 105 -40.22 -8.75 10.27 -3.33 -0.69 8.95 -6.54
0.8 105 -41.39 -8.03 11.38 23.97 25.24 24.25 3.14
0.9 105 -36.82 -8.54 6.66 155.70 156.34 73.70 6.65

F. Effects of sample size on convergence177

In this section, we study the convergences of Theorems 3, 6, and 9 in distributions with sample sizes n = 102, 103, 104, 105 and178

α = {0.1, . . . , 0.9}. We also examine the convergence of the Sortino ratio (M ′
1 − rf )/v−

n discussed after Theorem 1 with sample179

size n = 108.180
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Table 2. MSE (×103) (mean squared [estimated α minus true α]) for tail-index estimators B1, B2, B3, HI.N, HI.M, HI.Opt, and MHB3 with 104

Monte Carlo independent samples from F (1, α), for sample sizes n = 102, 103, 104, 105.

α n B1 B2 B3 HI HI.M HI.Opt MHB3
0.1 102 0.44 0.48 0.43 6.69 129.57 0.47 0.46
0.2 102 1.62 1.85 1.59 11.42 89.75 1.93 1.71
0.3 102 3.43 3.90 3.31 15.82 64.35 4.61 3.68
0.4 102 5.70 6.03 5.22 21.89 50.79 8.50 5.84
0.5 102 8.66 8.06 7.02 29.28 46.20 14.68 8.14
0.6 102 12.25 9.53 8.01 39.71 52.45 25.28 9.58
0.7 102 16.68 10.13 7.89 57.73 75.42 50.26 9.31
0.8 102 29.07 9.83 6.43 116.70 160.64 131.64 7.08
0.9 102 53.46 8.62 3.95 556.50 708.05 646.60 3.98
0.1 103 0.23 0.24 0.20 4.11 45.76 0.10 0.19
0.2 103 0.85 0.93 0.67 6.36 24.47 0.41 0.66
0.3 103 1.75 1.96 1.31 9.85 15.10 0.88 1.26
0.4 103 2.92 3.11 2.11 13.37 12.23 1.59 1.97
0.5 103 4.44 4.39 3.16 16.97 12.84 2.60 2.91
0.6 103 5.73 5.07 3.87 18.33 14.29 4.32 3.68
0.7 103 6.94 5.30 4.08 19.80 17.00 8.28 4.07
0.8 103 7.91 4.86 3.38 28.47 28.39 21.43 3.49
0.9 103 8.54 3.48 1.91 144.27 153.30 119.16 1.91
0.1 104 0.14 0.15 0.11 2.61 20.05 0.02 0.10
0.2 104 0.53 0.58 0.35 4.73 9.13 0.09 0.30
0.3 104 1.13 1.23 0.71 7.33 6.31 0.19 0.57
0.4 104 1.86 1.96 1.16 9.15 6.39 0.34 0.85
0.5 104 2.60 2.66 1.76 9.12 6.76 0.54 1.15
0.6 104 3.47 3.20 2.31 7.93 6.13 0.85 1.53
0.7 104 4.15 3.38 2.60 6.46 5.30 1.52 1.94
0.8 104 4.32 3.05 2.28 6.97 6.67 4.35 2.13
0.9 104 3.59 2.10 1.33 57.51 58.26 26.36 1.33
0.1 105 0.09 0.10 0.07 1.91 10.16 0.01 0.06
0.2 105 0.37 0.39 0.22 3.88 4.49 0.02 0.18
0.3 105 0.75 0.80 0.40 5.51 4.00 0.04 0.29
0.4 105 1.25 1.31 0.71 5.66 4.03 0.07 0.46
0.5 105 1.75 1.77 1.11 4.38 3.39 0.12 0.61
0.6 105 2.29 2.15 1.54 2.86 2.30 0.18 0.81
0.7 105 2.81 2.40 1.86 1.88 1.63 0.32 1.06
0.8 105 2.77 2.11 1.69 1.85 1.78 0.92 1.27
0.9 105 2.09 1.36 0.97 28.91 28.99 5.90 0.97

From Theorems 3 and 6, where α(h1, h2) = (h1 − α)/(h2 − α) for h1 > α and h2 > α, as n → ∞,

M ′
h

(M ′
1)α(h,1)

d→ {Γ(1 − α)}
h−1
1−α

Uh
V α(h,1) , [S.51]

M ′
h2

(M ′
h1

)α(h2,h1)
d→ {Γ(1 − α)}

h2−h1
h1−α

Uh2

(Uh1 )α(h2,h1) . [S.52]

From Theorem 9, as n → ∞,

N+
n

nα
d−→ U−α

Γ(1 − α) . [S.53]

To evaluate the convergence rate in Theorems 3 and 6, we generate random samples {X1, . . . , Xn} from F (1, α) and181

calculate M′
h

(M′
1)α(h,1) in Eq. (S.51) and

M′
h2

(M′
h1

)α(h2,h1) in Eq. (S.52). We repeat the process independently 1000 times to182

estimate their marginal distributions. To simulate the ratios {Γ(1 − α)}
h−1
1−α Uh

V α(h,1) and {Γ(1 − α)}
h2−h1
h1−α

Uh2
(Uh1 )α(h2,h1) , we183

independently generate 1000 random vectors (Uh, V ) and (Uh1 , Uh2 ) satisfying the moment generating functions defined in184

Theorems 3 and 6, respectively. To test the null hypotheses that the left sides of Eq. (S.51) and Eq. (S.52) have the same185

distribution as the respective right sides of Eq. (S.51) and Eq. (S.52), we perform the two-sample Kolmogorov-Smirnov test186

100 times independently and estimate the probabilities of rejecting the null hypotheses. The margin of error, assuming a187

99% confidence level, is approximately 0.05. The probabilities of rejecting the null hypothesis are provided in Table 9 for188

(h1, h2) = (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4), n = 102, 103, 104, 105 and α = {0.1, 0.2, . . . , 0, 9}.189

To generate random vectors (Uh, V ) and (Uh1 , Uh2 ) that have the moment generating functions defined in Theorems 3
and 6, we use the approximations by sequences of independent, identically distributed random variables from an exponential
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Table 3. Bias (×103) for tail-index estimators B1, B2, B3, HI.N, HI.M, HI.Opt, and MHB3 with 104 Monte Carlo independent samples from
F (0.5, α), for sample sizes n = 102, 103, 104, 105.

α n B1 B2 B3 HI HI.M HI.Opt MHB3
0.1 102 -6.79 -4.34 -3.33 28.71 355.02 -1.67 -9.30
0.2 102 -13.35 -3.99 0.96 21.34 286.41 -1.79 -13.68
0.3 102 -19.58 0.33 12.66 5.62 227.71 0.08 -14.18
0.4 102 -23.68 8.19 31.93 -11.37 179.72 7.34 -8.49
0.5 102 -25.34 18.39 54.39 -22.42 143.29 19.30 -0.00
0.6 102 -18.83 32.75 78.12 -20.93 127.39 48.98 20.43
0.7 102 9.67 57.41 102.09 12.50 145.87 110.65 54.94
0.8 102 53.85 83.92 112.70 115.54 241.48 248.13 91.91
0.9 102 -48.91 68.65 78.37 479.82 607.47 661.17 76.85
0.1 103 -5.33 -3.53 -2.65 18.72 208.08 -1.51 -7.09
0.2 103 -11.08 -4.32 -0.51 1.12 139.58 -2.87 -11.20
0.3 103 -15.59 -0.80 7.95 -15.69 86.75 -2.96 -12.10
0.4 103 -19.09 4.41 20.72 -31.90 46.89 -0.84 -10.39
0.5 103 -21.37 12.10 36.84 -40.13 20.39 3.55 -6.96
0.6 103 -17.15 23.89 56.10 -35.06 11.99 16.86 4.44
0.7 103 -5.73 37.57 72.57 -15.90 20.19 46.62 27.85
0.8 103 21.66 54.96 83.07 44.06 71.90 109.68 62.02
0.9 103 63.31 67.40 75.98 279.43 302.82 313.66 75.38
0.1 104 -4.54 -3.16 -2.24 10.25 135.16 -0.92 -5.49
0.2 104 -9.13 -3.99 -0.58 -9.31 73.52 -1.73 -8.44
0.3 104 -12.94 -1.91 5.30 -25.60 30.89 -2.05 -9.54
0.4 104 -15.92 2.23 14.91 -32.82 4.87 -1.54 -9.41
0.5 104 -15.83 10.21 28.97 -29.40 -5.30 1.42 -6.76
0.6 104 -14.85 17.42 42.24 -24.21 -8.21 6.67 -2.02
0.7 104 -7.93 27.42 55.22 -10.06 0.13 19.37 9.31
0.8 104 9.10 39.89 64.16 31.58 37.82 51.80 35.52
0.9 104 50.68 58.14 67.22 204.26 208.27 153.44 66.55
0.1 105 -3.69 -2.58 -1.71 4.62 93.62 -0.49 -4.15
0.2 105 -7.62 -3.58 -0.50 -14.72 38.99 -0.93 -6.37
0.3 105 -10.92 -2.33 4.05 -25.85 6.25 -1.05 -7.05
0.4 105 -13.00 1.40 11.75 -25.06 -6.58 -0.85 -7.28
0.5 105 -13.34 7.61 22.75 -18.40 -8.70 0.33 -6.16
0.6 105 -11.94 14.27 34.27 -12.02 -6.73 2.83 -3.90
0.7 105 -7.62 21.66 44.62 -3.33 -0.69 8.95 1.48
0.8 105 5.49 32.73 53.49 23.97 25.24 24.25 15.99
0.9 105 34.91 46.44 56.17 155.70 156.34 73.70 51.34

distribution with the mean 1 in LePage et al. (9) and Cohen et al. (10). From LePage et al. (9, Theorem 2) and Cohen et al.
(10, equation (2.8)), it follows that, for h1, h2 > α,(

∞∑
j=1

Zh1
j ,

∞∑
j=1

Zh2
j

)
d= (Uh1 , Uh2 ), [S.54]

where Zj = Γ−1/α
j , Γj =

∑j

i=1 Ei for j ≥ 1 and E1, E2, . . . , is a sequence of independent and identically distributed exponential190

variables with mean 1.191

To prove Eq. (S.54), we check that an defined (in Section B) such that 1 − FX(an) = n−1 also satisfies LePage et al.
(9, equation (3)) so that we can apply the results in LePage et al. (9). Since FX satisfies Eq. (9) in the main text and
an ∼ {n/Γ(1 − α)}1/α, we have

lim
n→∞

n{1 − FX(ant)} = lim
n→∞

n

{
n1/αt

Γ(1 − α)1/α

}−α

/Γ(1 − α) = t−α,

which satisfies LePage et al. (9, equation (3)).192

Next, we replace the function ϕ(z, d) in the proof of LePage et al. (9, Theorem 1) by (ψ1, ψ2) where ψi(z, d) = {
∑∞

j=1[zjI{zj ∈
(ϵ,∞)}]hi }1/hi for i = 1, 2. Therefore, as in LePage et al. (9, Theorem 2) and Cohen et al. (10, (2.8)), we have, as n → ∞, 1

an

{
n∑
i=1

Xh1
i

}1/h1

,
1
an

{
n∑
i=1

Xh2
i

}1/h2
 d−→

{ ∞∑
j=1

Zh1
j

}1/h1

,

{
∞∑
j=1

Zh2
j

}1/h2
 .
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Table 4. MSE (×103) for tail-index estimators B1, B2, B3, HI.N, HI.M, HI.Opt, and MHB3 with 104 Monte Carlo independent samples from
F (0.5, α), for sample sizes n = 102, 103, 104, 105.

α n B1 B2 B3 HI HI.M HI.Opt MHB3
0.1 102 0.44 0.49 0.45 6.69 129.57 0.47 0.46
0.2 102 1.60 1.99 1.79 11.42 89.75 1.93 1.76
0.3 102 3.28 4.50 4.32 15.82 64.35 4.61 3.99
0.4 102 5.11 7.53 8.21 21.89 50.79 8.50 6.85
0.5 102 7.08 11.04 13.36 29.28 46.20 14.68 10.76
0.6 102 9.24 14.78 18.68 39.71 52.45 25.28 15.28
0.7 102 13.81 19.67 23.41 57.73 75.42 50.26 20.52
0.8 102 22.36 21.79 22.30 116.70 160.64 131.64 21.61
0.9 102 57.75 10.69 9.40 556.50 708.05 646.60 9.44
0.1 103 0.22 0.24 0.20 4.11 45.76 0.10 0.18
0.2 103 0.81 0.96 0.71 6.36 24.47 0.41 0.63
0.3 103 1.56 2.09 1.59 9.85 15.10 0.88 1.19
0.4 103 2.41 3.50 3.05 13.37 12.23 1.59 1.89
0.5 103 3.32 5.29 5.44 16.97 12.84 2.60 2.91
0.6 103 3.81 6.83 8.22 18.33 14.29 4.32 4.14
0.7 103 4.25 8.32 10.67 19.80 17.00 8.28 6.23
0.8 103 5.91 9.83 11.64 28.47 28.39 21.43 9.45
0.9 103 8.12 8.27 7.90 144.27 153.30 119.16 7.87
0.1 104 0.14 0.15 0.11 2.61 20.05 0.02 0.09
0.2 104 0.50 0.57 0.36 4.73 9.13 0.09 0.27
0.3 104 1.00 1.27 0.82 7.33 6.31 0.19 0.49
0.4 104 1.50 2.10 1.59 9.15 6.39 0.34 0.69
0.5 104 1.91 3.09 2.97 9.12 6.76 0.54 0.90
0.6 104 2.24 4.00 4.60 7.93 6.13 0.85 1.22
0.7 104 2.40 4.80 6.19 6.46 5.30 1.52 1.77
0.8 104 2.64 5.39 6.90 6.97 6.67 4.35 3.53
0.9 104 5.45 6.11 6.23 57.51 58.26 26.36 6.15
0.1 105 0.09 0.10 0.07 1.91 10.16 0.01 0.05
0.2 105 0.34 0.39 0.22 3.88 4.49 0.02 0.15
0.3 105 0.65 0.81 0.46 5.51 4.00 0.04 0.23
0.4 105 1.00 1.36 0.96 5.66 4.03 0.07 0.33
0.5 105 1.26 1.98 1.81 4.38 3.39 0.12 0.40
0.6 105 1.47 2.61 2.96 2.86 2.30 0.18 0.51
0.7 105 1.62 3.22 4.12 1.88 1.63 0.32 0.69
0.8 105 1.62 3.58 4.77 1.85 1.78 0.92 1.12
0.9 105 2.78 3.87 4.32 28.91 28.99 5.90 3.73

Applying the continuous mapping theorem gives, as n → ∞,(
1
ah1
n

n∑
i=1

Xh1
i ,

1
ah2
n

n∑
i=1

Xh2
i

)
d−→

(
∞∑
j=1

Zh1
j ,

∞∑
j=1

Zh2
j

)
.

On the other hand, from the proof of Lemma B.4 in the supplement, we also have, as n → ∞,(
1
ah1
n

n∑
i=1

Xh1
i ,

1
ah2
n

n∑
i=1

Xh2
i

)
d−→ (Uh1 , Uh2 ),

where (Uh1 , Uh2 ) has the joint moment generating function defined in Theorem 6. Because the asymptotic distribution is193

unique, the identity in distribution in Eq. (S.54) has been proved.194

Since (Uh1 , Uh2 ) d=
(∑∞

j=1 Z
h1
j ,
∑∞

j=1 Z
h2
j

)
, it is straightforward to approximate

(∑∞
j=1 Z

h1
j ,
∑∞

j=1 Z
h2
j

)
by(

m∑
j=1

Zh1
j ,

m∑
j=1

Zh2
j

)
=

(
m∑
j=1

Γ−h1/α
j ,

m∑
j=1

Γ−h2/α
j

)
[S.55]

for large m. To examine the sensitivity of results to the choice of m, we set m = 1000,m = 500, and m = 2000 in Tables195

9, 10 and 11, respectively. The probability of rejecting the convergence in distributions in Theorems 3 and 6 is similar for196

m = 500, 1000, 2000 except when α = 0.7 with pairs of moments (1, 2), (1, 3), (1, 4). In these simulations, at α = 0.7, a larger197

value of m leads to a lower power of the Kolmogorov-Smirnov test to reject the identity of the distributions for pairs of moments198

(1, 2), (1, 3), (1, 4). Even larger values of m may be required to demonstrate the convergence in distributions for α > 0.7.199
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Table 5. Bias (×103) for tail-index estimators B1, B2, B3, HI.N, HI.M, HI.Opt, and MHB3 with 104 Monte Carlo independent samples from
F (2, α), for sample sizes n = 102, 103, 104, 105.

α n B1 B2 B3 HI HI.M HI.Opt MHB3
0.1 102 -9.54 -7.16 -6.32 28.71 355.02 -1.67 -10.74
0.2 102 -24.46 -15.56 -11.96 21.34 286.41 -1.79 -19.60
0.3 102 -45.03 -26.22 -18.34 5.62 227.71 0.08 -28.12
0.4 102 -70.47 -39.86 -25.60 -11.37 179.72 7.34 -35.16
0.5 102 -102.51 -58.16 -36.76 -22.42 143.29 19.30 -45.39
0.6 102 -140.81 -81.19 -51.87 -20.93 127.39 48.98 -57.23
0.7 102 -190.21 -108.89 -71.53 12.50 145.87 110.65 -73.57
0.8 102 -267.83 -149.30 -101.92 115.54 241.48 248.13 -102.21
0.9 102 -296.19 -234.98 -159.99 479.82 607.47 661.17 -160.00
0.1 103 -7.17 -5.41 -4.63 18.72 208.08 -1.51 -7.98
0.2 103 -18.44 -11.90 -8.92 1.12 139.58 -2.87 -14.66
0.3 103 -32.41 -18.16 -12.16 -15.69 86.75 -2.96 -19.72
0.4 103 -49.57 -26.70 -16.40 -31.90 46.89 -0.84 -24.49
0.5 103 -70.61 -37.01 -22.19 -40.13 20.39 3.55 -29.84
0.6 103 -92.39 -48.13 -28.53 -35.06 11.99 16.86 -34.09
0.7 103 -118.01 -63.05 -38.82 -15.90 20.19 46.62 -40.71
0.8 103 -151.10 -83.45 -55.39 44.06 71.90 109.68 -55.62
0.9 103 -211.64 -113.75 -81.87 279.43 302.82 313.66 -81.87
0.1 104 -5.93 -4.57 -3.73 10.25 135.16 -0.92 -6.17
0.2 104 -14.71 -9.68 -6.90 -9.31 73.52 -1.73 -11.08
0.3 104 -25.62 -14.89 -9.68 -25.60 30.89 -2.05 -15.30
0.4 104 -38.80 -21.03 -12.76 -32.82 4.87 -1.54 -19.40
0.5 104 -52.74 -26.65 -15.37 -29.40 -5.30 1.42 -22.25
0.6 104 -69.88 -35.88 -20.95 -24.21 -8.21 6.67 -25.99
0.7 104 -87.61 -46.04 -27.86 -10.06 0.13 19.37 -29.80
0.8 104 -106.79 -58.79 -38.33 31.58 37.82 51.80 -38.43
0.9 104 -132.80 -76.56 -55.44 204.26 208.27 153.44 -55.44
0.1 105 -4.81 -3.72 -2.92 4.62 93.62 -0.49 -4.73
0.2 105 -12.13 -8.16 -5.58 -14.72 38.99 -0.93 -8.61
0.3 105 -21.12 -12.72 -7.93 -25.85 6.25 -1.05 -12.01
0.4 105 -31.41 -17.25 -10.39 -25.06 -6.58 -0.85 -15.60
0.5 105 -42.82 -21.85 -12.67 -18.40 -8.70 0.33 -18.47
0.6 105 -55.64 -28.37 -16.49 -12.02 -6.73 2.83 -21.46
0.7 105 -69.84 -36.69 -22.12 -3.33 -0.69 8.95 -24.38
0.8 105 -83.01 -44.97 -28.86 23.97 25.24 24.25 -28.95
0.9 105 -98.01 -57.47 -41.57 155.70 156.34 73.70 -41.57

From Table 9, the two-sample Kolmogorov-Smirnov test cannot tell the differences between distributions in Eq. (S.51) and200

Eq. (S.52) with a large probability for α < 0.7. When α ≥ 0.7, the convergence slows down and the Kolmogorov-Smirnov test201

starts to reject the identity of the distributions with high probabilities. The Kolmogorov-Smirnov test also suggests that, for202

ratios with higher orders (h1, h2) = (2, 3), (2, 4), (3, 4) of moments, the corresponding rates of convergence are faster than for203

those with orders (h1, h2) = (1, 2), (1, 3), (1, 4).204

To examine the convergence in distribution in Theorem 9 or equivalently in Eq. (S.53) here, we perform the two-sample205

Kolmogorov-Smirnov test stated in Subsection 6.B independently 100 times for each α = 0, 1, 0.2, . . . , 0.9 and approximate206

the probabilities of rejecting N+
n /n

α d→ U−α/Γ(1 − α) in the column Thm9 in Table 9. It is clear that the two-sample207

Kolmogorov-Smirnov test cannot distinguish between the sampled distributions of N+
n /n

α and U−α/Γ(1 − α) for most of208

the sample sizes with α ≤ 0.7. For α > 0.7, it requires sample size n = 104 before the Kolmogorov-Smirnov test does not209

distinguish the distribution of N+
n /n

α from the distribution of U−α/Γ(1 − α) most of the time.210

To examine the convergence in M ′
1/(v−

n )1/2 a.s.−→ 1 as n → ∞ in Theorem 1, we independently generate 100 random samples211

from F (1, α) with the sample size n = 108 and calculate M ′
1/(v−

n )1/2 for each sample. Then we calculate the proportions of the212

samples such that |M ′
1/(v−

n )1/2 − 1| is smaller than the tolerance levels {10−3, 10−4, 10−5, 10−6} in Table 12. We conclude213

that M ′
1/(v−

n )1/2 converges to 1 slowly, especially for larger values of α. For example, |M ′
1/(v−

n )1/2 − 1| < 10−6 only rarely for214

α ≥ 0.5, even with a sample size n = 108.215

216

217
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Table 6. MSE (×103) for tail-index estimators B1, B2, B3, HI.N, HI.M, HI.Opt, and MHB3 with 104 Monte Carlo independent samples from
F (2, α), for sample sizes n = 102, 103, 104, 105.

α n B1 B2 B3 HI HI.M HI.Opt MHB3
0.1 102 0.44 0.47 0.42 6.69 129.57 0.47 0.46
0.2 102 1.70 1.79 1.50 11.42 89.75 1.93 1.69
0.3 102 3.96 3.79 2.98 15.82 64.35 4.61 3.51
0.4 102 7.48 6.05 4.49 21.89 50.79 8.50 5.34
0.5 102 13.31 8.83 6.08 29.28 46.20 14.68 7.25
0.6 102 22.66 12.26 7.62 39.71 52.45 25.28 8.71
0.7 102 39.44 16.83 9.42 57.73 75.42 50.26 9.99
0.8 102 82.77 25.51 13.22 116.70 160.64 131.64 13.33
0.9 102 150.05 56.92 26.77 556.50 708.05 646.60 26.77
0.1 103 0.23 0.24 0.20 4.11 45.76 0.10 0.20
0.2 103 0.92 0.95 0.67 6.36 24.47 0.41 0.70
0.3 103 2.07 1.99 1.27 9.85 15.10 0.88 1.37
0.4 103 3.87 3.26 1.97 13.37 12.23 1.59 2.16
0.5 103 6.71 4.84 2.88 16.97 12.84 2.60 3.18
0.6 103 10.29 6.15 3.54 18.33 14.29 4.32 3.90
0.7 103 15.50 7.71 4.20 19.80 17.00 8.28 4.40
0.8 103 24.17 9.95 5.17 28.47 28.39 21.43 5.21
0.9 103 48.59 14.40 7.64 144.27 153.30 119.16 7.64
0.1 104 0.14 0.15 0.11 2.61 20.05 0.02 0.10
0.2 104 0.58 0.59 0.36 4.73 9.13 0.09 0.34
0.3 104 1.34 1.29 0.72 7.33 6.31 0.19 0.68
0.4 104 2.46 2.11 1.14 9.15 6.39 0.34 1.10
0.5 104 3.93 2.95 1.63 9.12 6.76 0.54 1.59
0.6 104 6.10 3.89 2.19 7.93 6.13 0.85 2.19
0.7 104 8.84 4.77 2.66 6.46 5.30 1.52 2.71
0.8 104 12.32 5.68 3.07 6.97 6.67 4.35 3.08
0.9 104 18.34 7.16 3.94 57.51 58.26 26.36 3.94
0.1 105 0.10 0.10 0.07 1.91 10.16 0.01 0.06
0.2 105 0.41 0.41 0.23 3.88 4.49 0.02 0.20
0.3 105 0.90 0.86 0.42 5.51 4.00 0.04 0.38
0.4 105 1.66 1.43 0.73 5.66 4.03 0.07 0.66
0.5 105 2.64 2.00 1.08 4.38 3.39 0.12 0.97
0.6 105 4.00 2.63 1.49 2.86 2.30 0.18 1.40
0.7 105 5.80 3.33 1.91 1.88 1.63 0.32 1.89
0.8 105 7.62 3.70 2.09 1.85 1.78 0.92 2.09
0.9 105 10.04 4.28 2.43 28.91 28.99 5.90 2.43
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Table 7. Bias (×103) (average of [RL minus 2]) sample size n = 102, 103, 104, 105 from F (1, α) for α = 0.1, 0.2, . . . , 0.9.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
105 0.00 0.00 -0.02 -0.10 -0.52 -2.61 -13.43 -80.07 -680.29
104 0.00 -0.02 -0.11 -0.49 -2.10 -8.37 -35.09 -167.29 -1185.48
103 -0.02 -0.17 -0.74 -2.65 -9.00 -29.96 -103.42 -404.20 -2430.44
102 -0.23 -1.48 -5.62 -17.01 -47.47 -129.41 -387.66 -1393.54 -8169.25

Table 8. MSE (×103) (mean squared [RL minus 2]) with sample size n = 102, 103, 104, 105 from F (1, α) for α = 0.1, 0.2, . . . , 0.9.

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
n = 105 0.00 0.00 0.00 0.00 0.00 0.01 0.27 8.90 591.68
n = 104 0.00 0.00 0.00 0.00 0.01 0.12 1.94 40.75 1900.70
n = 103 0.00 0.00 0.00 0.01 0.16 1.64 18.14 260.27 9088.88
n = 102 0.00 0.01 0.08 0.74 5.46 37.33 343.31 5262.76 13123327.23
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Table 9. Probability of rejection of the convergence in distribution in Theorems 3, 6, and 9, according to the two-sample Kolmogorov-Smirnov
test with margins of error = 0.05, for sample size n = 102, 103, 104, 105 from F (1, α) for α = 0.1, 0.2, . . . , 0.9, and m = 1000 in Eq. (S.55).

α n (1,2) (1,3) (1,4) (2,3) (2,4) (3,4) Thm9
0.1 102 0.02 0.02 0.02 0.04 0.04 0.05 0.02

103 0.05 0.04 0.03 0.04 0.07 0.07 0.01
104 0.05 0.06 0.06 0.04 0.04 0.05 0.00
105 0.05 0.05 0.07 0.07 0.07 0.07 0.00

0.2 102 0.04 0.05 0.05 0.04 0.03 0.03 0.01
103 0.04 0.04 0.03 0.04 0.04 0.03 0.02
104 0.06 0.05 0.07 0.06 0.06 0.06 0.00
105 0.05 0.07 0.07 0.06 0.08 0.08 0.00

0.3 102 0.05 0.05 0.03 0.03 0.04 0.03 0.00
103 0.03 0.04 0.03 0.02 0.02 0.02 0.02
104 0.04 0.04 0.04 0.04 0.03 0.04 0.00
105 0.07 0.06 0.04 0.04 0.05 0.07 0.00

0.4 102 0.07 0.06 0.05 0.02 0.04 0.02 0.00
103 0.03 0.05 0.05 0.04 0.03 0.04 0.02
104 0.08 0.06 0.05 0.04 0.04 0.05 0.00
105 0.06 0.05 0.06 0.07 0.04 0.01 0.00

0.5 102 0.05 0.04 0.04 0.03 0.02 0.04 0.00
103 0.03 0.02 0.02 0.04 0.04 0.03 0.03
104 0.02 0.02 0.02 0.03 0.03 0.05 0.00
105 0.08 0.07 0.07 0.07 0.07 0.04 0.00

0.6 102 0.03 0.04 0.03 0.03 0.06 0.07 0.02
103 0.04 0.04 0.04 0.02 0.04 0.04 0.03
104 0.08 0.06 0.05 0.04 0.04 0.05 0.00
105 0.10 0.08 0.09 0.05 0.06 0.05 0.00

0.7 102 0.43 0.44 0.46 0.54 0.41 0.16 0.07
103 0.98 0.88 0.77 0.05 0.04 0.02 0.07
104 1.00 0.92 0.87 0.02 0.03 0.04 0.00
105 0.98 0.85 0.79 0.06 0.06 0.05 0.00

0.8 102 1.00 1.00 1.00 1.00 1.00 0.95 0.28
103 1.00 1.00 1.00 0.11 0.07 0.04 0.20
104 1.00 1.00 1.00 0.03 0.04 0.04 0.00
105 1.00 1.00 1.00 0.05 0.04 0.03 0.00

0.9 102 1.00 1.00 1.00 1.00 1.00 1.00 0.78
103 1.00 1.00 1.00 1.00 1.00 0.18 0.76
104 1.00 1.00 1.00 0.08 0.08 0.06 0.00
105 1.00 1.00 1.00 0.03 0.04 0.03 0.00
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Table 10. Probability of rejection of the convergence in distribution in Theorems 3, 6, and 9, according to the two-sample Kolmogorov-Smirnov
test with margins of error = 0.05, for sample size n = 102, 103, 104, 105 from F (1, α) for α = 0.1, 0.2, . . . , 0.9, and m = 500 in Eq. (S.55).

α n (1,2) (1,3) (1,4) (2,3) (2,4) (3,4) Thm9
0.1 102 0.05 0.06 0.07 0.07 0.08 0.08 0.00

103 0.03 0.02 0.02 0.03 0.01 0.01 0.01
104 0.04 0.03 0.04 0.05 0.04 0.04 0.00
105 0.03 0.04 0.05 0.04 0.04 0.04 0.00

0.2 102 0.05 0.06 0.05 0.07 0.06 0.05 0.02
103 0.00 0.01 0.02 0.01 0.01 0.02 0.01
104 0.07 0.06 0.07 0.06 0.07 0.05 0.00
105 0.02 0.02 0.02 0.02 0.01 0.02 0.00

0.3 102 0.08 0.08 0.06 0.07 0.08 0.09 0.00
103 0.02 0.02 0.02 0.02 0.02 0.05 0.03
104 0.06 0.08 0.08 0.06 0.05 0.04 0.00
105 0.01 0.00 0.01 0.03 0.03 0.02 0.00

0.4 102 0.08 0.07 0.08 0.07 0.07 0.07 0.01
103 0.04 0.02 0.01 0.02 0.02 0.02 0.01
104 0.05 0.06 0.04 0.06 0.05 0.03 0.00
105 0.01 0.02 0.02 0.02 0.02 0.03 0.00

0.5 102 0.09 0.09 0.07 0.06 0.07 0.08 0.01
103 0.01 0.01 0.01 0.02 0.02 0.01 0.05
104 0.07 0.09 0.09 0.05 0.06 0.08 0.00
105 0.03 0.02 0.02 0.02 0.03 0.05 0.00

0.6 102 0.06 0.05 0.06 0.08 0.07 0.07 0.03
103 0.03 0.01 0.01 0.02 0.02 0.01 0.08
104 0.11 0.09 0.09 0.05 0.06 0.09 0.00
105 0.08 0.05 0.06 0.02 0.01 0.02 0.00

0.7 102 0.93 0.90 0.85 0.50 0.33 0.16 0.05
103 1.00 0.97 0.96 0.01 0.01 0.01 0.10
104 1.00 0.99 0.97 0.08 0.07 0.08 0.00
105 1.00 1.00 0.99 0.03 0.04 0.03 0.00

0.8 102 1.00 1.00 1.00 1.00 1.00 0.98 0.30
103 1.00 1.00 1.00 0.04 0.03 0.01 0.23
104 1.00 1.00 1.00 0.07 0.09 0.09 0.00
105 1.00 1.00 1.00 0.03 0.03 0.02 0.00

0.9 102 1.00 1.00 1.00 1.00 1.00 1.00 0.78
103 1.00 1.00 1.00 1.00 1.00 0.08 0.70
104 1.00 1.00 1.00 0.09 0.07 0.10 0.00
105 1.00 1.00 1.00 0.03 0.04 0.03 0.00
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Table 11. Probability of rejection of the convergence in distribution in Theorems 3, 6, and 9, according to the two-sample Kolmogorov-Smirnov
test with margins of error = 0.05, for sample size n = 102, 103, 104, 105 from F (1, α) for α = 0.1, 0.2, . . . , 0.9, and m = 2000 in Eq. (S.55).

α n (1,2) (1,3) (1,4) (2,3) (2,4) (3,4) Thm9
0.1 102 0.06 0.06 0.06 0.05 0.06 0.06 0.00

103 0.04 0.03 0.03 0.04 0.03 0.03 0.01
104 0.01 0.01 0.00 0.00 0.00 0.01 0.00
105 0.05 0.05 0.05 0.05 0.05 0.04 0.00

0.2 102 0.06 0.05 0.04 0.05 0.06 0.07 0.02
103 0.05 0.04 0.04 0.02 0.03 0.02 0.01
104 0.03 0.02 0.04 0.04 0.04 0.06 0.00
105 0.03 0.04 0.04 0.05 0.05 0.04 0.00

0.3 102 0.09 0.08 0.08 0.06 0.05 0.05 0.01
103 0.04 0.04 0.04 0.01 0.01 0.02 0.01
104 0.03 0.06 0.05 0.02 0.03 0.02 0.00
105 0.03 0.04 0.05 0.03 0.03 0.02 0.00

0.4 102 0.12 0.09 0.09 0.06 0.05 0.06 0.00
103 0.03 0.05 0.05 0.06 0.04 0.04 0.01
104 0.02 0.02 0.03 0.03 0.02 0.01 0.00
105 0.04 0.05 0.05 0.04 0.05 0.06 0.00

0.5 102 0.11 0.08 0.08 0.04 0.04 0.05 0.01
103 0.01 0.02 0.01 0.04 0.01 0.02 0.02
104 0.05 0.04 0.06 0.01 0.00 0.00 0.00
105 0.03 0.03 0.04 0.04 0.05 0.05 0.00

0.6 102 0.10 0.07 0.06 0.09 0.08 0.07 0.03
103 0.01 0.03 0.02 0.02 0.03 0.03 0.02
104 0.06 0.07 0.06 0.03 0.02 0.02 0.00
105 0.07 0.05 0.04 0.04 0.04 0.04 0.00

0.7 102 0.15 0.18 0.17 0.57 0.40 0.13 0.05
103 0.76 0.51 0.43 0.02 0.02 0.02 0.05
104 0.79 0.55 0.48 0.02 0.04 0.01 0.00
105 0.83 0.61 0.43 0.02 0.03 0.03 0.00

0.8 102 1.00 1.00 1.00 1.00 1.00 0.96 0.32
103 1.00 1.00 1.00 0.10 0.06 0.04 0.17
104 1.00 1.00 1.00 0.05 0.04 0.01 0.00
105 1.00 1.00 1.00 0.03 0.04 0.03 0.00

0.9 102 1.00 1.00 1.00 1.00 1.00 1.00 0.81
103 1.00 1.00 1.00 1.00 0.99 0.18 0.72
104 1.00 1.00 1.00 0.09 0.07 0.10 0.00
105 1.00 1.00 1.00 0.09 0.09 0.04 0.00

Table 12. Proportions of the ratios M ′
1/(v−

n )1/2 satisfying |M ′
1/(v−

n )1/2 − 1| < ε for tolerances ε = 10−3, 10−4, 10−5, 10−6 in 100 random
samples of size n = 108 from F (1, α) for α = 0.1, 0.2, . . . , 0.9.

α 10−3 10−4 10−5 10−6

0.1 1.00 1.00 1.00 1.00
0.2 1.00 1.00 1.00 0.98
0.3 1.00 1.00 1.00 0.49
0.4 1.00 1.00 0.46 0.09
0.5 1.00 0.66 0.05 0.00
0.6 0.93 0.06 0.00 0.00
0.7 0.11 0.00 0.00 0.00
0.8 0.00 0.00 0.00 0.00
0.9 0.00 0.00 0.00 0.00

34 | www.pnas.org/cgi/doi/10.1073/pnas.2108031118 Brown et al.

www.pnas.org/cgi/doi/10.1073/pnas.2108031118

	e2108031118.full
	SupplementaryMaterials20211115.pdf
	Proofs in Section 3: semivariances
	Proofs in Section 4: higher moments
	Proofs in Section 5: number of observations that exceed the sample mean
	 Asymptotic properties of the modified financial ratios
	More simulation results for the tail-index estimators
	Effects of sample size on convergence
	References


