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ABSTRACT
The mean and variance of a sum of a random number of random variables are well known when the number
of summands is independent of each summand and when the summands are independent and identically
distributed (iid), or when all summands are identical. In scientific and financial applications, the preceding
conditions are often too restrictive. Here, we calculate the mean and variance of a sum of a random number
of random summands when the mean and variance of each summand depend on the number of summands
and when every pair of summands has the same correlation. This article shows that the variance increases
with the correlation between summands and equals the variance in the iid or identical cases when the
correlation is zero or one.

1. Introduction

Vehicles pass a certain point on a highway. The number of vehi-
cles per minute is a random variable, and each vehicle carries a
randomnumber of passengers. Because there are rush hours and
off-peak hours, the number of vehicles per minute is positively
associated with the number of passengers per vehicle and the
numbers of passengers in different vehicles are positively corre-
lated. What are the mean and variance of the total number of
passengers that pass by per minute?

A random number of fish of a particular species lives under
each square meter of the surface of a lake. Each individual fish
is infected by a random number of parasites. Nutrient levels
and temperatures vary from one region of the lake to another,
altering local probability distributions of the number of fish per
square meter, which is turn influences the mean and variance of
the number of parasites per fish. What are the mean and vari-
ance of the total number of parasites that live under each square
meter of lake surface?

A random number of stock traders bids for the shares of a
particular company’s stock each day. Each trader bids for a ran-
dom number of shares. In bull markets, more traders bid for
more shares each. What are the mean and variance of the total
number of shares bid for per day?

A random number of tornadoes occurs in the continental
United States each day. Each tornado may result in insurance
claims, each for a random number of dollars. Because torna-
does occur in outbreaks, and because tornadoes in outbreaks
may cause differently distributed claims than an equal number of
isolated tornadoes, the number of tornadoes per day influences
the distribution of the dollar values of claims, and these values
may be correlated on any day. What are the mean and variance
of the total dollar value of all tornado claims per day?
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These examples from operations research, ecology, stock
trading, and insurance ask for the mean and variance of a sum
of a randomnumber of random variables.Well-known formulas
assume independence between the number of summands and
the size of each summand. One extreme case is widely taught:
in a “random sum,” all the summed random variables are inde-
pendent and identically distributed (iid). A second extreme case
is a less known, though classical: in a “random product,” all the
summed random variables are identical (with probability 1), so
that the sum equals the product of a random number of sum-
mands times one random summand. While the mean of a ran-
dom sum equals the mean of a random product, the variances
differ.

Here, we derive formulas for the mean and variance of a sum
of a random number of random variables when the number of
summands influences the mean and variance of the summands
and when the summands are correlated. Special cases of these
formulas yield known formulas, including Wald’s equation and
the Blackwell–Girschick equation, but the main results appear
to be new.

These derivations give advanced undergraduate and begin-
ning graduate students an opportunity to see the usefulness and
power of conditional expectation andmoment-generating func-
tions. Students can follow the proofs because the concepts and
methods are elementary (given familiarity with random vari-
ables and expectations) and the results have practical interpre-
tations. The results are relevant to the statistical practitioner in
applications such as those mentioned above.

2. Notation and Definitions

We model a sum of a random number of random summands
when the random summands may be correlated with one
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another and may have mean and variance that depend on the
number of random summands.

LetN be a random variable taking nonnegative integer values
n= 0, 1, 2, . . ..Wewrite EN ( f (N)) = ∑∞

n=0 f (n)Pr{N = n} for
the expectation with respect to N of any function f (N) of N.
This expectationmay or may not exist. The moment-generating
function (mgf) of N with any real argument z is by definition
φ(z) = EN (ezN ) = ∑∞

n=0 e
znPr{N = n}. We assume φ(z) exists

for any real z. For any positive integer m, the mth derivative
of φ(z) evaluated at z is φ(m)(z) = ∑∞

n=0 n
meznPr{N = n} and

φ(m)(0) = E(Nm) (e.g., Ross 1997, p. 61). For example, φ′(0) =
EN (N) is the mean, φ′′(0) = EN (N2) is the second moment,
and varN (N) = φ′′(0)− [φ′(0)]2 is the variance, which all exist
since the mgf φ(z) exists by assumption. We further assume the
mean and variance of N are positive.

Assume also that X1, X2, . . . are random variables, all with
the same distribution, but not necessarily independent, on the
same probability space as N such that, for all i, the conditional
expectation E(Xi|N) and the conditional variance var(Xi|N)
exist. For real constants g, h, s, t, which do not depend on Xi
or N, assume that

E(Xi|N) = eg+hN, for all i, (1)
var(Xi|N) = es+tN, for all i. (2)

The applications in Section 1 all concern sums of nonnegative
random variables with positive means and variances. A partial
justification for assumptions (1) and (2) is that they guarantee
in a natural way that E(Xi|N) > 0 and var(Xi|N) > 0 for all N
and for all i (but they do not require that Xi be nonnegative).
Define the sum S of a random numberN of (possibly correlated)
random variables Xi as

S = 0 if N = 0 and S =
N∑

i=1

Xi if N ≥ 1. (3)

We define the conditional correlation of Xi and Xj given N,
which we write as ρi j|N, by

ρi j|N = cov(Xi|N,Xj|N)
[var(Xi|N)× var(Xj|N)]1/2

. (4)

If i = j, then ρi j|N = 1. Because we assumed var(Xi|N) =
es+tN > 0, for all i, the denominator of the right side of (4) is
positive and, by (2), is equal to es+tN . Then

cov(Xi|N, Xj|N) = (ρi j|N)× var(Xk|N)
= (ρi j|N)× es+tN for all i, j, k. (5)

We define {Xi| i = 1, 2, . . .} to be equicorrelated if for each
value of N there exists ρN such that −1 ≤ ρN ≤ +1 and such
that, if i �= j, then ρi j|N = ρN . We define {Xi| i = 1, 2, . . .}
to be uniformly equicorrelated if there exists some ρ, −1 ≤
ρ ≤ +1, independent of N, such that, if i �= j, then ρi j|N = ρ.

3. Mean and Variance of Random Sums

We calculate the mean and variance of S and explore some of
their properties.

Proposition 1. Under the assumptions above, if {Xi| i = 1,
2, . . .} are equicorrelated (not necessarily uniformly equicorre-
lated), then S defined in (3) satisfies

E(S) = egφ′(h) , (6)
var(S) = es

{
φ′(t )+ EN

[
ρN (N2 − N)etN

]}

+ e2gφ′′(2h)− e2g[φ′(h)]2. (7)

We have not seen these formulas elsewhere.

Proof. To prove (6), we calculate

E(S) = EN[E(S|N)] = EN

[

E

( N∑

i=1

Xi|N
)]

= EN

[ N∑

i=1

E(Xi|N)
]

= EN[N × E(X1|N)]

= EN
[
N × eg+hN] = egEN

[
NehN

] = egφ′(h) .

Next, var(S) = E(S2)− [E(S)]2 = E(S2)− [egφ′(h)]2.
Using (5) and the definition of equicorrelated, ρi j|N = ρN , we
have

E
(
S2
) = EN

[
E
(
S2|N)] = EN

⎡

⎣E

⎧
⎨

⎩

( N∑

i=1

Xi|N
)2
⎫
⎬

⎭

⎤

⎦

= EN

⎡

⎣E

⎧
⎨

⎩

N∑

i=1

(Xi|N)2 + 2
N−1∑

i=1

N∑

j>i

Xi
∣
∣N · Xj

∣
∣N

⎫
⎬

⎭

⎤

⎦

= EN

⎡

⎣
N∑

i=1

E
[
(Xi|N)2

] + 2
N−1∑

i=1

N∑

j>i

E
(
Xi
∣
∣N · Xj

∣
∣N

)
⎤

⎦

= EN

[ N∑

i=1

{
var (Xi|N)+ [E (Xi|N)]2

}

+ 2
N−1∑

i=1

N∑

j>i

{
cov

(
Xi
∣
∣N, Xj

∣
∣N

) + E (Xi|N)E
(
Xj|N

)}
⎤

⎦

= EN
[
N
{
var (X1|N)+ [E (X1|N)]2

}

+ 2
N−1∑

i=1

N∑

j>i

{(
ρi j|N

)
var (X1|N)+ [E (X1|N)]2

}
⎤

⎦

= EN
[
N
{
es+tN + (

eg+hN)2
}]

+ 2EN
[

var (X1|N)

×
(
N (N − 1)

2

)

ρN +
(
N (N − 1)

2

)
(
eg+hN)2

]

= EN
[
Nes+tN] + e2gEN

[
Ne2hN

] + EN
[
N(N − 1)es+tNρN

]

+EN
[
N(N − 1)

(
eg+hN)2

]

= esφ′(t )+ e2gφ′(2h)+ esEN
[
N(N − 1)etNρN

]

+ e2gφ′′(2h)− e2gφ′(2h) .

Hence

var(S)

= E
(
S2
) − [E(S)]2 = esφ′(t )+ e2gφ′(2h)

+ esEN
[
N(N − 1)etNρN

] + e2gφ′′(2h)− e2gφ′(2h)− [
egφ′(h)

]2

= es
{
φ′(t )+ EN

[
ρN

(
N2 − N

)
etN

]} + e2gφ′′(2h)− e2g
[
φ′(h)

]2
.
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This proves (7) and Proposition 1. �

Under the assumptions of Proposition 1, E(S) and var(S) are
obviously strictly increasing functions of each of the parameters
in (1) and (2), g, h, s, and t, all else held constant. If h �= 0 and
t �= 0, then (1) and (2) are strictly convex functions ofN. Jensen’s
inequality gives

EN[E(X1|N)] > E(X1|EN[N]) ,
EN[var(X1|N)] > var(X1|EN[N]) .

Both inequalities are strict because, since varN (N) > 0, N
gives positive probability mass to at least two integers. When
h �= 0 and t �= 0, then the unconditional mean and variance of
every Xi strictly exceed the mean and variance that would be
obtained from (1) and (2) if the randomvariableNwere replaced
by its mean EN[N].

The variance of S is easily computed from (7) in three special
cases (8), (9), (10). Let 0 ≤ ρ ≤ 1. (The exclusion of negative
values of ρ in this assumption is explained in Proposition 3.)
Then

ρN = ρ

N
⇒ var(S) = es{φ′(t )+ ρ[φ′(t )− φ(t )]}

+ e2gφ′′(2h)− e2g[φ′(h)]2, (8)

ρN = ρ

N2 − N
⇒ var(S) = es{φ′(t )+ ρφ(t )}

+ e2gφ′′(2h)− e2g[φ′(h)]2, (9)
ρN = ρ ⇒ var(S) = es{φ′(t )+ ρ[φ′′(t )− φ′(t )]}

+ e2gφ′′(2h)− e2g[φ′(h)]2

= es(1 − ρ)φ′(t )+ esρφ′′(t )+ e2gφ′′(2h)− e2g[φ′(h)]2.
(10)

Proposition 2. Under the assumptions of Proposition 1 and the
additional assumptions that {Xi| i = 1, 2, . . .} are uniformly
equicorrelated with correlation ρ and φ′(t ) ≥ 1, then var(S),
which is given by (10), is an increasing function of ρ in 0 ≤ ρ ≤
1, all else held constant.

Proof. In (10), the coefficient of ρ is es(φ′′(t )− φ′(t )),
so var(S) is a (weakly) increasing function of ρ, all else
held constant, if and only if φ′′(t )− φ′(t ) ≥ 0. We
show that φ′′(t ) = ∑∞

n=0 n
2etnPr{N = n} ≥ φ′(t ) =∑∞

n=0 ne
tnPr{N = n} if φ′(t ) ≥ 1. For n = 0, 1, 2, . . ., let

an = etn Pr{N = n} ≥ 0 and, for any positive integer M, let
AM = ∑M

n=0 an. Since φ
′(t ) ≥ 1 by assumption, there exists

a positive integer M′ such that AM > 0 for all M ≥ M′. For
all M ≥ M′, let bi,M = ai/AM, i = 1, . . . ,M. Then for every
M ≥ M′, {bi,M}Mi = 0 is a well-defined probability distribution
(a set of nonnegative numbers that sum to 1). For all M ≥ M′,
EB(N|M) = ∑M

n = 0 n × bn,M is the expectation ofN relative to
this probability distribution, EB(N2|M) = ∑M

n = 0 n
2 × bn,M

is the expectation of N2 relative to this probability distri-
bution, and varB(N|M) = EB(N2|M)− [EB(N|M)]2 is
the variance of N relative to this probability distribution.
The variance of any random variable must be nonneg-
ative. Thus varB(N|M) ≥ 0 for all M ≥ M′ implies that
AM × EB(N2|M) ≥ AM × [EB(N|M)]2 which is the same
as

∑M
n = 0 n

2etnPr{N = n} ≥ [
∑M

n = 0 ne
tn Pr{N = n}]2 for

all M ≥ M′. Letting M → ∞ in this inequality gives φ′′(t ) ≥

[φ′(t )]2. Since φ′(t ) ≥ 1 by assumption, [φ′(t )]2 ≥ φ′(t ).
Therefore, φ′′(t ) ≥ φ′(t ), which proves Proposition 2. �

Obviously, ρ cannot exceed 1.What is the lower limit on ρ for
uniformly equicorrelated {Xi|i = 1, 2, . . . ,N}?We do not have
complete freedom in choosing ρ within the interval −1 ≤ ρ ≤
+1 for uniformly equicorrelated summands. To see why, sup-
pose that X = +2 with probability 1/2 and X = 0 with proba-
bility 1/2. Suppose that X1, X2, X3 all have the distribution of
X. Then it is impossible that X1, X2, X3 are uniformly equicor-
related with ρ = −1. Why? Since E(X ) = 1, var(X ) = 1, we
have ρ12 = E(X1X2)− E(X1)E(X2) = E(X1X2)− 1 = −1 if
and only if X1 + X2 = 1 and ρ13 = E(X1X3)− 1 = −1 if and
only if X1 + X3 = 1. But then X2 = X3 so X1, X2, X3 are not
uniformly equicorrelated with ρ = −1.

Proposition 3. If there exists a finite positive integer n > 1 such
that Pr{N > n} = 0, then, for every ρ such that −1/(n − 1) ≤
ρ ≤ 1, X1, . . . , Xn may be uniformly equicorrelated with corre-
lation ρ. If there exists no finite positive integer n> 1 such that
Pr{N > n} = 0, then X1, . . . , Xn may be equicorrelated with
correlation ρ for every ρ such that 0 ≤ ρ ≤ 1.

Proof. If Pr{N > n} = 0, let the correlation matrix R be the
n × n matrix with all diagonal elements Rii = 1 and all off-
diagonal elements Ri j = ρ, i �= j. By (5), R × var(X ) = C,
where C is the covariance matrix ofX1, . . . , Xn. It is well known
that a square, real, symmetric matrix is a covariance matrix if
and only if it is positive semidefinite (Feller 1971, p. 83), that is,
if and only if all its eigenvalues are nonnegative reals. Since the
eigenvalues ofC are var(X ) times the eigenvalues of R, it suffices
to establish the conditions under which all the eigenvalues of R
are nonnegative reals.

Let J be the n × n matrix with all elements equal to 1. As
J is a matrix of rank 1, its eigenvalues equal n with multi-
plicity 1 (corresponding to the eigenvector with all elements
equal to 1) and equal 0 with multiplicity n − 1. Therefore, the
eigenvalues of ρJ equal ρn with multiplicity 1 (corresponding
to the eigenvector with all elements equal to 1) and equal 0
with multiplicity n − 1. Let I be the n × n identity matrix, with
all diagonal elements 1 and all off-diagonal elements 0. Then
ρJ + (1 − ρ)I = R because the diagonal elements of R are 1
and the off-diagonal elements of R are ρ. Adding (1 − ρ)I to
ρJ simply increases every eigenvalue of ρJ by a constant 1 −
ρ. So the eigenvalues of R equal ρn + 1 − ρ = (n − 1)ρ + 1
with multiplicity 1 and 1 − ρ with multiplicity n − 1. These
eigenvalues are real, and they are nonnegative if and only if
−1/(n − 1) ≤ ρ ≤ 1.

As n → ∞,−1/(n − 1) → 0, so if there exists no finite pos-
itive integer n > 1 such that Pr{N > n} = 0, then ρ is con-
strained to [0, 1] and may fall anywhere in it. �

Returning to the example that precedes Proposition 3,
if X1, X2, X3 are equicorrelated with correlation ρ, then
Proposition 3 tells us that ρ ≥ −1/2.
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4. Special Cases

In this section, we show that our results lead to known formulas
for some special cases, and to possibly new formulas in other
special cases.

4.1. Special Cases Leading to Known Results

If h = 0, then, for all i, E(Xi|N) = eg > 0, independent of N.
In this case, assumption (1) implies no restriction on generality
other than the assumption that the mean of Xi is positive, and
φ′(h) = φ′(0) = EN (N). Then (6) simplifies to

E(S) = EN (N)E(X1) (“the product rule” orWald’s equation),
(11)

regardless of possible pairwise correlations among the sum-
mands Xi.

The product rule is well known in the special case that Xi
and Xj are independent for all i �= j and independent of N (e.g.,
Ross 1997, p. 101). The product rule clearly also holds for non-
independent summands whose conditional expectation given
N = n is independent of n but most textbooks, like the one by
Ross, treat only the case of independent, identically distributed
summands. Our calculation shows that the weaker assumptions
that Xi and Xj are pairwise uncorrelated (not necessarily inde-
pendent) or alternatively that their moments are independent of
N suffice to yield the product rule.

The product rule also holds if Xi and Xj are perfectly corre-
lated (ρ = 1) for all i �= j and independent ofN (e.g., Goodman
1960, p. 709, his eq. (2)). Our calculations show that the prod-
uct rule holds for the uncorrelated, perfectly correlated, and all
intermediate cases if, for all i, E(Xi|N = n) does not depend
on n.

If h = t = 0, the mean and variance of all Xi are indepen-
dent of N. Consequently, eg = E(Xi), es = var(Xi), φ

′(0) =
EN (N), and φ′′(0) = EN (N2). In this case, if allXi are uniformly
equicorrelated with correlation ρ, then from (10) we have

var(S) = (1 − ρ)EN (N)var(X1)

+ρ(varN (N)+ [EN (N)]2)var (X1)

+varN (N)[E(X1)]2. (12)

As a consequence of Proposition 2, if EN (N) ≥ 1, then
var(S) is an increasing function of ρ, all else held constant. If
EN (N) < 1, then var(S) need not be an increasing function of
ρ, all else held constant.

If ρ = 0 in addition to h = t = 0, (12) becomes the well-
known result

var(S) = EN (N)var (X1)+ varN (N)[E(X1)]2
(
Blackwell-Girschick equation

)
. (13)

Blackwell and Girschick (1947, p. 277, their theorem 2) and
Ross (1997, p. 110) derived (13) under the stronger assumption
thatXi andXj are independent for all i �= j. The weaker assump-
tion that Xi and Xj are pairwise uncorrelated suffices.

Still assuming that h = t = 0, if ρ = 1, then all Xi take
identical values. Thus, S = N × X1. Then (12) becomes (Good-
man 1960, p. 709, his eq. (2))

var(S) = [EN (N)]2var(X1)+ varN (N)[E(X1)]2

+ varN (N)var(X1) . (14)

Thus (12) interpolates var(S) between (13) (no correlation
among summands) and (14) (perfect correlation among sum-
mands) for 0 ≤ ρ ≤ 1.

In the limit of (12) as varN (N) → 0 while EN (N) remains a
positive constant, we have, for some integer n > 0, that N → n
in probability and (12) becomes var(S) = (1 − ρ) nvar(X1)+
ρn2var(X1), whence var(X̄ ) = var(X1)(

1−ρ
n + ρ), which is a

standard formula for the variance of the sample mean of n
identically distributed random variables with average pairwise
correlation ρ.

4.2. Number of Summands is Poisson Distributed

Suppose N has the Poisson distribution with mean and
variance λ > 0. Then for any real z, φ(z) ≡ E(ezN ) =
exp[λ(ez − 1)], φ′(z) = λezexp[λ(ez − 1)] and φ′′(z) =
λez(1 + λez) exp[λ(ez − 1)] (Ross 1997, p. 62, his Ex. 2.40).
From (6),

E(S) = λeg+hexp
[
λ
(
eh − 1

)]
. (15)

As a check, if h = 0, then λ = EN (N) and eg = E(X1), inde-
pendent of N, so (15) becomes the product rule (11).

From (7), assuming h �= 0 and t �= 0,

var(S) = es
{
λet exp

[
λ
(
et − 1

)] + EN
[
ρN

(
N2 − N

)
etN

]}

+ λe2(g+h)
{(
1 + λe2h

)
exp

[
λ
(
e2h − 1

)]

− λexp[λ(eh − 1
)]}

. (16)

If the summands are uniformly equicorrelated and ρN = ρ,
then

var(S) = λes+t exp
[
λ
(
et − 1

)]{
1 + ρ

[(
1 + λet

) − 1
]}

+ λe2(g+h)
{(
1 + λe2h

)
exp

[
λ
(
e2h − 1

)]

− λ exp[λ(eh − 1
)]}

. (17)

As a check, when h = t = 0, (17) reduces
to var(S) = λes{1 + ρ[(1 + λ)− 1]} + λe2g{(1 + λ)− λ} =
λvar(X1){1 + ρλ} + λ[E(X1)]2, which is identical to (12) when
N is distributed as Poisson(λ) and λ = EN (N) = varN (N).

5. Conclusions

Two scientific problems mentioned in the Introduction moti-
vated this analysis. First, Lagrue et al. (2015) estimated the
numbers of individual host organisms, including fishes, per
square meter of lake surface in four lakes in Otago, New
Zealand, and the numbers of parasite individuals per square
meter of these lakes. Cohen, Poulin, and Lagrue (2016) also
estimated the numbers of parasite individuals per host individ-
ual (“the parasite load”). They analyzed two extreme models
of the correlation of the parasite load between hosts within
one square meter: independence and perfect correlation. They
found that two models that assumed perfect correlation (across
host individuals) of parasite loads within a square meter yielded
more realistic variance functions (relations of variance to mean
of the number of parasites per square meter) than two models
that assumed independence of parasite loads within a square
meter. They speculated that correlations less than, but close to,
one would further improve the realism of the variance func-
tions of the two more successful models, but they lacked the

THE AMERICAN STATISTICIAN 59



formulas to test that speculation. The results established here,
particularly the monotonic increase of the variance of the sum
as a function of the equicorrelation of the summands, confirm
their speculation. Direct measurement of the correlation of
parasite loads across host individuals within a square meter in
the field remains an open empirical challenge.

Second, over recent decades, there has been no long-term
trend in the average annual number of tornadoes (of intensity
F1 or greater, called F1+, which are those tornadoes sufficiently
intense to be reliably observed). However, more F1+ tornadoes
have been reported on the days when tornadoes occurred
(Brooks et al. 2014; Elsner et al. 2015). An outbreak is defined as
a sequence of F1+ tornadoes with initiation times separated by
not more than 6 hours; an outbreak may stretch over more than
one calendar day. The mean and the variance of the number of
F1+ tornadoes per outbreak have increased in recent decades
(Tippett and Cohen 2016; Tippett et al. 2016). Counts of tor-
nadoes per day or per outbreak are thus increasingly clustered
and overdispersed, despite the absence of any trend in the total
number per year of F1+ tornadoes. The results in this article
provide a framework for analyses of the mean and variance
of the claims per tornado day or per tornado outbreak when
summands are correlated and dependent on the number of
summands. These results could be used in combination with
Markov’s inequality to provide bounds on the so-called Value at
Risk (VaR) in financialmathematics and insurance (e.g., Resnick
2007).

In historical perspective, our main result (6) on the expected
sum is a generalization of Wald’s equation (Wald 1945, p. 142,
his eq. (4.4)), and our main result (7) on the variance of the sum
is a generalization of the Blackwell–Girschick equation (Black-
well and Girschick 1947, p. 277, their theorem 2). Some recent
results focus on the asymptotic distribution of the sumwhen the
random number of possibly dependent summands is indepen-
dent of the summands (Islak 2016). Other recent results on ran-
dom sums focus on the asymptotic distribution of the sumwhen
the number of summands is independent of the mutually inde-
pendent but not necessarily identically distributed summands
(Sunklodas 2012) or when the summands are iid and the num-
ber of summands is independent of the summands (Sunklodas
2014, 2015). Although wemade no attempt at an exhaustive sur-
vey, we found no prior exact results which assumed, as we did
here, that the summands were correlated and dependent on the
number of summands.

In principle, the approach used here to calculate the first
and second moments of the sum of a random number of cor-
related summands dependent on the number of summands
could be extended to higher moments or correlation structures
more elaborate than equicorrelation. It would also be interest-
ing to study the asymptotic distribution of the sum under our
assumptions. But the approach used here may prove laborious

and more powerful tools may be required. The simple prob-
lems solved here might prove useful for a doctoral qualifying
exam. The unsolved problems might prove suitable for doctoral
research.
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P.T. pointed out two mistakes. As a consequence of correcting
one of these mistakes, J.E.C. here states and proves a stronger,
simpler version of Proposition 2. Correcting the other mistake
has no effect on the result claimed.

First, on page 58, left column, 3 lines from the bottom, the
right side, namely, AM × [EB (N|M)]2, does not equal the right
side given in the next line.

The right side should be (1/AM) ×
[∑M

n=0 netnP{N = n}
]2

.
Re-examination of the remainder of the proof led J.E.C. to a
stronger, simpler version of Proposition 2 that omits the unnec-
essary assumption that ϕ′ (t) ≥ 1 and adds to the conclusion
a necessary and sufficient condition for Var (S) to be strictly
increasing.

Revised Proposition 2. Under the assumptions of Proposition 1,
if {Xi|i = 1, 2, . . .} are uniformly equicorrelated with correlation
ρ, then Var (S), which is given by (10), is an increasing function
of ρ in 0 ≤ ρ ≤ 1, all else held constant. A necessary
and sufficient condition for Var (S) to be a strictly increasing
function of ρ in 0 ≤ ρ ≤ 1, all else held constant, is that there
exists n > 1 such that P {N = n} > 0.

Revised proof. Var (S) given by (10) is an increasing function of
ρ in 0 ≤ ρ ≤ 1, all else held constant, if and only if ϕ′′(t) ≥
ϕ′(t). The left side is

ϕ′′(t) =
∞∑

n=0
n2etnP[N = n]

and the right side is

ϕ′(t) =
∞∑

n=0
netnP[N = n].

Compare the nth term of ϕ′′(t) with the nth term of ϕ′(t).
Obviously,

n2etnP[N = n] > netnP[N = n]
unless n = 0 or n = 1 or P[N = n] = 0. In these three cases,

n2etnP [N = n] = netnP[N = n].
In any event, taking the sum of both sides of the two immedi-

ately preceding formulas, for n from 0 to ∞, yields ϕ′′(t) ≥ ϕ′(t)
and this inequality is strict if and only if there exists n > 1 such
that P {N = n} > 0.

After seeing this improved Proposition 2, P.T. pointed out
that on page 59, in the left column, the paragraph directly below
Eqn. (12) can be strengthened to: “As a consequence of the
Revised Proposition 2, Var (S) is an increasing function of ρ in
0 ≤ ρ ≤ 1, all else held constant, and is strictly increasing if and
only if there exists n > 1 such that P {N = n} > 0.”

Second, on page 58, in the right column, in lines 12 and 13,
the statements X1 + X2 = 1 and X1 + X3 = 1 should be
X1 + X2 = 2 and X1+X3 = 2. The conclusions of the argument
are not affected.
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