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The spatial distribution of individuals of any species is a basic concern
of ecology. The spatial distribution of parasites matters to control and
conservation of parasites that affect human and nonhuman popula-
tions. This paper develops a quantitative theory to predict the spatial
distribution of parasites based on the distribution of parasites in hosts
and the spatial distribution of hosts. Four models are tested against
observations of metazoan hosts and their parasites in littoral zones
of four lakes in Otago, New Zealand. These models differ in two
dichotomous assumptions, constituting a 2 × 2 theoretical design. One
assumption specifies whether the variance function of the number of
parasites per host individual is described by Taylor’s law (TL) or the
negative binomial distribution (NBD). The other assumption specifies
whether the numbers of parasite individuals within each host in a
square meter of habitat are independent or perfectly correlated among
host individuals. We find empirically that the variance–mean relation-
ship of the numbers of parasites per squaremeter is verywell described
by TL but is not well described by NBD. Two models that posit perfect
correlation of the parasite loads of hosts in a square meter of habitat
approximate observations much better than two models that posit in-
dependence of parasite loads of hosts in a square meter, regardless of
whether the variance–mean relationship of parasites per host individual
obeys TL or NBD. We infer that high local interhost correlations in
parasite load strongly influence the spatial distribution of parasites.
Local hotspots could influence control and conservation of parasites.
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The spatial distribution of individuals of any species is a basic
concern of ecology. The spatial distribution of parasites

matters to control and conservation of parasites that affect hu-
man and nonhuman populations. Despite the basic scientific and
practical significance of the spatial distribution of parasites, in-
vestigations of parasite populations are often founded on their
distributions and dynamic processes within and among hosts. A
scientific justification for this approach is that the number of
parasite individuals per host individual is likely to affect the
parasite’s impact on the host in theory (1) and empirically (2–5).
A practical motivation for this approach is that a field in-
vestigator can collect hosts and study the parasite populations in
them without the need to describe in detail the spatial distribu-
tion of the hosts or their abundance.
Why is the variation of parasite population density from 1 m2

of space to another important? Kuris et al. (6) suggested that,
because parasites contribute substantial biomass and pro-
ductivity to estuaries, parasite ecology should be fully in-
tegrated into the general body of ecological theory. The spatial
ecology of free-living species has long been a central topic in
empirical and theoretical ecology but has not been fully ex-
plored for parasites. Moreover, parasites’ spatial variation is
likely to influence the conservation and control of parasites,
especially those that affect human health, wildlife, and game.
On basic scientific and practical grounds, the spatial ecology of
parasites deserves fuller development.

To investigate how parasites are distributed in space, this paper
develops a theoretical framework and four models that link the
distribution of parasites in hosts, the distribution of hosts in space,
and the distribution of parasites in space. The four models are
tested against observations of the metazoan hosts in the littoral
zone of four lakes in Otago, New Zealand.
Prior empirical studies of parasite populations have commonly

estimated the number of parasite individuals per host individual
from a sample of host individuals. For example, in a study (figure 5
in ref. 2) of macroparasites in wild vertebrate hosts and a study
(figure 7A in ref. 7, p. 569) of parasitic nematodes in terrestrial
mammalian hosts, the sample variance of the number of parasites
per individual host was well described (r = 0.98) by the equation
log(sample variance) ≈ log(a) + b × log(sample mean), a > 0,
which is a log–log form of Taylor’s law (TL) (8):

sample  variance≈ a× ðsample meanÞb,   a> 0. [1]

The symbol≈ signifies “approximately equals” in recognition that both
sides of the equations of TL are subject to sampling variation and that
the error term is left unstated. Any rescaling of population density
by a positive constant (for example, multiplying population density
by 10−4 to convert individuals·hectare−1 to individuals·meter−2)
has no effect on the exponent b in 1 but changes a.
The fact that the sample variance of the number of individuals

could be approximated as a power function of the sample mean of
multiple sets of observations was proposed long before Taylor (8)
and illustrated with entomological examples (9), a pest plant (10),
and the cabbage aphid (11). Without reference to these discoveries,
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Taylor (8) brought the approximate power law relationship 1 to
general attention as a widespread empirical pattern. This pattern
has since become known among many ecologists as TL.
Hechinger et al. (12) investigated populations of parasites

and co-occurring free-living species. They measured pop-
ulation density for both parasitic and free-living species in number
of individuals·hectare−1. This measure of population density en-
abled them to compare allometric power laws in parasitic and free-
living species. Measuring population density by individuals·meter−2,
Lagrue et al. (13) showed that the variance and mean of pop-
ulation density were well approximated by 1 but that the param-
eters a and b differed among three so-called “lifestyles”: parasites,
free-living species that were hosts of parasites (henceforth called
“hosts” here), and unparasitized free-living species.
Here, we address theoretical and empirical questions about the

relation of populations of parasites in hosts to populations of
parasites in physical space. What are the relations between two
measures of parasite population density: (i) parasite individuals per
host and (ii) parasite individuals per square meter? Can mathe-
matically transparent, empirically testable models describe accu-
rately the variance–mean relationships of hosts per square meter,
parasites per host individual, and parasites per square meter? The
answer to the last question is not obvious, because any two of these
distributions constrain the third.

Theoretical Methods and Results
General Notation and Definitions. We investigate four models that
share a common framework and three assumptions. In all of these
models, we specify a single parasite species and a single host
species. When a parasite species infects multiple species of hosts
or when a host species is infected by multiple species of parasites,
we organized the data to consider all possible pairs consisting of a
single parasite species and a single host species. In our models, we
analyze theoretically the set of all such single-species parasite–host
pairs. In the following empirical analyses, we analyze the single-
species parasite–host pairs statistically.
Assumption i: the number of parasites (of a selected single

species) infecting a host (of a selected single species) in 1 m2 of
habitat is the sum of the numbers of parasites in all host indi-
viduals (of that species) in that square meter of habitat. We specify
two variant forms of this assumption: one for models 1 and 2 and
another for models 3 and 4. To spell out these details of as-
sumption i, we now define additional variables and notation.
Let H be a random variable with nonnegative integer values {0,

1, 2, . . .}. H represents the number of individuals of a particular
host species per square meter of habitat. A generalist parasite may
infect more than one species of host. Here, H refers to counts of
only one selected host species. H is not a fixed number, but a
random variable that may differ from 1 m2 to another and differ
over time within the same square meter. We assume that the mean
and the variance of the probability distribution of H are positive
and finite.
Let P be another random variable with nonnegative integer

values {0, 1, 2, . . .}. P represents the number of parasites (of a
selected species) in one host individual. We assume that the mean
and the variance of the probability distribution of P are positive
and finite. The quantity P is sometimes called the “parasite load”
(ref. 3, p. 606). If the host individual is parasitized by more than
one species, we count here the individuals of only one selected
parasite species. Assume H and P are independent in any square
meter of habitat. Different square meter of habitat may have
different distributions of H and P. Let Pi for i = 1, 2, . . ., H be
random variables that represent the number of parasites in the ith
individual host i = 1, 2, . . ., H in a square meter of habitat. We
assume that Pi, i = 1, 2, . . ., H, all have the distribution of P and are
independent of H and independent of one another.
Let S be the number of individuals of the selected parasite

species in all individuals of the selected host species per square

meter of habitat. The symbol S is a mnemonic for sum of parasites
in 1 m2 of habitat space; S recalls “Sum over Space.” When H = 0,
define S = 0. When H > 0, models 1 and 2 assume that the total
number of parasites in 1 m2 of habitat is a sum of a random
number H of independent random variables Pi, i = 1, 2, . . ., which
are each independent of H. In brief, S=P1 + . . . +PH.
At the opposite extreme, models 3 and 4 assume that the num-

bers of parasites per host individual in a square meter of habitat are
perfectly correlated among all host individuals, although they are
independent of the number of hosts H. Then, the total number of
parasites in 1 m2 of habitat is a product Z = H × P of independent
random variables. If hosts are absent (i.e.,H = 0), then parasites are
necessarily absent (i.e., Z = 0) in parallel with models 1 and 2.
These two equations, S=P1 + . . . +PH and Z = H × P, are

variant forms of assumption i: the number of parasites in a square
meter is the sum of the parasites in all host individuals in that
square meter (to repeat: for a specified parasite species and a
specified host species). Because H and P have finite, positive
means and variances, so do S and Z.
We now prepare assumption ii. For a random variable X that

has a finite positive population mean and finite positive pop-
ulation variance, let the population mean be μX = EðXÞ and
population variance be νX =VarðXÞ=Eð½X −EðXÞ�2Þ. Thus,
μH ,   vH ,   μP,   vP,   μS,   and  vS denote the population means and
population variances of H, P, and S, respectively. Because these
moments are all finite and positive, their logarithms exist and are
not equal to ±∞.
Variance functions. A variance function is a standard statistical con-
cept (14). Suppose that the probability distributions of H and P
depend on a parameter θ, such as temperature, nutrient concen-
tration, light availability, or other factors that vary from 1 m2 to
another. Then, the moments μH ,   vH ,   μP,   vP,   μS,   and  vS also de-
pend on the parameter θ. The equation νHðθÞ= f ðμHðθÞÞ means
that the variance of H given the parameter θ equals a function f of
the mean of H given the parameter θ. When this equation holds,
then f(.) is called the variance function (or sometimes, the vari-
ance–mean function) of the family of random variables fHðθÞgθ
parameterized by θ. More succinctly, f(.) is called the variance
function of H, because it maps the mean to the variance. For ex-
ample, if HðθÞ satisfies TL (1), then the variance function of
fHðθÞgθ is a power function f ðxÞ= axb. In the usual statement of
TL, as in 1 above, θ is left unstated. For simplicity, our notation
omits explicit specification that the population means and pop-
ulation variances of H, P, S, and Z depend on a parameter θ.
In empirical tests of TL, the sample mean and sample variance

differ from one block of observations to another, and θ could be
interpreted as a label of each block. The interpretations of θ may
be illustrated by published examples. In one test of TL (figure 5 in
ref. 2, p. S118), each value of θ specified 1 of 263 pairs of (mean
abundance per host, variance of abundance per host) of macro-
parasites in wildlife host populations. In another test of TL (figure
7A in ref. 7, p. 569), each value of θ specified one pair of (mean
abundance per host, variance of abundance per host) of adult
nematode worms recorded from individual guts of 66 terrestrial
mammalian species (n = 104 values of θ corresponding to 104
reported samples). In a third test of TL (figure 1 in ref. 15, p. 543),
each value of θ specified one pair of (mean abundance per host,
variance of abundance per host) of helminth parasites of fish from
410 samples (with 180 parasitic helminth species and 68 fish host
species from 62 different published papers). In our earlier test of
TL (13), each value of θ specified one pair of (mean population
density per square meter, variance of population density per square
meter) from a specified lake sampled in a specified season counting
a specified species of parasite (253 mean–variance pairs) or host
(151 mean–variance pairs).
Assumption ii: H, the number of host individuals·meter−2 (of a

specified species), satisfies TL. Here, θ may be interpreted as a
label associated with each square meter or the collection of square
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meter in each of a set of samples. Explicitly, for some constants
a > 0, b (b is not necessarily positive),

νH = aμbH [2]

(TL variance function for host individuals per square meter).
Assumption iii: the mean number of parasites per host is a

power function of the mean host density. Explicitly, for some
constants f > 0, g (g is not necessarily positive),

μP = fμgH [3]

(host–parasite density scaling).
If g = 0 in Eq. 3, then μR = f (i.e., mean parasite density per host

μP is constant regardless of μH). Depending on whether g > 0 or
g < 0, the mean density of parasites per host increases or decreases
with increasing mean host density per square meter. If the value of
g depends on quadrat size, then the model results may depend on
the spatial scale of observation.
This assumption is a flexible quantitative formulation of the

possibility that there may be no relation (g = 0) between the mean
number of parasites per host and the mean host density per square
meter; that there may be a negative relation (g < 0: greater host
abundance per square meter is associated with a reduced mean
parasite burden per host) as an effect of herd immunity, dilution,
or body size (bigger hosts are rarer and can accommodate more
parasites); or that there may be a positive relation (g > 0: greater
host abundance is associated with an increased parasite burden
per host) as an effect of contagion or reduced host resistance from
crowding. We introduce this assumption in the models and ask the
data to reveal the relationship, while leaving the mechanism of the
relationship (if g ≠ 0) for future research.
Four alternative models. Four models differ in each of two as-
sumptions, each of which has two alternatives. Thus, four models
may be summarized by a 2 × 2 table (Table 1). The first as-
sumption specifies whether the variance function of parasites per
host P comes from TL or the negative binomial distribution
(NBD). The NBD has traditionally been widely confirmed (3) and
assumed for the abundance of metazoan parasites in individual
hosts since the work in ref. 16. The second assumption specifies
whether Pi, the number of parasites in the ith host, i = 1, 2, . . ., H,
is independent (implying zero correlation) among host individuals
in a square meter or identical for all hosts in this square meter
(implying correlation one). These two alternatives correspond to
the complete absence of synchrony and perfect synchrony, re-
spectively, of the parasite loads of hosts in 1 m2. (In models of
statistical physics, the analogous difference is called “annealed” vs.
“quenched.”) For brevity, we do not analyze here the obvious
possibility of correlations among Pi that are intermediate between
zero and one.

Models 1 and 2: Independence of Parasites per Host.Let Pi, i = 1, 2, . . .
be independently and identically distributed (iid) random var-
iables with the distribution of P, also independent of H. It is
well known (equation 7.2 in ref. 17, p. 119; equation 3 in ref. 18,
p. 122; and ref. 19, p. 110 gives a detailed elementary derivation)

that, if S=P1 + . . . +PH, where all Pi are iid with the distribution
of P, then

μS = μHμP [4]

(product rule for means) and

νS = μHνP + νHμ
2
P [5]

(variance under independence).
We now use Eq. 5 to express the variance of S as a function of

the mean of S under two alternative assumptions about the vari-
ance function of P. Model 1 assumes that the parasites per host
satisfy TL. Model 2 assumes that the parasites per host satisfy
the NBD.
Model 1: Independent number P of parasites per host and power law
variance function (TL) of P. Assume P obeys TL [i.e., there exist
constants c> 0, d (d is not necessarily positive), f > 0, g (g is not
necessarily positive)], such that

νP = cμdP [6]

(TL for parasites per host individual).
Then, we prove in SI Appendix that the exact predicted vari-

ance of parasites per square meter is

νS = cf
d−1
g+1μS

1+dg
g+1 + af

2−b
g+1μS

b+2g
g+1 [7]

(model 1 exact variance function of parasites per square meter).
The variance νS of the number S of parasites per square meter is

a sum of two power functions of the mean of S. The exponents of
μS in Eq. 7 depend exclusively on the exponents b, d, and g and do
not at all depend on the coefficients a, c, and f.
As μS →∞, S obeys TL with an exponent equal to the larger

of the two exponents of μS in Eq. 7. At the other extreme, as
μS → 0, S obeys TL with an exponent equal to the smaller of the
two exponents of μS. The exponent of μS in the first term is
ð1+ dgÞ=ðg+ 1Þ, and the exponent of μS in the second term is
ðb+ 2gÞ=ðg+ 1Þ. Because the denominators are the same, which
exponent of μS is bigger depends only on the numerators.
Other examples of TL in hosts and parasites lead us to expect
the exponent b of TL Eq. 2 for hosts·meter−2 to exceed 1 and
the exponent d of TL Eq. 6 for parasite individuals per host
individual to be between 1 and 2. If these two expectations
hold true, then 1+ dg< b+ 2g; therefore, the second term on
the right side of Eq. 7 would be expected to dominate as
μS →∞, and the first term would be expected to dominate as-
ymptotically as μS → 0.
Properties of the NBD. To specify the NBD (ref. 20, p. 306), let ρ > 0
be a positive real number. When ρ is not an integer, the NBD
is sometimes called the Pólya distribution. Let p be a positive
probability, 0 < p ≤ 1, and let q = 1 – p, 0 ≤ q < 1. A random
variable X taking only the nonnegative integer values 0, 1, 2, . . .
has the NBD if and only if

Pr½X = xjρ,   p�≡ f ðxjρ,   pÞ=
�
x+ ρ−1
ρ−1

�
qxpρ,   x= 0, 1, 2, . . . .

The mean and variance of X are

EðXÞ= ρq
p
,   VarðXÞ= ρq

p2
.

Because p ≤ 1, E(X) ≤ Var(X). If p < 1, then E(X) < Var(X). A
distribution is said to be overdispersed if E(X) < Var(X). The NBD
is overdispersed if p < 1. In the Poisson distribution, by contrast,
the mean equals the variance.

Table 1. Assumptions that differentiate models 1–4

Correlation of
parasites Pi among
hosts in 1 m2

Variance function of the number
Pi of parasites per host individual

TL (power function)
Negative binomial
(quadratic function)

All Pi uncorrelated Model 1 Model 2
All Pi perfectly correlated Model 3 Model 4
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A family of NBDs is a collection of NBDs in which one or both of
its parameters ρ, p vary. The variance function of the NBD depends
on which parameter is assumed to vary. If θ = ρ varies and p is
constant, then the variance is proportional to the mean
VarðXðρÞÞ= p−1EðXðρÞÞ. This equation is a special case of TL 1
with coefficient a =   p−1 and exponent b = 1. If ρ is constant and θ =
p varies, then the variance is a quadratic function of the mean with
no constant term:

VarðXðpÞÞ=EðXðpÞÞ+ ρ−1½EðXðpÞÞ�2 =EðXðpÞÞ�1+ ρ−1EðXðpÞÞ�.
[8]

This example shows the importance of being explicit about the
meaning of θ when more than one parameter may vary.
We now show that, when ρ is constant and θ = p varies, a family

of NBDs is not consistent with TL, except asymptotically in the
extremes of large E(X) and small E(X). As is standard, we use the
notation x � y to mean that x is much smaller than y or that y is
much larger than x. When Eq. 8 holds and 0 < ρ � E(X), then
1 � E(X)/ρ; therefore, EðXÞ � ρ−1½EðXÞ�2, and the second term
on the right side of Eq. 8 is much larger than the first term. As-
ymptotically for large E(X), TL 1 holds with exponent b = 2.
When Eq. 8 holds and ρ � E(X) > 0, then 1 � E(X)/ρ;

therefore, EðXÞ � ½EðXÞ�2/ρ, and the first term on the right side
of Eq. 8 is much larger than the second term. Asymptotically for
small E(X), TL 1 holds with exponent b = 1. Over the whole range
of E(X) from very small to very large, obviously TL cannot hold
with constant b.
In Eq. 8, ρ−1 is the same as k in equation 1 in ref. 8, p. 732.

Taylor (8) remarks: “Unfortunately k is not always independent
of [the sample mean] m” [i.e., the model of constant k (or ρ)
and changing p in a family of NBDs does not hold empirically
in general].
For a family of NBDs with constant ρ and varying p (equation 6

in ref. 21, p. 162),

ρ−1 =
VarðXÞ−EðXÞ

½EðXÞ�2 . [9]

This relationship is not compatible with TL 1. In a family of
NBDs with constant ρ> 0 and varying p, 0 < p ≤ 1, log Var(X)
is a strictly convex function of log E(X). We prove this state-
ment in SI Appendix, using a result of ref. 31.
The self-contradictory assumption that ρ could be constant

while TL holds appeared in at least two papers by Taylor and
coworkers (ref. 22 and equation 2 in ref. 23, p. 1056) and has
been repeated by others (equation 2 in ref. 24, p. 306). We
prove in SI Appendix that using the right side of SI Appendix,
Eq. S17 as “the estimate of 1/k [= our ρ] assuming k to be
constant over all population densities” as in ref. 23, p. 1056,
paragraph ii, b is self-contradictory (24). The number of para-
sites per host may be described exactly by a family of NBDs
with constant ρ and varying p, or it may be described exactly
by TL, but it cannot be described exactly by both over all
population densities.
Model 2: Independent number P of parasites per host and NBD variance
function of P. Model 2 assumes that P obeys the variance function
Eq. 8 of a family of NBDs with constant ρ and varying p. Using the
symbols in Eq. 6, Eq. 8 is equivalent to

νP = μP + ρ−1μ2P [10]

(negative binomial variance function with constant ρ and varying p).
Then, instead of Eq. 7, the variance of S is a sum of a linear

term plus two power functions:

vS = μS + ρ−1f
1

1+gμ
1+2g
1+g
S + af

2−b
1+gμ

b+2g
1+g
S [11]

(model 2 exact variance function of parasites per square meter).
The exponents of all three terms are independent of ρ.

Models 3 and 4: Identical Numbers of Parasites per Host. The next
two models assume that, when H > 0, every host individual in 1 m2

of habitat has an identical number P of parasites. This number of
parasites will differ from 1 m2 to another, but the same number
P of parasites resides in every host in a square meter.
Then the number of parasites per square meter of habitat is
P1 + . . . +PH =H ×P, where (as previously assumed) the num-
ber H of hosts per square meter is independent of the number
P of parasites per host (conditional on the parameter θ). To
avoid confusion with the previous two models, we write

Z=H ×P

for the number of parasites per square meter in models 3 and 4. At
one extreme, models 1 and 2 assume independence (conditional on
θ) of parasite loads in different hosts in 1 m2 (therefore, correlation
0). At an opposite extreme, models 3 and 4 assume perfect identity
of parasite loads in different host individuals in 1 m2 (therefore,
correlation 1).
S and Z have the same mean (25), μS = μZ = μHμP, given by Eq.

4. However, S and Z have different variances. Instead of Eq. 5 for
models 1 and 2, models 3 and 4 have (equation 2 in ref. 25, p. 709)

νZ = μ2HνP + νHμ
2
P + νHνP. [12]

If μH ≥ 1, then νZ > νS. Ross McVinish pointed out that νZ ≥ νS
always; moreover, νZ = νS if and only if there is zero probability
that H ≥ 2 (that is, if and only if the number of individuals of the
selected host species per square meter is always 0 or 1). (These
statements are proved in SI Appendix.) Intuitively, unless hosts
are rare (with zero or one host individuals per square meter, in
which case correlations in the number of parasites among dif-
ferent host individuals living in the same square meter are im-
possible), the perfect correlation of the hosts’ parasite loads
strictly increases the variance of the number of parasites per
square meter of habitat.
Model 3: Identical numbers P of parasites per host and power law variance
function (TL) of P. Model 3 assumes that P obeys TL. In Eq. 12, we
replace νP using TL for parasites (Eq. 6), we replace νH using TL
for hosts (Eq. 2), and we replace μP using host–parasite density
scaling (Eq. 3). Eventually, we get

νZ = cf dμ2+dgH + af 2μb+2gH + acf dμb+dgH .

To replace μH in each of three terms on the right, we use SI Ap-
pendix, Eq. S16 three times with the three values of K = 2+ dg,
b+ 2g,   b+ dg. After simplification, the result is a sum of three
power functions:

νZ = cf
d−2
g+1 μS

2+dg
g+1 + af

2−b
g+1μS

b+2g
g+1 + acf

d−b
g+1μS

b+dg
g+1 [13]

(model 3 exact variance function of parasites per square meter).
Model 4: Identical numbers P of parasites per host and NBD variance
function of P. Model 4 assumes that P obeys the variance function
Eq. 10 of a family of NBDs with constant ρ and varying p and that,
when H > 0, every host individual (of the selected species) in 1 m2

has an identical number P of parasites (of the selected species).
Calculations similar to those above (making repeated use of SI
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Appendix, Eq. S16 to go from the first line to the second line)
lead to

νZ = fμ2+gH +
f 2

ρ
μ2+2gH + afμb+gH +

�
1+ ρ−1

�
af 2μb+2gH

= f
−1
1+gμ

2+g
1+g

S + ρ−1μ2S +
�
1+ ρ−1

�
af

2−b
1+gμ

b+2g
1+g

S + af
1−b
1+gμ

b+g
1+g

S [14]

(model 4 exact variance function of parasites per square meter).

Empirical and Statistical Methods
Empirical Methods. Lagrue et al. (13) described the field sites and
the methods of collecting the data. In brief, all metazoan species in
the littoral zones of four lakes in Otago, New Zealand were col-
lected and classified as parasitic, free-living with parasites (here
hosts), and free-living without parasites. Each lake was sampled
multiple times (depending on the sampling method) in each of
three field seasons at multiple locations in each lake. Because of the
mobility of fish and the impossibility of counting entire fish pop-
ulations of large areas, estimates of population densities of fish
species as individuals·meter−2 may be subject to larger errors than
those of, for example, sessile invertebrates. We measured the
population density of each parasite species as individuals·meter−2

separately for each distinct combination of host species and parasite
species. The data structured in this way have not been analyzed
previously. We illustrate this method by an example.
In Lake Hayes in September, two species of host insects, Oecetis

sp. and Triplectides sp., were infected with metacercariae of the
parasiteMicrophalloidea sp. In 199 samples ofMicrophalloidea sp., 91
were found in Oecetis sp., and 108 were found in Triplectides sp. To
estimate the density per square meter of the parasiteMicrophalloidea
sp., we distinguished combinations of Microphalloidea sp. with dif-
ferent host species and found 24.9 individuals·meter−2 Micro-
phalloidea sp. in 91 samples in Oecetis sp. and 45 individuals·meter−2

Microphalloidea sp. in 108 samples in Triplectides sp. [Another
method would have been to pool all 199 samples of Microphalloidea
sp. This method would have yielded 69.9 individuals·meter−2

Microphalloidea sp., regardless of host. We rejected this
method in preliminary analyses, because the resulting values
of logðμHÞ+ logðμRÞ did not approximate as well the values of
logðμSÞ predicted from Eq. 4.] Population densities of host species
were measured as individuals·meter−2, regardless of parasites.
Here, we do not use the data on free-living species without para-

sites. As noted above, unparasitized free-living species had different
body size distributions and taxonomic distributions from both para-
sites and hosts (13). Based on large sample sizes and careful searches
for parasites within free-living species, we think that it is unlikely that
our distinction between hosts and unparasitized free-living species
is artifactual. The data reported in this paper are in Dataset S1.

Statistical Methods. We obtained 209 measurements of seven
variables for different combinations of host species and parasite
species: the mean and the variance of host individuals·meter−2, the
mean and the variance of parasite individuals per host individual,
the mean and the variance of parasite individuals·meter−2, and the
minimum number of host individuals captured in a sample. This
minimum ranged from 0, when a host did not occur in a sample at
a particular locality, lake, and season, to 58 hosts. This minimum
sample size influenced one of the relationships analyzed below.
Following ref. 13 and many others, we tested power law re-

lationship y= axb and estimated the parameters by the conventional
method of taking the common logarithm (to base 10, not the nat-
ural logarithm to base e) of x and y variables and doing least-squares
regression. Our justification for using ordinary linear regression
was that the variance of the sample mean is much smaller than
the variance of the sample variance (ref. 26, p. EV-4, where

the pros and cons of this widespread procedure are discussed).
We also tested the adequacy of each linear relationship
log y= log a+ b log x by fitting a quadratic generalization (from ref. 27)
log y= log a+ b log x+ cðlog xÞ2 and checking whether the qua-
dratic coefficient c differed significantly from zero. All signifi-
cance tests used α = 0.01. If the 99% confidence interval (99%
CI) of c included zero, we inferred that the linear model was
acceptable, because there was not compelling evidence in favor
of the quadratic alternative. This procedure was conservative in
the sense that, had we used a correction for multiple compari-
sons, the CI for c would have been wider, and it would have
been harder to detect deviations from linearity. Where we ac-
cepted the linear model, we would have accepted it after making
a correction for multiple comparisons. However, where we
rejected the null hypothesis c = 0, the corrected significance
level would have been larger than 0.01.
In all figures, data are solid dots, and theoretical curves are lines

(solid, dash-dotted, dashed, or dotted). Computations used Matlab
R2015a (28) running under Microsoft Windows 7.

Empirical Results
Descriptive Summary of Relationships in Data. The mean and the
variance of host abundances H per square meter were distinctly
bimodal (SI Appendix, Fig. S1, two upper left diagonal histograms).
The less abundant mode corresponded to the larger and less
abundant fishes, whereas the more abundant mode corresponded
to the smaller and more abundant invertebrate hosts. The tightest
relationships among six main variables (excluding minimum sample
size) were those between the mean and the corresponding variance
of each of three measures of abundance: H (host individuals per
square meter), P (parasites per host individual), and S (parasites
per square meter) (SI Appendix, Fig. S1, off-diagonal scatterplots).
In addition, there were clear positive associations between the
mean hosts per square meter and mean parasites per square
meter and between the variance of hosts per square meter and
variance of parasites per square meter.

Empirical Tests of the Framework Assumptions. The variance and
mean of the numberH of hosts per square meter are described well
by TL (Fig. 1A) (R2 = 0.9876). This finding is qualitatively
consistent with the finding of table 2 in ref. 13 that TL described
well (R2 = 0.9810) what they called “free-living parasitized” species
but differs slightly in parameter estimates. Whereas ref. 13 esti-
mated slope = 2.0193 with 95% CI = 1.9739, 2.0646 and inter-
cept = 0.2903, we estimated slope = 2.0856 with 99% CI = 2.0434,
2.1278 and intercept = −0.014318. The discrepancy is because of a
different way of organizing the data as described in Empirical and
Statistical Methods.
On average, the larger the mean number of hosts per square

meter, the smaller the mean number of parasites per host (Fig.
1B). On log–log coordinates, the slope −0.24575 of a linear ap-
proximation to this relationship is not statistically distinguishable
from −1/4, which is a scaling exponent that plays a major role in
the metabolic theory of ecology (ref. 29, p. 1775), and a quadratic
approximation is not a significant improvement over a linear re-
lationship. The scatter around a linear relationship is the largest
among the relationships examined here (R2 = 0.1849), and the
error variance 1.229 on the log10 scale is more than an order
of magnitude.
This negative relationship between the mean number of hosts per

square meter and the mean number of parasites per host is quali-
tatively consistent with a finding (figure 3 in ref. 30) in which host
density was calculated by pooling individuals of all host species used
by a parasite species. Our analysis involves one host species and one
parasite species.
The mean number of parasites per square meter is very close to

the product of the mean number of hosts per square meter times
the number of parasites per host (Fig. 1C) as predicted by Eq. 4.
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The variance and mean of S, the number of parasites per
square meter, are described well (R2 = 0.9838) by the empirical
TL for parasites per square meter (Fig. 1D):

vS = hμkS [15]

(TL for the number of parasites per square meter).
This finding is qualitatively consistent with the finding of table 2 in

ref. 13 that TL described parasitic species well (R2 = 0.9708) but
differs slightly in parameter estimates. Whereas ref. 13 estimated
slope = 2.1020 with 95%CI = 2.0568, 2.1473 and intercept = 0.4333,
we estimated slope = 2.1166 with 99% CI = 2.0675, 2.1657 and
intercept = 0.26315. The discrepancy is because of a different way of
organizing the data as described in Empirical and Statistical Methods.
A consequence of the good agreement with TL with values of

the intercept not far from 1 is that the point (0, 0) in Fig. 1D
roughly separates mean values of S greater than 1 (on the right)
from mean values of S less than 1 (on the left) at the same time
that it separates variances of S greater than 1 (above) from vari-
ances of S less than 1 (below).
The parameter estimates of all linear and some quadratic re-

lationships in the text, some of their 99% CIs, and measures of
goodness of fit (R2, error variance) are in Table 2. The parameters
of the quadratic polynomials are reported only when an F test

showed (by p0 < 0.01) that the quadratic model was a statistically
significant improvement over the linear model.

Empirical Results for Model 1. TL approximated (R2 = 0.9142) the
variance of the number P of parasites per host individual as a
function of the mean number of parasites per host individual (Fig.
2A), but on log–log scales, a convex (curved upward) quadratic
relationship was significantly better than TL.
For model 1, using the empirical estimates of the parameters

from Table 2 gives the exponent of μS in the first term on the right
side of Eq. 7 as ð1+ dgÞ=ðg+ 1Þ= 0.8116 and the exponent of μS in
the second term as ðb+ 2gÞ=ðg+ 1Þ= 2.1135. These estimates
confirm the expectations presented above under theoretical re-
sults. Model 1 does not predict for S, the number of parasites per
square meter, the observed TL, a power law with a single expo-
nent, over the full range of μS from very small to very large.
Another way to arrive at the same conclusion is to observe

that the exponent of μS in the first term of Eq. 7 equals the
exponent of μS in the second term if and only if 1+ dg= b+ 2g or
b− 1= ðd− 2Þg. Substituting the empirical estimates of these
parameters from Table 2 evaluates the left side as b− 1= 1.0856
and the right side as ðd− 2Þg= 0.1036, different by an order
of magnitude.
For mean densities or variances of the parasites per square

meter greater than one (S log10 mean > 0), the variance of the
number of parasites per square meter is well approximated by a sum
of two power functions of the mean number of parasites per square
meter (Fig. 3A) as predicted by Eq. 7. Both the predicted slope 2.1135
and the level of the predicted variance νS are close to the fitted slope
k= 2.1166 and level of the observed variance. However, for lower
mean densities and variances, the predicted variance is higher than
the empirical variance. On log–log scales, the sum of two power
functions of the mean number of parasites per square meter is convex.

Empirical Results for Model 2. The empirical number of parasites per
host individual seems statistically to have a strictly convex variance
function on log–log scales (Fig. 2). The quadratic variance function
Eq. 10 of the NBD is closer to the empirical variance function (Fig.
2 B and C) than the straight line predicted on log–log scales from
TL (Fig. 2A).
For each combination of host species and parasite species (or life

stage), the number of hosts used to estimate the mean and variance
of the number of parasites per host varied among four lakes and
three seasons sampled. When all 209 combinations of host species
and parasite species (or life stage) are plotted (Fig. 2B), regardless
of the number of hosts sampled, the deviations from the quadratic
variance function Eq. 10 of the NBD are greater than when only
the 23 host–parasite pairs that had a minimum of 15 hosts sampled
in every lake and season are included (Fig. 2C). This comparison
suggests that small sample sizes may be at least partly responsible
for the deviations from the mean–variance relation of the NBD.
This inference does not exclude the possibility that other factors,
such as location or season, may be correlated with sample size and
may partially explain the deviations from the quadratic variance
function Eq. 10 of the NBD.

Testing the Predicted Variance of the Number of Parasites per Square
Meter. To test whether the empirical variance of the number of
parasites per square meter is well described by the variance pre-
dicted by Eq. 11 requires estimates of the parameters on the right
side of Eq. 11. Table 2 gives (after rounding to four decimal
places) a = 0.9676, b = 2.0856, f = 1.2175, g = −0.2458, and
ρ−1 = 2. The predictions are calculated using the unrounded pa-
rameter estimates. Then the exponents of μS in the three terms on
the right side of Eq. 11 are 1, (1 + 2g)/(1 + g) = 0.6742, and (b +
2g)/(1 + g) = 2.1135.

A 
TL for host individuals H per m2, equation (2) 

B 
Host-parasite density scaling, equation (3) 

C 
Predicted mean parasites S per m2, equation (4) 

D 
TL for parasites S per m2, equation (1) 
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Fig. 1. Tests of assumptions of themodels. (A) Test of TL for hosts H per square
meter. The solid line is the log–log form of TL (Eq. 2) for host individuals per
square meter. It is superposed on the dotted line of the quadratic generaliza-
tion of TL. (B) Test of host–parasite density scaling. The mean number of par-
asites per host P is a decreasing power law function of the mean number of
hosts per square meter H. The solid line is the log–log form of the power law
(Eq. 3) model of host–parasite density scaling. The dotted line is a quadratic
generalization, which is not significantly better. (C) Test of the product rule. The
mean number of parasites per square meter is closely approximated by the
product of themean number of hosts per square meter times themean number
of parasites per host individual as predicted by the product rule (Eq. 4). The
intercept does not differ significantly from zero, and the slope does not differ
significantly from one. (D) Test of TL for S, the number of parasites per square
meter. The power law relationship, linear on log–log coordinates (solid black
line), approximates well the relation between the sample mean and sample
variance of S (solid black dots). Table 2 gives parameter estimates of all linear
and some quadratic relationships in the text, some of their 99% CIs, and
measures of goodness of fit (R2, error variance). All panels have 209 data points.
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For low densities (μS < 1), the predicted variance νS is too high.
For larger densities, the predicted variance νS is close to the ob-
served variance (Fig. 3B).
The NBD gives a better model of the variance function of par-

asites per host (Fig. 2 B and C) than TL (Fig. 2A). Neither TL
(model 1) nor NBD (model 2) accurately approximates the em-
pirical variance of the number of parasites per area at low mean
densities and low variances. Both models successfully describe the
observed variances at high densities of parasites per square meter.

Empirical Results for Model 3. Model 3 assumes perfect correlation
of the parasite loads in different hosts in the same square meter,
leading to variance function Eq. 13. In this case, νZ, the predicted
variance of Z, is linearly related to and exceeds only slightly the
observed sample variance over the whole range of sample variance
of S (Fig. 3C). Model 3 also predicts a frequency histogram of the
marginal distribution of the variance that resembles the observed
frequency histogram of the marginal distribution of the variance
(SI Appendix, Fig. S2).

Empirical Results for Model 4. Model 4 assumes perfect correlation
of the parasite loads in different hosts in a square meter, leading to
variance function Eq. 14. In this case, νZ, the predicted variance of
Z, is linearly related to and exceeds only slightly the observed
sample variance over the whole range of sample variance of S (Fig.
3D). Model 4 also predicts a frequency histogram of the marginal
distribution of the variance that resembles the observed frequency
histogram of the marginal distribution of the variance (SI Appendix,
Fig. S2).

Summary Comparisons of Four Models. The variance functions for S
or Z, the number of parasites per square meter, of all four models

have the same general mathematical form: they are a sum of powers
of μS, the mean number of parasites per square meter, with different
exponents. They differ in the number of summands and the values of
the coefficients and exponents. A wide range of exponents should
produce curvature on a log–log variance plot, because the largest
exponent dominates when μS is large and the smallest exponent
dominates when μS is small. If all of the exponents in a variance
function were identical, then the variance function would be a
simple power law, like TL, and a log–log variance plot should be
exactly linear (apart from sampling fluctuations in the sample mean
and sample variance). This observation suggests that the smaller the
range of exponents in the variance function of a model, the more
nearly that model’s variance function should resemble the empirical
TL for the number of parasites per square meter.
To test this suggestion, the exponents of every term in each

model are assembled in Table 3. The ranges of each model’s ex-
ponents (i.e., the largest exponent minus the smallest exponent) are
shown below the exponents along with two measures of the lack of
fit between the variances predicted by each model and the observed
sample variances. The first measure is the SD of the residuals
(differences) between the log10 sample variance of S and the log10
predicted variance of S. Here, the prediction is based on the sample
mean of S associated with each sample variance, when this sample
mean is inserted into the formula for the variance of S derived for
each model. To convert this measure on the log10 scale to the
original scale on which the variance of S is measured, the last line
of Table 3 shows 10SD.
The ranges of exponents of models 1 and 2 are roughly 10 times

larger than the range of exponents of model 3 and three or four
times larger than the range of exponents of model 4. As the ar-
gument above suggests that they should be, the SDs of models 1
and 2 are roughly three times the SDs of models 3 and 4 on the

Table 2. Parameter estimates and associated statistics

Subject, equation, and parameter Estimate Lower CI Upper CI R2 p Error variance p0

Hosts per 1 m2

2
Slope b 2.0856 2.0434 2.1278 0.9876 2.42E-199 0.2520 0.8716
Intercept −0.0143 −0.1053 0.0767
a 0.9676 0.7847 1.1931

Parasites per host
6

Slope d 1.5784 1.4910 1.6657 0.9142 2.30E-112 0.3524 1.91E-06
Intercept 0.8899 0.7832 0.9967
c 7.7610 6.0695 9.9238
Quadratic 0.0961 0.0451 0.1470
Slope 1.5508 1.4666 1.6349
Intercept 0.7470 0.6204 0.8735

Host–parasite scaling
3

Slope g −0.2458 −0.3390 −0.1525 0.1849 8.14E-11 1.2290 0.4985
Intercept 0.0855 −0.1155 0.2864
f 1.2175 0.7665 1.9338

Product rule for means
4 log–log

Slope 1.0006 0.9857 1.0155 0.9933 1.12E-226 0.0262 0.8989
Intercept −0.0131 −0.0426 0.0163

Parasites per 1 m2

15
Slope k 2.1166 2.0675 2.1657 0.9838 3.19E-187 0.2872 0.4065
Intercept 0.2632 0.1658 0.3605
h 1.8329 1.4650 2.2933

There were 209 observations for each regression here. The parameters a, c, f, and h equal 10 raised to the power of the intercept on
the row immediately above. p is the probability of the observed linear relationship under the null hypothesis that the slope is zero. p0 is
the probability of the observed improvement in fit of a quadratic regression over a linear regression under an F test of the null
hypothesis that the quadratic coefficient is zero.
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log10 scale, and 10SD is more than an order of magnitude larger for
models 1 and 2 than for models 3 and 4. This qualitative difference
between models 1 and 2 on the one hand and models 3 and 4 on
the other hand is reflected in the systematic difference in shape
between the theoretical and observed variance functions in Fig. 3.
Model 3, the best fitting model, has the smallest range of exponents

and the lowest values of SD and 10SD, but its advantage over model
4 is small. These results suggest that the decisive difference between
the more successful models 3 and 4 and the less successful models 1
and 2 is the assumption in models 3 and 4 that parasite loads of
different hosts in 1 m2 are highly (here, perfectly) correlated by
contrast with the assumption in models 1 and 2 that parasite loads
of different hosts in 1 m2 are uncorrelated. This difference matters
far more than whether the variance function of parasites per host
obeys TL or NBD.

Discussion
Motivated by a desire to embed the ecology of parasites more
firmly within the framework of general ecology, we developed data
and models to link the distribution of parasites in hosts with the
distribution of parasites in space.

Discussion of Empirical Results. Empirically, we confirmed TL for
hosts per square meter (Fig. 1A) and parasites per square meter
(Fig. 1D) after organizing field data by pairing each host species
with each parasite species as the basic unit of analysis. We also
found empirically that the log variance of parasites per host
was better described as a strictly convex function of the log

      TL (6) for parasites P per host individual 

Negative binomial model variance function (10) for P, all data

Negative binomial model variance function (10) for P, sample size ≥ 15
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Fig. 2. Variance function of parasites P per host individual. Variance of the
number P of parasites per host (·) as a function of the mean number of par-
asites per host. (A) The quadratic generalization of TL (dotted line) provides a
significantly better fit than TL (Eq. 6) (solid line). All 209 data points, regardless
of sample size, are included. (B) Variance function of P (·) compared with
mean + 2 ×mean2 (solid black line). The NBD of the number P of parasites per
host (which was posited in models 2 and 4) predicts that variance =mean + 2 ×
mean2 according to Eq. 10. The value ρ−1 = 2 was estimated by numerical
experimentation. Calculations involving the NBD were carried out on the
original scale of measurement (parasite individuals per host) and are plotted
here on log–log scales for comparability with other figures. Data (·) are from all
hosts without regard to the minimum number of hosts per estimate of the
mean and variance of P. Number of mean–variance pairs (data points), 209;
root-mean-squared error (RMSE) on the original scale of measurement (para-
site individuals per host) = 3.22 × 105. (C) Minimum sample size of 15 hosts per
estimate of mean and variance of P. Number of mean–variance pairs (data
points), 23; RMSE on the original scale of measurement (parasite individuals
per host) = 165.

C D

A B

Fig. 3. Predictions of the variance of S, the number of parasites per
square meter, from four models. For each value of the horizontal axis,
which is the log10 sample variance of S in all four panels, the black dot
falling along the diagonal shows the same value on the vertical axis as a
standard of perfect agreement for comparison with the predicted log10

variance of S from each model shown by the red continuous curve. The
predicted variance of S is computed from the observed sample mean of S
according to the variance function of S derived theoretically for each
model using the parameter estimates a, b, c, d, f, g, and ρ estimated
independently from other relationships. There is no curve fitting or ad-
justment of parameters between the sample variance of S (black dots)
and the theoretical variance of S (red curve). The red and black points
would be superimposed if the model’s predicted variance of S matched
perfectly the sample variance of S and if there were no sampling vari-
ability in the observations. (A) Model 1 assumes that parasite numbers
per host P are independent with TL variance function. (B) Model 2 as-
sumes that parasite numbers per host P are independent with negative
binomial variance function. (C ) Model 3 assumes that parasite numbers P
are identical in all hosts with TL variance function. (D) Model 4 assumes
that parasite numbers P are identical in all hosts with negative binomial
variance function. Only models 3 and 4 predict a variance of S close and
linearly related to the observed sample variance of S over the whole
range of the observed sample variance of S. All panels have 209 data
points. obs., observed; pred., predicted.
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mean parasites per host (Fig. 2), contrary to TL, but in accordance
with the NBD. The nonlinear (log–log) relationship became
clearer when small sample sizes with fewer than 15 observations
were excluded (Fig. 2C). This convexity in the log variance of the
number of parasite individuals per host as a function of the log
mean of the number of parasite individuals per host differs from
some prior findings (2, 7, 15) but is consistent with the variance
function of the NBD, which has been widely confirmed (3, 16) or
assumed for the distribution of parasite individuals per
host individual.
We showed empirically that the product rule Eq. 4 holds. To

high precision, the mean number of parasites per square
meter is the product of the mean number of parasites per host
times the mean number of hosts per square meter (Fig. 1C).
This agreement is not a tautology or accounting identity. The
empirical agreement with the product rule is compatible with
the assumption of independence (conditional on the square
meter or value of θ) between P (parasites per host) and H
(hosts per square meter) or perfect correlation of P among
hosts in a square meter.
Prompted by the goal of developing a theory to relate the

number of parasites per host individual to the number of
parasites per square meter of habitat, we posited on theoret-
ical grounds a relationship (Eq. 3) called “host–parasite den-
sity scaling,” which was consistent with our data (Fig. 1B). This
negative relationship summarizes the broad tendency of the
mean parasite density per host to decline as the mean host
density per square meter increases. For mathematical conve-
nience in working with the power law of TL, we picked a power
law for the mathematical form of this relationship, recognizing
that the widely scattered data are compatible with other ways
of expressing it. Except for a qualitatively similar finding from
different analyses of the raw data (30), we are not aware that
host–parasite density scaling (Eq. 3) has been previously
posited theoretically or supported empirically.
The tendency of the mean parasite density per host to decline

as the mean host density per square meter increases may be
caused by multiple mechanisms, including herd immunity, di-
lution (when a constant input of infectious propagules is distrib-
uted over a larger number of potential hosts), or host body size
(bigger hosts are rarer, and each individual host can accommo-
date more parasites). Determining which of these mechanisms or

others accounts for negative host–parasite density scaling remains
a project for future research.

Discussion of Theoretical Results.Our four theoretical models make
three assumptions. The first assumption is that the total number
of parasites in 1 m2 is the sum of the numbers of parasites in all
of the hosts in that 1 m2. Models 1 and 2 assume that the number of
parasites in one host individual is independent of the numbers of
parasites in all other host individuals in the same 1 m2. Models 3
and 4 assume that the numbers of parasites in every host indi-
vidual are identical, although independent of the numbers of hosts
in the 1 m2. The second assumption is that the mean numbers of
parasites per host are a power law function of the mean numbers
of hosts per square meter. The third assumption is that the
numbers of hosts per square meter obey TL. We verified the
second and third assumptions empirically.
Under these assumptions, we found mathematically that, if the

numbers of parasites per host obey TL, then the variance function
of the numbers of parasites per square meter is a sum of two
(model 1) or three (model 3) power functions of the mean num-
bers of parasites per square meter with different exponents and
therefore, could not, in general, satisfy TL exactly. However, as-
ymptotically for large mean numbers of parasites per square
meter and also asymptotically for small mean numbers of parasites
per square meter, the variance function approaches linearity on
log–log coordinates. The slopes differ in the large and small limits
when the numbers of parasites per host are uncorrelated (model
1). The slopes differ little in the large and small limits, at least for
the observed parameter values, when the numbers of parasites per
host are perfectly correlated (model 3).
Under the same assumptions, we showed that, if the variance

function of parasites per host obeys the quadratic relationship
(without constant term) of NBD, then the variance function of the
numbers of parasites per square meter is a sum of three (model 2)
or four (model 4) power functions of the mean numbers of para-
sites per square meter with different exponents and therefore,
could not, in general, satisfy TL exactly. Again, however, asymp-
totically for large mean numbers of parasites per square meter and
also asymptotically for small mean numbers of parasites per square
meter, the variance function approaches linearity on log–log co-
ordinates. The slopes differ considerably in the large and small
limits when the numbers of parasites per host are uncorrelated
(model 2). The slopes differ little in the large and small limits, at
least for the observed parameter values, when the numbers of
parasites per host are perfectly correlated (model 4).
Although TL cannot simultaneously hold exactly for P, H, and S

under our general assumptions, model 3 [which posits TL for P
(parasites per host) and perfect correlation of P for different hosts
in a square meter] and model 4 (which posits an NBD variance
function for P and perfect correlation of P for different hosts in a
square meter) reproduce reasonably well the observed TL for the
distribution of parasites in space. According to model 3, TL can
hold approximately for parasites per host and parasites per square
meter. The widely analyzed, empirically supported NBD fits the
observed variance function of parasites per host better than TL,
although model 4, which incorporates the NBD variance function
of parasites per host, fits the observed variance function of para-
sites per square meter slightly worse than model 3.
The predictions of models 3 and 4 of the variance function of the

number of parasites per square meter have the right shape, unlike
those of models 1 and 2, but are slightly systematically too high
relative to the empirical variance of the number of parasites per
square meter (Fig. 3 C and D). It is a standard fact in statistics that
the variance of a sum of correlated random variables increases with
the average correlation among them. Therefore the excess in the
predicted variance is very likely to be caused by the assumption of
perfect rather than high but imperfect average correlation of the
parasite loads per host individual. A slight lowering of that assumed

Table 3. Exponents of μS and their numerical values, the ranges
of the exponents, and summaries of the deviations between
log10 sample variance of S and log10 predicted variance of S in
models 1–4

Exponent of μS Model 1 Model 2 Model 3 Model 4

ð1+d ×gÞ=ð1+gÞ 0.8116
ðb+2×gÞ=ð1+gÞ 2.1135 2.1135 2.1135 2.1135
1 1
ð1+ 2×gÞ=ð1+gÞ 0.6742
ð2+d ×gÞ=ð1+gÞ 2.1374
ðb+d ×gÞ=ð1+gÞ 2.2509
ð2+gÞ=ð1+gÞ 2.3258
ð2+ 2×gÞ=ð1+gÞ 2
ðb+gÞ=ð1+gÞ 2.4393
Range of exponents

(high minus low)
1.3019 1.4393 0.1374 0.4393

SD of residuals between
log10 sample variance
of S and log10 predicted
variance of S

1.6874 1.6313 0.5540 0.5605

10SD of log10 residuals 48.6810 42.7898 3.5807 3.6353
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level of correlation should adjust the level of the predicted variance
to that observed.

Conclusions
This analysis draws attention to the key importance of interhost
correlations in parasite loads in accounting for the spatial variance of
parasite population densities. Our empirical experience, not for-
malized here, strongly suggests that the parasite loads of different
host individuals within a small area, such as 1 m2, are very likely to be
more similar to each other than to the parasite loads of host individuals
from a distant square meter, because there are hotspots of infection
even on small spatial scales. The correlation among parasite loads of

different host individuals from the same square meter will never be 1
but will be somewhere between 0 and 1. We are unable to point to a
field study that measures this correlation specifically. Future empir-
ical research should measure directly interhost correlations in para-
site loads at local (square meter) and large spatial scales.
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APPENDICES 1 

Appendix 1. Proofs of theoretical results 2 

Proof of eq. (7) 3 

In eq. (5), substituting TL eq. (2) for ݒு and TL eq. (6) for ݒ௉ gives ߥௌ = ௉ߤுߤܿ
ௗ + ுߤܽ

௕ ௉ߤ
ଶ. Now 4 

using host-parasite density scaling eq. (3) to replace ߤ௉ gives ߥௌ = ுߤு݂ௗߤܿ
ௗ௚ + ுߤܽ

௕ ݂ଶߤு
ଶ௚ =5 

݂ܿௗߤு
ଵାௗ௚ + ݂ܽଶߤு

௕ାଶ௚. Here we have the variance of S on the left side and the mean of H on the 6 

right side. We want the mean of S on the right side. For any real constant K, since we assumed f 7 

> 0, we have, using ߤ௉/݂ = ுߤ
௚ from eq. (3), 8 

ுߤ (16)
௄ = ுߤ

಼(೒శభ)
೒శభ = ுߤ

೒಼
೒శభߤு

಼
೒శభ = ௉ߤ) ݂⁄ )௄ (௚ାଵ)⁄ ுߤ

಼
೒శభ 9 

= ݂ି௄ (௚ାଵ)⁄ ௉ߤ
௄ (௚ାଵ)⁄ ுߤ

௄/(௚ାଵ) = ݂ି௄ (௚ାଵ)⁄ ௄(ுߤ௉ߤ) (௚ାଵ)⁄ = ݂ି௄ (௚ାଵ)⁄ ௌߤ
௄ (௚ାଵ)⁄ . 10 

This formula depends only on host-parasite density scaling eq. (3) and on the product rule for 11 

means eq. (4). It does not depend on variances. We use this formula twice, once in the first term 12 

with ܭ = 1 + ݀݃ and again in the second term with ܭ = ܾ + 2݃, to obtain 13 

ௌߥ = ݂ܿௗ݂ି(ଵାௗ௚) (௚ାଵ)⁄ ௌߤ
(ଵାௗ௚) (௚ାଵ)⁄ +  ݂ܽଶ݂ି(௕ାଶ௚) (௚ାଵ)⁄ ௌߤ

(௕ାଶ௚) (௚ାଵ)⁄ . 14 

This is equivalent to eq. (7). □ 15 

Proof that eq. (1) and eq. (9) are not compatible if ρ is constant 16 

In a family of negative binomial distributions with constant ρ and varying p, suppose that 17 

Taylor's law holds, so that ܸܽݎ(ܺ) = ,௕(ܺ)ܧܽ ܽ > 0. We shall show that this supposition leads 18 



to a contradiction. If we use TL to replace Var(X) on the right side of eq. (9) by a function of 19 

E(X), then we find 20 

(17) ρିଵ = ௕ିଶ(ܺ)ܧܽ −
ଵ

ா(௑)
. 21 

However, no constant values of a and b in TL eq. (1) are compatible with different values of 22 

E(X) and a constant ρିଵ in the negative binomial distribution. To see this, let ݔ = (ܺ)ܧ > 0 and 23 

(ݔ)݂ = ௕ିଶݔܽ − (ݔ)is constant for all x if and only if ݂ᇱ (ݔ)݂ ଵ. Thenିݔ = ܽ(ܾ − ௕ିଷݔ(2 +24 

ଶିݔ = 0 if and only if ܽ(ܾ − 2) =  ଵି௕ is constant for all x if and 25ݔ ଵି௕ for all x. The right sideݔ

only if b = 1, so that ݔଵି௕ = ଴ݔ = 1. Then ܽ(ܾ − 2) = ܽ− ଵି௕ becomesݔ = 1, contrary to the 26 

assumption that a > 0. This contradiction shows that the assumptions (TL and a family of 27 

negative binomial distributions with constant ρିଵ) leading to eq. (17) are contradictory. □ 28 

Proof that in a family of negative binomial distributions with constant 0 < ߩ and varying p ∈ (0, 29 

1], log Var(X) is a strictly convex function of log E(X) 30 

If this statement is valid for any positive base of the logarithm, then it is valid for all positive 31 

bases of the logarithm. For this proof, it is convenient to use the natural logarithm with base e. 32 

(This is the only place in this paper where we use natural logarithms.) A positive-valued function 33 

f of a real variable x is defined to be log-convex if log f(x) is a convex function of x. A function is 34 

defined to be strictly convex if it is convex and not linear. Let y = log Var(X) and x = log E(X). 35 

Then eq. (8) is equivalent to ݁௬ = ݁௫ + ρିଵ݁ଶ௫ which is equivalent to ݕ = log(݁௫ + ρିଵ݁ଶ௫). 36 

Define ݂(ݔ) = ݁௫ + ρିଵ݁ଶ௫. Then f(x) is a sum of two log-convex functions of x, and is 37 

therefore (31) also a log-convex function of x, i.e., ݕ = log(݁௫ + ρିଵ݁ଶ௫) is a convex function 38 

of x. Since ݀ଶ log (ݔ)݂ ଶݔ݀/ = (ݔ)ᇱᇱ݂(ݔ)݂] − ൫݂(ݔ)൯
ଶ

]൫݂(ݔ)൯
ିଶ

, log  is strictly convex if 39 (ݔ)݂



and only if ݂(ݔ)݂ᇱᇱ(ݔ) > ൫݂(ݔ)൯
ଶ
 or (݁௫ + ρିଵ݁ଶ௫)(݁௫ + 4ρିଵ݁ଶ௫) > (݁௫ + 2ρିଵ݁ଶ௫)ଶ. This 40 

last inequality follows from Cauchy's inequality or elementary algebra. Hence y = log Var(X) is a 41 

strictly convex function of x = log E(X).  42 

Proof of eq. (11) 43 

In eq. (5), substituting TL eq. (2) for ݒு and the negative binomial variance function eq. (10) for 44 

 ௉ gives 45ݒ

ௌߥ (18) = ௉ߤ)ுߤ + ρିଵߤ௉
ଶ) + ுߤܽ

௕ ௉ߤ
ଶ. 46 

Host-parasite scaling eq. (3) implies ߤ௉
ଶ = ݂ଶߤு

ଶ௚, hence 47 

ௌߥ (19) = ுߤு݂ߤ
௚ + ுߤுρିଵ݂ଶߤ

ଶ௚ + ுߤܽ
௕ ݂ଶߤு

ଶ௚ = ுߤ݂
ଵା௚ + ρିଵ݂ଶߤு

ଵାଶ௚ + ݂ܽଶߤு
௕ାଶ௚. 48 

Now use eq. (16) to replace ߤு by ߤௌ in the right side of eq. (19): 49 

ௌߥ (20) =  ݂ ⋅ ݂ିଵߤௌ + ρିଵ݂ଶ݂
ି

భశమ೒
భశ೒ ௌߤ

భశమ೒
భశ೒ + ݂ܽଶ݂

ି
್శమ೒
భశ೒ ௌߤ

್శమ೒
భశ೒ . 50 

Simplifying this gives eq. (11).  51 

Proof that the variance of a random product equals or exceeds the variance of a random sum 52 

First we prove that if ߤு ≥ 1, then ߥ௓ > ߜ ௌ byߥ ௓ andߥ ௌ. Denote the difference betweenߥ ≡53 

௓ߥ − ௌߥ = ுߤ
ଶ ௉ߥ + ௉ߥுߥ − ௉ߥுߤ = ுߤ)

ଶ − ௉ߥ(ுߤ + ுߥ ௉. Butߥுߥ = (ଶܪ)ܧ − ுߤ
ଶ . Substituting 54 

this expression gives ߜ = (ଶܪ)ܧ) − ுߤ ௉. Ifߥ(ுߤ ≥ 1, then ߤு
ଶ ≥ (ଶܪ)ܧ ு soߤ − ுߤ ≥55 

(ଶܪ)ܧ − ுߤ
ଶ = ுߥ > 0. Therefore ߜ ≥ ௉ߥுߥ > 0.  56 

Next we give the proof by Ross McVinish that ߥ௓ ≥ ௓ߥ ,ௌ always; moreoverߥ =  ௌ if and only if 57ߥ

there is zero probability that ܪ ≥ 2, that is, if and only if the number of individuals of a 58 



particular host species per m2 of habitat is always 0 or 1. The proof above demonstrates that ߜ =59 

(ଶܪ)ܧ) − ுߤ ௉ regardless of whetherߥ(ுߤ ≥ 1. But H takes only the values 0, 1, 2, …, so 60 

(ଶܪ)ܧ − ுߤ = ∑ (ℎଶ − ℎ)ஶ
௛ୀ଴ Pr (ܪ = ℎ). Since ℎଶ − ℎ = 0 if and only if ℎ = 0 or ℎ = 1 and 61 

otherwise ℎଶ − ℎ > 0 if ℎ ≥ 2, it follows that ߜ ≥ 0 and ߜ = 0 if and only if Pr(ܪ ≥ 2) = 0. □ 62 

Appendix 2. Additional descriptive graphs 63 

 64 

Figure S 1. Scatterplot matrix of the mean μH and the variance νH of host individuals⋅m-2; the mean μP and the variance νP 65 

of parasite individuals per host individual; and the mean μS and the variance νS of parasite individuals⋅m-2.  66 

Frequency histograms of each variable appear on the main diagonal. The tightest relationships 67 

are the Taylor's law plots of each variable's log(variance) as a function of its log(mean). 68 

=========END OF FIGURE S1 CAPTION========= 69 
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 70 

Figure S 2. Scatterplot matrix of the observed log10 variance of the number S of parasites per m2 (top left corner) and of 71 

the predicted variance of the number of parasites per m2 of models 1-4 (progressively to lower right corner). 72 

All horizontal and vertical axes are on log10 scale. Models 3 and 4 are the only models with 73 

predicted frequency histograms of the marginal distribution of the variance (the two diagonal 74 

panels on the lower right) that resemble the observed frequency histogram of the marginal 75 

distribution of the variance (diagonal panel in the upper left corner). Models 3 and 4 are the only 76 

models with predicted variance that is nearly linearly related, and approximately equal, to the 77 

observed variance (the two nearly straight plots at the bottom of column 1 and the two nearly 78 

straight plots at the right end of row 1). 79 

=========END OF FIGURE S2 CAPTION========= 80 


