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Abstract

Understanding the spatial and temporal distributions and fluctuations of living populations is

a central goal in ecology and demography. A scaling pattern called Taylor’s law has been

used to quantify the distributions of populations. Taylor’s law asserts a linear relationship

between the logarithm of the mean and the logarithm of the variance of population size.

Here, extending previous work, we use generalized least-squares models to describe three

types of Taylor’s law. These models incorporate the temporal and spatial autocorrelations in

the mean-variance data. Moreover, we analyze three purely statistical models to predict the

form and slope of Taylor’s law. We apply these descriptive and predictive models of Taylor’s

law to the county population counts of the United States decennial censuses (1790–2010).

We find that the temporal and spatial autocorrelations strongly affect estimates of the slope

of Taylor’s law, and generalized least-squares models that take account of these autocorre-

lations are often superior to ordinary least-squares models. Temporal and spatial autocorre-

lations combine with demographic factors (e.g., population growth and historical events) to

influence Taylor’s law for human population data. Our results show that the assumptions of

a descriptive model must be carefully evaluated when it is used to estimate and interpret the

slope of Taylor’s law.

Introduction

Understanding the spatial and temporal distribution and variation of species populations is

fundamental in ecology and demography. Taylor’s law (hereafter TL) states that the logarithm

of the variance of population size (defined as count of individuals or count of individuals per

unit area) is a linear function of the logarithm of the mean population size [1]. TL has been

confirmed for thousands of biological taxa under various biological and environmental condi-

tions [2], ranging from laboratory bacterial microcosms [3] to natural forest stands [4]; from

agricultural crops [5,6] to wildlife animals [7]; and from free-living species to parasitized spe-

cies [8,9]. TL has also been observed in non-biological systems [10–16].
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In human demography, studies have tested and sometimes confirmed TL using sub-

national (or national) human population size from Italy, Norway, United States, and the world

[17–22]. Recent works have also tested and usually confirmed TL for age-specific annual

human death rates in 12 countries [23,24]. Using the decennial census data, Xu and Cohen

[22] found that US county population size obeys TL or its quadratic generalization, and com-

pared the estimated TL slopes from different countries. They showed that significant temporal

and spatial autocorrelation is present in the ordinary regression model residuals, which vio-

lated the assumptions of the ordinary regression models used for testing TL (i.e., a linear rela-

tionship between log(mean) and log(variance)). To our knowledge, no previous works on TL

have used generalized regression models (which can incorporate the spatial and temporal

structure) to describe TL for US county populations. On the other hand, no theoretical model

(biological or statistical) has predicted the emergence of TL in US county populations. These

gaps of knowledge impede the understanding of TL and limit its usefulness in demographic

research.

Motivated by these gaps, here we extend the work by Xu and Cohen [22] to analyze the

descriptive and predictive models of TL using US county population data. We have two goals.

First, we will examine three types of TL (spatial hierarchical TL, spatial TL, and temporal TL)

using generalized least-squares regressions with autocorrelated errors, and compare the results

with those from the ordinary least-squares regressions. These comparisons will reveal the effect

of temporal and spatial autocorrelation on the slope of TL, and facilitate establishing improved

statistical standards for testing TL. Second, we will evaluate the assumptions and performance

of three purely statistical models of TL using the US county population data. Such analyses will

elucidate the mechanisms of spatial and temporal distributions of human population through

the lens of TL.

Materials and methods

US census data and Taylor’s law

County population count (number of individuals living in each county, historical or existing)

in the United States was obtained from the decennial census from 1790 to 2010 [25]. Detailed

descriptive statistics of the census data are given in Xu and Cohen [22]. As in [22], here "states"

refers to states, territories, or equivalent primary administrative subdivisions of the United

States, and "counties" refers to counties, parishes, or equivalent primary administrative subdi-

visions of any "state".

We study three types of Taylor’s law (TL) and their corresponding quadratic generaliza-

tions (or quadratic Taylor’s law, QTL). Specifically, in each census, we calculate a spatial mean

and a spatial variance of county population counts across all counties within each state. If the

logarithm of the spatial variance is well approximated by a linear function of the logarithm of

the spatial mean across all states within a census, then the spatial hierarchical TL holds

(approximately). If the same variables follow (approximately) a linear relationship across cen-

suses within a state, then the spatial TL holds (approximately). Similarly, for each state, we cal-

culate a temporal mean and a temporal variance of county population counts across all

censuses within each county. If the logarithm of the temporal variance is (approximately) a lin-

ear function of the logarithm of the temporal mean across all counties within a state, then the

temporal TL holds (approximately) for county populations within that state. If each set of loga-

rithmic mean and logarithmic variance pairs follows a quadratic relationship, then the corre-

sponding QTL holds. Xu and Cohen [22] tested these three types of TL using the ordinary

least-squares (OLS) regression model with uncorrelated error ε (normally distributed, with
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zero mean and constant variance):

log ðvarianceÞ ¼ aþ b log ðmeanÞ þ �: ðEq 1Þ

Here a and b are respectively the intercept and the slope of the corresponding TL. They also

fitted the log(mean)-log(variance) relationship with an OLS quadratic regression model to

examine each QTL:

log ðvarianceÞ ¼ cþ d log ðmeanÞ þ e½log ðmeanÞ�2 þ �: ðEq 2Þ

Here the quadratic coefficient e indicates the convexity (e>0) or concavity (e<0) in the rela-

tionship. Throughout log = log10.

Descriptive models of Taylor’s law

We reexamine the three types of TL by fitting generalized least-squares (GLS) regressions to

the log(mean)-log(variance) data. This practice is warranted because the residuals of the OLS

regressions had significant spatial and temporal autocorrelations (see S9-S14 Tables in [22]),

which violated the assumption of uncorrelated errors [26]. These GLS regressions incorporate

various autocorrelation error structures and may better describe the mean-variance relation-

ships (Eqs 1 and 2). We compare the OLS and GLS regressions using the Akaike Information

Criterion corrected for sample size (AICc) and evaluate the difference in TL slopes between

the OLS and the best regression model (the one with the least AICc). For each set of log(mean)

and log(variance) pairs, we calculate and compare the model AICc using the maximum likeli-

hood method. We obtain the unbiased TL slope and standard error using the restricted maxi-

mum likelihood method [27]. Comparison of AICc shows the relative quality of the model

based on the model likelihood and complexity. Some GLS models yield greater AICc than the

OLS model because the GLS model contains more parameters in the correlation structure. It is

possible that the increases in the number of parameters is greater than the increase of the

model likelihood for some GLS models, increasing AICc. To evaluate the absolute goodness of

fit of the model, we calculate the correlation coefficient between the observed variance and the

predicted variance for each combination of TL and least-squares model.

For the spatial hierarchical TL across states in each census, we fit the corresponding log

(spatial mean)-log(spatial variance) pairs using five spatially explicit GLS regression models

with different spatial correlation structures separately: exponential, Gaussian, linear, rational

quadratics, and spherical. These models describe the correlation of two mean-variance pairs as

a decreasing function of the spatial distance between two states. For example, the Gaussian

correlation structure models correlation as exp(-(r/d)2), where d is the range (the span of dis-

tances over which observations are correlated) and r is the distance between two observations.

The mathematical forms of all correlation structures are listed in [27] (their Table 5.2). These

correlation structures allow heteroscedastic errors (errors of unequal variance) in the regres-

sion model. For the spatial TL across censuses in each state, we fit the corresponding log(spa-

tial mean)-log(spatial variance) pairs with three GLS regression models of different temporal

correlation structures separately: order-1 autoregressive, order-1 moving average, and order-1

autoregressive order-1 moving average. These temporal correlation structures are decreasing

functions of time lag and are described in [27]. For the temporal TL across counties in each

state, we fit the corresponding log(temporal mean)-log(temporal variance) pairs with the same

five spatially explicit GLS models of different spatial correlation structures separately, as we do

for the spatial hierarchical TL.

For each county with changing geographic centroids between censuses (due to county

boundary changes), we average the geographic coordinates (latitude and longitude) of the
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centroids across censuses to specify a single geographic location for that county. The total

number of positive spatial mean-spatial variance pairs (across all censuses and states) is 958.

The total number of positive temporal mean-temporal variance pairs (across all states and

counties) is 3397. We fit each regression model to at least five finite log(mean)-log(variance)

pairs across the corresponding scale, within a census or a state; if fewer pairs are available, we

skip the analysis. No constraint is imposed on the number of units (i.e., counties within state,

censuses for a county) used to generate one mean-variance pair. In a given census, the mini-

mum number of counties in any state is two. In a given state, the minimum number of cen-

suses for any county is two. Requiring at least 15 units per mean-variance pair does not change

the overall finding of the descriptive models. The corresponding results based on at least 15

units per mean-variance pair are given in the supporting information (SI) S6 Appendix in S1

File.

For each individual regression model of TL, we derive the 95% interval estimate of TL’s

slope using the normal theory: point estimate ± t0.025, n-1×standard error. Here t0.025, n-1 is the

critical t value with one-sided cutoff area of 0.025 and degree of freedom of n-1 (n being the

number of finite log(mean)-log(variance) pairs) [26].

Predictive models of Taylor’s law

Besides the descriptive regression models for TL, we use three purely statistical models to pre-

dict TL’s slope. For each predictive model and each type of TL, we evaluate the model assump-

tions using the US county data and compare the predicted slope with that obtained from the

descriptive models. We summarize the model assumptions and fitting in the main text. We

give details of assumption checking, prediction procedure, and software used in the SI.

a. Random samples of skewed distributions. Cohen and Xu [28] (hereafter CX) showed

that random samples of independently and identically distributed (iid) observations of any

skewed nonnegative distribution with finite third moment obey TL. CX gave explicit formulas

to approximate the TL slope and its standard error (their eqns 3 and 5). Here, we first check

the iid assumptions of the CX model against the US county data using various statistical

hypothesis tests. We then predict TL slopes and their standard errors using the CX model for

the county data.

b. Tweedie’s exponential dispersion models. Kendal and Jørgensen [29,30] used Twee-

die’s exponential dispersion models to predict TL. Tweedie models are a family of three-

parameter probability distributions and assume that observations follow the same distribution.

We first evaluate the goodness of fit of the Tweedie models and other competing distribution

models against the US county data. We then predict the point estimate and standard error of

TL slope using the Tweedie models for the county data. Unlike the CX model that gives an

explicit estimator of TL slope, Tweedie models estimate the TL slope numerically by fitting the

empirical distribution using the maximum likelihood method.

c. Feasible sets of integer partitions. Any positive integer N can be partitioned into a

sum of a given positive number p of nonnegative integers N = n1+� � �+np, ni�0, i = 1,. . .,p. In

the theory of partitions, p is the number of "parts" and each summand ni is one part. For the

spatial hierarchical TL and spatial TL, we identify the positive integer N with the population

size (number of people) of a state and the parts with the population size of the counties in that

state. For the temporal TL, we identify the positive integer N with the cumulative county popu-

lation size (number of people) over all available censuses of a county and the parts with the

county population size in one census.

For example, integer 2 (population of 2 people) can be partitioned into two parts (unor-

dered parts: (2, 0) and (1, 1), or ordered parts: (2, 0), (1, 1), and (0, 2)). The resulting set of all
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possible partitions is called the feasible set. The partition (2, 0) has one zero part, while the par-

tition (1, 1) has no zero parts. In our empirical application, a zero part would represent a

county with no people (in the particular census). Throughout this work we used only unor-

dered partitions including zero parts to predict TL, since there is no natural ordering of

counties.

A feasible set can generate multiple variances at the same mean. (The example above yields

variances of 2 = variance of {0, 2} and 0 = variance of {1, 1} for the same mean of 1.) Xiao,

Locey, and White [31] (hereafter XLW) used feasible sets to predict TL slopes. Using the unor-

dered integer partitions including zero parts, we predict TL using the XLW model for the US

county data and we examine the similarity in distributions between the feasible sets and the

empirical data. A concrete example of the application of unordered partitions to model hypo-

thetical demographic data is given in the SI (S2 Appendix in S1 File, section C).

d. Model comparisons of TL’s slopes. For each TL, we use the bootstrap to compare five

estimates of TL’s slope b: one from the ordinary least-squares linear regression (denoted as

bols), one from the best least-squares linear regression (denoted as breg); one from the CX’s for-

mula (eqn 3 in [28]) (denoted as bCX); one from the Tweedie distribution model (denoted as

bT); and one from the XLW model (including zero parts) (denoted as bXLW).

Specifically, for the spatial hierarchical TL and the spatial TL, we bootstrap 100 samples of

county population counts from all counties within each combination of census and state. For

the temporal TL, we bootstrap 100 samples of county population counties from all censuses

within each combination of state and county. Each bootstrap sample contains the same num-

ber of counties (or censuses) as in the actual data (although the number of distinct counties

(censuses) may differ due to sampling with replacement). For each bootstrap sample, we fitted

regression and predictive models to estimate TL’s slopes following the aforementioned meth-

ods. For the XLW model, we simulate 100 random partitions of state population count or his-

torical county population count and generate 100 estimates of TL’s slope for each bootstrap

sample (following the method detailed in S2 Appendix in S1 File, section C). We use the

median of the 100 estimated slopes as the point estimate of TL’s slope for that bootstrap sam-

ple. For each census in the spatial hierarchical TL, and each state in the spatial TL and the tem-

poral TL, the bootstrap samples yield 100 estimates of bols, breg, bCX, bT, and bXLW separately.

These procedures generate four sets of 100 sample differences between breg and each of the

other four b’s respectively. We construct the 95% interval estimate of each slope difference

using 2.5% and 97.5% percentiles of the corresponding set of sample differences. If a 95%

interval estimate of a slope difference does not include zero, we infer that the best linear regres-

sion model gives an estimate of TL’s slope that differs significantly from the slope estimate of

another model.

We set the significance level of a hypothesis test at 0.05 and the confidence level at 95% for

an interval estimate. Since hypothesis tests and model comparisons involve repeated tests for

multiple spatial or temporal units, we use Bonferroni correction to offset the increased type-1

error (significance level = 0.05/number of tests (or comparisons)) caused by multiple compari-

sons. Results based on the Bonferroni correction are given in the SI. All data analysis and

model fitting are performed in R [32].

Results

GLS regressions and descriptive model comparison

a. Spatial hierarchical TL. According to AICc, spatially correlated GLS linear regression

is superior to the corresponding OLS linear regression (eqn 1) in describing the mean-variance

relationship in most recent censuses (Tables 1 and S1). Of the 23 censuses, the best linear
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regression model (with the least AICc) is the OLS regression in 12 censuses (1790–1890, 1910),

GLS regression with exponential spatial correlation in ten censuses (1900, 1920–2000), and

GLS regression with rational quadratics spatial correlation in one census (2010) (Fig 1A). The

best linear regressions yields significantly positive TL slopes in all censuses except 1790. The

AICc weight of the best LS regression ranges from 0.22 to 0.58, with a median of 0.39. Correla-

tion of the observed variance and the predicted variance of the best linear regression ranges

from 0.52 to 0.92, with a median of 0.70 (S1 Fig, S2 Table). The OLS and the selected GLS dif-

fer slightly in their correlation (the correlation from the selected GLS is lower than that from

OLS by 0.014–0.031 in 1900 and 1920–1970, and higher than that from OLS by 0.0029–0.027

in 1980–2010). Fitting to the bootstrap samples shows that TL’s slope of the best linear regres-

sion model is significantly higher than that of the OLS regression in four censuses (1950, 1970,

1990, and 2000), and is not significantly different from that of the OLS regression in the

remaining 19 censuses (S3 Table).

b. Spatial TL. Temporally correlated GLS linear regression models are superior to the

OLS linear regression models in 46 of the 55 states according to AICc (Tables 1 and S4). Specif-

ically, the best linear regression model selected by AICc is the GLS regression with a first-

order autoregressive process in 25 states, GLS regression with a first-order moving average

process in three states, and GLS regression with a first-order autoregressive moving average

process in 18 states (Fig 1B). In 13 states where the GLS is the best model, the restricted maxi-

mum likelihood method fails to converge and does not yield the point estimate or standard

Table 1. Statistical models of TL and their summary statistics. The two descriptive models of TL are OLS (ordinary least-squares) and best LS (which is the OLS or GLS

with the smallest AICc). The three predictive models of TL are the CX (Cohen-Xu) model, the Tweedie model, and the XLW (Xiao-Locey-White) models. 13 of the best LS

models for the spatial TL and one of the best LS models for the temporal TL are GLS models that did not yield parameter estimates of TL due to failed convergence (for rea-

sons not understood), resulting in respectively 42 (55–13) and 63 (64–1) best LS models. For each predictive model, the corresponding prediction of b is significantly less

than (<) breg if the 95% interval estimate of the corresponding slope difference (from bootstrap samples) is less than zero, not significantly different from (�) breg if the

95% interval estimate contains zero, and significantly greater than (>) breg if the 95% interval estimate is greater than zero.

model TL

type name statistics spatial hierarchical spatial temporal

descriptive OLS no. of TL fitted 23 55 64

no. of OLS selected 12 9 41

range of b 1.54–2.47 0.21–5.54 1.49–3.93

median of AICc weight 0.28 0 0.37

median of correlation 0.70 0.97 0.97

best LS no. of TL fitted 23 42 63

range of b 1.54–2.59 0.21–3.90 1.49–3.93

median of AICc weight 0.39 0.76 0.44

median of correlation 0.70 0.97 0.97

predictive CX range of b 3.21–7.80 1.09–5.56 0.63–5.56

no. (%) of bCX < breg 0 (0) 9 (16) 13 (20)

no. (%) of bCX� breg 1 (4) 37 (67) 27 (42)

no. (%) of bCX > breg 22 (96) 9 (16) 24 (38)

Tweedie range of b 1.97–2.87 1.29–3.08 1.65–3.02

no. (%) of bT < breg 0 (0) 10 (18) 8 (13)

no. (%) of bT � breg 11 (48) 39 (71) 38 (59)

no. (%) of bT > breg 12 (52) 6 (11) 18 (28)

XLW range of b 1.57–1.85 1.40–2.29 1.13–2.13

no. (%) of bXLW < breg 10 (43) 32 (58) 45 (70)

no. (%) of bXLW � breg 13 (57) 23 (42) 19 (30)

no. (%) of bXLW > breg 0 (0) 0 (0) 0 (0)

https://doi.org/10.1371/journal.pone.0245062.t001
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error of TL slope. The best linear regression models yield significantly positive spatial TL

slopes in all states except Alaska Territory, New Mexico Territory, and South Dakota. AICc

weight of the best linear regression ranges from 0.022 to 1, with a median of 0.76. Correlation

of the observed variance and the predicted variance from the best linear regression ranges

from 0.44 to 1, with a median of 0.97 (S2 Fig, S5 Table). Difference in the correlation between

the best GLS and the OLS is within a magnitude of 0.1 in all states except South Dakota, with a

difference of -0.19. Interval estimate using bootstrap samples shows that TL’s slopes do not dif-

fer between the best linear regression model and the OLS regression (S6 Table).

c. Temporal TL. For the temporal TL, the best linear regression model is OLS regression

in 43 of the 64 states, GLS regression with exponential spatial correlation in eight states, GLS

regression with Gaussian spatial correlation in four states, GLS regression with linear spatial

correlation in three states, GLS regression with spherical spatial correlation in one state, and

GLS regression with rational quadratics spatial correlation in five states (Tables 1 and S7, Fig

1C). In Washington, where the GLS regression with linear spatial correlation is the best model,

the restricted maximum likelihood method fails to converge and does not yield the point esti-

mate or standard error of TL slope. In all but three states (Alaska Territory, Arkansas Terri-

tory, and Wyoming Territory), the best linear regression model yields significantly positive TL

slope. AICc weight of the best linear regression ranges from 0.23 to 1, with a median of 0.44.

Correlation of the observed variance and the predicted variance from the best linear regression

ranges from 0.066 to 1, with a median of 0.97 (S3 Fig, S8 Table). Difference of correlation

between the selected GLS and the OLS is within a magnitude of 0.01 for all states except Mary-

land (with a magnitude of 0.044). Interval estimate using bootstrap samples shows that TL’s

slopes do not differ between the best linear regression model and the OLS regression (S9

Table).

Assumptions of predictive models

The CX model assumes that samples of county population count are iid. The Tweedie model

also assumes observations come from a single underlying distribution (which may be a com-

pound distribution). The data are not consistent, in general, with these assumptions (S10–S20

Tables). Among the five distribution models that are used to describe the county population

count, the Tweedie model and the Poisson lognormal model (see SI S2 Appendix in S1 File

section B) yield AICc lower than that of the other three distributions in most censuses or states

(S21–S23 Tables). Lastly, the XLW model yields random parts that are not significantly differ-

ent from the empirical spatial distribution of county population count in 38.4% of the combi-

nations of states and censuses (S24 Table), and not significantly different from the empirical

temporal distribution in 51.9% of counties (S25 Table). Detailed results of the assumption

checking are given in the SI.

Fig 1. Rankings and proportions of least-squares linear regression models of (a) spatial hierarchical TL, (b) spatial TL,

and (c) temporal TL. "ols" denotes the ordinary least-squares regression. "gls_exp", "gls_gauss","gls_lin","gls_sph", and

"gls_rat" denote the generalized least-squares linear regression with the following spatial correlation structures

respectively: exponential, Gaussian, linear, spherical, and rational quadratics. "gls_ar1", "gls_ma1", and "gls_arma11"

denote the generalized least-squares linear regression with the following temporal correlation structures respectively:

order-1 autoregressive, order-1 moving average, and order-1 autoregressive order-1 moving average. Number in front

of each parenthesis represents the model rank according to AICc (model with the smallest AICc has rank 1 and model

with the largest AICc has rank 6). Percentage in each parenthesis gives the proportion of censuses (23 for (a) spatial

hierarchical TL) or states (55 for (b) spatial TL and 64 for (c) temporal TL) in which the model has the corresponding

rank. For example, when fitting the spatial hierarchical TL, ordinary least-squares regression (ols) fit the mean-

variance pairs more closely (by the AICc criterion) than the five other models in 52.17% of the 23 censuses (i.e., in 12

of 23 censuses). For some models the percentages do not add up to 100% because the corresponding maximum

likelihood method fails to converge (for reasons not understood).

https://doi.org/10.1371/journal.pone.0245062.g001
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Fig 2. Difference of TL’s slope between each predictive model and the best linear regression model against TL’s slope estimate from the best linear regression

model. The top, middle, and bottom rows correspond to spatial hierarchical TL, spatial TL, and temporal TL respectively. The left, middle, and right columns correspond

to respectively the difference in slopes between the CX model and the best linear model, between the Tweedie model and the best linear model, and between the XLW

model and the best linear model. Grey dots show the medians of the slope difference and error bars show the 95% interval estimates for each combination of TL, model,

and census or state. The dashed horizonal line is the horizontal line at zero. An interval estimate above, across, or below the dashed line indicates that a model’s slope

estimate is significantly higher, not significantly different, or significantly lower than the corresponding slope estimate from the best linear model.

https://doi.org/10.1371/journal.pone.0245062.g002
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Comparisons of predictive models

a. Spatial hierarchical TL. Using the bootstrap samples, the slope estimate of the spatial

hierarchical TL predicted from the CX model (bCX) is significantly higher than that estimated

from the best linear regression (breg) for all 23 censuses except 1790 (Tables 1 and S3, Fig 2). The

slope estimate predicted from the Tweedie model (bT) is not significantly different from breg in 11

censuses (1790, 1810, 1870–1950), and is significantly higher than breg in the other 12 censuses.

The slope estimate from the XLW model (bXLW) is not significantly different from breg in 13 cen-

suses (1790–1880, 1980, 1990, 2010), and is significantly lower than breg in the other ten censuses.

b. Spatial TL. Using the bootstrap samples, spatial TL’s slopes predicted from the CX

model (bCX) are not significantly different from those estimated from the best linear regression

(breg) in 37 of the 55 states (Tables 1 and S6, Fig 2). bCX is significantly higher and lower than

breg in nine and nine states respectively. Slope estimate from the Tweedie model (bT) does not

differ significantly from breg in 39 states, and is significantly higher and significantly lower

than breg in six and ten states respectively. For the XLW model, the predicted slope bXLW is not

significantly different from breg in 23 states, and is significantly lower than breg in 32 states.

c. Temporal TL. Using the bootstrap samples, temporal TL’s slope estimated from the

best linear regression (breg) is not significantly different from bCX in 27 of the 64 states. bCX is

significantly higher and significantly lower than breg in 24 and 13 states respectively (Tables 1

and S9, Fig 2). For the Tweedie model, bT is not significantly different from breg in 38 states,

and is significantly higher and significantly lower than breg in 18 and eight states respectively.

For the XLW model, bXLW is not significantly different from breg in 19 states, and is signifi-

cantly lower than breg in the other 45 states.

Discussion

Implications of the descriptive models of TL

Several observations from the least-squares models of TL deserve interpretation.

First, for the spatial hierarchical TL, starting from the 1900 census (except the 1910 census),

spatially correlated GLS models describe the mean-variance relationship of county population

count better than the OLS regression (S1 Table). The assumption of uncorrelated errors in

OLS is violated due to large spatial autocorrelation between states since 1900 (see S9 Table in

[22]), which may be explained by the high population mobility contributed by several factors

(e.g., employment, family, education attainment) [33,34]. For the censuses when GLS is the

better linear regression model, the slope of TL estimated from GLS is higher (and significantly

higher in four censuses) than that from OLS (S1 and S3 Tables). This suggests that OLS under-

estimates TL’s slope when strong spatial autocorrelation is present in the data.

Second, for the spatial TL, GLS is better than OLS in describing the spatial mean-spatial

variance relationship in most states (S4 Table), probably because the temporal autocorrelation

of the spatial mean and spatial variance across censuses violates the assumption of the OLS

model (see S11 Table in [22]). The slope estimates of TL yielded by the best GLS differ (but not

significantly) from that by the OLS, and the difference depends on specific states (Tables 1 and

S6). In other words, the influence of incorporating temporal autocorrelation in the regression

models on TL’s slope depends on the particular population growth trajectory of a state.

Third, for the temporal TL, OLS describes the temporal mean-temporal variance relation-

ship across counties well in the majority of states (S7 Table). This result contrasts with the

result from the spatial TL probably because the spatial autocorrelation among counties within

a state is rather weak compared to the temporal autocorrelation among censuses within a state.

Hence the assumption of spatially uncorrelated error for OLS (used to fit the temporal TL) is
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not violated in most states (see S13 Table in [22]). Similar to the spatial TL, the difference in

the slopes of temporal TL estimated from the best linear regression and the OLS varies by

state, and is not statistically significant in any state (Tables 1 and S9).

These results show that OLS models are not adequate to estimate the mean-variance rela-

tionship when spatial or temporal autocorrelations are present in the data. The GLS models

that account for autocorrelation give different estimates of the TL slope from the OLS models.

These differences depend on the specific type of TL, the population trend of the particular

state, and the relative strength of the spatial and temporal autocorrelation. The most consistent

pattern we observe is that OLS underestimates the slope of the spatial hierarchical TL when

spatial autocorrelation is present (S1 Table). After 1900, the US experienced counter-urbaniza-

tion that increased spatial autocorrelation across counties and states.

Implications of the predictive models of TL

Assumption checking and model comparison of the predictive models of TL (the CX, Tweedie,

and XLW models) further reveal the impact of temporal and spatial autocorrelation on TL.

Our statistical tests reject the null hypothesis that the county population counts are inde-

pendently and identically distributed at various scales (S10–S20 Tables). The CX model yields

significantly positive slopes of the spatial hierarchical TL, with values significantly higher than

the empirical ones for most censuses (Tables 1 and S3). This observation implies that the CX

model is not adequate to predict the slope of spatial hierarchical TL for at least some kinds of

spatially correlated data at least when the homogeneity assumptions of the CX model are vio-

lated. For the spatial TL and the temporal TL, the CX model yields TL slopes that are signifi-

cantly positive in all states (except Montana Territory and Wyoming Territory for the

temporal TL) and similar to the empirical estimates in most states (Tables 1, S6 and S9), proba-

bly because in these two types of TL the effects of spatial and temporal autocorrelations are

both present and may work in opposite directions, as we now describe.

While spatial autocorrelation may reduce TL’s slope, temporal autocorrelation may

increase TL’s slope. When the data have both types of autocorrelations, the discrepancy in the

slope between the best regression model and the CX model is dictated by the relative strength

of the spatial and temporal autocorrelation in the specific state. Similar strength of the spatial

and temporal autocorrelation may balance out the opposing effects on the slope of spatial TL

and temporal TL. Our empirical analysis gives partial evidence supporting the claim in the pre-

vious paragraph. S2 Appendix in S1 File section A gives details, references, and source software

for our methods.

For this analysis, we define spatial autocorrelation to be strong (or weak) if a state has at

least (or less than) 25% of censuses with significant global Moran’s I. We define temporal auto-

correlation to be strong (or weak) if a state has at least (or less than) 80% of counties with sig-

nificant temporal autocorrelation of lags of 1 through 4 by the Ljung-Box test. For the spatial

TL, of the 31 states where bCX is not significantly different from breg and the spatial and tempo-

ral autocorrelations are tested (S19, S20 and S24 Tables), we find that 15 of the 31 states show

similar strength of spatial autocorrelation and temporal autocorrelation. For the temporal TL,

of the 26 states where bCX is not significantly different from breg and the spatial and temporal

autocorrelations are tested (S19, S20 and S25 Tables), we find that 11 of the 26 states show sim-

ilar strength of spatial autocorrelation and temporal autocorrelation. Examining the model

predictions does not show that the discrepancy between the slope predicted by the CX model

and breg is due to small sample sizes in a state.

For all types of TL, the Tweedie model yields significantly positive slopes that are similar to

the corresponding empirical estimates in most censuses and states (Tables 1, S3, S6 and S9).
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Two aspects may explain this observation. First, even though the iid assumptions are rejected

in most cases, the Tweedie model gives a reasonable description of the county population

count distribution at most scales (comparable to the Poisson-lognormal model and better than

other three models, see SI and S21–S23 Tables). A better fit to the observed count distribution

may lead to better agreement between the Tweedie-model’s predicted slope and the best

regression estimate of the TL slope. Second, as a three-parameter distribution family, the

Tweedie model is much more flexible than the CX model and the XLW models, which have no

free parameters.

Lastly, for the spatial hierarchical TL, the XLW model yields TL’s slopes that are significantly

positive in all censuses and similar to the best linear regression estimate in all censuses except

1890–1970 and 2000 (Tables 1 and S3). The random partitions of state population count by the

XLW model produce spatially correlated county population count predictions (since the sum of

county population count equals the state population count), mimicking the spatial autocorrela-

tion in the data and producing estimates of TL slope consistent with those of the best least-

squares regression. During 1890–1970, the great migration of farming and African-American

populations to urban areas increased the spatial aggregation (or reduced the spatial autocorrela-

tion) of county populations [35,36], while the XLW model fails to capture such change in the

spatial autocorrelation and yields smaller TL slopes. This finding corroborates our results on

the descriptive models that spatial autocorrelation can reduce the slope of TL.

For the spatial TL, the slope predicted by the XLW model is significantly positive in most

states and significantly smaller than the best linear regression estimated slope in 32 states

(Tables 1 and S6), likely because the XLW model fails to capture the strong temporal autocor-

relation across censuses for those states. For the temporal TL, the slope predicted by the XLW

model is significantly positive in all but one state (Montana Territory), and significantly

smaller than the best linear regression estimate in 45 states (Tables 1 and S9), probably because

the temporal autocorrelation embedded in the random partitions of total historical county

population count is not as strong as that in the original data. Based on these observations, we

speculate that temporal autocorrelation can increase the slopes of the spatial TL and the tem-

poral TL.

Conclusions

Our descriptive models of TL show that, when temporal and spatial autocorrelations in the

data violate the assumption of the OLS models, GLS provides a better description of the mean-

variance relationship and yields different TL slope estimates. This finding suggests that, in

future testing of TL, the autocorrelation structure of the data should be checked when fitting

regression models and comparing parameter estimates.

TL’s slope mostly falls between one and two for non-human populations [31,37]. In the cur-

rent work, for all three types of TL, we find that the best linear regression model yields TL’s

slope that is significantly higher than two in some censuses or states (seven of 23 censuses for

the spatial hierarchical TL, 12 of 55 states for the spatial TL, and 34 of 64 states for the temporal

TL, see S1, S4 and S7 Tables). This indicates that human populations exhibit different spatial

and temporal aggregation patterns than non-human populations. In addition to the resources

and environments that constrain the growth and movement of non-human populations, the

spatiotemporal dynamics of human populations are also influenced by political, economic,

and cultural conditions. These variables may have accelerated the spatial and temporal aggre-

gation and resulted in enlarged TL’s slope for human populations in our US census data, but

we do not claim to have identified a specific mechanism for the difference in slopes between

most non-human and these human populations.
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All three predictive models yield significantly positive slopes of TL, regardless of the types

of TL and regardless of whether the model assumptions are satisfied (Table 1). This means that

the power-law form of TL can be generated robustly by multiple statistical mechanisms,

including random sampling of skewed distribution, probability distribution models, and ran-

dom partitions of integers (see also [38]). However, TL slopes predicted by these models are

not always consistent with the slopes estimated by the best regression models. In addition to

spatial and temporal autocorrelations, the estimated slope of TL also depends on the popula-

tion growth patterns in various states and historical demographic events and trends.

Recent works used statistical theory to study the relationship between spatial or temporal

autocorrelations and TL for ecological populations [39,40]. For example, Reuman et al. [40]

showed analytically that spatial synchrony (a special form of spatial autocorrelation to depict

the spatial covariation in population time series, see [41]) decreases the slope of spatial TL.

Their finding qualitatively predicts our empirical results. It would be interesting to test

whether their formula (see eqn 2 in [40]) can yield better quantitative agreement to the best-

regression TL’s slope than the CX model for the US county population data. On the other

hand, Cohen and Saitoh [39] used a modified Gompertz model (a density-dependent time

series model with temporal autocorrelation), which, when combined with spatial correlation

(synchrony), successfully predicted the OLS slopes of the temporal TL and the spatial TL for

rodent populations. Whether a mathematical model can adequately describe the population

dynamics and the corresponding TL’s slope for human population data remains to be seen.

We have shown that spatial and temporal autocorrelations can systematically affect TL

slopes. Our empirical analysis of TL in the US county population counts shows that intensified

spatial autocorrelation can decrease the slope and intensified temporal autocorrelation can

increase the slope. Using statistical models with violated assumptions can lead to erroneous

estimation and interpretation of TL’s slope. Future works should investigate the effect of spa-

tial and temporal autocorrelations on TL at other spatial scales (e.g., division of state into cen-

sus tracts or townships). They should also study other countries and other statistical models

that can incorporate population growth patterns to estimate the parameters and evaluate the

goodness of fit of TL.

Supporting information

S1 Fig. Predicted spatial variance of county population count against observed spatial vari-

ance for each census. Each marker shows one observed variance-predicted variance pair

within a state in one census. Different markers denote the variance predicted from the ordi-

nary least-squares regression (Δ) or the best least-squares regression with the smallest AICc

(�). Predictions from the best least-squares regression are missing in some censuses because

the ordinary least-squares is the best model. Dashed lines are the one-to-one reference lines.

(PDF)

S2 Fig. Predicted spatial variance of county population count against observed spatial vari-

ance for each state. Each marker shows one observed variance-predicted variance pair in one

census within a state. Markers and lines are defined in S1 Fig. Predictions from the best least-

squares regression are missing in some censuses because either the ordinary least-squares is

the best model or the generalized least-squares regression fails to yield any prediction.

(PDF)

S3 Fig. Predicted temporal variance of county population count against observed temporal

variance for each state. Each marker shows one observed variance-predicted variance pair in

one county within a state. Markers and lines are defined in S1 Fig. Predictions from the best
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least-squares regression are missing in some censuses because either the ordinary least-squares

is the best model or the generalized least-squares regression fails to yield any prediction.

(PDF)

S1 Table. Descriptive model summary of the spatial hierarchical TL for each census (year).

n is the number of finite log(mean)-log(variance) pairs (here, the number of states) in each fit-

ting. OLS is the ordinary least-squares linear regression and best LS is the least-squares linear

regression with the smallest AICc. mod shows the name of the best LS. gls_exp and gls_rat are

respectively the generalized least-squares linear regression with exponential spatial correlation

and rational quadratics spatial correlation. est and std err are respectively the point estimate

and standard error of the estimate. lower and upper are respectively the lower and upper

bounds of the slope estimates with 95% confidence level. AICc and AICc wt are respectively

the Akaike Information Criterion corrected for the number of parameters and the AICc weight

of the corresponding model among all fitted models in a census. A model with the smaller

AICc (or greater AICc wt) is better. cor is the correlation coefficient of the observed variance

and the predicted variance from each model. ΔAICc is AICc of the best LS minus the AICc of

the OLS.

(XLSX)

S2 Table. Correlation coefficient (r) between the observed variance and predicted variance

using the least-squares regressions, for the spatial hierarchical TL tested in each census

(year). mod lists gls_exp, gls_gauss, gls_lin, gls_rat, and gls_sph, which are respectively the

generalized least-squares regressions with exponential, Gaussian, linear, rational quadratics,

and spherical spatial correlation. ols is the ordinary least-squares regression.

(XLSX)

S3 Table. Interval estimate of the slope difference of spatial hierarchical TL between the

best linear model (breg) and the ordinary least-squares regression (bols), Cohen-Xu model

(bCX), Tweedie model (bT), and Xiao-Locey-White model (bXLW) in each census (Year).

Each interval estimate is derived from 100 estimated slope differences using 100 bootstrap

samples of the county population data. Lower and upper values are respectively the 2.5% and

97.5% percentiles of the 100 slope differences.

(XLSX)

S4 Table. Descriptive model summary of the spatial TL for each state. gls_ar1, gls_ma1, and

gls_arma11 in the best LS are respectively the generalized least-squares linear regressions with

first-order autoregressive component, first-order moving average component, and first-order

autoregressive and first-order moving average components. n is the number of finite log

(mean)-log(variance) pairs (here, the number of censuses) in each fitting. Other notations are

defined as in S1 Table.

(XLSX)

S5 Table. Correlation coefficient (r) between the observed variance and predicted variance

using the least-squares regressions, for the spatial TL tested in each state. gls_ar1, gls_ma1,

and gls_arma11 are respectively the generalized least-squares regressions with first-order auto-

regressive component, first-order moving-average component, and first-order autoregression

and first-order moving-average component. ols and r are defined in S2 Table.

(XLSX)

S6 Table. Interval estimate of the slope difference of spatial TL between the best linear

model (breg) and the ordinary least-squares regression (bols), Cohen-Xu model (bCX),

Tweedie model (bT), and Xiao-Locey-White model (bXLW) in each state (State). S3 Table
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gives the method for interval estimation.

(XLSX)

S7 Table. Descriptive model summary of the temporal TL for each state. gls_gauss, gls_sph,

and gls_lin are respectively the generalized least-squares with Gaussian spatial correlation,

spherical spatial correlation, and linear spatial correlation. n is the number of finite log(mean)-

log(variance) pairs (here, the number of counties) in each fitting. Other notations are defined

as in S1 Table.

(XLSX)

S8 Table. Correlation coefficient (r) between the observed variance and predicted variance

using the least-squares regressions, for the temporal TL tested in each state. mod and r are

defined in S2 Table.

(XLSX)

S9 Table. Interval estimate of the slope difference of temporal TL between the best linear

model (breg) and the ordinary least-squares regression (bols), Cohen-Xu model (bCX),

Tweedie model (bT), and Xiao-Locey-White model (bXLW) in each state (State). S3 Table

gives the method for interval estimation.

(XLSX)

S10 Table. Results of one-way analysis of variance of the state-specific spatial means of

county population counts among states within each census (year). df is the degrees of free-

dom. sumsq is the sum of squares, meansq is the mean sum of squares, statistic is the F statistic,

and p_value is the p value for the corresponding test.

(XLSX)

S11 Table. Results of one-way analysis of variance of the spatial means of county popula-

tion counts across censuses within each state. p_value is defined in S10 Table.

(XLSX)

S12 Table. Results of one-way analysis of variance of the temporal means of county popu-

lation counts across counties within each state. p_value is defined in S10 Table.

(XLSX)

S13 Table. Bartlett test of homogeneity of the spatial variances of county population

counts across states within each census (year). statistic is the chi-square test statistic. p_value

is defined in S10 Table.

(XLSX)

S14 Table. Bartlett test of homogeneity of the spatial variances of county population

counts across censuses within each state. p_value is defined in S10 Table.

(XLSX)

S15 Table. Bartlett test of homogeneity of the temporal variances of county population

counts across counties within each state. p_value is defined in S10 Table.

(XLSX)

S16 Table. Anderson-Darling test of identical spatial distribution of county population

counts across states within each census. p_value is defined in S10 Table.

(XLSX)
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S17 Table. Anderson-Darling test of identical spatial distribution of county population

counts across censuses within each state. p_value is defined in S10 Table.

(XLSX)

S18 Table. Anderson-Darling test of identical temporal distribution of county population

counts across counties within each state. p_value is defined in S10 Table.

(XLSX)

S19 Table. Summary statistics of global Moran’s I for spatial autocorrelation of county

population counts within each combination of state and year. moran_exp and moran_obs

are respectively the expected Moran’s I and the observed Moran’s I. p_ran and z_ran are

respectively the p-value and the z score calculated from the randomization null hypothesis test

(with undefined values denoted by NA). num_county is the number of counties.

(XLSX)

S20 Table. Summary statistics of the Ljung-Box test of temporal autocorrelation (lag 1 to

lag 5) of historical county population counts over years, for each combination of state and

county. num_census is the number of censuses. tcor_lagX (X = 1,2,3,4,5) is the p-value of the

test with a lag of 10X years.

(XLSX)

S21 Table. Summary statistics of five distribution models of county population counts

within each census (year). size is the number of counties. lik_max is the approximate maxi-

mum likelihood of the Tweedie model. aicc_xxx gives the AICc of the Tweedie model

(xxx = tweedie) and of each of the other four distributions models: log series distribution

(xxx = logseries), negative binomial distribution (xxx = negbinom), Poisson-lognormal distri-

bution (xxx = poilog), and Zipf distribution (xxx = zipf). wt_xxx gives the AICc weight of each

of the five distribution models.

(XLSX)

S22 Table. Summary statistics of five distribution models of county population counts

within each state (within at least five censuses in each state). size is the number of combina-

tions of censuses and counties. Other columns are defined in S21 Table.

(XLSX)

S23 Table. Summary statistics of five distribution models of county population counts

within each state (within at least five counties in each state). size is the number of combi-

nations of censuses and counties. Other columns are defined in S21 Table.

(XLSX)

S24 Table. p-value of the 2-sample Kolmogorov-Smirnov (KS) test of the null hypothesis

that the observed county population count distribution is identical to the predicted county

population county distribution from the XLW model (including zero), for each combina-

tion of state and year. ks_p is the p-value of the KS test.

(XLSX)

S25 Table. p-value of the 2-sample Kolmogorov-Smirnov (KS) test of the null hypothesis

that the observed historical county population count distribution is identical to the pre-

dicted historical county population county distribution from the XLW model (including

zero), for every county. ks_p is the p-value of the KS test.

(XLSX)
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S26 Table. Descriptive model summary of the spatial hierarchical quadratic TL for each

census (year). OLS is the ordinary least-squares quadratic regression and best LS is the least-

squares quadratic regression with the smallest AICc. n is the number of finite log(mean)-log

(variance) pairs (here, the number of states) in each fitting. Other notations are defined in S1

Table.
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S27 Table. Descriptive model summary of the spatial quadratic TL for each state. OLS is

the ordinary least-squares quadratic regression and best LS is the least-squares quadratic

regression with the smallest AICc. n is the number of finite log(mean)-log(variance) pairs

(here, the number of censuses) in each fitting. Other notations are defined in S1 and S4 Tables.
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S28 Table. Descriptive model summary of the temporal quadratic TL for each state. OLS is

the ordinary least-squares quadratic regression and best LS is the least-squares quadratic

regression with the smallest AICc. n is the number of finite log(mean)-log(variance) pairs

(here, the number of counties) in each fitting. Other notations are defined in S1 and S7 Tables.
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S29 Table. Proportion of states that show significant spatial autocorrelation of county

population counts within each census, using five different ways of computing the Moran’s

I. Xneighbor_Y (X = 4 or 8, Y = binary or bisquare) is the binary (weight = 1 for distances less

than or equal to the distance of the furthest neighbour, 0 otherwise) or bi-square (weight = (1-

(distance of neighbor/distance of the furthest neighbor)^2)^2 or 0 otherwise) weighting

scheme with 4 neighbors or 8 neighbors. allcounty_bisquare uses the bi-square weighting

scheme for all counties in a state.
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S30 Table. Interval estimates of the spatial hierarchical TL slope (b) using bootstrap sam-

ples for each census (year), using the CX model (cx) and the ordinary least-squares (ols)

regression separately. b and b_se are respectively the point estimate and the standard error of

b obtained from the census data. b_boot_withinyear_lower (or upper) gives respectively the

95% lower (or upper) bound of b estimated from 500 samples bootstrapped within each year.

b_boot_withinyearstate_lower (or upper) gives respectively the 95% lower (or upper) bound

of b estimated from 500 samples bootstrapped within each combination of year and state.

(XLSX)

S31 Table. Interval estimates of the spatial TL slope (b) using bootstrap samples for each

state, using the CX model (cx) and the ordinary least-squares (ols) regression separately. b

and b_se are defined in S30 Table. b_boot_withinstate_lower (or upper) gives respectively the

95% lower (or upper) bound of b estimated from 500 samples bootstrapped within each state.

b_boot_withinstateyear_lower (or upper) gives respectively the 95% lower (or upper) bound

of b estimated from 500 samples bootstrapped within each combination of state and year.

(XLSX)

S32 Table. Interval estimates of the temporal TL slope (b) using bootstrap samples for

each state, using the CX model (cx) and the ordinary least-squares (ols) regression sepa-

rately. b and b_se are defined in S30 Table. b_boot_withinstate_lower (or upper) gives respec-

tively the 95% lower (or upper) bound of b estimated from 500 samples bootstrapped within

each state. b_boot_withinstatecounty_lower (or upper) gives respectively the 95% lower (or

upper) bound of b estimated from 500 samples bootstrapped within each combination of state
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and county.
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S33 Table. Summary statistics of the best regression models (mod_best) of the spatial hier-

archical TL for each census (year). n is the number of finite log(mean)-log(variance) pairs

(here, the number of states) in each fitting. Each mean-variance pair is generated using at least

15 county population counts within a state. Model names are defined in S2 Table. "est_slp"

and "err_slp" are respectively the slope estimate and slope standard error. "aicc" is the model

AICc.
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S34 Table. Summary statistics of the best regression models (mod_best) of the spatial TL

for each state. n is the number of finite log(mean)-log(variance) pairs (here, the number of

censuses) in each fitting. Each mean-variance pair is generated using at least 15 county popula-

tion counts within a state. Model names are defined in S4 Table. "est_slp", "err_slp" and "aicc"

are defined in S33 Table.

(XLSX)

S35 Table. Summary statistics of the best regression models (mod_best) of the temporal

TL for each state. n is the number of finite log(mean)-log(variance) pairs (here, the number of

counties) in each fitting. Each mean-variance pair is generated using at least 15 historical pop-

ulation counts of a county. Model names are defined in S2 Table. "est_slp", "err_slp" and "aicc"

are defined in S33 Table.

(XLSX)

S36 Table. Spatial hierarchical TL’s slope across five models in each census (year). The

models are cx (Cohen-Xu model), reg_ols (ordinary least-squares linear regression), reg_best

(least-squares linear regression with the smallest AICc), tweedie (Tweedie model), and xlw

(Xiao-Locey-White model). n is the number of finite mean-variance pairs used in each model

fitting. The last four columns show TL slope (b), standard error of the slope (b_se), and lower

bound of the slope (b_lower) and upper bound of the slope (b_upper) using adjusted critical t

value (upper tail probability is 0.025/23) according to the Bonferroni correction.

(XLSX)

S37 Table. Spatial TL’s slope across five models in each state. Notations are defined as in

S36 Table. Lower and upper bounds of the slope are derived using adjusted critical t (upper tail

probability is 0.025/55).

(XLSX)

S38 Table. Temporal TL’s slope across five models in each state. Notations are defined as in

S36 Table. Lower and upper bounds of the slope are derived using adjusted critical t (upper tail

probability is 0.025/64).

(XLSX)
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