
royalsocietypublishing.org/journal/rspa

Research
Cite this article: Cohen JE, Davis RA,
Samorodnitsky G. 2020 Heavy-tailed
distributions, correlations, kurtosis and Taylor’s
Law of fluctuation scaling. Proc. R. Soc. A 476:
20200610.
https://doi.org/10.1098/rspa.2020.0610

Received: 29 July 2020
Accepted: 25 November 2020

Subject Areas:
statistics, applied mathematics

Keywords:
regular variation, heavy tail, stable law,
correlation, kurtosis, regression

Author for correspondence:
Joel E. Cohen
e-mail: joel.cohen@rockefeller.edu

Heavy-tailed distributions,
correlations, kurtosis and
Taylor’s Law of fluctuation
scaling
Joel E. Cohen1,2,3, Richard A. Davis4 and

Gennady Samorodnitsky5

1Laboratory of Populations, The Rockefeller University and Columbia
University, New York, NY, USA
2Earth Institute, Department of Statistics, Columbia University,
New York, NY, USA
3Department of Statistics, University of Chicago, Chicago, IL, USA
4Department of Statistics, Columbia University, New York, NY, USA
5School of Operations Research and Information Engineering,
Cornell University, Ithaca, NY, USA

JEC, 0000-0002-9746-6725

Pillai & Meng (Pillai & Meng 2016 Ann. Stat. 44,
2089–2097; p. 2091) speculated that ‘the dependence
among [random variables, rvs] can be overwhelmed
by the heaviness of their marginal tails · · · ’. We
give examples of statistical models that support
this speculation. While under natural conditions
the sample correlation of regularly varying (RV)
rvs converges to a generally random limit, this
limit is zero when the rvs are the reciprocals
of powers greater than one of arbitrarily (but
imperfectly) positively or negatively correlated
normals. Surprisingly, the sample correlation of
these RV rvs multiplied by the sample size has a
limiting distribution on the negative half-line. We
show that the asymptotic scaling of Taylor’s Law
(a power-law variance function) for RV rvs is, up to
a constant, the same for independent and identically
distributed observations as for reciprocals of powers
greater than one of arbitrarily (but imperfectly)
positively correlated normals, whether those powers
are the same or different. The correlations and
heterogeneity do not affect the asymptotic scaling. We
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analyse the sample kurtosis of heavy-tailed data similarly. We show that the least-squares
estimator of the slope in a linear model with heavy-tailed predictor and noise unexpectedly
converges much faster than when they have finite variances.

1. Introduction

(a) Motivations
This work has a practical motivation and a theoretical motivation. Both are driven by the need to
cope with exceptionally large events such as outbreaks of human, animal and plant diseases;
earth events like cyclones, tsunamis, earthquakes, volcanoes, fires, droughts and floods; and
extreme fluctuations in finance, insurance, trade, production and employment, among others.
Both motivations are enabled by the on-going development since the work of Paul Lévy in 1924
of a systematic theory of random events with infinite mean [1–3]

For example, one practical motivation is the need to understand the effect of heavy-tailed
data on an empirical regularity called Taylor’s Law (TL) or Taylor’s power law in the biological
sciences, and fluctuation scaling in the physical sciences. TL asserts that the sample variance is
approximately proportional to some power of the sample mean in a set of samples. Explicitly, for
some constants a > 0 and b, both of which are independent of the sample i,

sample variance of sample i ≈ a × (sample mean of sample i)b, i = 1, 2, . . .

or equivalently

log sample variance of sample i ≈ log(a) + b × log(sample mean of sample i), i = 1, 2, . . .

or equivalently
sample variance of sample i
(sample mean of sample i)b

≈ a, i = 1, 2, . . . .

These specifications of TL intentionally leave vague the error model hinted at by the
approximation ≈. TL is very widely confirmed in many sciences, including ecology, infectious
disease epidemiology, human demography, financial statistics, earth sciences and other physical
sciences, as reviewed by Eisler et al. [4] and Taylor [5].

In statistics, a variance function is a function that specifies how the variance is related to the
mean in a set of samples. To statisticians, TL is simply a power-law variance function. An early,
perhaps the first, occurrence of a power-law variance function in ecology appeared in Bliss [6].
From 1941 to 2017, users of TL assumed, usually without saying so, that observations were
drawn from distributions with finite mean and finite variance. At the same time, heavy-tailed
data were increasingly recognized in insurance, income distributions, earthquake magnitudes,
financial fluctuations, meteorology and other sciences. Heavy-tailed data distributions have some
or all infinite moments, such as infinite variance or infinite mean. Heavy-tailed distributions have
much greater probabilities of extremely large observations than light-tailed distributions, such as
the normal or Gaussian distribution. But samples from a heavy-tailed distribution always have
a finite sample mean and finite sample variance. It is important to know under what conditions
samples from a heavy-tailed distribution obey TL and, when TL holds, how the exponent b of
TL relates to the parameter(s) of the underlying heavy-tailed distribution. Brown et al. [7] showed
that certain random samples (sets of independently and identically distributed [iid] observations)
from heavy-tailed distributions with infinite mean obey TL. These results are greatly extended
here. In particular, we ask whether and when TL holds if observations are not iid, either because
the observations are dependent or because the observations come from different distributions.

In addition to its empirical motivation, this work has a theoretical motivation. Drton & Xiao [8]
conjectured, and proved when m = 2, a surprising and beautiful proposition subsequently proved
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for any integer m > 1 by Pillai & Meng [9]. For integer m > 1, let X = (X1, . . . , Xm) and Y =
(Y1, . . . , Ym) be independent copies of a multivariate normal vector N(0, Σ), where Σ = {σij} ≥ 0
is any m × m covariance matrix with σjj > 0, 1 ≤ j ≤ m. Let (w1, . . . , wm) be weights, wj ≥ 0, j =
1, . . . , m, and Σm

j=1wj = 1. Then Σm
j=1wjXj/Yj has the standard Cauchy distribution on the real line

with probability density function (pdf) 1/[π (1 + z2)]. The surprise is that the covariance matrix Σ

has no effect on the distribution of Σm
j=1wjXj/Yj.

Pillai & Meng [9, p. 2091] remarked: ‘A theoretical speculation from this unexpected result is
that for a set of random variables · · · , the dependence among them can be overwhelmed by the
heaviness of their marginal tails · · · . We invite the reader to ponder with us whether this is a
pathological phenomenon or something profound’. The present work supports the speculation
of Pillai & Meng [9] by giving multiple examples in which heavy tails outweigh correlations and
heterogeneity of distributions. Here is a preview of coming attractions.

(b) Organization of this paper
Section 2 reviews the definitions and some properties of regularly varying (RV), including heavy-
tailed, random variables (rvs), those in which the survival function or upper tail is asymptotically
a power function with negative exponent −α, where α > 0. An important classical limit theorem
stated here is that sums of appropriately centred and normalized RV rvs converge to stable rvs
with index α if α < 2. We illustrate the uses of this theorem by deriving the limiting stable laws that
describe the asymptotic behaviour of the sums of squared rvs and the sums of squared deviations
from the sample mean.

Section 3 analyses the asymptotic behaviour of Taylor’s Law when the observations are iid
heavy-tailed RV rvs; or when the observations are RV rvs with distinct tail indices (heterogeneity);
or when the observations are the reciprocals of powers greater than one of arbitrarily (but
imperfectly) positively or negatively dependent normals. These results provide far-reaching
generalizations of Taylor’s Law. The ratio of the sample variance to a power of the sample
mean, which is the focus of Taylor’s Law, is formally similar to the sample kurtosis, which is
the ratio of the fourth central moment to a power (the square) of the sample variance. Thus, we
use the methods developed to analyse Taylor’s Law to derive the asymptotic behaviour of the
sample kurtosis when the data are iid RV rvs. In principle, these results could be extended to
heterogeneous and dependent data.

Section 4 shows that under natural conditions the sample correlation of a pair of RV rvs
converges to a generally random limit, which we express in terms of stable laws. This limit is zero
in case the rvs are the reciprocals of powers greater than one of two arbitrarily (but imperfectly)
positively or negatively dependent normal rvs. Surprisingly, in this case the sample correlation
multiplied by the sample size has a limiting distribution that is concentrated on the negative
half-line, regardless of whether the two normals are positively or negatively dependent. These
findings support the speculation of Pillai & Meng [9].

Section 5 compares the behaviour of the least-squares estimator of η in a linear model Y =
ηX + Z under two different assumptions about X and Z: first, that X and Z are heavy-tailed RV
rvs with asymptotically equivalent tails; and second, that X is heavy-tailed but the noise variable
Z is light-tailed, possibly Gaussian. In both cases the estimator converges much faster than in the
case when X and Z have finite variances. When Z is light-tailed, the sample correlation between
X and Y converges in probability to 1.

Section 6 investigates by numerical simulation how rapidly some of the correlated,
heterogeneous, RV rvs described in the preceding sections converge in distribution to their limit
rvs expressed as functions of stable laws. The examples are drawn from Taylor’s Law, bivariate
correlation, and the linear model.

For the sake of readability, §§2–5 give only a few simple proofs. Appendix A gives more
detailed mathematical background on heavy-tailed distributions and point process methods. It
then proves the major claims made regarding the limit theory for Taylor’s Law and the limit
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theory for the sample correlations of heavy-tailed data including the special example of the
reciprocals of powers greater than one of correlated normals.

2. Background on heavy tails and regular variation
For heavy-tailed data when the population variance is infinite, the limit behaviour of the
sample mean, sample variance, extreme order statistics and related statistics, is widely studied
[1,2,10–14]. When the variance is finite, the classical central limit theorem implies that the sample
mean, centred by its mean and normalized by its standard deviation, converges to a normal
distribution. When the variance is infinite, the suitably centred and normalized partial sums
also converge in distribution when the data are regularly varying (RV), with Pareto upper tails.
So regular variation is often the starting point for modelling various statistics of univariate
heavy-tailed data.

To be specific, assume the random variable (rv) X is positive and has distribution function
F(x) := P(X ≤ x), x > 0 and survival function F̄(x) := 1 − F(x) = P(X > x). We say that X (or F) is RV
with index α > 0, and we shall henceforth write F ∈ RV(α), if

lim
t→∞

F̄(tx)
F̄(t)

= x−α for all x > 0. (2.1)

If F satisfies (2.1), then F has a Pareto upper tail:

F̄(x) = x−αL(x), lim
t→∞

L(tx)
L(t)

= 1, for all x > 0. (2.2)

We say L(x) is a slowly varying function (at infinity). Examples of slowly varying functions are
L(x) = log x, log log x and their reciprocals. Assumption (2.1) implies that X has finite moments
only up to order α: EXp < ∞ for p < α and EXp = ∞ for p > α. From (2.2), EXα = ∫∞

0 P(Xα > x) dx =∫∞
0 x−1L(x1/α) dx, so that the finiteness of EXα depends on the integrability of x−1L(x1/α) for x

large. For example, EXα = ∞ if L(x) is constant, whereas EXα < ∞ if L(x) ∼ (1/ log x)1+ε for some
ε > 0. Since we are interested here only in heavy-tailed distributions with infinite variance, we
shall assume that α < 2 throughout.

Let X1, . . . , Xn be iid with distribution F. The sum
∑n

t=1 Xt, appropriately centred and
normalized, converges in distribution as the sample size n → ∞. To this end, define the sequence
of normalizing constants {an : n = 1, 2, . . .} as the sequence of 1 − 1/n quantiles of F, i.e.

an = inf
{

x : F(x) ≥ 1 − 1
n

}
. (2.3)

If F is continuous, then F̄(an) = 1/n. By replacing t with an in (2.1) it can be shown that

nP(X > anx) = nF̄(anx) → x−α for all x > 0 as n → ∞ (2.4)

and an = n1/α L̃(n) for some slowly varying function L̃. If F is Pareto, i.e. if F̄(x) = x−α for x ≥ 1, then
an = n1/α .

A classical limit theorem [15] describes sums of heavy-tailed rvs. Let Sα be a stable rv with
index α ∈ (0, 2) and shape parameter β = 1. When α ∈ (0, 1), Sα takes only non-negative real values.
When α ∈ [1, 2), Sα takes negative real values, but the left tail is lighter than that of a normal
distribution. When α = 2, Sα is normally distributed.

Define
bn = 0 for α < 1 and bn = E[X1{X≤an}] for α ∈ [1, 2). (2.5)

Then

a−1
n

n∑
t=1

(Xt − bn)
d→ Sα , (2.6)

where
d→ denotes ‘converges in distribution to’. For α ∈ (1, 2), bn can be replaced by the (finite)

mean EX.
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Example 2.1 (sums of squares). Because X2 ∈ RV(α/2), applying (2.6) to the sums of squares
gives, for any α ∈ (0, 2),

a−2
n

n∑
t=1

X2
t

d→ Sα/2 as n → ∞. (2.7)

The sum of squared deviations from the sample mean X̄n := n−1 ∑n
t=1 Xt has the same limit:

a−2
n

n∑
t=1

(Xt − X̄n)2 d→ Sα/2 as n → ∞. (2.8)

The convergences in (2.6) and (2.8) are joint, i.e.(
a−1

n

n∑
t=1

(Xt − bn), a−2
n

n∑
t=1

(Xt − X̄n)2

)
d→ (

Sα , Sα/2
)

as n → ∞. (2.9)

The remarkable feature of this example is that the limit rvs on the right sides of (2.7) and (2.8)
are identical. To give insight into why subtracting the sample mean in (2.8) makes no difference
to the limit rv, we offer a brief proof. For the remainder of this article, for the sake of readability,
we shall defer many detailed proofs to appendix A. For example, the nature of the dependence
between Sα and Sα/2 and the proof of (2.9) are given in theorem A.3.

Proof of (2.8). The sum of squared deviations from the sample mean on the left of (2.8)
decomposes into

a−2
n

n∑
t=1

(Xt − X̄n)2 = a−2
n

n∑
t=1

(Xt − bn)2 − n−1

(
a−1

n

n∑
t=1

(Xt − bn)

)2

. (2.10)

By virtue of (2.6), the second term on the right converges to zero in probability. Since a2
n =

n+2/α L̃2(n), it follows that a2
n > n1+ε for some small ε > 0 and all n large. Moreover, since for α > 1,

bn → EX and for α = 1, bn is slowly varying [15], nbn/a2
n → 0 and bn/an → 0. Using these facts and

expanding the first term on the right of (2.10) gives

a−2
n

n∑
t=1

X2
t − 2a−1

n bna−1
n

n∑
t=1

(Xt − bn) − na−2
n b2

n = a−2
n

n∑
t=1

X2
t + a−1

n bnOp(1) − na−2
n b2

n

= a−2
n

n∑
t=1

X2
t + op(1) ,

from which (2.8) is immediate. �

3. Heavy tails, Taylor’s Law and kurtosis

(a) Taylor’s Law with iid heavy-tailed data
If the RV heavy-tailed iid rvs X1, . . . , Xn have tail index α < 1, then the centring constants are
bn = 0 and the population mean and population variance are infinite. In one of its many forms, TL
considers the ratio of the sample variance divided by a power b, 0 < b < ∞, of the sample mean,

Wn = n−1 ∑n
t=1(Xt − X̄n)2

X̄b
n

. (3.1)

The order of the numerator is n−1a2
n while the order of the denominator is n−bab

n. For Wn to
converge in distribution, the order of the numerator and denominator must match, which requires
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that

b = (2 − α)
(1 − α)

. (3.2)

For this b,
1

L̃2−b(n)
Wn

d→ Sα/2

Sb
α

, (3.3)

where L̃(n) is as defined for an following (2.4). The numerator Sα/2 and the denominator Sb
α are

dependent, and the dependence is described explicitly in theorem A.3. Brown et al. [7] obtained
expression (3.2) for b and some of the moments of the limiting distribution.

(b) Taylor’s Law with heterogeneous heavy-tailed data
In the previous subsection, the heavy-tailed observations {Xt} are assumed to be iid. Here we
analyse independent data (or rvs) that are heterogeneous, i.e. not identically distributed.

Suppose that the observations are independent but come from two rvs U and V, where U ∈
RV(α) with α ∈ (0, 1) and V is dominated by U in the sense that

P(V > x)
P(U > x)

→ 0 as x → ∞. (3.4)

Further assume that the data X1, . . . , Xn consist of a random number νn < n of observations

distributed as U and n − νn of observations distributed as V, where νn/n
P→ p ∈ (0, 1] as n → ∞.

Here
P→ means ‘converges in probability to’. This formulation can be interpreted quite generally:

V could represent a union of several pooled rvs, each with tails lighter than the tail of U. Letting
an be the 1 − 1/n quantile of FU, it is easy to show that

a−1
n

n∑
t=1

Xt = a−1
n

νn∑
t=1

Ut + a−1
n

n−νn∑
t=1

Vt

= a−1
n

[np]∑
t=1

Ut + a−1
n

[n(1−p)]∑
t=1

Vt + op(1).

Since P(V > x) = o(P(U > x)) for x large, the argument in the proof of theorem 4.1 in appendix A(c)
can be used to show that

a−1
n

[n(1−p)]∑
t=1

Vt
P→ 0.

If f (x), g(x) are real-valued functions of real x and g(x) > 0 for all sufficiently large x, then f (x) ∼
g(x) means limx→∞ f (x)/g(x) = 1. Then, on the other hand,

a−1
n

[np]∑
t=1

Ut = anp

an
a−1

np

[np]∑
t=1

Ut

∼ p1/αa−1
np

[np]∑
t=1

Ut

d→ p1/αSα .

A similar result holds for the sample variance so that the convergence in distribution for TL in
(3.3) also holds for such non-identically distributed data. The dependence between numerator
Sα/2 and the denominator Sb

α is described explicitly in theorem A.3.
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(c) Taylor’s Law with correlated heavy-tailed data
Here we suppose the observations (or rvs) are pairwise correlated and identically distributed.
We shall show that the scaling exponent b in TL remains the same as (3.2), but the limit
changes. Specifically, let N0, N1, . . . be iid standard normal rvs and let 0 ≤ ρ < 1. Let Zi = √

ρN0 +√
1 − ρNi, i = 1, 2, . . .. Then for i = 1, . . ., each Zi is normal, EZi = 0, Var(Zi) = 1, and for i 
= j ≥

1, Cov(Zi, Zj) = ρ. Let 0 < α < 1 and define Xi := 1/(Z2
i )1/(2α), i = 1, 2, . . .. Define Wn in terms of

Xi as in (3.1) and b as in (3.2). Then

Wn
d→ Sα/2

Sb
α

[
(1 − ρ) exp

{
ρ

1 − ρ
N2

}]1/(2(1−α))
, (3.5)

where Sα/2, Sα are non-negative stable rvs given in (A 10) and (A 11) with tail indices α/2, α ∈
(0, 1), respectively, and shape parameter β = 1, and N is a standard normal rv independent of Sα/2
and Sα . As previously, the numerator Sα/2 and the denominator Sb

α are dependent because Γj in
(A 10) is the same as Γj in (A 11), for each j = 1, . . ..

To prove (3.5), it is enough to prove that for every fixed real z, if Zi := √
ρz + √

1 − ρNi,
i = 1, 2, . . ., then

Wn
d→ Sα/2

Sb
α

[
(1 − ρ) exp

{
ρ

1 − ρ
z2
}]1/(2(1−α))

. (3.6)

To prove (3.6), we observe that X1, X2, . . . are iid (because they are conditional on fixed z) and

P(X1 > t) ∼
√

2
π

(1 − ρ)−1/2 exp
{
− ρ

2(1 − ρ)
z2
}

t−α as t → ∞.

In particular, the tail of X is multiplied by the factor of

h(ρ) = (1 − ρ)−1/2 exp
{
− ρ

2(1 − ρ)
z2
}

in comparison with the case ρ = 0 in §3(a). That means that, in the limit, every term Γ
−1/α

j in both

Sα/2 and Sα ends up being multiplied by h(ρ)1/α . Therefore, the numerator in the limit in (3.3)
gets multiplied by h(ρ)2/α , while the denominator gets multiplied by h(ρ)(2−α)/(α(1−α)). Doing the
arithmetic proves (3.6).

The heavy-tailed version of TL also holds widely for stationary mixing sequences. Here we
assume that {Xt} is a strictly stationary time series with X1 ∈ RV(α), α ∈ (0, 1). If the time series
satisfies the mixing and dependence conditions D and D′ in [16], then the limit theorem that
holds for TL for the iid case also holds exactly for the stationary case. This follows directly from
Davis [16, theorem 4 and its corollary]. The mixing condition D governs how fast certain events
become independent as their time separation increases. Condition D′ prohibits clustering of pairs
of nearby observations when both are large. While condition D is rather mild, condition D′ is
more restrictive.

Alternatively, in mixing stationary time series that are RV, i.e. where all the finite-dimensional
distributions are multivariate RV, the point process convergence in theorem A.1 can be extended,
but now the limit point process includes clusters of points that are linked to the Poisson points
Γ

−1/α

i [10,17]. From these point process convergence results, the limiting form of Taylor’s Law
(3.3) is a ratio of the same two stable rvs with tail indices α/2 and α in the numerator and
denominator as in (3.3), but the numerator and denominator may need to be multiplied by
different constant scale factors.

The results in §§3(b) and (c) may be combined. Explicitly, as in §3(b), suppose that U ∈ RV(α)
with α ∈ (0, 1) and U dominates V in the sense of (3.4). Assume that the data X1, . . . , Xn consist of a
random number νn < n of observations distributed as U and n − νn observations distributed as V,

where νn/n
P→ p ∈ (0, 1] as n → ∞. In addition, as in §3(c), suppose that the νn < n observations Xi

distributed as U satisfy Xi := 1/(Z2
i )1/(2α) ∈ RV(α) and, when Xi, Xj are both distributed as U, then

{Zi} are correlated standard normals with Cov(Zi, Zj) = ρ if i 
= j ≥ 1. The n − νn of observations
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distributed as V may be arbitrarily dependent or independent. Then TL holds as described in
(3.5). We simulate this model in §6(a).

(d) Sample kurtosis
The kurtosis is often used to measure the heaviness of the tail of a distribution function. For
a random variable X with finite fourth moment and finite variance σ 2, the kurtosis is defined
by κ = E(X − EX)4/σ 4. A normal random variable has kurtosis 3. A rv with κ > 3 is said to be
leptokurtic, indicating tails fatter than those of a normal rv. Since we are primarily concerned
with heavy-tailed data in which the population variance is infinite, we focus our attention on the
kurtosis κ as opposed to the excess kurtosis κ − 3.

If a rv has infinite second moment, then the population kurtosis does not exist. Nevertheless,
given a sample X1, . . . , Xn, one can still compute the sample mean X̄n and the sample kurtosis

κ̂n := n−1 ∑n
t=1(Xt − X̄n)4(

n−1 ∑n
t=1(Xt − X̄n)2

)2 = n
∑n

t=1(Xt − X̄n)4(∑n
t=1(Xt − X̄n)2

)2 . (3.7)

Assume that X1, . . . , Xn are iid as X ∈ RV(α) with α ∈ (0, 2). From the argument of example 2.1
(see also theorem A.3), it follows that(

a−2
n

n∑
t=1

(Xt − X̄n)2, a−4
n

n∑
t=1

(Xt − X̄n)4

)
d→ (

Sα/2, Sα/4
)

(3.8)

where Sγ =∑∞
i=1 Γ

−1/γ

i . By the continuous mapping theorem, we obtain

n−1κ̂n
d→ Sα/4

S2
α/2

. (3.9)

By Cauchy’s inequality, the limit random variable on the right of (3.9) is bounded above by 1.
As the tails get heavier, i.e. as α ↓ 0, the limit random variable becomes more concentrated at 1
because, for γ < 1,

Sγ = Γ
−1/γ

1 + Γ
−1/γ

1

∞∑
i=2

(
Γi

Γ1

)−1/γ

.

Since each term in the sum is bounded by 1 and Γi ∼ i a.s. as i → ∞, it follows that Sγ ∼ Γ
−1/γ

1 as
γ ↓ 0. Thus, the limit random variable on the right of (3.9) converges to 1 as α ↓ 0.

If α ∈ (2, 4), then X has finite variance σ 2 but infinite fourth moment. In this case, the same
argument shows that

na−4
n κ̂n

d→ Sα/4

[σ 2]2 . (3.10)

The rate of convergence, however, is roughly n1−4/αL(n), where L is a slowly varying function,
which is rather slow especially as α ↑ 4.

4. Heavy tails and sample correlations
The correlation of a pair of rvs is defined as their covariance divided by the product of their
standard deviations. It cannot be defined for pairs of rvs with infinite variance, such as all
those in RV(α) with α ∈ (0, 2). Nevertheless, the sample correlation (4.4) is a well defined rv. For
heavy-tailed time series, the sample autocorrelation can have unexpected and desirable properties
[11,12]. Here we give conditions under which the sample correlation of dependent heavy-tailed
rvs converges to zero (in probability or almost surely, depending on detailed assumptions) as the
sample size gets large.
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(a) Bivariate regular variation and asymptotic independence
We define regular variation for a pair (X, Y) of heavy-tailed rvs. Assume that X and Y are
identically distributed with RV distribution F ∈ RV(α) as in (2.1). Our results require only that their
distributions have asymptotically equivalent tails, i.e. lims→∞ P(X > s)/P(Y > s) = C ∈ (0, ∞). We
say that X and Y are asymptotically independent if

P(X > t|Y > t) := P(X > t, Y > t)
P(Y > t)

→ 0 as t → ∞. (4.1)

Of course, if X and Y are independent then they are also asymptotically independent. When t is
replaced by an defined in (2.3), asymptotic independence is equivalent to

nP(X > an, Y > an) → 0 as n → ∞. (4.2)

If X and Y are not asymptotically independent, we quantify their dependence in the tails of
the distribution by assuming that there exists a measure ν(·) on ([0, ∞)2,B([0, ∞)2)) such that, for
Ax,y = [0, x] × [0, y] and Ac

x,y the set complement of Ax,y,

nP(X > anx or Y > any) = nP(a−1
n (X, Y) ∈ Ac

x,y) → ν(Ac
x,y) as n → ∞ (4.3)

for all x, y ≥ 0 with max{x, y} > 0.
If x = 0, y > 0, then ν(Ac

0,y) = y−α . Similarly, ν(Ac
x,0) = x−α . It follows that X and Y are

asymptotically independent if and only if ν([x, ∞) × [y, ∞)) = 0 for all x > 0, y > 0.

(b) Sample correlation of heavy-tailed data
Define the sample correlation between the pairs (Xi, Yi), t = 1, . . . , n, in the conventional way by

ρn :=
∑n

t=1(XtYt − X̄nȲn)√∑n
t=1(Xt − X̄n)2

√∑n
t=1(Yt − Ȳn)2

. (4.4)

Theorem 4.1. Assume the distribution of (X, Y) satisfies (4.3) and α ∈ (0, 2). Then

ρn
d→ U := Sα/2,0√

Sα/2,1Sα/2,2
as n → ∞, (4.5)

where Sα/2,0, Sα/2,1, and Sα/2,2 are stable rvs with joint distribution specified in appendix A(c), (A 18)–
(A 20). Moreover,

ρn
P→ 0 as n → ∞ (4.6)

if and only if X and Y are asymptotically independent.

Appendix A(c) proves this result. Although the stable rvs in the numerator and denominator
of (4.5) have heavy tails, the ratio on the right of (4.5) does not have heavy tails because of self-
normalization.

When ρn
P→ 0, i.e. when X and Y are asymptotically independent, it is often possible to find

normalizing constants cn → ∞ such that cnρn converges in distribution to a non-degenerate rv.
For example, when X and Y are independent, cn = n1/αL(n) for some slowly varying function
L [11,12]. Theorem 4.5 gives another example in which X and Y are the reciprocals of powers
of correlated bivariate normal rvs with mean 0 and variance 1. Such dependent X and Y are
asymptotically independent.

We now extend theorem 4.1 to the case when X and Y are RV rvs with different tail indices.
Appendix A(c) gives the proof of theorem 4.2.
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Theorem 4.2. If X ∈ RV(α) and Y ∈ RV(β) with 0 < α < β < 2, then

ρn
d→ U := Sαβ/(α+β),0√

Sα/2,1Sβ/2,2
as n → ∞, (4.7)

where Sαβ/(α+β),0, Sα/2,1 and Sβ/2,2 are defined in (A 21), (A 19) and (A 22), respectively. If X and Yβ/α

are asymptotically independent, then ρn
P→ 0 as n → ∞ since then U = 0 a.s.

We give a quick and easy way to construct dependent, but asymptotically independent, rvs.

Theorem 4.3. Let U and V be two positive rvs with positive and continuous marginal densities in a
neighbourhood of zero. Suppose that in a neighbourhood of the origin, U and V have a joint density function
fU,V(u, v) satisfying fU,V(u, v) ≤ a(u2 + v2)−θ/2 for some a > 0 and 0 ≤ θ < 1. Then, for any c > 1 (or
α = 1/c ∈ (0, 1)), X := 1/Uc ∈ RV(1/c), Y := 1/Vc ∈ RV(1/c), X and Y are asymptotically independent,

and, for a random sample (X1, Y1), . . . , (Xn, Yn) iid as (X, Y), we have ρn
P→ 0 as in (4.6).

Proof. We have

P(X > x) = P(1/Uc > x) = P(U < x−1/c) =
∫ x−1/c

0
fU(u) du ∼ x−1/cfU(0) as x → ∞,

where fU(u) is the marginal pdf of U. It follows that X ∈ RV(1/c). A similar argument holds for Y.
Next,

P(X > x, Y > x) = P
(

1
Uc > x,

1
Vc > x

)
=

∫ x−1/c

0

∫ x−1/c

0
fU,V(u, v) dudv

≤ a
∫ x−1/c

0

∫ x−1/c

0
(u2 + v2)−θ/2 dudv

≤ 2πax−(2−θ)/c.

Dividing the right side by x−1/cfV(0) and letting x → ∞, the limit becomes zero, proving (4.1).
Then theorem 4.1 entails (4.6). �

Corollary 4.4. Suppose (U, V) has a bivariate normal distribution with means 0, variances 1 and
correlation ρ ∈ (−1, 1). Set X := 1/|U|c, Y := 1/|V|c for c > 1. Then X ∈ RV(1/c), Y ∈ RV(1/c), and X

and Y are asymptotically independent with ρn
P→ 0 as n → ∞. Further, ρn

a.s.→ 0 as n → ∞.

Theorem 4.5. Under the assumptions of corollary 4.4,

P(XY > x) ∼ 2
cπ (1 − ρ2)1/2 x−1/c log x as x → ∞.

Moreover,

nρn
d→ −R1R2 as n → ∞ (4.8)

where R1 and R2 are iid rvs with R1 = Sα/
√

Sα/2 and Sα and Sα/2 are given in (A 10) and (A 11) with
α = 1/c < 1.

It is curious that, regardless of ρ ∈ (−1, 1), nρn converges in distribution to a rv that is negative
almost surely. In this situation (α < 1), the mean is infinite and the tail of the product XY is similar
to the tails of X and Y apart from a slowly varying function. The limit behaviour of the numerator
of (4.4) is governed by the product of the partial sums of the Xis and Yis, which in view of theorem
4.5 is of smaller order. In other words, ρn behaves essentially like the product of two t-statistics,
one for the Xis and one for the Yis.

Since the mean here is infinite, it is reasonable also to define a version ρ̃n of the sample
correlation without the correction for the mean:

ρ̃n :=
∑n

i=1 XiYi√∑n
i=1 X2

i

√∑n
i=1 Y2

i

.
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Corollary 4.6. The assumptions of corollary 4.4 imply(
n

log n

)c
ρ̃n

d→ (1 − ρ2)−c/2 S1√
S2S3

as n → ∞, (4.9)

where S1, S2, S3 are independent stable rvs with representations given in (A 10) and indices α equal to 1/c,
1/(2c) and 1/(2c), respectively.

Here the stable rvs in the numerator and denominator of (4.9) have heavy tails and are
independent, so the ratio on the right of (4.9) does have heavy tails. We comment after (5.5)
below on the confidence intervals implied by the similar situation there (a ratio of independent
stable rvs).

Whereas the limit rv in (4.8) is independent of the population correlation ρ, the limit rv in (4.9)
is scaled by a function of the population correlation ρ. The rate of convergence (n/ log n)c is rather
fast, essentially of order n2 for c = 2. This is much faster than the standard n1/2 rate when the
variance is finite. Corollary 4.4, theorem 4.5 and corollary 4.6 are proved in appendix A(d).

5. Heavy tails in a linear model
Suppose X and Z are two heavy-tailed rvs and

Y = ηX + Z, η > 0. (5.1)

Given a sample (X1, Y1), . . . , (Xn, Yn) of n independent observations, what is a useful way to
estimate η? Surprisingly, even though the data have infinite variance, the least-squares estimator
for η performs remarkably well. Specifically, the least-squares estimator is weakly consistent, as
we now show.

Assume that X and Z are independent positive rvs with distribution functions FX and FZ,
respectively, with asymptotically equivalent tails, i.e.

lim
s→∞

F̄Z(s)
F̄X(s)

= C ∈ (0, ∞). (5.2)

If X ∈ RV(α), then it is elementary that

P(Y > x)
P(X > x)

→ ηα + C as x → ∞.

Thus Y also has a heavy-tailed distribution with the same tail index α. However, if C = ∞, then Y
inherits its heavy tail from the noise Z. Here we will assume C < ∞.

Since the vector (X, Z) is bivariate regularly varying and since (X, Y) is a linear transformation
of (X, Z), it follows directly from Basrak et al. [18, p. 113, Proposition A.1] that (X, Y) is bivariate
RV.

The angular measure of (X, Y) in (A 5) has mass at arctan η and π/2, namely,

G(·) = (η2 + 1)α/2

(η2 + 1)α/2 + C
εarctan η(·) + C

(η2 + 1)α/2 + C
επ/2(·). (5.3)

It follows directly from theorem 4.1 that if (X1, Y1), . . . , (Xn, Yn) are iid observations from the

linear model (5.1) with 0 < C < ∞, then ρn
d→ U where U is given in (4.5). On the other hand,

if C = 0, which would allow the noise variable Z to be light-tailed, including normal, then the

form of the limit variable U in (4.5) (see also (A 14)–(A 20)) implies that ρn
P→ 1 as n → ∞. To

see this, the distribution G in (5.3) for the angular part of the limit measure corresponds to
point mass at arctan η. It follows now that the rvs Θi appearing in (A 18)–(A 20) are all constant
and equal to arctan η with probability one. As long as η > 0, then arctan η ∈ (0, π/2) and hence
S2

α/2,0/(Sα/2,1Sα/2,2) = 1.
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The least-squares estimator of η minimizes
∑n

t=1(Yt − ηXt)2. It is given by

η̂ =
∑n

t=1 XtYt∑n
t=1 X2

t
.

Plugging Yt = ηXt + Zt into the summands in the numerator gives

η̂ − η =
∑n

t=1 XtZt∑n
t=1 X2

t
. (5.4)

Applying theorem 4.5 as in the proof of (4.5), it is easy to see that, if an is the 1 − 1/n quantile of FX

and if α ∈ (0, 2), then a−2
n

∑n
t=1 XtZt

P→ 0, a−2
n

∑n
t=1 X2

t
d→ Sα/2,1 as n → ∞, and hence η̂ is weakly

consistent for η (i.e., as n → ∞, η̂ converges in probability to η for every η > 0).
If α ∈ (0, 1) and FX is asymptotic to a Pareto distribution F̄x(x) ∼ Kx−α , K ∈ (0, ∞) as x → ∞,

then as in corollary 4.6,

(
n

log n

)1/α

(η̂ − η)
d→ C1/α S1

S2
as n → ∞ , (5.5)

where S1 and S2 are independent stable rvs given by (A 10) with indices α and α/2, respectively.
For example, if α = 1/2, then the rate of convergence of the least-squares estimate is extremely
fast, approximately of order n2, which is substantially faster than the convergence rate of order√

n when the variances of X and Z are finite. In particular, an approximate 95% confidence interval
for η, assuming C = 1 and α = 1/2, is (η̂ − c0.975(log n/n)2, η̂ − c0.025(log n/n)2), where cγ is the
γ -quantile of the distribution for S1/S2. The two minus signs in the lower and upper bounds
of the confidence interval are the surprising consequence of the fact that η̂ is always bigger than
η, as can be seen from (5.4), even for finite n and as n → ∞. This inequality is an artifact of X and
Z being positive. The width of this confidence interval is (c0.975 − c0.025)(log n/n)2. On the other
hand, if the variances of X and Z are finite, the width of the 95% confidence interval for η based
on the least squares estimate is 3.92(σZ/σX)n−1/2. While the difference in quantiles c0.975 − c0.025
coming from the ratio of two independent stable rvs can be large, this potentially large width is
more than overcome by the fast rate of the scaling (log n/n)2 for large n.

6. Simulations of Taylor’s Law, correlations and a linear model
The purpose of this section is to investigate by numerical simulation how rapidly some of the
statistics based on dependent heterogeneous, RV rvs described in §§3–5 converge in distribution
to their limit rvs expressed as functions of stable laws.

(a) Taylor’s Law with heterogeneous, dependent, heavy tails
We simulate the heterogeneous, dependent, RV rvs described in §§3(b),(c) with three different
values of the pairwise correlations ρ = 0, 0.5, 0.9999 of the standard normals Zt and with
observations

Xt := 1

(Z2
t )1/(2αt)

∈ RV(αt), t = 1, 2, . . . , n.

In this numerical example (figure 1), for every tenth value of t, αt = 0.1, and the remaining nine
of every ten values have αt = 0.9. Despite having nine of every ten exponents equal to 0.9, the
numerals p = 1, . . . , 7 plotted at the location of (sample mean, sample variance) = (X̄n, σ̂ 2

n ) for
the three samples of each size n = 10p fall along the solid line with slope b = 2.1111 = (2 − 0.1)/
(1 − 0.1) on log-log coordinates, which is the slope in (3.2) when α = 0.1. The solid lines in figure 1
are not fitted to the markers but are calculated a priori as the bth power of the abscissa. The values
of αt > 0.1 have no effect on the slope because the mean and variance are determined by the largest
observations, which arise from the RV rvs with the smallest tail exponent, here 0.1.
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Figure 1. Scatterplots on log–log axes of (sample mean X̄n, sample variance σ̂ 2
n ) in three samples of Xt := 1/(2Z2t )

1/[2αt ] ∈
RV(αt), t = 1, 2, . . . , n of each sample size n= 10p, p= 1, 2, . . . , 7 with pairwise correlation ρ = 0, 0.5, 0.9999 (panels
(a), (b) and (c)). For example, in the left panel, the three appearances of the numeral ‘7’ represent (X̄n, σ̂ 2

n ) in three samples
of size n= 107. The solid lines (X̄s)b have the same slope b= 2.1111= (2 − 0.1)/(1 − 0.1) on log–log axes, regardless of the
value of the pairwise correlationρ = 0, 0.5, 0.9999 (panels (a), (b) and (c)). (Online version in colour.)

(b) Bivariate correlation
In §6(b), we simulate (X, Y) described in corollary 4.4 and theorem 4.5. In this case, although X
and Y are generated by arbitrarily correlated (with |ρ| < 1) standard normal variates, X and Y
are asymptotically independent stable laws. The purpose of these simulations is to shed light on
this question: Does the sample correlation ρn (4.4) of n iid copies of (X, Y) approach its almost
sure limit, 0, or its rescaled limiting distribution (4.8) rapidly enough as n → ∞ that, for sample
sizes plausibly encountered in empirical applications, the limiting value or rescaled limiting
distribution are useful approximations? We ask a similar question below in §6(c), where we
simulate (X, Y) for the linear model in (5.1).

Here we generate n iid pairs (U, V) normally distributed with mean 0, variance 1, and
correlation ρ ∈ (−1, +1), for sample sizes n = 10p, p = 1, 2, 3, 4, and ρ = +0.9. From each (U, V) we
compute (X, Y) := (1/|U|2, 1/|V|2). The n × 2 matrix in which each row is one (X, Y) pair of 1/2-
stable rvs constitutes one simulation. For each sample size n, we generate s = 104 simulations. For
each simulation, we record the sample correlation ρn between the n realizations of X and the n
realizations of Y and calculate nρn (the left side of (4.8)).

Figure 2 shows that the frequency histogram of the sample correlation ρn changes from a
bimodal distribution with one mode at negative values and another near ρn = 1 when n = 10 (top
left) to a unimodal distribution to the left of 0 for large sample sizes n = 104 (bottom left).

The right side of (4.8) is −R1R2 where R1 and R2 are iid rvs with R1 = Sα/
√

Sα/2 and Sα

and Sα/2 are given in (A 10) and (A 11) with α = 1/c = 1/2. To simulate each value of Sα and
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Figure 2. For sample sizes n= 10 p, p= 1, 2, 3, 4, we generate n iid pairs (U, V) normally distributed with mean 0, variance
1 and correlation ρ = +0.9 and then (X , Y) := (1/|U|2, 1/|V|2). The n × 2 matrix in which each row is one (X , Y) pair
constitutes one simulation. For each sample size n, we generate s= 104 simulations. For each simulation, we record the sample
correlation ρn between the n realizations of X and the n realizations of Y . The left column of this figure shows the frequency
histogram of the s= 104 simulations of ρn, for sample sizes from n= 10 (top row) to n= 104 (bottom row). The histogram
becomes increasingly concentrated on (−1, 0). The right column of this figure shows, on the ordinate with cross symbols, the
order statistics of−R1R2, the limit rv on the right side of (4.8), and, on the abscissa and in the diagonal solid line of slope 1, the
corresponding order statistics of nρn (see text for details of computation). For samples of size n= 10, the sample correlationρn

was negative in 3868 of 10 000 samples. For samples of size n= 104, the sample correlationρn was negative in 9510 of 10 000
samples. The plots on the right include only and all the negative values ofρn and the corresponding order statistics of−R1R2.
(4.8) predicts, as n→ ∞, that the fraction of simulations in which ρn < 0 should approach 1, and that the cross symbols
markers should approach the diagonal line. The right panels support both predictions. (Online version in colour.)

its corresponding Sα/2, we generate 105 iid unit exponential variates Ei, compute the 105 partial
sums Γt :=∑t

i=1 Ei, t = 1, . . . , 105, raise each Γt to the power −1/α (for Sα) or −2/α (for Sα/2), and
sum the 105 values of Γ

−1/α
t or Γ

−2/α
t . From each such pair (Sα , Sα/2) using the same values of Γt,

we compute one value of R1 = Sα/
√

Sα/2. An independent repetition of this procedure generates
one iid value of R2 and thence one value of −R1R2.

For each sample size n, we sort the s simulated values of nρn (the left side of (4.8)) in increasing
order, and we sort the s simulated values of −R1R2 (the right side of (4.8)) in increasing order. If
the distribution nρn approaches the distribution of −R1R2 as n → ∞ as theorem 4.5 asserts, then
the empirical quantile–quantile plot of −R1R2 on the vertical axis and nρn on the horizontal axis
should fall along a diagonal straight line of slope 1 through the origin.

However, the absolute error nρn − (−R1R2) of the approximation in (4.8) is unbounded as
n → ∞ because there is a non-zero (though asymptotically vanishing) probability that ρn will
be near 1, which case nρn will be near n while −R1R2 is negative with probability 1, so the error
could be close to n. Consequently, including positive values of ρn in the quantile–quantile plots
in the right column of figure 2 would obscure the comparison of nρn with −R1R2 on (−∞, 0]
where asymptotically an increasing proportion of the values of ρn will fall. For each sample size
n, we report the number of simulations with ρn < 0 in the lower right corner of each panel in
the right column of figure 2 and we restrict the quantile–quantile plot to these values and to the
corresponding order statistics of −R1R2. As (4.8) predicts, as n → ∞, the fraction of simulations
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Figure 3. Left to right, top to bottom: (a) Scatterplot on linear scales of (X , Y), Y = X + Z with X , Z iid 1/2-stable, in a single
sample of size n= 104. (b) Scatterplot on logarithmic scales of the same sample shown on the left. (c) Frequency histogram
of n × s= 104 × 103 = 107 values of arctan(Y/X) from the pooled s simulations of samples of size n. The modal values
approximate arctan(1) on the left andπ/2 on the right. (d) Frequency histogram of arctan(Y/X) from the 106 values of (X , Y)
for which the radius in polar coordinates R := (X2 + Y2)1/2 falls in the upper decile of all 107 values of the radius. The values of
arctan(Y/X) are more concentrated at arctan(1) andπ/2. (Online version in colour.)

in which ρn < 0 approaches 1 and the order statistics of nρn approach the corresponding order
statistics of −R1R2.

(c) Linear model
We simulate the linear model (5.1) with slope η = 1 under two different assumptions: (i) that the
independent variable X and the noise (or random perturbation) variable Z are iid 1/2-stable,
so that in (5.2) we have C = 1; and (ii) that X is 1/2-stable and Z is standard normal, which is
light-tailed, and X and Z are independent, so that in (5.2) C = 0.

Under (i), assuming X and Z are iid α-stable with α = 1/2, η = C = 1, the angular measure (5.3)
simplifies to

G(·) = 21/4

21/4 + 1
εarctan 1(·) + 1

21/4 + 1
επ/2(·)

≈ 0.5432ε0.7854(·) + 0.4568ε1.5708(·).

The limiting distribution of ρn, given by the right side of (4.5), depends on the three stable
rvs S1/4,0, S1/4,1 and S1/4,2 with joint distribution specified in appendix A(c), (A 18)–(A 20). To
simulate their joint distribution, for each realization ω, each Γt is a cumulative sum of t iid
exponential rv with parameter 1, as described in greater detail in §6(b). From (5.3), in the
limit of large n, each Θt = arctan(1) ≈ 0.7854 with probability 0.5432 and Θt = π/2 ≈ 1.5708 with
probability 0.4568, as calculated numerically just above. We sum the summands on the right sides
of (A 18)–(A 20) until the sums quasi-converge.

Under (ii), with α = 1/2, η = 1, C = 0, the angular measure (5.3) simplifies to

G(·) = εarctan 1(·) ≈ ε0.7854(·)

and the limiting distribution of ρn is a point mass at 1.
As above, n = 10p, p = 1, 2, 3, 4, denotes the sample size or number of realizations of (X, Y).

For each sample size n, we simulate s = 1000 samples each with n copies of (X, Y) and plot the
frequency histogram of the s values of the sample correlation coefficient ρn for these s samples.
We compare this frequency histogram with the limiting distribution calculated in §5.
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Figure 4. Frequency histograms of the sample correlation coefficient ρn of samples of (X , Y), Y = ηX + Z when Z is 1/2-
stable (heavy-tailed) as in figure 3. We assume η = 1. Top to bottom: Sample sizes are (a) n= 10, (b) n= 102, (c) n= 103,
and (d) n= 104. Modal sample correlation coefficients are near 0 and near 1.
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Figure 5. Left to right, top to bottom: (a) Scatterplot on linear scales of (X , Y) where Y = X + U with X iid 1/2-stable, U
iid standard normal. We have s= 103 samples each of size n= 104, giving a total of n × s= 104 × 103 = 107 pairs (X , Y).
(b) Scatterplot on logarithmic scales of only the 8 887 329 pairs (X , Y) where X > 0, Y > 0. The same simulations appear in (A)
and (B) but only the positive pairs are selected for (B). (c) Frequency histogramof 107 values of arctan(Y/X) from s iid simulations
of samples of size n. Themodal values centre on arctan(1)= π/4≈ 0.7854. (d) Frequency histogram of arctan(Y/X) from the
106 values of (X , Y) for which the radius in polar coordinates R := (X2 + Y2)1/2 falls in the upper decile of all 107 values. The
values are more concentrated at arctan(1). (Online version in colour.)
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Figure 6. Column 1: sample size n. Column 2: median of the s= 1000 values of the sample correlation coefficient ρn of
(X , Y), Y = ηX + Z with X , Z iid 1/2-stable,η = 1. The noise term is heavy–tailed. Column 3: range (highest minus lowest) of
the s= 1000 values of the sample correlation coefficient in column 2. Column 4: median of the s= 1000 values of the sample
correlation coefficient of (X , Y), Y = ηX + Uwith X iid 1/2-stable,U iid standard normal,η = 1. The noise term is light–tailed.
Column 5: range (highest minus lowest) of the s= 1000 values of the sample correlation coefficient of the sample correlation
coefficient in column 4. With heavy-tailed noise, the sample correlation coefficient is increasingly covers the full interval [0, 1]
as sample size n increases. With light-tailed noise, the sample correlation coefficient is increasingly tightly concentrated near 1
as sample size n increases.

To simulate s samples of size n of the 1/2-stable rv X, we let each element of the n × s matrix
X be iid distributed as the reciprocal of the square of an iid standard normal. Each column of X
represents one sample of size n of X.

Under assumption (i) that X and Z are iid 1/2-stable, we also simulate s samples of size n of
the 1/2-stable rv Z by exactly the same procedure, independently of X. Each column of the n × s
matrix Z represents one sample of size n of Z. Then Y = ηX + Z gives an n × s matrix containing
s samples of size n of Y according to (5.1). We assume η = 1 here, so Y = X + Z. The top row of
figure 3 shows one sample of size n = 104 under assumption (i). The modal values of arctan(Y/X)
from s iid simulations of samples of size n = 104 (second row of figure 3) approximate arctan(1)
on the left and π/2 on the right (lower left panel), with increasing concentration at these modal
values when the radius in polar coordinates R := (X2 + Y2)1/2 falls in the upper decile of all 107

values of R (lower right panel). For samples of increasing size, the sample correlation coefficient
ρn is increasingly concentrated on the interval [0, 1], with modal frequencies at the extremes
(figures 4 and 6).

Under assumption (ii) that X is 1/2-stable, Z is standard normal, and X and Z are independent,
we generate another independent n × s matrix X as above and an n × s matrix N with iid standard
normal elements N. Then Y = ηX + N = X + N. The top row of figure 5 shows one simulated
sample of size n = 104 under assumption (ii). The top right panel shows on log–log coordinates
only the pairs (X, Y) of this sample where X > 0, Y > 0. Unlike the previous case of heavy-tailed
noise, here the modal values of arctan(Y/X) from the pooled s simulations of samples of size
n = 104 (lower row of figure 5) centre on and are near arctan(1) = π/4 ≈ 0.7854, with increasing
concentration at this modal value when the radius in polar coordinates R := (X2 + Y2)1/2 falls in
the upper decile of all 107 values of R (lower right panel). Under assumption (ii), for samples
of increasing size, the sample correlation coefficient ρn is concentrated around 1, with a range
that decreases very rapidly toward 0 (figure 6): these results are consistent with the theory and
figure 5c,d where the histogram of arctan(Y/X) is heavily concentrated at π/4.
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Appendix A

(a) Heavy-tailed distributions and point process methods: background
Point process methods provide indispensable insight into limit theory for statistics arising from
heavy-tailed data. The methods have been championed by Resnick [1,2,19], and others. We will
discuss the relevant theory in the setting of §4 and leave the general formulation to the references
in Resnick [2].

Here the Euclidean space E is defined as E = (0, ∞] or (0, ∞]2 \ (0, 0).1 A point measure ξ on E
is a non-negative integer-valued measure on the Borel σ -field, B(E), having the form

ξ (·) =
∞∑

t=1

εxt (·),

where εx(·) is the delta measure with unit mass at x, and xi ∈ E. That is, for A ∈B(E),

εx(A) =
{

1, x ∈ A,

0, x /∈ A.

We say that a point measure is Radon on E if it is finite on all compact sets.
We define the vague topology on the class Mp(E) of Radon point measures in terms of the space

CK(E) of continuous functions on E with compact support. If ξn, ξ ∈ Mp(E), then ξn
v→ ξ if and only

if for every f ∈ CK(E),

ξn(f ) :=
∫

E
f dξn → ξ (f ) :=

∫
E

f dξ .

A point process is a random element of Mp(E) defined on some probability space (Ω ,F , P).
A Poisson point process ξ is defined in terms of a Radon intensity measure μ and is often called
a Poisson random measure, denoted by PRM(μ) [1]. Such a point process satisfies the following
assumptions:

(i) For relatively compact A ∈B(E), ξ (A) has a Poisson distribution with mean μ(A).
(ii) For relatively compact and disjoint A, B ∈B(E), ξ (A) and ξ (B) are independent.

The Laplace functional Lξ (f ) of a point process ξ (·) =∑∞
t=1 εXt (·) is

Lξ (f ) := E(exp{−ξ (f )}) = E

(
exp

{
−

∞∑
t=1

f (Xt)

})
(A 1)

for non-negative f ∈ CK(E). When ξ is a PRM(μ), the Laplace functional becomes [1, Sect. 5.3.2]

Lξ (f ) = exp
{
−

∫
E

(
1 − e−f

)
dμ

}
. (A 2)

A sequence of point processes ξn converges in distribution to the point process ξ if and only if
their respective Laplace functionals also converge, i.e.

ξn
d→ ξ if and only if Lξn (f ) → Lξ (f ) for all non-negative f ∈ CK(E). (A 3)

A powerful result about the convergence of point processes of heavy-tailed one-dimensional
data is:

Theorem A.1. Suppose {Xt} is an iid sequence of observations with distribution F ∈ RV(α) as in (2.1),
and define an by (2.3). Let {Et} be an iid sequence of unit exponential rvs, and define Γt :=∑t

i=1 Ei, t =
1Here E corresponds to a one-point compactification of [0, ∞) or [0, ∞)2 with the origin removed. Relatively compact sets
are sets bounded away from the origin, i.e. A ∈B(E) is relatively compact if, for some small ε > 0, A ⊂ {x : ε ≤ x} or in the
two-dimensional case A ⊂ {(x, y) : ε ≤ ‖(x, y)‖}.
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1, 2, . . .. Then the sequence of point processes Nn(·) defined on the left in (A 4) converges in distribution to
the point process N(·) defined on the right in (A 4) as n → ∞:

Nn(·) :=
n∑

t=1

εa−1
n Xt

(·) d→ N(·) :=
∞∑

t=1

ε
Γ

−1/α
t

(·). (A 4)

The limit point process N is a PRM(αx−α−1 dx).

This result follows directly from Resnick [1, theorem 5.3].
We recall from elementary stochastic processes that the Γt’s are points of a homogeneous

Poisson process on (0, ∞) with rate one. By a change of variables, the points Γ
−1/α

t are then points
of a Poisson process with intensity measure αx−α−1 dx.

To consider sample correlations between pairs of rvs, we extend regular variation to bivariate
random vectors. The nonnegative bivariate random vector (X, Y) is said to be RV if the radial
part R = (X2 + Y2)1/2 is RV(α) and the angular part Θ = arctan(Y/X) becomes independent of R
as R → ∞. More precisely, if ãn is the 1 − 1/n quantile of R and G is a distribution function on
[0, π/2], then for all r > 0,

nP(R > ãnr) → r−α and P(Θ ∈ · | R > ãn)
d→ G(·) as n → ∞. (A 5)

The limiting relations (A 5) are equivalent to

nP((ã−1
n R, Θ) ∈ (·, ·)) v→ ν̃(dr, dθ ) := αr−α−1 dr × G(dθ ) as n → ∞ (A 6)

in polar coordinates or, in the original Euclidean coordinates,

nP(ã−1
n (X, Y) ∈ (·, ·)) v→ ν(dx, dy) as n → ∞, (A 7)

where
v→ represents vague convergence of measures on (0, ∞]2 and ν(dx, dy) is the measure in

rectangular coordinates corresponding to the polar coordinate version ν̃(dr, dθ ).
The point process convergence that drives much of the limit theory for bivariate heavy-tailed

data is:

Theorem A.2. Suppose {(Xt, Yt), t = 1, 2, . . .} is an iid sequence of observations with distribution that
satisfies (A 6) or (A 7). Then the sequence of point processes Nn(·) converges in distribution as n → ∞ to
a PRM(ν) N(·), where

Nn(·) :=
n∑

t=1

εã−1
n (Xt,Yt)(·)

d→ N(·) :=
∞∑

t=1

ε
Γ

−1/α
t (cos Θt,sin Θt)

(·) as n → ∞. (A 8)

Here {Θt} is an iid sequence with distribution G(dθ ) in (A 6) that is also independent of the sequence {Γt}.

The proof of this result is in Resnick [1, theorem 5.3].
The limit point process N(·) in theorem A.2 has an instructive representation. The Γ

−1/α

j and

Θj correspond to the limit of the radial and angular parts, respectively, of the pairs ã−1
n (Xj, Yj). To

verify that N is a PRM(ν), we use Laplace functionals. Specifically, by conditioning on the Poisson
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points Γj and by using the independence of the Θi, we have

LN(f ) = E

⎛
⎝exp

⎧⎨
⎩−

∞∑
j=1

f
(
Γ

−1/α

j (cos Θj, sin Θj)
)⎫⎬
⎭
⎞
⎠

= E

⎛
⎝ ∞∏

j=1

∫
[0,π/2]

(
exp

{
−f

(
Γ

−1/α

j (cos θ , sin θ )
)}

G(dθ )
)⎞⎠

= E

⎛
⎝exp

⎧⎨
⎩

∞∑
j=1

h(Γ −1/α

j )

⎫⎬
⎭
⎞
⎠ ,

[
h(r) := − log

∫
[0,π/2]

(
exp{−f (r(cos θ , sin θ ))}G(dθ )

)]

= exp
{
−

∫
(0,∞)

(1 − exp{−h(r)})αr−α−1 dr
}

= exp
{
−

∫
(0,∞)

(1 − exp{−f (x, y)})ν(dx, dy)
}

as desired.

(b) Limit theory for Taylor’s Law
The following theorem describes the joint convergence of the partial sums and partial sums of
squares in example 2.1 and the limiting behaviour of Taylor’s Law.

Theorem A.3. Suppose {Xt} is an iid sequence of observations with F ∈ RV(α) as in (2.1). Define an by
(2.3) and bn by (2.5). Then(

a−1
n

n∑
t=1

(Xt − bn), a−2
n

n∑
t=1

(Xt − X̄n)2

)
d→ (

Sα , Sα/2
)

as n → ∞. (A 9)

The limit rvs Sα and Sα/2 are stable and defined through the points of the point process N in theorem A.2.
Namely,

Sα =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞∑
j=1

(
Γ

−1/α

j − E[Γ −1/α

j 1{Γ −1/α

j ≤1}]
)

, if α ∈ [1, 2),

∞∑
j=1

Γ
−1/α

j , if α ∈ (0, 1),
(A 10)

and

Sα/2 =
∞∑

j=1

Γ
−2/α

j . (A 11)

For α ∈ (0, 1), Taylor’s Law (3.3) follows: for b = (2 − α)/(1 − α),

na−2
n

nba−b
n

Wn = 1

L̃2−b(n)
Wn

d→
∑∞

i=1 Γ
−2/α

i(∑∞
i=1 Γ

−1/α

i

)b
as n → ∞. (A 12)

Proof. This is a special case of a standard result in, for example, LePage et al. [20, theorems 1
and 1’], where the derivation of (2.10) from (2.8) is required. �

The representations in (A 10) and (A 11) are often referred to as the LWZ representation of a
stable distribution. Davis [16] gives the companion result when {Xt} is a stationary time series
satisfying certain dependence conditions.

(c) Limit theory for the sample correlation
Proof of theorem 4.1. The condition (4.3) implies the vague convergence in (A 7). Indeed, (4.3)

implies that (A 7) holds for sets of the form Ac
x,y = ([0, x] × [0, y])c, which can then be extended to
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all two-dimensional Borel sets that are bounded away from (0, 0). Moreover, the constants an and
ãn are related via

nP(R > ãn) → 1 and nP(R > an) → ν({(x, y) : x2 + y2 > 1}) as n → ∞,

which implies

ãn ∼ ν1/α({(x, y) : x2 + y2 > 1})an as n → ∞. (A 13)

For 0 < ε < 1 fixed, consider the function fε(x, y) = xy1{ε<xy≤1/ε}, which has compact support
on E and is continuous except on a set of ν measure 0. By the weak convergence of Nn to N in
theorem A.2, it follows that

Nn(fε) = ã−2
n

n∑
t=1

XtYt1{ã2
nε<XtYt≤ã2

n/ε}

d→ N(fε) =
∞∑

t=1

Γ
−2/α

t cos Θt sin Θt1{ε<Γ
−2/α

t cos Θt sin Θt≤1/ε} as n → ∞. (A 14)

Since Γt ∼ t a.s. by the strong law of large numbers, the series
∑∞

t=1 Γ
−2/α

t is summable a.s. Hence

N(fε)
a.s.→ N(f0) =

∞∑
t=1

Γ
−2/α

t cos Θt sin Θt as ε ↓ 0. (A 15)

Moreover, for any δ > 0,

P(|Nn(fε) − Nn(f0)| > δ) ≤ P

(
ã−2

n

n∑
t=1

XtYt1{XtYt>ã2
n/ε} >

δ

2

)

+ P

(
ã−2

n

n∑
t=1

XtYt1{XtYt≤ã2
nε} >

δ

2

)

= I + II.

Term I is bounded by

P

( n⋃
t=1

{
ã−2

n XtYt >
1
ε

})
≤ nP

(
ã−2

n X1Y1 >
1
ε

)

n→∞→ ν

{
(x, y) : xy ≥ 1

ε

}
→ 0 as ε → 0. (A 16)

Hence limε→0 lim supn→∞ I = 0. Markov’s inequality bounds term II by

II ≤ 2δ−1nã−2
n E

[
X1Y11{X1Y1≤ã2

nε}
]

.

Next
P(XY > a2

n)

P(X2 > a2
n)

= nP(XY > a2
n)

nP(X2 > a2
n)

→ ν({(x, y) : xy > 1}) as n → ∞,

where the limit is positive if X and Y are asymptotically dependent, or zero if X and Y are
asymptotically independent. Either way, it follows that there exists a finite positive constant C
such that, for all z > 0,

P(XY > z) ≤ CP(X2 > z).

Consequently

E
[
XY1{XY≤ã2

nε}
]
=

∫ ã2
nε

0
P(XY > z) dz ≤

∫ ã2
nε

0
CP(X2 > z) dz = CEX21{X2≤ã2

nε}.
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Now from Karamata’s theorem [1, theorem 2.1], we have E(X21{X2≤z}) ∼ 2/(2 − α)zP(X2 > z) as
z → ∞ and hence for some K ∈ (0, ∞),

lim
ε→0

lim sup
n→∞

II ≤ lim
ε→0

lim sup
n→∞

2Cδ−1nã−2
n E

[
X21{X2≤ã2

nε}
]
= lim

ε→0
Kε1−α/2 = 0. (A 17)

Combining (A 14), (A 16) and (A 17), we conclude that

ã−2
n

n∑
t=1

XtYt
d→ Sα/2,0 :=

∞∑
t=1

Γ
−2/α

t cos Θt sin Θt as n → ∞. (A 18)

Essentially, the same point process argument, although somewhat easier, can be used to show

ã−2
n

n∑
t=1

X2
t

d→ Sα/2,1 :=
∞∑

t=1

Γ
−2/α

t cos2 Θt as n → ∞ (A 19)

and

ã−2
n

n∑
t=1

Y2
t

d→ Sα/2,2 :=
∞∑

t=1

Γ
−2/α

t sin2 Θt as n → ∞, (A 20)

where the convergences in (A 18)–(A 20) are joint. Applying the continuous mapping theorem
gives (4.5).

Finally, by the form of the limit, one sees that the numerator Sα/2,0 = 0 a.s. if and only if the
angular measure concentrates at 0 and π/2, which is equivalent to asymptotic independence. �

Proof of theorem 4.2. If X ∈ RV(α) and Y ∈ RV(β) with 0 < α < β < 2, then Yβ/α ∈ RV(α). So
replacing the condition on (X, Y) in theorem 4.1 with the assumption that (X, Yβ/α) is bivariate
RV, theorem A.2 implies that the same point process convergence in (A 8) holds with Yt replaced
by Yβ/α

t . Using the same proof as for theorem 4.1 with the function fε(x, y) = xyα/β1{ε<xyα/β≤1/ε}
implies the analogue of (A 18), namely,

ã−1−α/β
n

n∑
t=1

XtYt
d→ Sαβ/(α+β),0 :=

∞∑
t=1

Γ
−1/α−1/β

t cos Θt sinα/β Θt as n → ∞. (A 21)

From the same point process result, we obtain

ã−2α/β
n

∑
t=1

(Yt − Ȳn)2 d→ Sβ/2,2 :=
∞∑

t=1

Γ
−2/β

t sin2α/β Θt as n → ∞. (A 22)

The remainder of the proof is identical to that for theorem 4.1. �

(d) Limit theory for correlation of heavy-tailed data from correlated normal random
variables

In this section, we prove theorem 4.5, corollaries 4.6 and 4.4.

Proof of theorem 4.5 and corollary 4.6. Recall that X := 1/|U|c, Y := 1/|V|c for some c > 1 where
(U, V) is bivariate normal with means 0, variances 1, and correlation ρ ∈ (−1, 1). Let φ(x) :=
(2π )−1/2 exp(−x2/2), x ∈ (−∞, +∞), be the standard normal pdf. It follows directly from
proposition 4.3 that

P(X > x) ∼ x−1/c2φ(0) = x−1/c

√
2
π

.

Now setting an = (2/π )c/2nc, it follows that nP(X > an) → 1 as n → ∞.
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Establishing

Pr(XY > x) ∼ 2
cπ (1 − ρ2)1/2 x−1/c log x as x → ∞ (A 23)

is equivalent to proving

Pr(|UV| < ε) ∼ 2
π (1 − ρ2)1/2 ε log

(
1
ε

)
as ε ↓ 0. (A 24)

The probability on the left side of (A 24) can be written

Pr(|UV| < ε) =
(

1
2π

)1/2 ∫∞

−∞
e−x2/2

[
Φ

(
ε/|x| − ρx
(1 − ρ2)1/2

)
− Φ

(−ε/|x| − ρx
(1 − ρ2)1/2

)]
dx, (A 25)

where Φ is the standard normal cdf. For an upper bound, notice that the integral in the right side
of (A 25) does not exceed

2ε +
∫
|x|>ε

e−x2/2
[
Φ

(
ε/|x| − ρx
(1 − ρ2)1/2

)
− Φ

(−ε/|x| − ρx
(1 − ρ2)1/2

)]
dx

≤ 2ε +
(

1
2π

)1/2 ∫
|x|>ε

e−x2/2 2ε

|x|(1 − ρ2)1/2 dx

since

Φ(b) − Φ(a) ≤
(

1
2π

)1/2
(b − a)

for any a < b. We conclude that

P(|UV| < ε) ≤
(

2
π

)1/2
ε + 2

π (1 − ρ2)1/2 ε

∫∞

ε

1
x

e−x2/2 dx.

Since by L’Hôpital’s rule ∫∞

ε

1
x

e−x2/2 dx ∼ log
(

1
ε

)
as ε ↓ 0,

we conclude that

lim sup
ε↓0

P(|UV| < ε)
ε log(1/ε)

≤ 2
π (1 − ρ2)1/2 . (A 26)

It remains to obtain a matching lower bound of the right side of (A 25). Now we use the bound,
for any a < b,

Φ(b) − Φ(a) ≥
(

1
2π

)1/2
(b − a) exp

{
−2 max(a2, b2)

2

}
.

Choose θ = θ (ε) ↓ 0 as ε ↓ 0 such that

log
(

1
θ

)
= o

(
log

(
1
ε

))
as ε ↓ 0. (A 27)

Let M be a large number. We have by (A 25),

P(|UV| < ε) ≥ 1
2π

∫
εM≤|x|≤θ

e−x2/2 2ε

|x|(1 − ρ2)1/2 exp

{
−1

2

(
ε

|x| + |ρx|
)2

}
dx

= 2
π (1 − ρ2)1/2 ε

∫ θ

εM

1
x

e−x2/2 exp

{
− ε2

2x2 − ε|ρ| − ρ2x2

2

}
dx

≥ 2
π (1 − ρ2)1/2 ε exp

{
− 1

2M2 − ε − θ2
} ∫ θ

εM

1
x

dx.

By (A 27) we conclude that

lim sup
ε↓0

P(|UV| < ε)
ε log(1/ε)

≥ 2
π (1 − ρ2)1/2 exp

{−1/2M2}.

Letting M → ∞ provides a lower bound matching (A 26) and, hence, proves (A 23).
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The normalizing constant associated with the distribution of XY is given by ãn = K(n log n)c,
where K = (2/π )c(1 − ρ2)−c/2 so that nP(XY > ãn) → 1 as n → ∞. Note that ãn/an → ∞. Also, for
M > 0 fixed, large n, and all x, y > 0,

nP(XY > ãnx, X > any) ≤ nP(X > anM) + nP(XY > ãnx, X > any, X ≤ anM)

≤ nP(X > anM) + nP
(

Y >
ãn

an

x
M

, X > any
)

. (A 28)

As n → ∞, the first term converges to M−1/c, while the second term is

nP

(
|U| ≤ (y−1/ca−1/c

n ), |V| ≤ const
(

ãn

an

)−1/c
)

∼ Cn(a−1/c
n )

(
ãn

an

)−1/c

ϕρ (0, 0),

where C is a generic constant and ϕρ is the joint density of (U, V). Since na−1/c
n → (2/π )−1/2 and

ãn/an → ∞ as n → ∞, it follows that this term goes to 0 as n → ∞. Consequently, the lim supn→∞
followed by the limit as M → ∞ of the left side of (A 28) is 0. In other words, X and XY are
asymptotically independent. From this property [12], we have the point process convergence

Nn :=
n∑

t=1

ε(a−1
n Xt,a−1

n Yt,ã−1
n XtYt)

d→ N :=
∞∑

i=1

[
ε(Γ −c

i,1 ,0,0) + ε(0,Γ −c
i,2 ,0) + ε(0,0,Γ −c

i,3 )

]
as n → ∞, (A 29)

where {Γi,1},{Γi,2}, and {Γi,3} are iid copies of the points {Γi} defined in theorem A.1.
From this point process, by the same argument as used in the proof of theorem 4.1 (see

appendix A(c)), we obtain(
a−2

n

n∑
t=1

X2
t , a−2

n

n∑
t=1

Y2
t , ã−1

n

n∑
t=1

XtYt

)
d→ (

S1/(2c),1, S1/(2c),2, S1/c
)

as n → ∞, (A 30)

where the limit rvs are independent and given by

(
S1/(2c),1, S1/(2c),2, S1/c

)
:=

( ∞∑
i=1

Γ
−1/(2c)

i,1 ,
∞∑

i=1

Γ
−1/(2c)

i,2 ,
∞∑

i=1

Γ
−1/c

i,3

)
. (A 31)

Since a2
n/ãn = (1 − ρ2)c/2(n/ log n)c, we have by the continuous mapping theorem(

n
log n

)c
ρ̃n

d→ (1 − ρ2)−c/2 S1/c√
S1/(2c),1S1/(2c),2

as n → ∞, (A 32)

as desired.
To prove corollary 4.6 and (4.9), we note that by theorem 4.3, X and Y are asymptotically

independent. By the earlier argument for (2.10), it follows that, as n → ∞,(
a−1

n

n∑
t=1

Xt, a−2
n

n∑
t=1

(Xt − X̄n)2, a−1
n

n∑
t=1

Yt, a−2
n

n∑
t=1

(Yt − Ȳn)2

)
d→ (

S1/c,1, S1/(2c),1, S1/c,2, S1/(2c),2
)

,

where S1/c,i, S1/(2c),i are given by (A 10) and (A 11) with α = 1/c and are independent for i = 1, 2.
Then by the continuous mapping theorem

−∑n
i=1 Xi

∑n
i=1 Yi√∑n

t=1(Xt − X̄n)2
√∑n

t=1(Yt − Ȳn)2

d→ −R1R2, (A 33)

where Ri = S1/c,i/
√

S1/(2c),i, i = 1, 2. Also, since na−2
n ãn → 0 as n → ∞, it follows that

na−2
n

∑n
i=1 XiYi

P→ 0 as n → ∞. �

Proof of corollary 4.4. Let 0 < α < γ < 1, and let S ∈ RV(γ ). Then for some c > 0, P(S > x) ∼ cx−γ as
x → ∞ so the assumption F̄X ∈ RV(α) implies that P(X > x)/P(S > x) → ∞ as x → ∞. Therefore, a
constant C exists such that P(X > x) > P(S > x) for all real x ≥ C. Therefore, P(X + C > x) > P(S > x)
for all x ≥ C > 0, while for all x < C, by definition of C we have P(X + C > x) = 1 ≥ P(S > x).
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Consequently, a constant C exists such that P(X + C > x) ≥ P(S > x) for all x ∈ R. That is, by
definition, X + C is stochastically larger than S, or X + C ≥st S. When 0 < γ < α < 1, the argument
works with S and X exchanged, hence there exists a constant C > 0 such that S + C ≥st X.

For the next results, we require a well-known inequality (A 34): if γ ∈ (0, 1), then for some c > 0,
a γ -stable rv S satisfies

P(S ≤ ε) ≤ exp(−cεγ/(γ−1)) as ε ↓ 0. (A 34)

We prove (A 34) here for ease of reference. For any θ > 0, if S is γ -stable, then its Laplace transform
is E exp(−θS) = exp(−θγ ) [7]. For any ε > 0, θ > 0, using Markov’s inequality for the following
inequality, we have

P(S ≤ ε) = P(e−θS ≥ e−θε) ≤ e+θεE exp(−θS) = exp(−θγ + θε). (A 35)

Now pick any a ∈ (0, 1) and set θ = aε1/(γ−1) to get −θγ = −aγ εγ/(γ−1) and θε = aε1/(γ−1)+1 =
aεγ/(γ−1). Therefore −θγ + θε = −aγ εγ/(γ−1) + aεγ/(γ−1) = aεγ/(γ−1)(1 − aγ−1). Since γ ∈ (0, 1) and
a ∈ (0, 1), we have a1−γ < 1 or 1 − aγ−1 < 0 or c := −a(1 − aγ−1) > 0 in (A 34), which is now proved.

Let Xi, i = 1, 2, . . . be iid copies of X ∈ RV(α). We consider two cases: first that 0 < τ < 1/α, then
that 1/α < τ < ∞.

Suppose first that 0 < τ < 1/α. We claim that

n−τ
n∑

i=1

Xi → ∞ a.s. as n → ∞. (A 36)

We may and will assume that τ ≥ 1. Choose α < γ < 1/τ , and choose C > 0 such that X + C ≥st S,
where S is γ -stable. Let S1, S2, . . . be iid copies of S. Then for any t > 0

P

(
n−τ

n∑
i=1

Xi ≤ t

)
≤ P

( n∑
i=1

Si − Cn ≤ tnτ

)

≤ P

( n∑
i=1

Si ≤ (t + C)nτ

)

= P
(
n1/γ S1 ≤ (t + C)nτ

)
= P

(
S1 ≤ (t + C)n−(1/γ−τ ))

≤ exp
{
−cn(1−γ τ )/(1−γ )

}

for some c = c(t) > 0. Therefore, for any t > 0,

∞∑
n=1

P

(
n−τ

n∑
i=1

Xi ≤ t

)
< ∞,

so by the first Borel–Cantelli lemma [21, p. 201], (A 36) holds.
Next, suppose that τ > 1/α. We claim that

n−τ
n∑

i=1

Xi → 0 a.s. as n → ∞. (A 37)
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Choose 1/τ < γ < α, and choose C > 0 such that S + C ≥st X, where S is a γ -stable rv. Let S1, S2, . . .
be iid copies of S. Then for any t > 0, for all n large enough,

P

(
n−τ

n∑
i=1

Xi > t

)
≤ P

( n∑
i=1

Si + Cn > tnτ

)

≤ P

( n∑
i=1

Si >
tnτ

2

)

= P
(

n1/γ S1 >
tnτ

2

)

= P

(
S1 >

tnτ−1/γ

2

)

≤ cn−(γ τ−1)

for some c > 0. Therefore, for any t > 0,

∞∑
m=1

P

⎛
⎝(2m)−τ

2m∑
i=1

Xi > t

⎞
⎠< ∞,

so by the first Borel–Cantelli lemma [21, p. 201],

(2m)−τ
2m∑
i=1

Xi → 0 a.s. as m → ∞.

Therefore, with
mn = �log2 n� → ∞ as n → ∞

we have

n−τ
n∑

i=1

Xi ≤ (
2mn

)−τ
2mn+1∑
i=1

Xi

= 2τ
(
2mn+1)−τ

2mn+1∑
i=1

Xi → 0 a.s. as n → ∞,

proving (A 37).
To prove that ρn → 0 a.s. as n → ∞, we pick any δ ∈ (c, 2c) and multiply numerator Nn and

denominator Dn of ρn by n−δ to get

ρn = n−δNn

n−δDn
.

It follows from (A 37) that n−δNn → 0 a.s. as n → ∞, and from (A 36) that n−δDn → ∞ a.s. as
n → ∞. Therefore, ρn → 0 a.s. as n → ∞. �

Shapiro [22] proved a special case of our results, namely, powers of reciprocals of rvs with a
continuous density that is positive at 0 have Pareto-like tails.
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