
Evaluating multi-regional population projections
with Taylor’s law of mean–variance scaling and its
generalisation

Meng Xu1 • Helge Brunborg2 • Joel E. Cohen3

Published online: 4 January 2017

� Springer Science+Business Media Dordrecht 2017

Abstract Organisations that develop demographic projections usually propose

several variants with different demographic assumptions. Existing criteria for

selecting a preferred projection are mostly based on retrospective comparisons with

observations, and a prospective approach is needed. In this work, we use the mean–

variance scaling (spatial variance function) of human population densities to select

among alternative demographic projections. We test against observed and projected

Norwegian county population density using two spatial variance functions, Taylor’s

law (TL) and its quadratic generalisation, and compare each function’s parameters

between the historical data and six demographic projections, at two different time

scales (long term: 1978–2010 vs. 2011–2040; and short term: 2006–2010 vs.

2011–2015). We find that short-term projections selected by TL agree more accu-

rately than the other projections with the recent county density data and reflect the

current high rate of international migration to and from Norway. The variance
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function method implemented here provides an empirical test of an ex ante

approach to evaluating short-term human population projections.

Keywords Demographic projection � Net immigration � Population variability �
Taylor’s law � Power law � Variance function � Fluctuation scaling � Multi-regional

projection

Introduction

Demographic projections forecast future population growth under various assump-

tions or scenarios. Their practical uses include, but are not limited to, fertility

policy, immigration policy, pension and retirement planning, social security and

planning and siting of facilities for transport, education, water supply, sanitation,

and medical care. Global and multi-country projections have been developed by the

United Nations (2014), the US Census Bureau (2014), The World Bank (2014), the

International Institute for Applied Systems Analysis (Lutz et al. 1997, 2001, 2014;

Lutz and Goujon 2004) and some scholars (Dietz et al. 2007), in addition to scores

of national projections. These models recognise differing economic, demographic,

educational, cultural, and environmental influences on populations. These projec-

tions use cohort component methods, age-structured modelling, expert judgment,

and stochastic forecasting.

Quantifying uncertainties in population forecasts remains a focal point of

research, and multiple approaches have been pursued. Traditionally, e.g. in the

projections of the United Nations Population Division up to 2010, variants under

different demographic assumptions were constructed for extreme and medium

projection scenarios. This approach relied on expert judgment to select the range

from high to low projections and gave no probabilistic interpretation of the

uncertainty. Stochastic forecasting models based on probabilistic assumptions of

demographic parameters were developed to make quantifiable prediction intervals

of projected populations (Heyde and Cohen 1985; Cohen 1986; Lee and Carter 1992

[for future mortality only]; Lee and Tuljapurkar 1994; Alho and Spencer 1997;

Alkema et al. 2011; Raftery et al. 2013; Gerland et al. 2014). This approach relied

on testable modelling of past vital rates and an assumption that the same model form

and parameter values would persist in the future. Stochastic multi-regional

projections are not easy to produce, and some users may have difficulties using

and interpreting the results of probabilistic projections. Another approach compared

projections and observations post hoc after the projection period (Stoto 1983;

Bongaarts and Bulatao 2000). This last approach does not help projection users,

such as city planners, pension policy makers, and immigration policy makers, who

cannot wait until after the projection period.

We propose a novel approach to evaluating population projections ex ante and

examine its applicability through a case study of population projections for

Norwegian counties. Here ‘‘ex ante’’ refers to evaluating projections before

observations for the projection period become available, not to generating

projections based on existing conditions (e.g. urban systems models and
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microsimulation models, see Smith et al. 2013), although variants generated from

such models can be evaluated similarly using our method. Compared to stochastic

forecasting, our method does not require probabilistic estimates of demographic

variables in the future based on observations from the past, and can be implemented

using simple statistical procedures.

We use a standard statistical concept called a variance function. In a family of

random variables indexed by space and time, such as population density of a fixed

set of counties at different times, a spatial variance function describes the spatial

variance (across counties in a given year) of population density as a function of the

spatial mean of population density (across counties in the same given year), in the

course of various years. We shall call a plot of log(variance in year t) on the vertical

axis as a function of log(mean in year t) on the horizontal axis across the years a

(log-transformed) ‘‘variance function plot’’. The dependence on year t is often not

stated explicitly, and we shall omit that notation henceforth. In this paper, ‘‘log’’

means ‘‘log10’’ and P denotes the p value of a hypothesis test.

A well-tested empirical variance function for population density is Taylor’s law

(TL) (Taylor 1961). TL can be written as

log Variance of PopulationDensityð Þ ¼ log a1 þ b1 log Mean PopulationDensityð Þ:
ð1Þ

TL has been confirmed in many very different situations, such as for the number

of an individual’s sexual partners (Anderson and May 1988), the numbers of

measles cases in communities of England and Wales (Keeling and Grenfell 1999),

crime reports in England (Hanley et al. 2014), and unemployment in English labour

markets (Greig et al. 2014), among thousands of other applications (Eisler et al.

2008).

TL has been little evaluated with human population data. In an early, perhaps the

first, empirical test of TL against human population data, Taylor et al. (1978) used

decennial censuses of the United States (see their Fig. 6a). Their methods were

incompletely described and their results were fragmentary. Cohen et al. (2013)

tested TL against data of Norway’s population from 1978 to 2010 at three spatial

levels (municipality, county, region) using three weightings (equally, by area, and

by population size) of the population density. In each year, the spatial mean and the

spatial variance of population density among the studied spatial units were

calculated, plotted across years and fitted on the log–log scale by a least-squares

linear regression (Eq. 1). Cohen et al. (2013) found that, under any weighting, TL

accurately described the variation of Norwegian population density at any spatial

level [regression P\ 0.05 and coefficient of determination (R2) of Eq. (1) was

above 0.96 at the county level, see Fig. 4 and Table 2 in Cohen et al. 2013],

although the TL parameters differed among the three weighting methods. Under

each weighting, Cohen et al. (2013) also fitted the log(mean)-log(variance) pairs of

Norwegian county population density by a quadratic generalisation of TL (due to

Taylor et al. 1978, their Eq. 14),
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log Variance of PopulationDensityð Þ ¼ log a2

þ b2 log Mean PopulationDensityð Þ þ c2 log Mean PopulationDensityð Þ½ �2:
ð2Þ

They found that the quadratic coefficient c2 was statistically significantly positive

(P\ 0.05), indicating convexity between log(mean) and log(variance) (see Table 2

in Cohen et al. 2013).

Using the methods developed by Cohen et al. (2013), we tested TL (Eq. 1) and its

quadratic generalisation (Eq. 2) for six demographic projections of Norway county

population density from 2011 to 2040. We selected as the ‘‘best’’ long-term

projections those projections such that their estimated parameters of TL and its

generalisation for the future period from 2011 to 2040 most closely matched the

corresponding parameters of TL and its generalisation fitted to the historical data

(1978–2010). To examine the accuracy of the ‘‘best’’ projections, we repeated the

variance function analysis using the historical data on county population densities

from 2006 to 2010 and the six projections from 2011 to 2015, and examined

whether the short-term projections we selected as ‘‘best’’ by our criterion agreed

most closely with recent population density data from 2011 to 2015.

Materials and methods

Data and projections

The population size of each of the 19 counties in Norway was published by

Statistics Norway annually from 1978 to 2015 based on the Central Population

Register (StatBank Norway 2015). We classified the county population data as

historical data (1978–2010) and recent data (2011–2015). County population

density was calculated as the number of persons living (from observations) or

projected to live (from projections) in a county divided by the county land area

(excluding freshwater area, in square kilometres) in a given year. For each county,

the land area was measured in 2006 and assumed to be constant from 1978 to 2040.1

In 2011, Statistics Norway (2011) projected populations of each county from

2011 to 2040 under L (low), M (medium), H (high) and 0 (no effect) assumptions

about four demographic variables: fertility, life expectancy, internal migration and

net immigration. The main projection variant MMMM assumed medium fertility

(the first M in MMMM), medium life expectancy (the second M in MMMM),

medium internal migration (the third M in MMMM) and medium net immigration

(the fourth M in MMMM). The assumptions about the variables were (Brunborg and

Texmon 2011): the total fertility rate was based on ad hoc reasoning based on past

trends in Norway and other European countries; the mortality trends were based on

a modified Lee-Carter model where low and high series for the death rates were set

equal to the upper and lower bounds, respectively, of a 95% confidence interval

1 The geographical boundaries of Hordaland and Rogaland changed on January 1, 2002, with a transfer

of one municipality, which led to a 0.5% increase and a 1.2% decrease in the respective population

density (Cohen et al. 2013).
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(CI); the internal migration rates were constant over time (equal to the rates over the

past five years) and with no alternative assumptions; and the future net immigration

was derived from an econometric model of migration, relative income and

unemployment in Norway and sending countries (Brunborg and Cappelen 2010).

Here we analysed six projections (MMM0, MMML, MMMM, MMMH, LLML,

and HHMH) at the county level. These projections all used the medium assumption

on internal migration. Any projection(s) selected using our method will not reflect

the differences in the internal migration among the counties. (One alternative

projection assuming no migration among the counties and no net immigration to

Norway [MM00] is highly unrealistic and was made purely for analytical purposes,

so we do not analyse it here.) The projections MMM0, MMML, MMMM, MMMH

analysed in detail the effect of net immigration by varying its assumption from 0, L,

M, to H, while keeping the fertility, life expectancy, and internal migration

assumption at M. These projections allowed us to compare different assumptions

about net immigration with the continuing international immigration to Norway

(Horst et al. 2010). In addition, two variants, LLML and HHMH, were chosen

because they yield the lowest and highest population growth, respectively.

Testing spatial Taylor’s law

For each year t in the historical (1978–2010) data and in each of the six long-term

(2011–2040) projections, a spatial mean and a spatial variance of county population

density (D) were calculated across the counties, with each county weighted by the

number of persons in that county in year t.

meant ¼
Xn

j¼1

Nt;jPn
j¼1 Nt;j

 !
� Dt;j

and

variancet ¼
Xn

j¼1

Nt;jPn
j¼1 Nt;j

 !
� Dt;j � meant
� �2

;

where Nt,j is the number of persons in year t (t = 1978, 1979, …, 2010 for historical

data; t = 2011, 2012, …, 2040 for projections) of county j (j = 1, 2, …, n), and

n = 19 is the number of counties in Norway. We weighted counties by their pop-

ulation size because we were interested in the variation of populations among

Norway counties, instead of questions about land uses or political issues, for which

areal and equal weighting would be the most appropriate (Cohen et al. 2013). Under

population weighting, counties with more persons weighed more in the calculated

means and variances.

Least-squares regressions (Eqs. 1, 2) were fitted to the spatial variance function

plots of the historical data and of each projection separately, one point per year. The

Breusch–Pagan test (Breusch and Pagan 1979) and the Durbin–Watson test (Fox

2008) were used to examine the null hypotheses, respectively, of constant regression

error variance and no lag-1 regression error autocorrelation. For the linear
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regression model (TL), we compared the parameters of Eq. (1) between the

historical data and the projections using a multiple linear regression model with

interaction. Namely, we combined the mean–variance pairs from data and six

projections, and defined a categorical variable ‘‘source’’ that specifies data and

projections, with level ‘‘historical’’ indicating historical data and projection name

(e.g. ‘‘MMMM’’) indicating the corresponding projection. We then incorporated

‘‘source’’ into Eq. (1) as

log varianceð Þ ¼ a1 þ b1 log meanð Þ þ c1 sourceð Þ þ d1 log meanð Þ½ �: sourceð Þ: ð3Þ

Here ‘‘[log(mean)]:source’’ represents the interaction between the independent

variables ‘‘log(mean)’’ and ‘‘source’’. With ‘‘historical’’ as the reference level of

source, values of c1 of Eq. (3) show whether the intercept of TL of the historical

data differed from the intercept of each projection and values of d1 show whether

the slope of TL of the historical data differed from the slope of each projection.

Parameters of TL differed statistically significantly between data and a projection if

the corresponding P was less than 0.05, and resembled each other if P was greater

than or equal to 0.05. Similarly, the ‘‘source’’ variable was included in Eq. (2) to

examine the difference in each parameter (intercept, linear coefficient, quadratic

coefficient) of the generalised TL (Eq. 2) between the historical data and each

projection.

log varianceð Þ ¼ a2 þ b2 log meanð Þ þ c2 log meanð Þ½ �2þd2 sourceð Þ
þ e2 log meanð Þ½ �: sourceð Þ þ f2 log meanð Þ½ �2: sourceð Þ:

ð4Þ

Values of d2, e2, or f2 (Eq. 4) and their P were used to compare and examine the

significance of the difference in the parameters between the historical data and each

projection. For each model, projection(s) (if any) with variance function parameters

that resembled the variance function parameters of the historical data were selected

as the best projection(s).

We repeated the variance function analysis and regression diagnoses for the data

from 2006 to 2010 and for each projection from 2011 to 2015. Separately, parameter

estimates of TL and its quadratic generalisation were compared between the data

and projections using Eqs. (3) and (4) respectively, and the best projections (if any)

were selected based on the resemblance of parameters. Confidence intervals (95%)

of the regression parameters were obtained from normal theory.

We did not correct the critical values of any hypothesis tests for simultaneous

statistical inference because our approach selects projections with variance function

parameters not significantly different from those of the historical data, which are

‘‘negative’’ results of the hypothesis tests. Existing correction methods for

simultaneous inference are conservative in controlling false positives (Type-I

error), and hence increase the chance of false negatives (Type-II error). This means

that more stringent significance level after correction for simultaneous statistical

inference would classify more projections falsely in agreement with the historical

data. Because we made no correction for multiple tests, approximately 5% of
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apparently significant differences in parameters arose as a result of chance

fluctuations if the null hypothesis of no difference held true.

Accuracy of 2011–2015 projections

We had five years of observations (2011–2015) since the publication of these

projections in 2010. To measure the accuracy of a projection that our methods

selected as ‘‘best,’’ we computed, for each year t from 2011 to 2015, the mean of

absolute percentage error (MAPE) between observed and each projected county

population density across all counties of Norway,

MAPEt;k ¼
Pn

j¼1
PDt;j;k�ODt;j

ODt;j

���
���

n
� 100% ;

and averaged them over the five years by

MAPEk ¼
P2015

t¼2011 MAPEt;k

5
:

Here ODt,j is the observed population density of county j (j = 1, 2, …, n) in year

t (t = 2011, 2012, …, 2015), PDt,j,k is the projected population density of county j

from projection k (k = MMM0, MMML, MMMH, MMMM, HHMH, and LLML)

in year t, and n (n = 19) is the number of counties in Norway. Each projection k

yielded five values of MAPEt;k, one for each year t. These five values were then

compared among projections using analysis of variance (ANOVA) to find the most

accurate population projection (defined as the projection(s) k with the least value of

MAPEk) from 2011 to 2015.

We also used a recently developed modification of MAPE, called rescaled mean

absolute percentage error (MAPE-R) (Swanson et al. 2011), to examine the

accuracy of short-term projections. The advantage of MAPE-R over MAPE is that

the former can successfully accommodate substantial outliers in the percentage

errors (Swanson et al. 2011). The disadvantage of MAPE-R lies in its non-trivial

implementation and calculation. Here, we followed the steps outlined by Swanson

et al. (2011) and applied MAPE-R to the six short-term (2011–2015) projections of

Norway county population density in comparison to the recent (2011–2015)

observations (see ‘‘Appendix’’).

If the projection(s) selected as most accurate by MAPE or MAPE-R matched

those selected as ‘‘best’’ using the variance function analysis for the 2006–2010

observations2 and short-term (2011–2015) projections, the concordance supported

the variance function as an ex ante method of selecting the most accurate short-term

demographic projections and encouraged further testing of the variance function

method as a means of selecting among alternative projections of other time series.

2 2006–2010 data were selected so that historical period and projection period were of equal length.

Choosing historical time series as long as the projections is a common practice in forecast accuracy

evaluation (Smith et al. 2013).
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Least-squares linear regressions, quadratic regressions, multiple linear regres-

sions, and ANOVA were performed in R version 3.2.2 (R Core Team 2015). The

Breusch–Pagan test and the Durbin–Watson test were carried out using the ‘car’

package in R (Fox and Weisberg 2011). Unless otherwise specified, the significance

level of all statistical tests was set at 0.05. The confidence level in all interval

estimates was set at 0.95.

Results

Analysis of 1978–2010 data and 2011–2040 projections

TL described well the spatial variance function of Norway county population

density for the historical data from 1978 to 2010 and for each of the six projections

from 2011 to 2040 (Fig. 1c). In all seven linear regressions (1 historical and 6

projected) fitted to the spatial means and spatial variances across years, regression

P were less than 0.0001 and R2 were greater than 0.999. Slopes of TL were

statistically significantly less than two and greater than 1.5 (Table 1). Except for

MMM0, the Breusch–Pagan test did not reject the null hypothesis that the linear

regression error variances were constant. The Durbin–Watson test rejected the

hypothesis of no lag-1 autocorrelation in the regression error for the historical data

and for each projection. Hence the use of normal theory, which assumes

uncorrelated residuals, to estimate confidence intervals for the parameters of TL

and its quadratic generalisation must be considered indicative and approximate.

Multiple linear regression using Eq. (3) showed that the slope and intercept of TL

were statistically different between the historical data and each of the six long-term

projections except MMM0, for which neither the intercept (P = 0.0740) nor the

slope (P = 0.1040) differed from the corresponding value of the historical data.

MMM0 was selected as the best model based on the resemblance of TL parameters

between the data and projections. However, because the Breusch–Pagan test above

rejected the null hypothesis that the linear regression error variances were constant

for projection MMM0, the agreement of parameters between MMM0 and the

historical data must again be considered indicative and approximate.

The generalised TL showed that the quadratic curvature of the variance function

was statistically significant in the historical data and all six projections (Table 1).

The generalised TL significantly improved the fit by TL. The Breusch–Pagan test

rejected the hypothesis of constant regression error variance for the historical data,

HHMH, MMMH, and MMML, but not for LLML, MMM0, or MMMM. The

Durbin–Watson test rejected the hypothesis of no lag-1 autocorrelation in the

residuals for the historical data and for each projection.

Multiple linear regressions using Eq. (4) indicated that the parameters of each

projection differed significantly from the corresponding parameters of the historical

data in every parameter of the quadratic regression. No projection can be selected as

‘‘best’’ based on the generalised TL. This conclusion must be tempered by the

recognition that the underlying assumptions of the statistical model we used were

not always met.
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Analysis of 2006–2010 data and 2011–2015 projections

TL again described well the spatial variance function of Norway’s historical

(2006–2010) and predicted (2011–2015) county population density using the six

projections (Fig. 1f; regression P\ 0.0001 and R2[ 0.9999, see Table 2).

Constancy in regression error variances was not rejected in the historical data or

in any projection. Absence of lag-1 error autocorrelation was rejected in the

historical data, LLML, MMML, but not in HHMH, MMM0, MMMH, and MMMM.

Multiple linear regressions showed that the parameters of TL differed significantly

between the historical data and each projection except MMMH and HHMH. For
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Fig. 1 Log(mean) against year (a, d), log(variance) against year (b, e), and (log-transformed) variance
function plots (c, f) of Norwegian county population density for (a–c) historical data from 1978 to 2010
and six demographic projections from 2011 to 2040, and for (d–f) historical data from 2006 to 2010 and
six projections from 2011 to 2015. In a given year, the spatial mean and spatial variance were calculated
among counties weighted by county population sizes. On log–log scale, variance function during
1978–1984 overlapped the variance function during the later years (c), and generated an acute hook
pattern at the lower left corner of the plot. Markers indicate historical data (filled circle), HHMH (open
square), LLML (open circle), MMM0 (triangle), MMMH (plus symbol), MMML (times symbol), and
MMMM (diamond symbol). Figure was produced using ‘‘ggplot2’’ package (Wickham 2009) in R
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these two projections, which did not reject an absence of lag-1 error autocorrelation

or the constancy in regression error variances, multiple linear regression based on

Eq. (3) did not reject the hypothesis that TL’s intercept was equal to that of the

historical data (P = 0.1576 for HHMH and P = 0.4810 for MMMH), nor did it

reject the hypothesis that TL’s slope was equal to that of the historical data

(P = 0.1560 for HHMH and P = 0.4857 for MMMH). The two high-migration

variants HHMH and MMMH were selected as the two best projections.

The generalised TL significantly improved TL for the historical data, MMML,

MMMM, and LLML (quadratic coefficient P\ 0.05, see Table 2), but not for

MMM0, MMMH, or HHMH (quadratic coefficient P C 0.05, see Table 2).

Constancy in regression error variances was not rejected in the historical data or

in any projection. Absence of lag-1 error autocorrelation was rejected in LLML, but

not in the historical data or any other projection. Multiple linear regressions based

on Eq. (4) showed that none of the projections resembled the historical data in any

parameter of the least-squares quadratic regression. Thus no projection can be

selected using the generalised TL.

Accuracy of 2011–2015 projections

Among the six projections, the annual average of the mean absolute percentage

errors (MAPEs) and of the rescaled MAPEs (MAPE-R) between each short-term

projection and recent (2011–2015) observations followed an identical ascending

order: HHMH\MMMH\MMMM\MMML\LLML\MMM0. Under each

measure, HHMH and MMMH are the two projections with the least average errors

and therefore the most accurate. ANOVA showed that annual average of MAPE

(and of MAPE-R) differed significantly among the six projections (P = 0.0004 and

0.0002 respectively), with MMM0 having the largest errors under both measures

(Fig. 2). Excluding MMM0, annual average of MAPE (and of MAPE-R) among the

five remaining projections was not significantly different according to ANOVA

(P = 0.1023 and P = 0.0579 respectively). The similarity between the results using

MAPE and those using MAPE-R was in agreement with Rayer (2007).

Discussion and conclusion

We summarize the procedure of selecting among various projections using the

proposed variance function method so that the method can be tested further and used

if it is successful. First, choose historical population time series that immediately

precede and are comparable in length with the projections (Smith et al. 2013).

Second, for the historical observations and for each of the projections separately,

calculate for each year the spatial means (among spatial units) and spatial variances

(among spatial units), and construct the multiple regression models (Eqs. 3 and 4,

Materials and methods section) to compare the variance function parameters of the

historical observations with the corresponding variance function parameters of each

projection. Third, select projections of which the variance function parameters do

not differ significantly from those of the historical observations. These steps do not
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depend on heavy computational machinery and require statistical analysis that is

available in standard statistical software.

In testing the assumptions of our regression models, we found sometimes that the

Breusch–Pagan test rejected the hypothesis of constant variance of the residuals and

the Durbin–Watson test rejected the hypothesis of no lag-1 autocorrelation in the

residuals. Because heteroscedasticity and serially correlated residuals do not bias

estimates of the coefficients in ordinary least squares regression (Bailey 2016,

p. 69), we do not think these violations are likely to invalidate our major

conclusions. Nevertheless, if the residuals are positively serially correlated, the

standard errors of coefficient estimates are too small and R2 is biased upward, so the

differences between historical and projected variance functions could be overstated.

Future analyses should test the variance function approach using methods that make

fewer assumptions contradicted by the historical observations and projections. For

example, Huber–White standard errors are consistent with heteroscedasticity

(Bailey 2016, p. 68, his Eq. 3.12) and the Cochrane and Orcutt (1949) and Prais

1

2

3

4

M
A
P
E

1

2

3

4

HHMH LLML MMM0 MMMH MMML MMMM

HHMH LLML MMM0 MMMH MMML MMMM

projection

M
A
P
E
.R

(a)

(b)

Fig. 2 Boxplots of a mean absolute percentage error (MAPE) and b rescaled mean absolute percentage
error (MAPE-R) between observed and projected county population density from 2011 to 2015 for each
of the six demographic projections. The line in the middle of each box represents the median within a
projection. The upper bound and lower bound of each box represent the 3rd and 1st quartile, respectively,
for each projection. The whiskers of each box extend up and down to the maximal and minimal values,
respectively
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and Winsten (1954) estimators adjust for serial correlation of the residuals (Bailey

2016). These refinements are available from standard software (Bailey 2016,

pp. 82–85).

Variance function analysis of the short-term historical data (2006–2010) and

short-term projections (2011–2015) of Norwegian county populations selected

HHMH and MMMH as the two best projections. MAPE and MAPE-R selected the

same two projections as the closest to the recent data (2011–2015). This finding

encourages further testing and possible use of the variance function in selecting the

most accurate short-term demographic projections. The same analysis can be

applied to Norwegian county population projections in the near future (e.g.

2016–2020) based on recent data (2011–2015) to choose among more recent short-

term projections.

The high net immigration rate in the selected short-term projections (HHMH and

MMMH) reflected Norway’s recent economic and political experiences. In the past

decade, Norway experienced high and rapidly increasing immigration due to low

unemployment and rapid economic growth. In 2004 and 2007 together, ten east

European countries were admitted to the European Union (Cappelen et al. 2011).

There has been a continuing influx of immigrants from Poland, Lithuania, Sweden

and other countries of the European Union since 2007 (Statistics Norway 2015).

Although Norway is not a member of the European Union, Norway has been a

member in the EEC (European Economic Cooperation) area since 1994, which

allows EU citizens to work and live in Norway with almost no restrictions.

Comparison of variance functions between the long-term historical observations

(1978–2010) and the long-term demographic projections (2011–2040) favored

MMM0 as the best projection. This choice differed from the projections selected in

the short-term analysis (HHMH and MMMH). The absence of net immigration to

Norway in the selected projection from the long-term analysis seems unrealistic and

contradicts the recent high immigration to Norway. Three reasons may contribute to

this finding.

First, it is possible that the effect of net immigration to Norwegian counties was

balanced out in the spatial variance used in the analysis, i.e. if we treat county

population density as a random variable X, and assume that the net immigration to

Norwegian counties is a constant c for all counties, then given all other demographic

variables being equal, neither the presence nor the size of net immigration will

affect the spatial variance because variance(X ? c) = variance(X). This property of

the variance could prevent us from differentiating the assumptions (0, L, M, and H)

about net immigration, and consequently we would select poor projections.

However, this potential explanation is inadequate because Norway’s cities,

particularly Oslo, have received many more immigrants, compared to their

population size, than the more rural counties compared to theirs. Given the

accuracy of selected projections in the short-term analysis and the unrealistic

assumption of equal immigration into Norwegian counties, we doubt that the

selection of MMM0 can be attributed to this limitation of the variance function

technique.

Second, in the variance function plot (Fig. 1c) of historical observations

(1978–2010), we observed an acute ‘‘hook’’ pattern during 1978–1984 (in Fig. 1c,
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the ‘‘hook’’ during 1978–1984 is superimposed on the main line of the data after

1984). This is caused by the decline of the mean and the variance of population

densities across all counties (Fig. 1a, b) due to the drop in Oslo’s population density

during 1978–1984 (Cohen et al. 2013). Statistically, the overlapping log(mean)-

log(variance) pairs near the earlier historical years could bias estimates of the

regression parameters, and therefore distort model selection. Repeating our variance

function parameter comparison between the historical data from 1985 to 2010 and

the six projections from 2011 to 2040, we found that none of the projections agreed

with the historical data in the parameters of TL (Eq. 1) or the generalised TL

(Eq. 2). In this case, the consistent trend in the variance function plot helped

identify a better time interval (1985–2010) for comparison, based on which the

unrealistic projection MMM0 was rejected. The sensitivity of our variance function

method to the length of historical time series requires further statistical testing using

other population data.

A third possible explanation, which we favour over the two prior explanations, of

why MMM0 was selected by long-term analysis is that a long times series of

historical data (1978–2010) may be more misleading than the recent past. Before

2000, Norway had a stringent immigration policy (Horst et al. 2010) and received

significantly less immigration than in the recent decade (Fig. 3). In addition, the

projections with low or zero net immigration were based on an assumed declining

relative income level in Norway due to lower revenue from the oil and gas sector.

These assumptions agreed with the registered net immigration data prior to 2004

(Fig. 3), and reflected Norway’s economic and political situations during that period

(Cohen et al. 2013). Our variance function was heavily influenced by the low level

Fig. 3 Net immigration to Norway registered between 1978 and 2015 and projected between 2011 and
2040 under high (H), medium (M), and low (L) net immigration assumptions separately. Net immigration
rose (irregularly) from 1990 to about 2010. It rose especially quickly from about 2004 to 2010 and fell
sharply since then
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of net immigration in the earlier historical years as assumed in projection MMM0.

The variance function did not anticipate the recent major change in net immigration.

In a study of how much of the history of international migratory flows is relevant

to the future of international migratory flows, Cohen et al. (2008, p. 15272) found

that data from the most recent five years (which were then 2000–2004) gave a

higher multiple R2 in modelling migratory flows than data from 1960 to 2004. That

is, fitting their model to data from 2000 to 2004 gave a higher correlation with the

migrant flows reported from 2000 to 2004 than fitting their model to data from 1960

to 2004 gave to data reported from 1960 to 2004. The dynamics of migration shifted

over the years from 1960 to 2004, but the parameters of the model remained

constant, leading to a poorer fit of the model to data over the longer period. In

influenza epidemiology, Goel et al. (2010, p. 17489) found that a simple

autoregressive model to predict a current week’s influenza caseload from the prior

week’s influenza caseload had a higher correlation (0.95) than an autoregressive

model based on the influenza caseload two and three weeks before the current week.

Though international migration and influenza caseloads change on different

timescales (years or decades vs. weeks or months), the present or immediate future

is best predicted from the immediate past on the appropriate time scale in both

cases. This claim is supported by the accuracy of the selected short-term Norwegian

county projections in the current work.

Studies on TL using demographic models are limited. To our knowledge, the first

work in this direction was by Anderson et al. (1982), who proposed that the random

birth–death–emigration–immigration models yielded TL slopes similar to those

from ecological data. They also argued that TL is a natural consequence of random

demographic events, questioning the species-specific theory of TL proposed by

Taylor and his colleagues (Taylor and Taylor 1977; Taylor et al. 1988). Our results

showed that TL and its generalisation can be useful in selecting short-term

demographic projections of Norwegian counties based on short-term historical data.

Comparisons of parameters of TL or its quadratic generalisation identified some

short-term projections of future population growth that were consistent with recent

data. However, in our Norwegian example, the variance function method did not

select well among long-term projections. To understand how general our method is

and the roles of time scales in this method, other high-quality census data and

projections should be tested similarly.
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Appendix

Overview of MAPE-R

Rescaled mean absolute percentage error (MAPE-R) is a modified post hoc measure

of population forecast accuracy based on mean absolute percentage error (MAPE)

developed by Swanson et al. (2000). Since absolute percentage errors (APEs)
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between observed and projected population sizes are often right-skewed, the central

tendency measure, MAPE, is heavily influenced by outliers and tends to

overestimate the true error (Rayer 2007). To describe the percentage errors more

robustly, taking account of their large outliers, Swanson et al. (2000) first calculated

a modified Box-Cox transformation of APEs. The parameter of the modified Box-

Cox transformation (Box and Cox 1964) was selected to maximize the likelihood

that the transformed APEs were symmetrical, so that the mean became appropriate.

Symmetry of APE was evaluated using D’Agostino’s test of skewness (D’Agostino

1970), where a rejection of the null hypothesis of zero skewness indicated that APE

was not symmetrically distributed and the Box-Cox transformation was necessary.

Then Swanson et al. (2000) calculated the inverse of the mean transformed APEs

(MAPE-R) to return them to the original data scale.

Details of the theory and empirical test of MAPE-R can be found in Coleman and

Swanson (2007) and Swanson et al. (2000, 2011).

Implementation of MAPE-R

We followed the procedure outlined in Swanson et al. (2011) to implement MAPE-

R. To measure the accuracy of Norwegian county population projections between

2011 and 2015 for each of the six demographic projections and each year from 2011

to 2015, we first examined the distribution of APE between the projected and

observed county population density and tested its skewness using the right-sided

D’Agostino’s test of skewness with significance level 0.1 (Table S1). Here a 0.1

significance level was used instead of a lower value to avoid ‘‘a greater cost in terms

of a downwardly biased measure of accuracy in not transforming a potentially

skewed distribution’’ (Swanson et al. 2011). If the hypothesis that the skewness of

APEs was zero was rejected (P\ 0.1), then for each projection from each year, we

performed the Box-Cox transformation for APE of each county, estimated the

transformation parameter (k from -2 to 2) that maximized the likelihood function

for symmetry, averaged the transformed APEs over counties, and calculated MAPE-

R using the inverse of Box-Cox transformation (Box and Cox 1964). Finally, the

five MAPE-Rs (one from each year from 2011 to 2015) of each projection were

compared among the six projections using the one-way ANOVA for the equality of

their inter-annual average (see Materials and methods). We used MAPE for

comparison if the hypothesis that the APEs had zero skewness was not rejected.

Skewness and the corresponding P of APE and transformed APE (APE-T) were

listed in Table S1.

D’Agostino’s test of skewness was performed using the function ‘‘agostino.test’’

from R package ‘‘moments’’ (Komsta and Novomestky 2015). Parameter k at

which the likelihood function achieved maxima was found using R function

‘‘optimize’’ (R Core Team 2015). R code for the calculation of MAPE-R was given

below.
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=====================================================================

library(moments)

load “ape” data set, which contains the absolute percentage error (APE) of county 

population density between each projection and the data for each year from 2011 to 2015. 

apebyyear<-subset(ape, Year==year)  # select APEs from each year

vects <- list(apebyyear$APE_HHMH, apebyyear$APE_LLML,

apebyyear$APE_MMML, apebyyear$APE_MMMH,

apebyyear$APE_MMM0,apebyyear$APE_MMMM) # split APEs by projection

for(v in vects){ 

print(agostino.test(v, alternative="less")) # perform D'Agostino test of skewness 

# create Box-Cox transformation of each county for the given projection and given year 

(lambda is the parameter of Box-Cox transformation) 

BC1<-function(lambda){ifelse(lambda!=0,(v[1]^lambda-lambda)/lambda,log(v[1]))} 

BC2<-function(lambda){ifelse(lambda!=0,(v[2]^lambda-lambda)/lambda,log(v[2]))} 

BC3<-function(lambda){ifelse(lambda!=0,(v[3]^lambda-lambda)/lambda,log(v[3]))} 

BC4<-function(lambda){ifelse(lambda!=0,(v[4]^lambda-lambda)/lambda,log(v[4]))} 

BC5<-function(lambda){ifelse(lambda!=0,(v[5]^lambda-lambda)/lambda,log(v[5]))} 

BC6<-function(lambda){ifelse(lambda!=0,(v[6]^lambda-lambda)/lambda,log(v[6]))} 

BC7<-function(lambda){ifelse(lambda!=0,(v[7]^lambda-lambda)/lambda,log(v[7]))} 

BC8<-function(lambda){ifelse(lambda!=0,(v[8]^lambda-lambda)/lambda,log(v[8]))} 

BC9<-function(lambda){ifelse(lambda!=0,(v[9]^lambda-lambda)/lambda,log(v[9]))} 

BC10<-function(lambda){ifelse(lambda!=0,(v[10]^lambda-lambda)/lambda,log(v[10]))} 

BC11<-function(lambda){ifelse(lambda!=0,(v[11]^lambda-lambda)/lambda,log(v[11]))} 

BC12<-function(lambda){ifelse(lambda!=0,(v[12]^lambda-lambda)/lambda,log(v[12]))} 

BC13<-function(lambda){ifelse(lambda!=0,(v[13]^lambda-lambda)/lambda,log(v[13]))} 

BC14<-function(lambda){ifelse(lambda!=0,(v[14]^lambda-lambda)/lambda,log(v[14]))} 

BC15<-function(lambda){ifelse(lambda!=0,(v[15]^lambda-lambda)/lambda,log(v[15]))} 

BC16<-function(lambda){ifelse(lambda!=0,(v[16]^lambda-lambda)/lambda,log(v[16]))} 

BC17<-function(lambda){ifelse(lambda!=0,(v[17]^lambda-lambda)/lambda,log(v[17]))} 
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(lambda)+BC13(lambda)+BC14(lambda)+BC15(lambda)+BC16(lambda)+BC17(lambda)+BC1

8(lambda)+BC19(lambda))/19} 

BC_var<-function(lambda){((BC1(lambda)-BC_avg(lambda))^2+(BC2(lambda)-

BC_avg(lambda))^2+(BC3(lambda)-BC_avg(lambda))^2+(BC4(lambda)-

BC_avg(lambda))^2+(BC5(lambda)-BC_avg(lambda))^2+(BC6(lambda)-

BC_avg(lambda))^2+(BC7(lambda)-BC_avg(lambda))^2+(BC8(lambda)-

BC_avg(lambda))^2+(BC9(lambda)-BC_avg(lambda))^2+(BC10(lambda)-

BC_avg(lambda))^2+(BC11(lambda)-BC_avg(lambda))^2+(BC12(lambda)-

BC_avg(lambda))^2+(BC13(lambda)-BC_avg(lambda))^2+(BC14(lambda)-

BC_avg(lambda))^2+(BC15(lambda)-BC_avg(lambda))^2+(BC16(lambda)-

BC_avg(lambda))^2+(BC17(lambda)-BC_avg(lambda))^2+(BC18(lambda)-

BC_avg(lambda))^2+(BC19(lambda)-BC_avg(lambda))^2)/19} 

ml<-function(lambda){(-19/2)*log(BC_var(lambda))+(lambda-1)*sum(log(v))} # 

calculating the maximum likelihood function of transformed APEs 

curve(ml, from=-2,to=2) # graphing likelihood function to inspect location of its 

maxima

max<-optimize(ml, interval=c(0,2), maximum=TRUE) # searching for local 

maximum of likelihood function 

mape_t<-

(BC1(max$maximum)+BC2(max$maximum)+BC3(max$maximum)+BC4(max$maximum)+B

C5(max$maximum)+BC6(max$maximum)+BC7(max$maximum)+BC8(max$maximum)+BC9(

max$maximum)+BC10(max$maximum)+BC11(max$maximum)+BC12(max$maximum)+BC1

3(max$maximum)+BC14(max$maximum)+BC15(max$maximum)+BC16(max$maximum)+BC

17(max$maximum)+BC18(max$maximum)+BC19(max$maximum))/19 # calculating average 

of transformed APEs

print(mape_r<-(max$maximum*(mape_t+1))^(1/max$maximum)) # print MAPE-Rs

print(mape<-mean(v))  # print MAPEs

} 

=====================================================================

BC18<-function(lambda){ifelse(lambda!=0,(v[18]^lambda-lambda)/lambda,log(v[18]))} 

BC19<-function(lambda){ifelse(lambda!=0,(v[19]^lambda-lambda)/lambda,log(v[19]))} 

BC_avg<-

function(lambda){(BC1(lambda)+BC2(lambda)+BC3(lambda)+BC4(lambda)+BC5(lambda)+B

C6(lambda)+BC7(lambda)+BC8(lambda)+BC9(lambda)+BC10(lambda)+BC11(lambda)+BC12
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Table S1. Mean absolute percentage error (MAPE) and rescaled mean absolute percentage error 
(MAPE-R) of each projection in each year between 2011 and 2015. Skewness and P of the 
D'Agostino's test of skewness for absolute percentage error (APE) and transformed absolute 
percentage error (APE-T) are shown in the last four columns. Transformation reduced the skewness 
value but did not change its significance (P < 0.1). 

projection year MAPE MAPE-R 
Skewness 
(APE) 

P (APE) 
Skewness 
(APE-T) 

P  

(APE-T) 

HHMH 2011 0.7512 0.3606 2.5957 <0.0001 1.4654 0.0027 

LLML 2011 0.8351 0.5008 2.4200 <0.0001 1.5024 0.0023 

MMML 2011 0.8231 0.478 2.4325 <0.0001 1.4834 0.0025 

MMMH 2011 0.7609 0.383 2.5592 <0.0001 1.5332 0.0020 

MMM0 2011 1.3435 1.2449 2.0226 0.0002 1.7939 0.0006 

MMMM 2011 0.7869 0.3753 2.4616 <0.0001 1.1924 0.0091 

HHMH 2012 0.8298 0.5225 2.4871 <0.0001 1.4877 0.0024 

LLML 2012 1.1408 0.9872 2.0743 0.0002 1.5531 0.0018 

MMML 2012 1.1083 0.9371 2.0981 0.0001 1.4942 0.0023 

MMMH 2012 0.8908 0.6177 2.3615 <0.0001 1.4931 0.0024 

MMM0 2012 2.0884 2.1265 1.2031 0.0087 1.2838 0.0061 

MMMM 2012 1.0275 0.8177 2.1809 0.0001 1.4436 0.0030 

HHMH 2013 0.9755 0.7024 2.1317 0.0001 1.3665 0.0042 

LLML 2013 1.5447 1.4864 1.4382 0.003 1.2907 0.0059 

MMML 2013 1.4749 1.3967 1.4851 0.0024 1.2805 0.0062 

MMMH 2013 1.0736 0.7935 1.8091 0.0006 0.9699 0.0237 

MMM0 2013 2.8534 2.9499 0.8504 0.0387 1.1631 0.0104 

MMMM 2013 1.3359 1.2088 1.5708 0.0017 1.2243 0.0079 

HHMH 2014 1.0276 0.6941 2.0347 0.0002 1.1358 0.0117 

LLML 2014 1.8801 1.8653 1.1964 0.0089 1.1657 0.0102 

MMML 2014 1.7562 1.7143 1.2497 0.0071 1.1627 0.0104 



MMMH 2014 1.1829 0.9198 1.6821 0.0010 1.0720 0.0154 

MMM0 2014 3.4913 3.6309 0.8412 0.0402 1.1769 0.0097 

MMMM 2014 1.5637 1.4694 1.3471 0.0046 1.1452 0.0112 

HHMH 2015 1.0469 0.6555 2.0823 0.0002 1.0447 0.0173 

LLML 2015 2.2247 2.2479 1.0573 0.0164 1.1087 0.0131 

MMML 2015 2.0282 2.0194 1.1018 0.0135 1.0837 0.0146 

MMMH 2015 1.2129 0.8977 1.6339 0.0012 1.0106 0.0200 

MMM0 2015 4.0857 4.2763 0.7610 0.0551 1.0425 0.0175 

MMMM 2015 1.7558 1.6851 1.2475 0.0071 1.1012 0.0136 
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