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ABSTRACT
We examine Markov’s inequality in the light of renewal theory and
reliability theory. Suppose the non negative random variable (rv)
X has cumulative distribution function (cdf) F with survival function
F :¼ Pr X > xð Þ ¼ 1� F and left-continuous version of the survival
function F x�ð Þ :¼ Pr X � xð Þ, x � 0: We determine the points, if any,
such that x � l and F x�ð Þ ¼ l=x: We offer an alternative proof of
Markov’s inequality by observing that, if some collection of events
At : t � 0f g exists such that PrðAtÞ ¼ tF t�ð Þ=l, then because
tF t�ð Þ=l equals a probability, it must satisfy tF t�ð Þ=l � 1, which is
equivalent to Markov’s inequality. We choose events connected to
stationary renewal processes. When we know only the sample size n
and the sample average xn of n non negative observations
x1, :::, xn, we establish an upper bound on the left-continuous ver-
sion of the empirical survival function that improves Markov’s
inequality. We show that an upper bound of Markov type for the
survival function is sharp when F is “new better than used in expect-
ation” (NBUE) or has “decreasing mean residual life” (DMRL).
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1. Introduction

Markov’s inequality or the Bienaym�e–Chebyshev–Markov inequality states that if X is a
non negative random variable (rv) with expectation 0 < l :¼ EX < 1 and if a > 0,
then PrðX � aÞ � minð1, l=aÞ: Markov’s inequality has been refined and extended in
many ways. For a very small sample of the relevant papers see, e.g., Ghosh (2002),
Marshall and Olkin (2007), and Cohen (2015). Nevertheless, we offer several observa-
tions about Markov’s inequality that we believe to be new.
In Section 2, we assume that the non negative rv X has cumulative distribution func-

tion (cdf) F with survival function F :¼ Pr X > xð Þ ¼ 1� F and left-continuous version

of the survival function F x�ð Þ :¼ Pr X � xð Þ, x � 0: Given F, we determine the points,

if any, such that x � l and F x�ð Þ ¼ l=x:
In Section 3, we offer an alternative proof of Markov’s inequality by observing that, if

some collection of events At : t � 0f g exists such that PrðAtÞ ¼ tF t�ð Þ=l, then because
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tF t�ð Þ=l equals a probability, it must satisfy tF t�ð Þ=l � 1, which is equivalent to
Markov’s inequality. We choose At : t � 0f g from events connected to stationary
renewal processes.
In Section 4, we suppose we know only the sample size n and the sample average xn

of n non negative observations x1, :::, xn: We establish an upper bound on the left-con-
tinuous version of the empirical survival function,

Fn
�
x�ð Þ :¼ # Xi � x : i ¼ 1, :::, nf g=n, x � 0:

As Fn
�

is a probability distribution over n unknown points with known mean xn,
Markov’s inequality applies. We use the additional information, beyond n and xn, that
Fn

�
is atomic and the size of the atoms are multiples of 1=n to derive a sharp upper

bound on Fn
�
x�ð Þ for all x � 0: This upper bound improves on Markov’s inequality

for this case. If it is known from context that PrfX 2 a, b½ �, 0 � a < b < 1g ¼ 1, we
derive a sharp upper bound on Fn

�
x�ð Þ for all x � 0:

In Section 5, when F is “new better than used in expectation” (NBUE), we show that
an upper bound of Markov type for F x�ð Þ is sharp. Brown (2006, p. 206, Theorem 3.2,
Eq. (3.5)) derived this bound but did not show it to be sharp. When Marshall and
Olkin (2007, p. 198, Section 6B) presented this bound, citing Brown’s earlier technical
report, they asked whether it was sharp. We also show that the bound in sharp in the
subclass within NBUE of survival functions with “decreasing mean residual
life” (DMRL).

2. When is Markov’s inequality sharp?

Let X be a non negative rv with cdf F xð Þ ¼ Pr X � xð Þ, x � 0, such that PrðX > 0Þ > 0
and 0 < l :¼ EX < 1: The survival function of X is FðxÞ :¼ Pr X > xð Þ ¼ 1�
FðxÞ, x � 0: The left-continuous version of the survival function is F x�ð Þ :¼
Pr X � xð Þ, x � 0: In Markov-type inequalities for a distribution that may have atoms,
using F x�ð Þ leads to a sharp bound (for which the upper bound is achievable), while
using F xð Þ leads to a tight bound (the best bound but not achievable). Since F xð Þ �
F x�ð Þ, it is esthetically preferable to upper bound the larger quantity, since the bound
cannot be improved for the smaller quantity.
Markov’s inequality says that

F x�ð Þ � min 1,
l
x

� �
for all x � 0: (1)

The bound is sharp for every x � 0: For x � l, the rv X � l has F x�ð Þ ¼ 1, so 1 is a
sharp upper bound, and for x > l the bound l=x is sharp and non trivial in that
l=x < 1: What are the points x, if any, such that x � l and F x�ð Þ ¼ l=x?
We say X has the distribution of a Bernoulli rv BðpÞ with parameter p if PrðX ¼ 1Þ ¼

p ¼ 1� Pr X ¼ 0ð Þ: To satisfy the assumption that PrðX > 0Þ > 0, we require that 0 <

p � 1: Let B denote the class fcB pð Þ : c > 0, 0 < p � 1g of scaled Bernoulli rvs. We
define a distribution on ½0,1Þ with 0 < l < 1 to be regular if it does not belong to B.
The main result of this section is:
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Theorem 1. Define a Fð Þ :¼ sup xF x�ð Þ : x 2 0,1½ g:�
(i) If F is regular, then xF x�ð Þ � a Fð Þ < l for all x 2 0,1Þ½ . Thus the upper bound in

Markov’s inequality is not attained for any x � l. Moreover,

F x�ð Þ � a Fð Þ
x

< min 1,
l
x

� �
for all x > a Fð Þ: (2)

The improvement compared to Markov’s inequality in (2) is 1� aðFÞ=x for a Fð Þ < x � l
and is ðl� a Fð ÞÞ=x for x � l:
(ii) If F is not regular, i.e., if F d

¼ cBðpÞ for some c > 0, p 2 ð0, 1� (where d
¼ means “has

the same distribution as”), then xF x�ð Þ < l for all x � 0, x 6¼ c. For x ¼ c,
cF c�ð Þ ¼ l ¼ cp. The upper bound is attained at the single point x ¼ c:

Proof. First we show that if F is regular, then a Fð Þ < l: For fixed x0 > 0, define
Y x0ð Þ :¼ X � x0IðX � x0Þ: Then Y x0ð Þ � 0 and EY x0ð Þ ¼ l� x0F x�0ð Þ: A non negative

rv equals 0 with probability 1 if and only if its mean is 0. Thus l ¼ x0F x�0ð Þ if and only
if (iff) EY x0ð Þ ¼ 0 iff Y x0ð Þ ¼ 0 with probability 1 iff X ¼ x0IðX � x0Þ with probability

1 iff X d
¼ x0BðF x�0ð ÞÞ: But because we assume F is regular, X 62 B: Thus for all x � 0,

EY xð Þ > 0 and l > xF x�ð Þ: If X d
¼ cBðpÞ, then EY xð Þ ¼ 0 only at x ¼ c, so xF x�ð Þ < l

for x 6¼ c and cF c�ð Þ ¼ l:
Because F is regular implies xF x�ð Þ < l, we have from the definition a Fð Þ :¼

supfxF x�ð Þ : x 2 0,1Þg½ that a Fð Þ � l: We now rule out the possibility that a Fð Þ ¼ l:
Define g xð Þ :¼ xF x�ð Þ: Then g y�ð Þ :¼ limx"y gðxÞ ¼ gðyÞ and g yþ

� �
:¼ limx#y g xð Þ ¼

yF yð Þ � yF y�ð Þ ¼ gðyÞ: Thus limx!yg xð Þ ¼ g yð Þ so g is upper semi-continuous. (We

recall that a function g : a, b½ � ! �1,1Þ,½ where a, b½ � is a closed interval, is upper

semi-continuous at y 2 ½a, b� iff g yð Þ 6¼ þ1, limx!ygðxÞ � gðyÞ:)
As l ¼ Ð1

0 F x�ð Þdx < 1, integration by parts implies that limx!1 gðxÞ ¼
limx!1 xF x�ð Þ ¼ 0: Choose T such that supx�T gðxÞ < aðFÞ=2: Then sup0�x�T gðxÞ ¼
sup0�x<1 gðxÞ ¼ aðFÞ: Thus aðFÞ is the supremum of g, an upper semi-continuous
function on the finite closed interval ½0,T�: A generalization of the Bolzano–Weierstrass
theorem to upper semi-continuous functions (Royden 1968, p. 161, Prop. 10) insures
that for some x in the interval ½0,T�, g xð Þ ¼ aðFÞ: Since g xð Þ ¼ xF x�ð Þ < l, it follows
that a Fð Þ < l: w

Example 1. If X is exponentially distributed with mean 1, then F x�ð Þ ¼ e�x, x � 0:
Then supx�0 xF x�ð Þ ¼ supx�0 xe

�x ¼ e�1 and the supremum is achieved at x ¼ 1: Thus

a Fð Þ ¼ e�1 and F x�ð Þ � ðexÞ�1 < minð1, 1=xÞ for x > e�1:

Example 2. If n > 1 and PrfX ¼ n=jg ¼ n�1, j ¼ 1, :::, n, then

xF x�ð Þ ¼
x, 0 � x � 1,
nx

n� k
,

n
n� kþ 1

< x � n
n� k

, k ¼ 1, :::, n� 1,

0, x > n:

8>><
>>:
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Here a Fð Þ ¼ 1 and xF x�ð Þ ¼ a Fð Þ at each of n points x ¼ n=j, j ¼ 1, :::, n: Since EX ¼
ln ¼

Pn
j¼1 j

�1, for large n we have ln � logn, which is significantly greater than

a Fð Þ ¼ 1: Then F x�ð Þ � x�1 < min 1, ln=xð Þ for x > 1: This example shows that, for
any n, it is possible for xF x�ð Þ to equal a Fð Þ at n distinct points, by contrast with the
case when X 2 B, where xF x�ð Þ ¼ l at at most one point, and the case when X is regu-
lar, where xF x�ð Þ ¼ l cannot hold at any x.

3. Markov’s inequality through renewal theory

Assume that the non negative rv X has cdf F with survival function F satisfying F 0ð Þ >
0, F 0�ð Þ ¼ 1, and 0 < l :¼ EX < 1: Define p tð Þ :¼ tF t�ð Þ=l: Markov’s inequality is
equivalent to p tð Þ � 1 for all t � 0: If, for every such F and for all t � 0, we can con-
struct events At : t � 0f g such that PrðAtÞ ¼ p tð Þ, then we have an alternative proof of
Markov’s inequality. The mathematical challenge is to construct such At : t � 0f g:
In a stationary renewal process with interarrival-time cdf F, let G be the cdf of forward

and backward recurrence times. G is known as the equilibrium renewal distribution and is
absolutely continuous with probability density function (pdf) g xð Þ ¼ F xð Þ=l, x � 0:
Suppose rv X has cdf F and rv Y has cdf G and X and Y are independent. Define rv

L by its distribution conditional on Y ¼ x :

Lj Y ¼ xð Þd¼Xj X > xð Þ for all x with F xð Þ > 0:

L is well defined since g xð Þ > 0 iff F xð Þ > 0: Then L d
¼XjðX > YÞ and

Pr L � tjY ¼ xf g ¼
1, t � x,
F t�ð Þ
F xð Þ , t > x:

8><
>:

Theorem 2. Define At :¼ fY < t � Lg. Then PrðAtÞ ¼ p tð Þ ¼ tF t�ð Þ=l for all t � 0 and
any cdf F with survival function F satisfying F 0ð Þ > 0, F 0�ð Þ < 1, and 0 < l :¼
EX < 1:

Proof.

PrðAtÞ ¼
ðt

x¼0

g xð ÞPr L � tjY ¼ xf gdx ¼
ðt

x¼0

F xð Þ
l

F t�ð Þ
F xð Þ dx ¼ tF t�ð Þ

l
¼ p tð Þ:

w

If F is regular, Theorems 1 and 2 imply that supt�0 PrfY < t � Lg � aðFÞ=l < 1:
When F is non arithmetic, i.e., when not all of the probability density falls on an

arithmetic progression of points, then the backward and forward recurrence times con-
verge in distribution as t ! 1 (Feller 1971, p. 370). When F is arithmetic, the back-
ward and forward recurrence times have a stationary distribution but do not converge
in distribution, analogous to the situation in a finite-state irreducible periodic Markov
chain (Thorisson 2000, Section 9.2).
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The rv L is the distribution of the length of the renewal interval covering a fixed
point for a stationary renewal distribution. If L has survival function H tð Þ :¼
Pr L � tf g, t � 0, then

H tð Þ ¼ G tð Þ þ tF tð Þ=l ¼ G tð Þ þ tF t�ð Þ=l
(Brown 2006, (3.3)), where the second equality holds by continuity. Therefore

p tð Þ :¼ tF t�ð Þ=l ¼ H tð Þ � G tð Þ:
In this case, PrfY < t � Lg ¼ PrfL � tg � Pr Y � tf g because Pr Y � Lf g ¼ 1: The
probability PrfY < t � Lg depends on the joint distribution of Y and L, not just on the
marginal distributions, as this example will show.

Example 3. Let U, V be independent rvs with PrfU ¼ 1g ¼ 1
2 ¼ PrfU ¼ 2g and

PrfV ¼ 1g ¼ 3
10 ¼ 1� PrfV ¼ 2g: Then U is stochastically smaller than V in the sense

that, for all x � 0, PrfU � xg � PrfV � xg: However, Pr U � Vf g < 1
and PrfU < 2 � Vg ¼ 1

2 � 7
10 ¼ 0:35 6¼ Pr V � 2f g � Pr U � 2f g ¼ 7

10 � 1
2 ¼ 0:2:

4. Markov’s inequality given only the sample size and the sample average

Suppose n > 1 and x1, :::, xn are non negative numbers with at least one xi strictly posi-
tive. Suppose we know only n and the sum s :¼ x1 þ :::þ xn or the sample mean
xn :¼ s=n: Since at least one xi is assumed to be strictly positive, we have s > 0, xn>0.
We establish an upper bound on the left-continuous version of the empirical survival

function, Fn
�
x�ð Þ :¼ # Xi � x : i ¼ 1, :::, nf g=n, x � 0: Markov’s inequality with F ¼

Fn
�
, l ¼ xn gives Fn

�
x�ð Þ � min 1, xnx

� �
for all x � 0: In this section, we show that

the additional information, beyond n and xn, that Fn
�

is atomic and the size of the

atoms are multiples of 1=n yields a sharp upper bound on Fn
�
x�ð Þ for all x � 0: This

upper bound improves on Markov’s inequality for this case.
For s > 0, define A sð Þ :¼ fðx1, :::, xnÞ : xi � 0, i ¼ 1, :::, n and x1 þ :::þ xn ¼ sg:

Lemma. Define Mn x, sð Þ to be the maximum of the number of sample members xi greater
than or equal to x as x1, :::, xnð Þ ranges over all samples of n non negative numbers with

sample sum s. Then

(i) Mn x, sð Þ ¼ n if 0 � x � xn:
(ii) For k ¼ 1, :::, n� 1, Mn x, sð Þ ¼ k if s

kþ1 < x � s
k :

(iii) Mn x, sð Þ ¼ 0 if s < x

Proof. (i) For x � xn, in the particular case xi ¼ xn, i ¼ 1, :::, n, we have all sample
members greater than or equal to x, which implies Mn x, sð Þ ¼ n:
(ii) For x � s

k , in the particular case xi ¼ s=k, i ¼ 1, :::, k, and xj ¼ 0, j ¼ kþ
1, :::, n, we have

Pn
i¼1 xi ¼ s and exactly k sample members greater than or equal to x,

thus Mn xð Þ � k: For s
kþ1 < x, since s < kþ 1ð Þx, we must have at most k elements

greater than or equal to x for all non negative samples x1, :::, xnð Þ with sum s, and
thus Mn x, sð Þ � k: Consequently, for s

kþ1 < x � s
k , Mn x, sð Þ ¼ k:
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(iii) For s < x, it is impossible for any non negative number xi to exceed the sum
x1 þ :::þ xn ¼ s of a set of non negative numbers of which it is one member,
so Mn x, sð Þ ¼ 0: w

Mn x, sð Þ=n is the left-continuous version of the survival function of a discrete uniform
distribution on the n points s

k , k ¼ 1, :::, n: The Lemma implies that

Mn x, sð Þ
n

¼ I 0 � x � sf g þ
Xn�1

k¼1

k
n
I

s
kþ 1

< x � s
k

	 

, x � 0:

Since Mn x, sð Þ is a sharp upper bound for the number of members that are greater than
or equal to x of any non negative sample x1, :::, xnð Þ with sum s, it follows that

Mn xð Þ=n is a sharp upper bound for Fn
�
x�ð Þ: As min 1, xn=xð Þ is an upper bound for

Fn
�
x�ð Þ, it follows that Mn x, sð Þ=n � min 1, xn=xð Þ: Theorem 3 compares the two

bounds Mn x, sð Þ=n and min 1, xn=xð Þ for Fn
�
x�ð Þ:

Theorem 3. Define Dn x�ð Þ :¼ min 1, xn=xð Þ �Mn x, sð Þ=n: Then 0 � Dn x�ð Þ < n�1 for
all x � 0 and supx�0 Dn x�ð Þ ¼ n�1 but Dn x�ð Þ never equals n�1:

Proof. For x � s
n , Dn x�ð Þ ¼ 0: For x ¼ s=k, k ¼ 1, :::, n, Dn x�ð Þ ¼ 0: For k ¼

1, :::, n� 1 and s
kþ1 < x < s

k , Dn x�ð Þ > 0 and Dn x�ð Þ ! 0 as x " s
k , Dn x�ð Þ ! n�1 as

x # s
kþ1 : For x > s, Dn x�ð Þ > 0 and Dn x�ð Þ ! 0 as x " 1, Dn x�ð Þ ! n�1 as x # s: But

Dn x�ð Þ 6¼ n�1 for all x � 0: w

F �
n is regular (in the sense of Section 2) iff for some i 6¼ j, 0 < xi < xj, i.e., iff

fx1, :::, xng contains at least two distinct positive values. If F �
n is regular, then by

Theorem 1, Fn
�
x�ð Þ < min 1, xn=xð Þ for all x > xn: But it can happen that Fn

�
x�ð Þ ¼

Mn x, sð Þ=n:
Example 4. Let n ¼ 4, s ¼ 16, x1, x2, x3, x4ð Þ ¼ ð0, 4, 6, 6Þ: Since Mn x, sð Þ=n ¼ 1

2 for
x 2 ð163 , 8�, we have Mn 6�, 16ð Þ=n ¼ 1

2 ¼ Fn
�
6�ð Þ while at x ¼ 6�, min 1, xn=xð Þ ¼

min 1, 16
4�6

� � ¼ 2
3 , and ð0, 4, 6, 6Þ gives a regular F �

n :

Example 5. Suppose that n ¼ 50 SAT scores graded on a scale of 200–800 had a mean
of s=n ¼ 516, so that s ¼ 25, 800: Consider a hypothetical score of x ¼ 1000: Since the
sum of all 50 scores is s ¼ 25, 800, at most 25 scores could equal 1000. From the
lemma, as s=26 < x ¼ 1000 � s=25, we have k ¼ 25,Mn 1000�ð Þ=n ¼ 25=50 ¼ 1=2 while
Fn

�
1000�ð Þ ¼ 0 since all scores are in a, b½ � ¼ ½200, 800�:

This example suggests that there is room to improve the upper bound Mn x, sð Þ=n
when it is known that each xi 2 a, b½ �, 0 � a < b � 1, i ¼ 1, :::, n:
If b ¼ 1, so that we know only that each xi � a � 0, let us assume xi > a for at

least one i. Then we define

yi :¼ xi � a, s yð Þ :¼ s� na, yn :¼ xn � a:

Using these yi instead of xi in Mn x, sð Þ=n gives a sharp upper bound for the left-con-
tinuous empirical survival function of y1, :::, yn: We translate the intervals in the lemma
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by a to obtain a sharp upper bound for Fn
�
x�ð Þ corresponding to x1, :::, xn: That

bound is

An x�ð Þ ¼
1, 0 � x � xn,
k
n
, aþ s� na

kþ 1
< x � aþ s� na

k
, k ¼ 1, :::, n� 1,

0, x > s� n� 1ð Þa:

8>>><
>>>:

For a general a, b, the sharp upper bound is

Bn x�ð Þ ¼ An x�ð Þ, x � b,

0, x > b:

(

Example 6. Continuing Example 5, suppose a ¼ 200, b ¼ 1 in the SAT example
above. Then An 1000�ð Þ ¼ 0:38, a nice improvement over Mn x, sð Þ=n ¼ 0:5: Since

1000 > b, Bn 1000�ð Þ ¼ 0: When we know that b ¼ 800 so that x ¼ 600 2 ½200, 800�,
then Mn x, sð Þ=n ¼ 0:86 while An 600�ð Þ ¼ Bn 600�ð Þ ¼ 0:78:

5. Markov’s inequality in reliability theory: NBUE and DMRL

Marshall and Olkin (2007, pp. 198–215, Section 6B) reviewed upper bounds for F t�ð Þ
when given more information about the distribution F than its mean l: Such additional
information includes a description of the pattern of aging associated with the survival
curve F :
For example, a cdf F on ½0,1Þ with finite mean l is defined to be “new better than

used in expectation” (NBUE) iff

EðX � t jX > tÞ � EX for all t � 0 with F tð Þ > 0:

NBUE is equivalent to F�stG where G, the equilibrium cdf corresponding to F, has, by
definition, pdf at t � 0 given by F tð Þ=l: A rv that is NBUE deteriorates weakly with
age. Subclasses of NBUE include new better than used, increasing failure rate, and
decreasing mean residual life (DMRL) (Barlow and Proschan 1975; Marshall and
Olkin 2007).

5.1. NBUE distributions

For NBUE distributions, Marshall and Olkin (2007) stated a bound of Brown (2006, p.
206),

F tð Þ � minf1, exp � t
l
� 1

� �� �
g, (3)

which is informative for t > l, and asked whether that bound is sharp. Here we show
that it is sharp.
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Theorem 4. For every t � 0, a NBUE distribution F exists such that

F tð Þ ¼ min 1, exp � t
l
� 1

� �� �	 

:

Proof. For t � l let X � l: This distribution is NBUE as EðX � t jX > tÞ ¼ l� t for
t < l: Moreover, F t�ð Þ ¼ 1 for 0 � t � l: Thus the bound 1 is sharp.
For every t > l, we produce a distribution that achieves the upper bound for that t.

The upper bound is the value of the survival function of an exponential distribution
with mean l at t � l: The idea of the construction is that, if we want F t�ð Þ to equal

minf1, exp � t
l � 1
h i� �

g, we gain nothing by allowing F tð Þ > 0: So we assign F the pdf

f xð Þ ¼ l�1e�x=l on ½0, t � lÞ and f xð Þ ¼ 0 on ½t � l, tÞ: Then, for a chosen t,

F xð Þ ¼
G xð Þ ¼ e�x=l, for 0 � x � t � l,

exp � t
l
� 1

� �� �
, for t � l � x < t,

8><
>:

with F t�ð Þ ¼ exp � t
l � 1
h i� �

, and F xð Þ ¼ 0 for x > t: Further,

G xð Þ ¼
t � x
l

exp � t
l
� 1

� �� �
, for t � l � x < t,

0, for x � t:

8><
>:

As ðt � xÞ=l goes from 1 to 0 as x goes from t � l to t, we see that F�stG and F is
NBUE. Also,

EFX ¼
ðt�l

x¼0
l�1e�x=ldx þ

ðt
x¼t�l

exp � t
l
� 1

� �� �
dx ¼ l:

Thus F is NBUE, has mean l and satisfies (3) with equality for the chosen t.

5.2. DMRL distributions

A distribution F on 0,1Þ½ with F 0ð Þ ¼ 0 is DMRL if E X � x j X > xÞð is non increas-
ing in x � 0 for all x with F xð Þ > 0: DMRL is a subclass of NBUE because EðX �
x jX > xÞ � EðX � 0 jX > 0Þ ¼ EX: The cdf F constructed in the proof of Theorem 4
is not only NBUE but is also DMRL because

E X � x j X > xð Þ ¼ l, for 0 � x � t � l,

t � x, for t � l � x < t:

(

Therefore this F also demonstrates that (3) is sharp for DMRL distributions.
In defining DMRL, we required F 0ð Þ ¼ 0: To see why, consider rv X with F tð Þ ¼

qe�t for t � 0, 0 < q < 1: For all t � 0, E X � t j X > tÞ ¼ l :¼ EX,ð which is non
increasing in t. But since F 0ð Þ ¼ q < 1, F 0ð Þ ¼ p :¼ 1� q > 0, so this X does not sat-
isfy the definition, and the bound (3) does not hold because (since l ¼ qÞ
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qe�t

exp � t
q � 1
h i� � ¼ qe�1exp

pt
q

� �
! 1 as t ! 1:

Thus for all sufficiently large t,

F tð Þ > exp � t
q
� 1

� �� �
:

Likewise, if F is NBUE, then F 0ð Þ ¼ 0, since if F 0ð Þ > 0, then EðX � 0 jX > 0Þ ¼
l=F 0ð Þ > l and F is not NBUE.
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