
3402

Population dynamics, synchrony, and environmental quality of  
Hokkaido voles lead to temporal and spatial Taylor’s laws

Joel E. Cohen
1,2,3,5 and Takashi Saitoh

4

1Laboratory of Populations, The Rockefeller University and Columbia University, 1230 York Avenue, Box 20, New York,  
New York 10065-6399 USA

2Department of Statistics, Columbia University, 1255 Amsterdam Avenue, New York, New York 10027 USA
3Department of Statistics, University of Chicago, 5747 South Ellis Avenue, Chicago, Illinois 60637 USA

4Field Science Center, Hokkaido University, North-11, West-10, Sapporo 060-0811 Japan

Abstract.   Taylor’s law (TL) asserts that the variance in a species’ population density is a 
power-law function of its mean population density: log(variance) = a + b × log(mean). TL is 
widely verified. We show here that empirical time series of density of the Hokkaido gray-sided 
vole, Myodes rufocanus, sampled 1962–1992 at 85 locations, satisfied temporal and spatial 
forms of TL. The slopes (b ± standard error) of the temporal and spatial TL were estimated to 
be 1.613 ± 0.141 and 1.430 ± 0.132, respectively. A previously verified autoregressive Gompertz 
model of the dynamics of these populations generated time series of density which reproduced 
the form of temporal and spatial TLs, but with slopes that were significantly steeper than the 
slopes estimated from data. The density-dependent components of the Gompertz model were 
essential for the temporal TL. Adding to the Gompertz model assumptions that populations 
with higher mean density have reduced variance of density-independent perturbations and that 
density-independent perturbations are spatially correlated among populations yielded 
simulated time series that satisfactorily reproduced the slopes from data. The slopes 
(b  ±  standard error) of the enhanced simulations were 1.619  ±  0.199 for temporal TL and 
1.575 ± 0.204 for spatial TL.

Key words:   autoregressive time series; density dependence; Gompertz model; population dynamics; 
rodents; spatial correlation; synchrony; Taylor’s law; voles.

Introduction

Taylor’s law (TL; Taylor 1961) is one of the most 
widely verified empirical rules in ecology (Taylor 1986, 
Eisler et al. 2008). When applied to a single species, TL 
asserts that the variance in the population density is a 
power-law function of its mean population density. The 
power-law form of TL is written variance = a × (mean)b, 
a > 0. Equivalently,

The value of b (but not of log(a)) is independent of the 
base of the logarithms, which we chose to be 10, and of 
the scale (e.g., individuals/m2 vs. individuals/km2) used to 
measure population density. Both log(a) and b are esti-
mated by some statistical fitting procedure.

In the temporal TL, the mean and variance are calcu-
lated over observations of population density at different 
times in a given location and one data point (log(tem-
poral mean), log(temporal variance)) is plotted for each 
location. In the spatial TL, the mean and variance are 
calculated over observations of population density in dif-
ferent spatial locations and one data point (log(spatial 
mean), log(spatial variance)) is plotted for each time of 
observation.

Many theories and interpretations of TL have been 
proposed, but none has gained universal or even wide-
spread acceptance. Major questions are: Why TL is so 
widely observed? What mechanisms or processes gen-
erate TL? What can be learned from the values of a and 
b? Insufficient progress has been made in answering these 
questions in part because many previous empirical studies 
have verified TL without testing the details of any model 
that leads to TL, while detailed theoretical models that 
lead to TL have often lacked correspondingly detailed 
empirical verification of the processes assumed (see 
reviews by Taylor 1986 and Eisler et  al. 2008). One 
exception (Cohen et al. 2013) showed that a stochastic 
multiplicative population growth model predicted a 
spatial TL and that long-term tree censuses in Black 
Rock Forest, New York, USA, were compatible with the 
assumptions of the model and the estimated parameters 
of TL. Although spatial density-dependence has been 
examined in relation to TL (Taylor et al. 1978), we are not 
aware that the interaction with TL of temporal density 
dependence or density independence has been examined 
previously.

Here we show, first, that empirical time series of popu-
lation density of a rodent species repeatedly surveyed at 
multiple locations satisfied temporal and spatial TLs and, 
second, that a Gompertz autoregressive time-series 
model, previously demonstrated to describe these popu-
lations well (Stenseth et al. 2003), predicted the form and 

(1)log(variance)= log(a)+b× log(mean).

Ecology, 97(12), 2016, pp. 3402–3413
© 2016 by the Ecological Society of America

Manuscript received 14 December 2015; revised 22 July 2016; 
accepted 2 August 2016. Corresponding Editor: M. K. Oli.

5E-mail: cohen@rockefeller.edu

mailto:cohen@rockefeller.edu


TAYLOR’S LAWS IN HOKKAIDO VOLESDecember 2016 3403

(under additional assumptions) the empirically estimated 
slopes of the temporal and spatial TLs. This model rep-
resented temporally density-dependent as well as tempo-
rally density-independent population regulatory factors. 
The agreement between the predictions of the Gompertz 
model and the temporal TL depended primarily on the 
model’s density dependence with 1-yr lag. Adding 
assumptions of spatial correlation among the density-
independent perturbations of the Gompertz model and 
effects of habitat quality on the variance of density-
independent perturbations of the Gompertz model 
enabled the enhanced model to approximate well the 
empirically estimated slopes of the temporal and spatial 
TLs.

The species investigated here, the gray-sided vole 
[Myodes rufocanus (Sundevall, 1846)], was an economi-
cally important pest of tree plantations (Kaneko et  al. 
1998). Rodents are still very important pests for agricul-
tural products in Asia (John 2014). Better understanding 
via TL of the relation between the mean and the variance 
of population density offers the possibility to improve the 
efficiency and precision of pest population estimation 
and control, as it has for insect pests of soybeans (Kogan 
et  al. 1974, Bechinski and Pedigo 1981) and cotton 
(Wilson et al. 1989). Better understanding of TL also has 
important implications for conservation and the inter-
action between ecology and evolution (Pertoldi et  al. 
2014).

Materials and Methods

Study design and data

Hokkaido is the northernmost island (41°24ʹ–45°31ʹ N, 
139°46ʹ –145°49ʹ E) of Japan and covers 78, 073 km2. The 
geography of Hokkaido and the data collection have 
been described (Stenseth et  al. 2003). The Forestry 
Agency of the Japanese Government has investigated 
vole populations since 1954 in Hokkaido forests covering 
(as of 1992) 28, 400 km2. Rodent surveys were carried out 
twice a year, in spring (May or June) and fall (September 
or October). Here we analyzed N = 85 time series of gray-
sided vole populations in the fall covering T = 31 years 
(1962–1992) in the central and northernmost part of 
Hokkaido (the Asahikawa Regional Office, Forestry 
Agency of the Japanese Government; Saitoh et al. 1997), 
because this regional office provided the longest data sets. 
Fall data represented better inter-annual fluctuations 
because they varied more than spring data.

A basic unit of the rodent survey was 150 trap-nights, 
which consisted of 50 snap traps set at 10-m intervals on 
0.5 ha of land for three consecutive nights (Saitoh et al. 
1997, 1998). We defined vole population density as the 
number of voles captured per 150 trap-nights. The raw 
data Mt,j, the total number of trapped voles in a ranger 
office which carried out the rodent survey on several plots 
(which yielded several units of 150 trap-nights), are pre-
sented as DataS1.zip Appendix 1 in a T × N matrix with 

T = 31 rows, one for each year t = 1962, 1964, …, 1992, 
and N = 85 columns, j = 1, 2, …, 85, one for each ranger 
office. The amount of trapping effort (trap-nights) is given 
in DataS1.zip Appendix 2. There were no missing values.

Statistical procedures

The traditional frequentist (or Fisher) estimates of 
population density (per 150 trap nights) were (counts of 
voles Mt,j in year t at site j)/(number of trap nights in year 
t at site j/150). All actual trapping efforts (actual number 
of trap nights) were ≥150 trap nights.

We then used WinBUGS version 1.4.3 (Spiegelhalter 
et  al. 2003) for Bayesian analysis using Markov chain 
Monte Carlo methods to produce Bayesian (or “Bayes”) 
estimates of population density (per 150 trap nights) for 
each year and study site. These Bayes estimates take 
account of trapping effort and assume Poisson variation 
in actual counts, given an expected mean. In brief, 
Bayesian estimates adjust each frequentist estimate 
(usually very slightly) by “borrowing strength” from the 
distribution of the full array of data, often (as here) 
reducing the effects of outliers. The resulting Bayes pop-
ulation estimates are presented in DataS1.zip Appendix 
3 in a T × N matrix Nt,j with 31 rows, one for each year, 
and 85 columns, one for each study site. All Nt,j > 0.

We compared the Fisher and Bayes estimates of popu-
lation density, site by site, year by year. For low counts, 
Fisher and Bayes agreed closely, but when the Fisher 
counts exceeded about 35 voles per 150 trap nights, Bayes 
counts tended to be slightly less than Fisher counts 
(Appendix S1: Fig. S1A). The temporal mean of Fisher 
counts agreed very closely with the temporal mean of 
Bayes counts (Appendix S1: Fig. S1B) and likewise for 
the spatial means (Appendix S1: Fig. S1C). However, the 
estimates of the spatial and temporal variances from 
Bayes were systematically slightly lower than those from 
Fisher (Appendix S1: Fig. S1D, E).

Neither the Fisher nor the Bayes estimates takes 
account of possible differences in observability of voles at 
different sites or in different years.

Sample estimates of the variance are highly variable 
when, as here, the number of observations is limited. 
Therefore we accepted the Bayes estimates of mean and 
variance as more reliable and used them in all subsequent 
analyses. By providing the raw data on which Bayes esti-
mates are based, we enable anyone to do independent 
analyses of the counts and sampling efforts.

Gompertz model

For each population j, using the Bayesian estimates of 
Nt,j in xt,j = loge(Nt,j) =2.302585× log10(Nt,j), we calculated 
the temporal mean of xt,j, namely x̄j =(1∕31)

∑1992

t=1962
xt,j, 

which is the natural logarithm of the geometric mean over 
time of Nt,j, and then subtracted x̄j from the time series of 
xt,j to get the centered time series yt,j =xt,j− x̄j for popu-
lation j. Thus yt,j is the natural logarithm of Nt,j divided by 
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the geometric mean over time of Nt,j. Then we fitted the 
Gompertz model, a homogeneous (no constant term) 
second-order autoregressive model to yt,j

where the jth population’s coefficient of density 
dependence for a 1-yr lag is a1,j and for a 2-yr lag is a2,j. 
The error term et,j represents density-independent effects. 
It is modeled by a normal distribution with mean equal 
to 0 and a standard deviation SDj that is constant in time 
but may differ from one population j to another.

Instead of modeling process and observation sepa-
rately, we used WinBUGS to obtain Bayesian estimates 
of a1,j, a2,j, and SDj taking sampling error into consider-
ation (WinBUGS code is in DataS1.zip Appendix 5). The 
median of the posterior distribution was used for each 
parameter estimate. We also estimated those parameters 
using Yule-Walker estimation as coded in the aryule.m 
function in the Signal Processing Toolbox of Matlab 
(MathWorks 2015) (results in DataS1.zip Appendix 3).

The Gompertz model (Eq. 2) can describe various fluc-
tuation patterns of population dynamics (Royama 1992) 
and is commonly applied to analyses of vole populations 
(Stenseth et al. 1996, 1998, Saitoh et al. 1997, 1998). But 
the Gompertz model does not explicitly link a1 and a2 to 
underlying demographic processes of birth, death, and 
migration. Hence it is not yet possible to interpret a1 and 
a2 in terms of these processes. Despite numerous analyses 
of cyclic patterns in vole populations, how demographic 
processes control rodent population cycles remains 
hypothetical (Andreassen et al. 2013). While the rates of 
the reproduction and survival of Hokkaido voles are 
expected to be negatively affected by higher density, the 
relative importance of these demographic components of 
population change in explaining annual population fluc-
tuations remains unclear. Quantitative information on 
the magnitudes and population-dynamic consequences 
of immigration and emigration is very limited.

Nevertheless, values of a1 and a2 can be interpreted, on 
a relative basis, in terms of ecological density dependence 
or density independence. Specifically, a1 represents a 
return tendency to an equilibrium density (density 
dependence in a narrow sense) and populations with 
more negative values are less variable, while a2 generates 
variability for a population and populations with more 
negative values are more likely to be cyclic (Royama 
1992). Density dependence with a 1-yr lag is strong and 
prevalent in populations of the Hokkaido vole (Saitoh 
et al. 1997, 1998, Stenseth et al. 2003).

Simulations

We generated three simulations using progressively 
stronger assumptions which were demanded by our pro-
gressively deeper understanding of the data: the so-called 
Fundamental simulations, the Adjusted SD simulations, 
and the Synchronized et simulations. The state variable 
in all simulations was the centered log-transformed 

population density yt,j =xt,j− x̄j. The values of yt,j gen-
erated by each simulation were then transformed back to 
the original scale of population density using the observed 
temporal sample means x̄j, and then the means and vari-
ances that appear in the tests of TL were computed from 
these reverted values.

The Fundamental simulation used the Gompertz 
model (Eq. 2) with the population-specific estimates of 
a1,j and a2,j and SDj to generate 85 time series corre-
sponding to 85 observed populations. The initial two 
observed centered log-transformed values y1,j, y2,j were 
used for the first two values of each simulated population. 
The length of every simulated time series was 31 yr, the 
same as observed.

We also did two additional simulations. The Adjusted 
SD simulations differed from the Fundamental simu-
lation only in replacing SDj by the estimated SDj – 
(0.174 × 2.302585 × log10(estimated temporal mean x̄j)) 
for each j. The empirical basis for this adjustment is 
described in Results and its ecological rationale and inter-
pretation are explained in the Discussion.

To generate the Synchronized et simulations, we first 
generated a fixed baseline error time series et,0 of 31 inde-
pendent and identically distributed normal random 
numbers with mean 0 and SD 1. Then we generated 85 
correlated time series et,j, j = 1, …, 85, of length 31 years 
(t = 1, …, 31), using the formula et,j = ρ × et,0 + (1−ρ2)1/2 ×  
 t,j(0, 1), where  t,j(0, 1) are independent and identi-
cally distributed normal random numbers with mean 0 
and SD 1. Consequently, the correlation over time 
between the error terms of any two simulated time series, 
for example, et,1 and et,2, would be ρ2 if the time series 
were infinitely long. We examined the effect of ρ on the 
simulated spatial TL by an Approximate Bayesian 
Computation method (Csilléry et  al. 2012). This pro-
cedure was a numerical search for the level of spatial cor-
relation of population dynamics that gave the best 
agreement between the log(mean) and log(variance) of 
simulations and the log(mean) and log(variance) on the 
original scale of measurement of population density.

Temporal Taylor’s law

For each population j  =  1, 2, …, 85, separately, we 
calculated the sample mean N̄j =(1∕31)

∑1992

t=1962
Nt,j of 

Bayesian estimated population density Nt,j over time 
(temporal sample mean) and the sample variance over 
time (temporal sample variance) (1∕30)

∑1992

t=1962
(Nt,j−N̄j)

2 
of the jth time series of 31 Bayesian estimates of the 
number of voles per 150 trap-nights (Nt,j: t = 1962, 1963, 
…, 1992) in R (DataS1.zip Appendix 3). We defined

We used ordinary least-squares regression (OLS) to 
fit  Eq.  1 to these 85 values of X(population j) and 

(2)yt,j =
(

1+a1,j

)

yt−1,j+a2,jyt−2,j+et,j

X(population j)= log10(temporal sample mean of Nt,j),

Y(population j)= log10(temporal sample variance of Nt,j).
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Y(population j). The use of OLS to fit log-log transformed 
versions of power laws has been criticized (Tokeshi 1995, 
Packard 2009, Packard et al. 2011). Strictly speaking, the 
use of OLS is invalid when observation errors are included 
in the abscissa, and here every observation of X(population 
j) is subject to sampling variability. However, the use of 
OLS in fitting TL is recommended (Xiao et al. 2011, Lai 
et al. 2013) because the sampling variability of X(population 
j) is much smaller than the sampling variability of 
Y(population j), and numerous practical evaluations of 
using OLS to fit TL suggest that it gives reasonable results. 
Therefore we used OLS.

To test for nonlinearity in the relation between 
Y(population j) and X(population j), we used OLS to fit a 
quadratic generalization of TL (due to Taylor et al. 1978: 
Eq. 14): Y(population j) =  log(a)  +  b  ×  X(population 
j) + c × [X(population j)]2. We accepted TL as an approx-
imate representation of the relationship of temporal sample 
variance to temporal sample mean if c in the quadratic 
model did not differ significantly from zero and the slope b 
in the linear model, Eq. 1, differed significantly from zero.

All regressions were computed using function lm in R 
version 3.2.2. The critical value for statistical significance 
was always P = 0.05 without any correction for multiple 
inferences.

Spatial Taylor’s law

For each year t  =  1962, 1963, …, 1992, separately, 
we  calculated the sample mean N̄t =(1∕85)

∑85

j=1
Nt,j 

of  Bayesian estimated population density Nt,j 
(spatial  sample mean) and the sample variance 
(1∕84)

∑85

j=1

�

Nt,j−N̄t

�2
 (spatial sample variance) over the 

85 populations j = 1, …, 85 (DataS1.zip Appendix 3). We 
defined

Using the same procedure as for the temporal TL, we 
fitted Eq. 1 and tested for nonlinearity by fitting a quad-
ratic generalization of TL.

Factors influencing Taylor’s law

The simulations of the Gompertz model are deter-
mined by three parameters (a1, a2, and SD) and the esti-
mated mean of empirical densities. Since more negative 
a1 represents a stronger force to return densities to equi-
librium, higher values of a1 are predicted to increase the 
variance of densities. Since populations with more neg-
ative values of a2 are more likely to be cyclic (Royama 
1992), higher values of a2 are predicted to decrease the 
variance of densities. Since SD determines the degree of 
density-independent disturbance, higher values of SD are 
predicted to increase the variance of densities.

We analyzed the effects of the parameters of the 
Gompertz model on the variance and mean of the 

empirical and simulated densities by means of gener-
alized linear model (GLM) analyses with the three 
parameters as explanatory variables and the log(var-
iance) and log(mean) of empirical and simulated den-
sities as separate response variables. If the Gompertz 
model sufficiently captured the population dynamics, 
the GLM analyses would be expected to yield similar 
results when comparing empirical and simulated time 
series.

In addition, if a parameter consistently affects both 
variance and mean, that parameter is considered to con-
tribute to the formation of TL. For example, if a factor X 
is linearly related to both log(variance) and log(mean), 
i.e., if X satisfies log(variance) = r + s × X and log(mean) 
= u + v × X, v ≠ 0, then TL must be true. Why? Solving 
for X in the second equation gives X = [log(mean)−u]/v 
and then the first equation gives log(variance) = r + s × 
[log(mean)−u]/v = (r−s × u/v) + (s/v) × log(mean). This 
linear relationship between log(variance) and log(mean) 
is TL with intercept r−s × u/v and slope s/v. If the signs of 
s and v are same (both are negative or positive), that 
factor X contributes to forming a positive slope of TL. If 
the signs of s and v are different, that factor X leads 
towards a negative slope of TL.

Results

Basic features of population fluctuation

Densities fluctuated with 2–5-yr periods (Fig. 1A). In 
some years most populations showed a peak or a trough 
of density. For example, log10(densities) of 61 popula-
tions (71.8%) were lower than 0.5 in 1975, while those of 
67 populations (78.8%) were higher than 1.0 in 1978. The 
range of log10 spatial mean densities was 0.273–1.316 for 
85 populations. Like spatial mean densities, the log10 
spatial variance of densities also fluctuated over time, 
ranging between 0.739 and 2.264. As a function of year t, 
the spatial means and spatial variances showed no pro-
nounced or statistically significant trends (slope = −0.004, 
t = −0.800, P = 0.430, adjusted R2 = −0.012 for the mean; 
slope  =  −0.004, t  =  −0.510, P  =  0.614, adjusted 
R2 = −0.025 for the variance).

The 85 observed populations were generally pairwise 
correlated over time but the extent (even the sign) of 
the  correlation varied widely. The mean of the 3570 
pairwise correlation coefficients (3570  =  85  ×  84/2) 
of  population density measured by the Bayesian 
adjusted population density was 0.297 ± 0.202 (SD). The 
maximum pairwise correlation was 0.902 and the 
minimum was −0.378. The correlation coefficients were 
significantly higher than zero in 1,392 pairs (39.0%).

A linear regression of the pairwise correlation on 
the  log10 of pairwise Euclidean distance [range 3,645–
226, 970 m] between each pair of populations had slope ± 
standard error = −0.228 ± 0.011 (P ≈ 2 × 10−16) but the 
adjusted R2 = 0.1071 was not high. These results indicate 
that nearer populations had more closely correlated 

X(year t)= log10(spatial sample mean of Nt,j)

Y(year t)= log10(spatial sample variance of Nt,j).
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population dynamics but other factors in addition to dis-
tance evidently affected the correlation of population 
dynamics.

Temporal and spatial Taylor’s laws

We tested TL by using the Bayesian estimates Nt,j of 
population density, not log-transformed and not cen-
tered, but on the original scale of measurement, to cal-
culate the temporal and spatial variances and means.

TL described adequately the relation of Y(population 
j)  =  log(temporal variance) of population density to 
X(population j)  =  log(temporal mean) of population 
density (Fig.  1B), with slope b  ±  standard 
error = 1.613 ± 0.141 and adjusted R2 = 0.607 (Appendix 
S1: Table S1). Quadratic regression revealed no statisti-
cally significant evidence of nonlinearity.

TL described the relation of Y(year t) = log(spatial var-
iance) of population density to X(year t)  =  log(spatial 
mean) of population density (Fig.  1C), with slope 
b ± standard error = 1.430 ± 0.132 and adjusted R2 = 0.795 

(Appendix S1: Table S2), a tighter linear relationship 
than the temporal TL. Quadratic regression revealed no 
statistically significant evidence of nonlinearity.

Do simulations of the Gompertz model obey a temporal 
Taylor’s law?

In the Fundamental simulations, log(temporal var-
iance) of density was linearly related to log(temporal 
mean) of density (Fig.  2A) with slope b  ±  standard 
error = 2.699 ± 0.214 (Appendix S1: Table S3). Quadratic 
regression revealed no statistically significant evidence of 
nonlinearity. In comparison with the observed popula-
tions, Fundamental simulated populations showed a sig-
nificantly steeper slope of TL (Appendix S1: Table S3; 
ANCOVA, t = 4.054, P << 0.001). Although the log(tem-
poral mean) of both observed populations and 
Fundamental simulations fell in the range from roughly 
0.6 to 1.3 (that is, roughly 4 = 100.6 to 20 = 101.3 voles per 
150 trap-nights), the log(temporal variance) of observed 
populations ranged from roughly 0.8 to 2.3 (Fig.  1C) 

Fig. 1.  (A) Observed time series of the log10 Bayesian estimate of population density Nt,j of 85 gray-sided vole populations in 
Hokkaido, Japan in 1962–1992. (B) Test of temporal Taylor’s law (TL) for population density. The straight solid line is the least-
squares linear regression of log10(temporal variance) as a function of log10(temporal mean) for observed populations. The curved 
dotted line is the least-squares quadratic regression. (C) Test of spatial TL for population density. Straight solid and curved dotted 
lines are as in (B) for spatial variance and spatial mean. The curved dotted line is almost hidden by the straight solid line because the 
quadratic coefficient is very small and the other coefficients are almost identical to those of TL. Parameter estimates for linear and 
quadratic regressions in (B) and (C) are given in Appendix S1: Table S1.
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while the log(temporal variance) of Fundamental simula-
tions ranged from roughly 1.0 to 4.0 (Fig. 2A), a range 
twice as wide.

In GLM analyses of the effects of the Gompertz 
parameters on the temporal variance of densities, a1 and 
SD showed positive effects on the temporal variance 
while a2 had negative effects, for both the empirical and 
the Fundamental simulated densities, as predicted 
(Table 1). The effects of SD only (not a1 and a2) were 
statistically significant. In contrast, the GLM had very 
small, and statistically insignificant, adjusted R2 for the 
model of the temporal mean of the empirical and 
Fundamental simulated densities, so the Gompertz 
parameters did not explain variations in the temporal 
mean, empirical or Fundamental simulated.

When SD (alone) was regressed on the empirical tem-
poral mean densities, we found SD = 1.384−0.174 × 
loge(temporal mean), with R2 = 0.043, F1,83 = 4.743, P = 
0.032. Using this relationship between SD and the empirical 
temporal mean in the simulations, we adjusted SD using 
the following equation: Adjusted SD = estimated SD of 
the empirical densities − 0.174 × loge(temporal mean of 
empirical densities). For these Adjusted SD simulations, a 
clear linear relation was observed between log(temporal 
variance) of density and log(temporal mean) (Fig. 2D), 
and every parameter of the regression of the simulated 
log(temporal variance) as a function of the simulated 
log(temporal mean) was similar to that for the temporal 
TL for observed populations (for Adjusted SD simula-
tions: slope b ± standard error = 1.671 ± 0.321 and adjusted 
R2 = 0.237; see also Appendix S1: Table S4; ANCOVA, 
P   > 0.6). Both log(temporal mean) and log(temporal 
variance) of density showed good agreements between 
observed populations and the Adjusted SD simulations 
(Fig. 2E and F; Appendix S1: Table S4).

Do simulations of the Gompertz model obey a spatial 
Taylor’s law?

Using exactly the same time series produced by 
Adjusted SD simulations that realistically approximated 
the temporal TL, we tested whether the Gompertz model 
could simulate the observed spatial TL (Fig. 1C). The 
simulated log(spatial variance) of density was a linear 
function of the simulated log(spatial mean) of density, 
but with significant evidence of nonlinearity (Appendix 
S1: Table S5). The slope b ± standard error = 3.283 ± 
0.464 was significantly steeper than the slope of the 
observed TL (Appendix S1: Table S5; ANCOVA, t = 
4.109, P = 0.001).

The pairwise correlation over time of the 85 time series 
(corresponding to 85 spatial locations) produced by the 
Adjusted SD simulation was low, as expected, since inde-
pendent error terms were used for each population and 
each year. The mean of the correlation coefficients, 
0.013 ± 0.183 (SD), was significantly lower than the mean 
of the pairwise correlations of the observed 85 popula-
tions (t test, t = 40.050, P < 0.001). The percentage of 

positive significant correlations for the Adjusted SD sim-
ulation (4.7%) was very close to the value expected by 
chance, as expected.

To examine whether the lack of spatial correlation in the 
Adjusted SD simulation might be responsible for the dif-
ference in the spatial TL between the observed populations 
and the Adjusted SD simulations, correlated time series 
were generated by using spatially (not temporally) corre-
lated et,j (Methods). When ρ = 0.617, the Synchronized et 
simulations’ time series produced a most likely set of time 
series that satisfied both TLs. The mean of the spatially 
pairwise correlations over time in the Synchronized et sim-
ulations was 0.201, not so different from the mean of the 
spatially pairwise correlations over time in the observed 
populations (0.297). In the Synchronized et simulations, 
the log(spatial variance) of density was linearly related to 
log(spatial mean) of density (Fig.  3D), with slope 
b ± standard error = 1.575 ± 0.204. No significant differ-
ences were found in the slope and the intercept between the 
observed populations and the Synchronized et simulations 
(Appendix S1: Table S6; ANCOVA, P > 0.5). However, 
the log(spatial mean) and log(spatial variance) of density 
did not show tight agreement between observed popula-
tions and the Synchronized et simulations (Fig. 3E and F; 
Appendix S1: Table S6). Quadratic regression did not 
show any statistically significant evidence of nonlinearity 
(Appendix S1: Table S6) in the relation of the Synchronized 
et simulated variance to the Synchronized et simulated 
mean.

The Synchronized et simulation also showed a clear 
temporal TL (Fig.  3A), with slope b  ±  standard 
error  =  1.619  ±  0.199. No significant differences were 
found in the slope and the intercept between the observed 
populations and the Synchronized et simulations 
(Appendix S1: Table S7; ANCOVA, P  >  0.4). Both 
log(temporal mean) and log(temporal variance) of 
density showed relatively good agreements between 
observed populations and the Synchronized et simulation 
(Fig. 3B and C; Appendix S1: Table S7).

The same simulation analyses were carried out using the 
parameters estimated by the Yule-Walker method. They 
provided results resembling those from the Bayesian esti-
mates. The Fundamental simulation provided the form of 
temporal and spatial TLs, but with slopes that were signifi-
cantly steeper than the slopes estimated from the data 
(Appendix S1: Tables S8–S12). The Synchronized et simu-
lation generated simulated time series that satisfied both the 
temporal TL with slope b ± standard error = 1.794 ± 0.172 
and the spatial TL with slope b  ±  standard 
error = 1.540 ± 0.251 through the Adjusted SD simulation 
(Appendix S1: Tables S11 and S12, Fig. S2).

Discussion

Empirical results on Taylor’s law

In populations of gray-sided voles surveyed at 85 sites 
in Hokkaido, Japan, from 1962 through 1992, the 
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Fig.  2.  The temporal TLs, temporal means, and the temporal variances of population density in the Fundamental 
simulation (A, B, and C) and the Adjusted SD simulation (D, E, and F) (85 time series, each lasting 31 years). (A) Temporal 
TLs: log10(temporal variance) as a function of log10(temporal mean) for Fundamental simulations using observed a1,j, 
observed a2,j, and observed SDj. (D) log10(temporal variance) as a function of log10(temporal mean) for Adjusted SD 
simulations using observed a1,j, observed a2,j, and adjusted SDj. Solid line is the ordinary least squares (OLS) regression for 
observed populations. The broken and dotted lines represent the linear and quadratic relationship in these simulations, 
respectively. (B and E) Simulated log10(temporal mean density) as a function of empirical log10(temporal mean density) in the 
Fundamental (B) and Adjusted SD (E) simulations. The solid line represents y  =  x. (C and F) Simulated log10(temporal 
variance of density) as a function of empirical log10(temporal variance of density) in the Fundamental (C) and Adjusted SD 
(F) simulations. The solid line represents y = x.
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temporal variance (variance over time) of the Bayesian 
estimated population density was approximately a power 
law function of the temporal mean (mean over time). This 
finding illustrated the temporal TL. The slope of the 
log(variance)–log(mean) relationship was estimated to be 
b ± standard error = 1.613 ± 0.141 (Appendix S1: Table 
S1). The estimated density also satisfied a spatial TL. 
The slope was estimated to be b ± standard error = 1.430 
± 0.132 (Appendix S1: Table S2). There was no statisti-
cally significant evidence of nonlinearity in temporal or 
spatial relationships.

Interpretation of the slope of Taylor’s law

The slope b of TL is not an indicator of the absolute 
level of variation in population density. Rather, b is an 
“elasticity,” in economic jargon, that is, b is approxi-
mately the proportional rate of increase of the variance of 
population density associated with a given proportional 
increase in the mean of population density. For example, 
if b = 1.613, as in the observed temporal TL, and if a first 
population has temporal mean density that is 1% larger 
than that of a second population, so that N̄1 =1.01×N̄2, 
then, on average, the first population will have a temporal 

variance of  population  density very nearly (but not 
exactly) 1.613% larger than that of the second, because 

Var(N1)=a(N̄1)1.613 =a(1.01×N̄2)1.613

=1.011.613×a(N̄2)1.613 ≈1.01618×Var(N2).

In general, if ϵ is much smaller than 1 (in the example, 
ϵ = 0.01 << 1, where ϵ is the fractional change in the mean), 
then (1 + ϵ)b ≈ 1 + b × ϵ so if the mean is increased by the 
factor 1 + ϵ or by 100ϵ%, then the variance is increased 
approximately by the factor 1 + b × ϵ or by 100b × ϵ%. 
The smaller ϵ is, the more accurate the approximation is.

The coefficient of variation is defined as the standard 
deviation divided by the mean. When TL has slope 
0 < b < 2, as for these vole populations, a population that 
is more abundant on average has a larger variance but 
smaller coefficient of variation.

Simulations of the Gompertz model

Previously, the population dynamics of gray-sided 
voles at the study sites had been shown to be described 
well by the Gompertz model (Eq. 2). In this linear autore-
gressive model, the dynamic variable was the logarithm 
of population density, and density dependence operated 

Table 1.  Partial regression coefficient estimates (PRC), standard error (SE), t value, and standardized partial regression coeffi-
cients (β) of explanatory variables in the generalized linear model for temporal variance and temporal mean on empirical densities 
and simulated densities.

Parameter PRC SE t β

a) Variance of empirical densities  
(Adj. R2 = 0.061; F3,81 = 2.839*)

a1 0.191 0.133 1.438 0.161
a2 −0.135 0.113 −1.202 −0.136
SD 0.291 0.128 2.279* 0.243
Intercept 1.277 0.136 9.397*** NA
b) Variance of simulated densities  

(Adj. R2 = 0.311; F3,81 = 13.63***)
a1 0.089 0.216 0.411 0.040
a2 −0.149 0.183 −0.815 −0.079
SD 1.285 0.207 6.202*** 0.566
Intercept 0.600 0.221 2.994** NA
c) Mean of empirical densities  

(Adj. R2 = 0.038; F3,81 = 2.114)
a1 0.082 0.065 1.252 0.142
a2 −0.011 0.055 −0.204 −0.023
SD −0.135 0.063 −2.162* −0.233
Intercept 0.997 0.067 14.960*** NA
d) Mean of simulated densities  

(Adj. R2 = −0.0001; F3,81 = 0.996)
a1 0.046 0.078 0.595 0.069
a2 0.030 0.066 0.461 0.054
SD 0.114 0.749 1.519 0.167
Intercept 0.837 0.08 10.498*** NA

Notes: Results on temporal variance [temporal variance ~ direct density effect (a1) + delayed density effect (a2) + density indepen-
dent effect (SD)] are shown for (a) empirical densities and (b) simulated densities.

Results on temporal mean [temporal mean ~ direct density effect (a1) + delayed density effect (a2) + density independent effect 
(SD)] are given in (c) for empirical densities and in (d) for simulated densities. The model fitting was assessed by adjusted (Adj.) R2 
and F statistics.

*P < 0.05, **P < 0.01, ***P < 0.001, NA: Not Applicable because the intercept is a constant.
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Fig. 3.  The temporal (A, B, and C) and spatial (D, E, and F) TLs, means, and variances in 85 Synchronized et simulations, each 
lasting 31 years, which were generated using observed a1,j, observed a2,j, and synchronized et,j. (A) The log10(temporal variance) as 
a function of log10(temporal mean) for the simulated populations. The solid line is the OLS regression for the observed populations. 
The broken and dotted lines represent the linear and quadratic relationship in the simulations, respectively. (B) The log10(temporal 
mean) of the Synchronized et simulations as a function of the log10(temporal mean) of the observed populations. The solid line 
represents y  =  x. (C) The relationship of log10(temporal variance) between the observed populations and the Synchronized et 
simulations. The solid line represents y = x. (D) The log10(spatial variance) as a function of log10(spatial mean) for the simulated 
populations. The solid line is the OLS regression for the observed populations. The broken and dotted lines represent the linear and 
quadratic relationship in the simulations, respectively. (E) The relationship of log10(spatial mean) between the observed populations 
and the Synchronized et simulations. The solid line represents y = x. (F) The relationship of log10(spatial variance) between the 
observed populations and the Synchronized et simulations. The solid line represents y = x.
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with 1-yr lags (quantified by parameter a1) and 2-yr lags 
(quantified by parameter a2). Density-independent 
random effects (quantified by parameter SD) were 
assumed independent in time and space but with standard 
deviations that varied from site to site.

The GLM model including all parameters of the 
Gompertz model (a1, a2, and SD) had significant ability 
to explain the variation of the variance of densities, but 
not variation in the mean of densities (Table 1). Since the 
estimated mean of an observed population was given as 
an equilibrium density to simulations, the mean of simu-
lated densities was very probably influenced more by the 
estimated mean than by the three parameters of the 
Gompertz model. The parameters may have indirectly 
influenced the mean of simulated densities through influ-
encing the variability of densities.

To investigate whether the Gompertz model could 
account for the observed temporal and spatial TLs, we 
performed three sets of simulations under differing 
assumptions. In all sets of simulations, log(temporal var-
iance) was approximately a linear function of log(tem-
poral mean), and log(spatial variance) was approximately 
a linear function of log(spatial mean), confirming that the 
Gompertz model could generate the form of a temporal 
and a spatial TL.

However, the temporal and spatial TLs in the 
Fundamental simulation were significantly steeper than the 
observed temporal and spatial TLs. The temporal TL slope 
of the Fundamental simulation (2.699 ± 0.214) was higher 
than 2. The slopes of TL that are commonly observed in 
many empirical examples lie between 1 and 2 (Taylor and 
Woiwod 1980). The slopes of the temporal and spatial TLs 
of the observed vole populations (1.613  ±  0.141 and 
1.430 ± 0.132) were also included in this range.

Modified simulations of the Gompertz model

To make the Gompertz model’s TLs have parameters 
that matched the parameters of the observed TLs, we 
incorporated two ecological effects, the heterogeneity of 
habitat quality and the synchrony of density independent 
factors. These simulations differed from the Fundamental 
simulations in two respects: the standard deviation of the 
density-independent error term was reduced by the 
equation of Adjusted SDj = estimated SDj−0.174 × loge(es-
timated temporal mean) for each j, and the density-
independent error term was spatially correlated with 
correlation ρ2 = (0.617)2 = 0.381, resulting in an average 
(over pairs) value of the pairwise correlation between 
simulated time series of 0.201, not far from the observed 
average pairwise correlation of 0.297.

In Adjusted SD simulations, we assumed that popula-
tions in low-quality habitats have lower mean density but 
higher variability, whereas populations in high-quality 
habitats have higher mean density and lower variance of 
density. This assumption may be realistic. Population 
densities in low-quality habitats may usually be low but 
they sometimes become unusually high due to 

immigrants from a population in a high-quality habitat 
in outbreak years. Since differences in densities between 
usual and outbreak years may be higher in populations in 
low-quality habitats in comparison with those in high-
quality habitats, the negative relationship between tem-
poral mean and SD could realistically be expected.

The Adjusted SD simulations, which realistically approx-
imated the temporal TL, reproduced the form of the spatial 
TL but implied a slope far larger than that of the observed 
spatial TL. In the Synchronized et simulations, in which the 
density-independent error terms (et) in the Gompertz 
model were correlated across space (while retaining inde-
pendence in time), every parameter of the regression of 
log(spatial variance) as a function of log(spatial mean) (in 
particular, b ± standard error = 1.658 ± 0.141, Appendix 
S1: Table S6) was similar to that for the observed spatial 
TL. In addition, the Synchronized et simulations repro-
duced the temporal TL (Appendix S1: Table S7), with sim-
ulated slope b ± standard error = 1.596 ± 0.227. There was 
no statistically significant evidence of nonlinearity in the 
Synchronized et simulations, nor of a difference in intercept 
or slope of a temporal TL between the Synchronized et sim-
ulations and the observed populations.

Interpretation of the modified simulations in terms of 
ecological mechanisms

We interpreted the effects on the TL slope of the 
adjustments in the Synchronized et simulations in terms 
of a simple simulation model that assumed some habitats 
were more favorable for vole population density than 
others. The details of this simulation are not presented 
here, as the model served for conceptual exploration 
rather than quantitative explanation. In this model, 
habitat heterogeneity was represented by the variation of 
carrying capacity. Each population grew following the 
logistic equation and fluctuated with stochastic effects. 
Movements occurred from a population in a higher 
quality habitat (a source population) to a neighboring 
population in a lower quality habitat (a sink population) 
when the density of the population in the higher quality 
habitat exceeded its carrying capacity.

Simulations of this model generated the following 
results. When each population was independent, the 
spatial and the temporal slopes of TL were higher than 2, 
and therefore higher than observed. When density-
dependent movements were introduced, the spatial and 
temporal slopes of TL were lowered to the interval between 
1 and 2 of the observed spatial and temporal TL slopes.

We understand the effects of the assumptions of this 
model on the temporal TL as follows. Movements from a 
population in a higher-quality habitat to a population in a 
lower-quality habitat when the density of the population 
in a higher-quality habitat exceeded the carrying capacity 
reduced the temporal mean and variance of the popula-
tions in higher-quality habitats and enhanced the temporal 
mean and variance of the populations in lower-quality 
habitats. Since the absolute densities that were subtracted 
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or added were equal, the relative densities added to the 
populations in lower-quality habitats were higher than 
those subtracted from the populations in higher-quality 
habitats. Thus the assumed population movements would 
be expected to lower the slope of the temporal TL.

We understand the effects of the assumptions of this 
model on the spatial TL as follows. Movements from a 
population in a higher-quality habitat to a population in 
a lower-quality habitat when the population density in a 
higher-quality habitat exceeded the carrying capacity 
reduced the densities of populations in higher-quality 
habitats and enhanced the densities of populations in 
lower-quality habitats. Therefore, the spatial variance 
was reduced by the movements, whereas the spatial mean 
was not affected by the movement. In a year having 
higher spatial mean densities, populations in higher-
quality habitat were prone to exceed their carrying 
capacity. As a result, the assumed population movements 
would be expected to lower the slope of the spatial TL.

This hypothesis has three strengths. First, it explains 
the milder slopes of the observed temporal and the spatial 
TL by a single, simple mechanism, namely, density-
dependent movement in a source–sink dynamics system. 
Second, the concept of source–sink dynamics is well 
established. Demographic surpluses in higher-quality 
habitats (sources) and deficits in lower-quality habitats 
(sinks) commonly arise, and movement among local pop-
ulations can stabilize dynamics at regional scales (Dias 
1996, Heinrichs et al. 2016). Third, there is some evidence 
of density-dependent dispersal in voles, although this 
topic is controversial (Berthier et al. 2006).

Future research questions

We are not aware of mathematics that shows analyti-
cally that the Gompertz model with or without adjust-
ments can generate temporal and spatial TLs, and we are 
not aware of explicit formulas that express the slopes and 
intercepts of the temporal and spatial TLs as explicit 
functions of the parameters of the correlated Gompertz 
model (a1, a2, SD, and ρ). Mathematical (by contrast with 
numerical) analysis of the relation between the Gompertz 
model, Eq. 2, and Taylor’s law, Eq. 1, remains an open 
problem.

Since the Synchronized et simulation showed good 
agreement with the observed TLs, we suggested that the 
heterogeneity of habitat quality and the synchrony of 
some density-independent factor lowered the spatial and 
temporal TL slope. This statement should be regarded as 
a hypothesis about nature for further empirical testing 
and mathematical analysis.

The success of the Synchronized et simulations indi-
cated that density dependence may be a driving force 
leading to the TLs. Since density dependence is the nec-
essary and sufficient condition for sustainable popula-
tions (Royama 1992) and density dependence prevails in 
real populations (Brook and Bradshaw 2006), we suggest 
one possible answer to the question about why TL is so 

widely observed: sustainable populations may have a 
kind of density dependence that brings about TL. This 
suggested answer leads to further questions: why and 
how does some kind of density dependence form TLs, 
and what kinds of density dependence lead to TL?

The log(spatial mean) and log(spatial variance) of 
density did not agree well between the Synchronized et 
simulations and the observed populations (Fig. 3E and 
F), even though the spatial TL, Fig. 3D (as well as the 
temporal TL, Fig. 3A) generated by the Synchronized et 
simulations did agree well with the corresponding TLs of 
the data. Each data point in Fig. 3E and F is an average 
or a variance over 85 populations in 1 yr. While we could 
estimate the magnitude of stochastic effects on each pop-
ulation’s entire dynamics for the study period as SD, we 
could not predict or model temporal changes in stochastic 
effects (for example, why some years were peaks and 
some years were troughs). Therefore, the sequence of the 
degree of stochastic effects used in the simulations did not 
fit that for observed populations, and the spatial mean 
and variance of simulated populations differed from the 
observed ones. In future work, it would be of interest to 
examine whether meteorological or other environmental 
factors like sea surface temperature may play a causal 
role in the fluctuations of population density that we now 
treat as stochastic variability.

This study illustrates a scientific application of Taylor’s 
laws that may be useful elsewhere, namely, using TLs as 
additional criteria to evaluate population-dynamic 
models. In this study, the previously verified Gompertz 
model could not reproduce quantitatively the empirically 
estimated slopes of the TLs. Taking account of habitat 
quality and synchrony accounted quantitatively for the 
slopes of observed TLs. In other cases where TLs are ver-
ified, testing whether population-dynamic models can 
account for them may lead to improved assumptions that 
help link Taylor’s law to population dynamics.
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Supplementary figures 39 

Figure S1. Comparison of population density estimates between the frequentist (or "Fisher 40 

counts") estimates (150×counts/sampling effort in trap nights) and the Bayesian (or "Bayes 41 

counts") estimates by WinBUGS. The solid line represents equality of ordinate and abscissa. 42 

(aA) "Bayes counts" against "Fisher counts". (bB) The temporal mean of Bayes counts against 43 

the temporal mean of Fisher counts. (cC) The spatial mean of Bayes counts against the spatial 44 

mean of Fisher counts. (dD) The temporal variance of Bayes counts against the temporal 45 

variance of Fisher counts. (eE) The spatial variance of Bayes counts against the spatial variance 46 

of Fisher counts. 47 
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Figure S2. The temporal (A, B, and C) and spatial (D, E, and F) means, variances and TLs in 85 51 

Synchronized et simulations, each lasting 31 years, which were generated using observed a1,j, 52 

observed a2,j, and SDj estimated by the Yule-Walker method and synchronized et,i (see Tables S8 53 

and S9). (A) The log10(temporal variance) as a function of log10(temporal mean) for the 54 

simulated populations. In (A) and (D), the solid line is the OLS regression for the observed 55 

populations, and the broken and dotted lines represent the linear and quadratic relationship in the 56 

simulations, respectively. (B) The log10(temporal mean) of the Synchronized et simulations as a 57 

function of the log10(temporal mean) of the observed populations. In (B), (C), (E), and (F), the 58 

solid line represents y = x. (C) The log10(temporal variance) of the Synchronized et simulations 59 

as a function of the log10(temporal variance) of the observed populations. (D) The log10(spatial 60 

variance) as a function of log10(spatial mean) of the simulated populations. (E) The relationship 61 

of log10(spatial mean) between the observed populations and the Synchronized et simulations. (F) 62 

The relationship of log10(spatial variance) between the observed populations and the 63 

Synchronized et simulations. 64 
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Supplementary tables 66 

Table S1. Summary of analyses of the observed relationship between the sample temporal mean 67 

of population densities [log10(temporal mean)] and the sample temporal variance [log10(temporal 68 

variance)] over 31 years based on the Bayesian estimates for 85 populations using the linear and 69 

quadratic models. 70 

Linear model (Taylor's law): lm(formula = log10(temporal variance) ~ log10(temporal mean)) 71 

Coefficients:  Estimate SE 95%CI t-statistic P value 72 

(Intercept)  0.216 0.124  -0.030 – 0.462 1.748 0.084 73 

log10(temporal mean) 1.613 0.141 1.332 – 1.894 11.422  <2e-16 74 

Residual standard error: 0.191 on 83 degrees of freedom 75 

Multiple R2: 0.611, Adjusted R2: 0.607 76 

F-statistic: 130.5 on 1 and 83 DF, P value: < 2.2e-16 77 

---------------------- 78 

Quadratic model: lm(formula = log10(temporal variance) ~ I(log10(temporal mean)2) + 79 

log10(temporal mean)) 80 

Coefficients:  Estimate SE 95%CI t-statistic P value 81 

(Intercept) -0.477 0.562 -1.595 – 0.641 -0.849 0.398 82 

log10(temporal mean)2 -0.879 0.695 -2.263 – 0.504 -1.265 0.210 83 

log10(temporal mean) 3.197 1.261 0.689 – 5.705 2.536 0.013 84 

Residual standard error: 0.19 on 82 degrees of freedom 85 

Multiple R2: 0.619, Adjusted R2: 0.609 86 

F-statistic:  66.5 on 2 and 82 DF, P value: < 2.2e-16  87 
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Table S2. Summary of analyses of the observed relationship between the sample spatial mean of 88 

population densities [log10(spatial mean)] and the sample spatial variance [log10(spatial 89 

variance)] over the 85 populations based on the Bayesian estimates for 31 years using the linear 90 

and quadratic models. 91 

 92 

Linear model (Taylor's law): lm(formula = log10(spatial variance) ~ log10(spatial mean)) 93 

Coefficients:  Estimate SE 95%CI t-statistic P value 94 

(Intercept) 0.339 0.114 0.106 – 0.575 2.969 0.006 95 

log10(spatial mean) 1.430 0.132 1.160 – 1.700 10.831 1.05e-11  96 

 97 

Residual standard error: 0.165 on 29 degrees of freedom 98 

Multiple R2: 0.802, Adjusted R2: 0.795 99 

F-statistic: 117.3 on 1 and 29 DF, P value: 1.047e-11 100 

------- 101 

Quadratic model: lm(formula = log10(spatial variance) ~ I(log10(spatial mean)2) + log10(spatial 102 

mean)) 103 

Coefficients:  Estimate SE 95%CI t-statistic P value 104 

(Intercept) 0.326 0.352 -0.394 – 1.047 0.928 0.361 105 

log10(spatial mean)2 -0.022 0.576 -1.203 – 1.158 -0.039 0.969 106 

log10(spatial mean) 1.466 0.923 -0.426 – 3.358 1.588 0.124 107 

Residual standard error: 0.168 on 28 degrees of freedom 108 

Multiple R2: 0.802, Adjusted R2: 0.788 109 
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F-statistic: 56.64 on 2 and 28 DF, P value: 1.44e-10  110 
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Table S3. Summary of analyses of the relationship between log10(temporal mean) of density and 111 

log10(temporal variance) of density over 31 years for the 85 populations in the Fundamental 112 

simulation based on the Bayesian estimates. Linear and quadratic models were fitted, and an 113 

analysis of covariance used “observed” or “simulated” as covariate. 114 

 115 

Linear model (Taylor's law): lm(formula = log10(temporal variance) ~ log10(temporal mean)) 116 

Coefficients:  Estimate SE 95%CI t-statistic P value 117 

(Intercept) -0.556 0.208 -0.970 – -0.143 -2.676 0.009 118 

log10(temporal mean) 2.699 0.214 2.273 – 3.126 12.592 < 2.2e-16 119 

Residual standard error: 0.340 on 83 degrees of freedom 120 

Multiple R2: 0.656, Adjusted R2: 0.652 121 

F-statistic: 158.6 on 1 and 83 DF, P value: < 2.2e-16 122 

------- 123 

Quadratic model: lm(formula = log10(temporal variance) ~ I(log10(temporal mean)2) + 124 

log10(temporal mean)) 125 

Coefficients:  Estimate SE 95%CI t-statistic P value 126 

 (Intercept) 0.322 0.968 -1.603 – 2.248 0.333 0.740 127 

log10(temporal mean)2 0.910 0.979 -1.038 – 2.858 0.929 0.356 128 

log10(temporal mean) 0.882 1.967 -3.031 – 4.795 0.449 0.655 129 

Residual standard error: 0.340 on 82 degrees of freedom 130 

Multiple R2: 0.660, Adjusted R2: 0.652 131 

F-statistic: 79.58 on 2 and 82 DF, P value: < 2.2e-16 132 
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-------- 133 

Analysis of covariance: simulated log10(temporal variance) and observed log10(temporal 134 

variance) as a single vector as a linear function of simulated log10(temporal mean) and observed 135 

log10(temporal mean) as a single vector, observed/simulated indicator (o/s), and their interaction 136 

Model: lm(formula = log10(temporal variance) ~ log10(temporal mean) * o/s) 137 

Coefficients:  Estimate SE 95%CI t-statistic P value 138 

(Intercept) 0.216 0.179 -0.136 – 0.569 1.210 0.228 139 

log10(temporal mean) 1.613 0.204 1.210 – 2.016 7.910 3.44e-13 140 

o/s -0.772 0.246 -1.257 – -0.288 -3.145 0.002 141 

log10(temporal mean): o/s 1.086 0.268 0.557 – 1.615 4.054 7.72e-5 142 

Residual standard error: 0.275 on 166 degrees of freedom 143 

Multiple R2: 0.706, Adjusted R2: 0.701 144 

F-statistic: 132.8 on 3 and 166 DF, P value: < 2.2e-16 145 

------- 146 

Simulated log10(temporal mean) as a linear function of observed log10(temporal mean) 147 

Model: lm(formula = Simulated log10(temporal mean) ~ observed log10(temporal mean)) 148 

Coefficients:  Estimate SE 95%CI t-statistic P value 149 

(Intercept) 0.465 0.097 0.243 – 0.628 4.499 2.2e-5 150 

observed log10(temporal mean) 0.601 0.111 0.381 – 0.821 5.438 5.31e-7 151 

Residual standard error: 0.149 on 83 degrees of freedom 152 

Multiple R2: 0.263, Adjusted R2: 0.254 153 
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F-statistic: 29.58 on 1 and 83 DF, P value: 5.31e-7 154 

-------- 155 

Simulated log10(temporal variance) as a linear function of observed log10(temporal variance) 156 

Model: lm(formula = Simulated log10(temporal variance) ~ observed log10(temporal variance)) 157 

Coefficients:  Estimate SE 95%CI t-statistic P value 158 

 (Intercept) 0.787 0.311 0.169 – 1.406 2.531 0.013 159 

observed log10(temporal variance) 0.766 0.190 0.388 – 1.144 4.031 0.0001 160 

Residual standard error: 0.530 on 83 degrees of freedom 161 

Multiple R2: 0.164, Adjusted R2: 0.154 162 

F-statistic: 16.25 on 1 and 83 DF, P value: 0.0001 163 

  164 
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Table S4. Summary of analyses of the relationship between log10(temporal mean) of density and 165 

log10(temporal variance) of density over 31 years for the 85 populations in the Adjusted SD 166 

simulations based on the Bayesian estimates, where adjusted standard deviation of the density-167 

independent term = SDj – 0.174  loge(estimated temporal mean) for each j; SDj is the standard 168 

deviation of density-independent perturbations estimated from data of population j. Linear and 169 

quadratic models were fitted, and an analysis of covariance used “observed” or “simulated” as 170 

covariate. 171 

 172 

Linear model (Taylor's law): lm(formula = log10(temporal variance) ~ log10(temporal mean)) 173 

Coefficients:  Estimate SE 95%CI t-statistic P value 174 

(Intercept) 0.079 0.274 -0.466 – 0.624 0.289 0.774 175 

log10(temporal mean) 1.671 0.321 1.032 – 2.310 5.199 1.41e-6 176 

Residual standard error: 0.437 on 83 degrees of freedom 177 

Multiple R2: 0.246, Adjusted R2: 0.237 178 

F-statistic: 27.03 on 1 and 83 DF, P value: 1.41e-6 179 

------ 180 

Quadratic model: lm(formula = log10(temporal variance) ~ I(log10(temporal mean)2) + 181 

log10(temporal mean)) 182 

 183 

Coefficients:  Estimate SE 95%CI t-statistic P value 184 

(Intercept) -0.512 1.279 -3.057 – 2.033 -0.401 0.690 185 

log10(temporal mean)2 -0.837 1.768 -4.355 – 2.681 -0.473 0.637 186 

log10(temporal mean) 3.100 3.036 -2.939 – 9.139 1.021 0.310 187 
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Residual standard error: 0.467 on 82 degrees of freedom 188 

Multiple R2: 0.247, Adjusted R2: 0.229 189 

F-statistic: 13.5 on 2 and 82 DF, P value: 8.55e-6 190 

------ 191 

Analysis of covariance: simulated log10(temporal variance) and observed log10(temporal 192 

variance) as a single vector as a linear function of simulated log10(temporal mean) and observed 193 

log10(temporal mean) as a single vector, observed/simulated indicator (o/s), and their interaction 194 

Model: lm(formula = log10(temporal variance) ~ log10(temporal mean) * o/s) 195 

Coefficients:  Estimate SE 95%CI t-statistic P value 196 

(Intercept) 0.216 0.228 -0.215 – 0.647 0.990 0.324 197 

log10(temporal mean) 1.613 0.249 1.120 – 2.105 6.467 1.07e-9 198 

o/s -0.137 0.304 -0.737 – 0.463 -0.451 0.653 199 

log10(temporal mean):o/s 0.058 0.352 -0.636 – 0.753 0.165 0.869 200 

Residual standard error: 0.337 on 166 degrees of freedom 201 

Multiple R2: 0.360, Adjusted R2: 0.348 202 

F-statistic: 31.06 on 3 and 166 DF, P value: 5.44e-16 203 

------ 204 

Simulated log10(temporal mean) as a linear function of observed log10(temporal mean) 205 

Model: lm(formula = Simulated log10(temporal mean) ~ observed log10(temporal mean)) 206 

Coefficients:  Estimate SE 95%CI t-statistic P value 207 

(Intercept) 0.189 0.064 0.061 – 0.316 2.950 0.004 208 
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observed log10(temporal mean) 0.754 0.073 0.609 – 0.899 10.33 <2e-16 209 

Residual standard error: 0.099 on 83 degrees of freedom 210 

Multiple R2: 0.562, Adjusted R2: 0.557 211 

F-statistic: 106.7 on 1 and 83 DF, p-value: < 2.2e-16 212 

------ 213 

Simulated log10(temporal variance) as a linear function of observed log10(temporal variance) 214 

Model: lm(formula = Simulated log10(temporal variance) ~ observed log10(temporal variance)) 215 

Coefficients:  Estimate SE 95%CI t-statistic P value 216 

(Intercept) 0.364 0.268 -0.168 – 0.896 1.360 0.177 217 

observed log10(temporal variance) 0.695 0.164 0.370 – 1.020 4.253 5.49e-05 218 

Residual standard error: 0.455 on 83 degrees of freedom 219 

Multiple R2: 0.179, Adjusted R2: 0.169 220 

F-statistic: 18.09 on 1 and 83 DF, P value: 5.49e-05 221 

  222 
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Table S5. Summary of analyses of the relationship between log10(spatial mean) of density and 223 

log10(spatial variance) over the 85 populations for 31 years in the Adjusted SD simulations based 224 

on the Bayesian estimates, where adjusted standard deviation of the density-independent term = 225 

SDj - 0.174  loge(estimated temporal mean) for each j; SDj is the standard deviation of error 226 

estimated from data of population j. Linear and quadratic models were fitted, and an analysis of 227 

covariance used “observed” or “simulated” as covariate. 228 

 229 

Linear model (Taylor's law): lm(formula = log10(spatial variance) ~ log10(spatial mean)) 230 

Coefficients:  Estimate SE 95%CI t-statistic P value 231 

(Intercept) -1.094 0.400 -1.912 – -0.275 -2.733 0.011 232 

log10(spatial mean) 3.283 0.464 2.334 – 4.233 7.073 8.83e-08 233 

Residual standard error: 0.199 on 29 degrees of freedom 234 

Multiple R2: 0.633, Adjusted R2: 0.620 235 

F-statistic: 50.02 on 1 and 29 DF, P value: 8.83e-08 236 

------ 237 

Quadratic model: lm(formula = log10(spatial variance) ~ I(log10(spatial mean)2) + log10(spatial 238 

mean)) 239 

Coefficients:  Estimate SE 95%CI t-statistic P value 240 

(Intercept) 5.802 1.679 2.362 – 9.242 3.455 0.002 241 

log10(spatial mean)2 10.703 2.559 5.461 – 15.944 4.183 0.0002 242 

log10(spatial mean) -14.011 4.151 -22.514 – -5.508 -3.375 0.002 243 

Residual standard error: 0.158 on 28 degrees of freedom 244 

Multiple R2: 0.774, Adjusted R2: 0.758 245 
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F-statistic: 47.99 on 2 and 28 DF, P value: 8.98e-10 246 

------- 247 

Analysis of covariance: simulated log10(spatial variance) and observed log10(spatial variance) as 248 

a single vector as a linear function of simulated log10(spatial mean) and observed log10(spatial 249 

mean) as a single vector, observed/simulated indicator (o/s), and their interaction 250 

Model: lm(formula = log10(spatial variance) ~ log10(spatial mean) * o/s) 251 

Coefficients:  Estimate SE 95%CI t-statistic P value 252 

(Intercept) 0.339 0.127 0.086 – 0.593 2.268 0.001 253 

log10(spatial mean) 1.430 0.146 1.138 – 1.723 9.784 6.93e-14 254 

o/s -1.433 0.389 -2.212 – -0.655 -3.684 0.001 255 

log10(spatial mean): o/s 1.853 0.451 0.950 – 2.756 4.109 0.0001 256 

Residual standard error: 0.183 on 58 degrees of freedom 257 

Multiple R2: 0.748, Adjusted R2: 0.735 258 

F-statistic: 57.28 on 3 and 58 DF, P value: 2.2e-16 259 

------ 260 

Simulated log10(spatial mean) as a linear function of observed log10(spatial mean) 261 

Model: lm(formula = simulated log10(spatial mean)~ observed log10(spatial mean)) 262 

Coefficients:  Estimate SE 95%CI t-statistic P value 263 

 (Intercept) 0.808 0.054 0.697 – 0.918 14.902 3.98e-15 264 

observed log10(spatial mean) 0.061 0.063 -0.067 – 0.189 0.977 0.337 265 

Residual standard error: 0.078 on 29 degrees of freedom 266 
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Multiple R2: 0.032, Adjusted R2: -0.001 267 

F-statistic: 0.954 on 1 and 29 DF, P value: 0.337 268 

------- 269 

Simulated log10(spatial variance) as a linear function of observed log10(spatial variance) 270 

Model: lm(formula = simulated log10(spatial variance) ~ observed log10(spatial variance)) 271 

Coefficients:  Estimate SE 95%CI t-statistic P value 272 

(Intercept) 1.535 0.257 1.011 – 2.060 5.984 1.66e-06 273 

observed log10(spatial variance) 0.124 0.163 -0.209 – 0.457 0.761 0.453 274 

Residual standard error: 0.325 on 29 degrees of freedom 275 

Multiple R2: 0.020, Adjusted R2: -0.014 276 

F-statistic: 0.579 on 1 and 29 DF, P value: 0.453 277 

  278 
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Table S6. Summary of analyses of the relationship between log10(spatial mean) of density and 279 

log10(spatial variance) over the 85 populations for 31 years in the Synchronized et simulations 280 

based on the Bayesian estimates. Linear and quadratic models were fitted, and an analysis of 281 

covariance used “observed” or “simulated” as covariate. 282 

 283 

Linear model (Taylor's law): lm(formula = log10(spatial variance) ~ log10(spatial mean)) 284 

Coefficients:  Estimate SE 95%CI t-statistic P value 285 

 (Intercept) 0.208 0.167 -0.133 – 0.550 1.247 0.222 286 

log10(spatial mean) 1.575 0.204 1.158 – 1.993 7.721 1.63e-08 287 

Residual standard error: 0.176 on 29 degrees of freedom 288 

Multiple R2: 0.673, Adjusted R2: 0.661 289 

F-statistic: 59.6 on 1 and 29 DF, P value: 1.63e-08 290 

------- 291 

Simulated log10(spatial variance) as a quadratic function of simulated log10(spatial mean) 292 

Model: lm(formula = log10(spatial variance) ~ I(log10(spatial mean)2) + log10(spatial mean)) 293 

Coefficients:  Estimate SE 95%CI t-statistic P value 294 

(Intercept) 1.466 0.656 0.123 – 2.810 2.236 0.034 295 

log10(spatial mean)2 2.1691 1.097 -0.078 – 4.417 1.977 0.058 296 

log10(spatial mean) -1.798 1.717 -5.316 – 1.719 -1.047 0.304 297 

Residual standard error: 0.168 on 28 degrees of freedom 298 

Multiple R2: 0.713, Adjusted R2: 0.692 299 

F-statistic: 34.75 on 2 and 28 DF, P value: 2.60e-08 300 
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------ 301 

Analysis of covariance: simulated log10(spatial variance) and observed log10(spatial variance) as 302 

a single vector as a linear function of simulated log10(spatial mean) and observed log10(spatial 303 

mean) as a single vector, observed/simulated indicator (o/s), and their interaction 304 

Model: lm(formula = log10(spatial variance) ~ log10(spatial mean) * o/s) 305 

Coefficients:  Estimate SE 95%CI t-statistic P value 306 

(Intercept) 0.339 0.118 0.103 – 0.576 2.8715 0.006 307 

log10(spatial mean)  1.430 0.137 1.158 – 1.704 10.473 5.4e-15 308 

o/s -0.131 0.200 -0.532 – 0.270 -0.655 0.515 309 

log10(spatial mean):o/s 0.145 0.240 -0.336 – 0.626 0.603 0.549 310 

Residual standard error: 0.171 on 58 degrees of freedom 311 

Multiple R2: 0.751, Adjusted R2: 0.738 312 

F-statistic: 58.39 on 3 and 58 DF, P value: < 2.2e-16 313 

------ 314 

Simulated log10(spatial mean) as a linear function of observed log10(spatial mean) 315 

Model: lm(formula = simulated log10(spatial mean ~ observed log10(spatial mean)) 316 

Coefficients:  Estimate SE 95%CI t-statistic P value 317 

(Intercept) 0.667 0.108 0.446 – 0.888 6.186 9.57e-07 318 

observed log10(spatial mean) 0.1263 0.125 -0.092 – 0.418 1.304 0.202 319 

Residual standard error: 0.1756 on 29 degrees of freedom 320 

Multiple R2: 0.056, Adjusted R2: 0.023 321 
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F-statistic: 1.701 on 1 and 29 DF, P value: 0.203 322 

------ 323 

Simulated log10(spatial variance) as a linear function of observed log10(spatial variance) 324 

Model: lm(formula = simulated log10(spatial variance) ~ observed log10(spatial variance)) 325 

Coefficients:  Estimate SE 95%CI t-statistic P value 326 

(Intercept) 1.289 0.241 0.797 – 1.781 5.361 9.3e-06 327 

observed log10(spatial variance) 0.120 0.153 -0.192 – 0.431 -0.787 0.438 328 

Residual standard error: 0.304 on 29 degrees of freedom 329 

Multiple R2: 0.021, Adjusted R2: -0.013 330 

F-statistic: 0.619 on 1 and 29 DF, P value: 0.438 331 

  332 
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Table S7. Summary of analyses of the relationship between log10(temporal mean) of density and 333 

log10(temporal variance) over 31 years for the 85 populations in the Synchronized et simulations 334 

based on the Bayesian estimates. Linear and quadratic models were fitted, and an analysis of 335 

covariance used “observed” or “simulated” as covariate. 336 

 337 

Linear model (Taylor's law): lm(formula = log10(temporal variance) ~ log10(temporal mean)) 338 

Coefficients:  Estimate SE 95%CI t-statistic P value 339 

(Intercept) 0.070 0.1963 -0.254 – 0.393 0.427 0.670 340 

log10(temporal mean) 1.619 0.199 1.223 – 2.016 8.120 3.75e-12 341 

Residual standard error: 0.288 on 83 degrees of freedom 342 

Multiple R2: 0.447, Adjusted R2: 0.436 343 

F-statistic: 65.93 on 1 and 83 DF, P value: 3.75e-12 344 

------- 345 

Quadratic model: lm(formula = log10(temporal variance) ~ I(log10(temporal mean)2) + 346 

log10(temporal mean)) 347 

Coefficients:  Estimate SE 95%CI t-statistic P value 348 

(Intercept) -0.771 0.541 -1.846 – 0.304 -1.425 0.158 349 

log10(temporal mean)2 -1.304 0.801 -2.897 – 0.289 -1.628 0.107 350 

log10(temporal mean) 3.753 1.325 1.117 – 6.389 2.832 0.006 351 

Residual standard error: 0.285 on 82 degrees of freedom 352 

Multiple R2: 0.460, Adjusted R2: 0.447 353 

F-statistic: 34.95 on 2 and 82 DF, P value: 1.05e-11 354 
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------ 355 

Analysis of covariance: simulated log10(temporal variance) and observed log10(temporal 356 

variance) as a single vector as a linear function of simulated log10(temporal mean) and observed 357 

log10(temporal mean) as a single vector, observed/simulated (o/s), and their interaction 358 

Model: lm(formula = log10(temporal variance) ~ log10(temporal mean) * o/s) 359 

Coefficients:  Estimate SE 95%CI t-statistic P value 360 

 (Intercept) 0.216 0.158 -0.097 – 0.529 1.365 0.174 361 

log10(temporal mean) 1.613 0.181 1.256 – 1.970 8.919 8.3e-16 362 

o/s -0.146 0.210 -0.561 – 0.268 -0.698 0.486 363 

log10(temporal mean):o/s 0.007 0.2647 -0.482 – 0.496 0.027 0.979 364 

Residual standard error: 0.244 on 166 degrees of freedom 365 

Multiple R2: 0.562, Adjusted R2: 0.554 366 

F-statistic: 71.00 on 3 and 166 DF, P value: < 2.2e-16 367 

------ 368 

Simulated log10(temporal mean) as a linear function of observed log10(temporal mean) 369 

Model: lm(formula = Simulated log10(temporal mean) ~ Observed log10(temporal mean)) 370 

Coefficients:  Estimate SE 95%CI t-statistic P value 371 

 (Intercept) 0.074 0.063 -0.052 – 0.200 1.172 0.244 372 

observed log10(temporal mean) 0.841 0.072 0.697 – 0.985 11.622 < 2.2e-16 373 

Residual standard error: 0.098 on 83 degrees of freedom 374 

Residual R2:0.619, Adjusted R2:0.615 375 
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F-statistic: 135.1 on 1 and 83 DF, P value: < 2.2e-16 376 

----- 377 

Simulated log10(temporal variance) as a linear function of observed log10(temporal variance) 378 

Model: lm(formula = Simulated log10(temporal variance)  ~ observed log10(temporal variance)) 379 

Coefficients:  Estimate SE 95%CI t-statistic P value 380 

 (Intercept) 0.508 0.205 0.099 – 0.916 2.473 0.015 381 

observed log10(temporal variance) 0.534 0.125 0.284 – 0.783 4.255 5.46e-05 382 

Residual standard error: 0.350 on 83 degrees of freedom 383 

Multiple R2: 0.179, Adjusted R2: 0.169 384 

F-statistic: 18.11 on 1 and 83 DF, P value: 5.46e-05 385 

  386 
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Table S8. Summary of analyses of the observed relationship between the sample temporal mean 387 

of population densities [log10(temporal mean)] and the sample temporal variance [log10(temporal 388 

variance)] over 31 years based on Fisher counts for 85 populations using the linear and quadratic 389 

models. 390 

 391 

Linear model (Taylor's law): lm(formula = log10(temporal variance) ~ log10(temporal mean)) 392 

Coefficients:  Estimate SE 95%CI t-statistic P value 393 

 (Intercept)  0.282 0.110  0.064 – 0.500 2.569 0.012 394 

log10(temporal mean) 1.602 0.126 1.352 – 1.851 12.767  < 2.2e-16 395 

Residual standard error: 0.170 on 83 degrees of freedom 396 

Multiple R2: 0.663, Adjusted R2: 0.659 397 

F-statistic: 163 on 1 and 83 DF, P value: < 2.2e-16 398 

-------------- 399 

Quadratic model: lm(formula = log10(temporal variance) ~ I(log10(temporal mean)2) + 400 

log10(temporal mean)) 401 

Coefficients:  Estimate SE 95%CI t-statistic P value 402 

(Intercept) -0.343 0.493 -1.324 – 0.648 -0.695 0.489 403 

log10(temporal mean)2 -0.795 0.612  -2.012 – 0.422 -1.299 0.198 404 

log10(temporal mean) 3.032 1.108 0.828 – 5.235 2.737 0.008 405 

Residual standard error: 0.169 on 82 degrees of freedom 406 

Multiple R2: 0.669, Adjusted R2: 0.661 407 

F-statistic:  83.02 on 2 and 82 DF, P value: < 2.2e-16  408 
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Table S9. Summary of analyses of the observed relationship between the sample spatial mean of 409 

population densities [log10(spatial mean)] and the sample spatial variance [log10(spatial 410 

variance)] over the 85 populations based on Fisher counts for 31 years using the linear and 411 

quadratic models. 412 

 413 

Linear model (Taylor's law): lm(formula = log10(spatial variance) ~ log10(spatial mean)) 414 

Coefficients:  Estimate SE 95%CI t-statistic P value 415 

(Intercept) 0.549 0.105 0.335 – 0.763 5.241 1.30e-05 416 

log10(spatial mean) 1.242 0.122 0.993 – 1.491 10.215 4.06e-11 417 

Residual standard error: 0.169 on 29 degrees of freedom 418 

Multiple R2: 0.783, Adjusted R2: 0.775 419 

F-statistic: 104.3 on 1 and 29 DF, P value: 4.06e-11 420 

------ 421 

Quadratic model: lm(formula = log10(spatial variance) ~ I(log10(spatial mean)2) + log10(spatial 422 

mean)) 423 

Coefficients:  Estimate SE 95%CI t-statistic P value 424 

 (Intercept) 0.680 0.262 0.143 – 1.217 2.593 0.015 425 

log10(spatial mean)2 0.257 0.470 -0.706 – 1.220 0.547 0.589 426 

log10(spatial mean) 0.852 0.725 -0.633 – 2.336 1.175 0.250 427 

Residual standard error: 0.171 on 28 degrees of freedom 428 

Multiple R2: 0.785, Adjusted R2: 0.770 429 

F-statistic: 51.06 on 2 and 28 DF, P value: 4.56e-10  430 
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Table S10. Summary of analyses of the relationship between log10(temporal mean) of density 431 

and log10(temporal variance) of density for the Fundamental simulation based on Fisher counts 432 

and the parameters estimated by the Yule-Walker method. Linear and quadratic models were 433 

fitted, and an analysis of covariance used “observed” or “simulated” as covariate. 434 

 435 

Linear model (Taylor's law): lm(formula = log10(temporal variance) ~ log10(temporal mean)) 436 

Coefficients:  Estimate SE 95%CI t-statistic P value 437 

(Intercept)  -0.246 0.143 -0.531 – 0.039 -1.718 0.672 438 

log10(temporal mean) 2.297 0.175 1.950 – 2.645 13.150  < 2.0e-16 439 

Residual standard error: 0.289 on 83 degrees of freedom 440 

Multiple R2: 0.676, Adjusted R2: 0.672 441 

F-statistic: 172.9 on 1 and 83 DF, P value: < 2.2e-16 442 

---------- 443 

Quadratic model: lm(formula = log10(temporal variance) ~ I(log10(temporal mean)2) + 444 

log10(temporal mean)) 445 

Coefficients:  Estimate SE 95%CI t-statistic P value 446 

(Intercept) -0.891 0.442 -1.769 – -0.012 -2.016 0.047 447 

log10(temporal mean)2 -1.055 0.685 -2.416 – 0.307 -1.541 0.128 448 

log10(temporal mean) 3.399 1.111 1.778 – 6.199 3.589 0.0006 449 

Residual standard error: 0.286 on 82 degrees of freedom 450 

Multiple R2: 0.685, Adjusted R2: 0.677 451 

F-statistic:  89.08 on 2 and 82 DF, P value: < 2.2e-16 452 
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-------- 453 

Analysis of covariance: simulated log10(temporal variance) and observed log10(temporal 454 

variance) as a single vector as a linear function of simulated log10(temporal mean) and observed 455 

log10(temporal mean) as a single vector, observed/simulated (o/s), and their interaction 456 

Model: lm(formula = log10(temporal variance) ~ log10(temporal mean) * o/s) 457 

Coefficients:  Estimate SE 95%CI t-statistic P value 458 

(Intercept) 0.282 0.153 1.778 – 6.199 1.844 0.067 459 

log10(temporal mean) 1.602 0.175 1.778 – 6.199 9.166 2.2e-16 460 

o/s -0.528 0.193 1.778 – 6.199 -2.738 0.007 461 

log10(temporal mean):o/s 0.695 0.226 1.778 – 6.199 3.076 0.002 462 

Residual standard error: 0.237 on 166 degrees of freedom 463 

Multiple R2: 0.675, Adjusted R2: 0.669 464 

F-statistic: 114.8 on 3 and 166 DF, P value: 2.2e-16 465 

  466 
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Table S11. Summary of analyses of the relationship between log10(temporal mean) of density 467 

and log10(temporal variance) of density for the Synchronized et simulation based on Fisher 468 

counts and the parameters estimated by the Yule-Walker method. SD was adjusted by the 469 

following equation: adjusted SDj = estimated SDj – 0.065  loge(estimated temporal mean). 470 

Linear and quadratic models were fitted, and an analysis of covariance used “observed” or 471 

“simulated” as covariate. 472 

 473 

Linear model (Taylor's law): lm(formula = log10(temporal variance) ~ log10(temporal mean)) 474 

Coefficients:  Estimate SE 95%CI t-statistic P value 475 

 (Intercept) -0.012 0.138 -0.287 – 0.263 -0.085 0.933 476 

log10(temporal mean) 1.794 0.172 1.452 – 2.134 10.458 < 2.2e-16 477 

Residual standard error: 0.269 on 83 degrees of freedom 478 

Multiple R2: 0.569, Adjusted R2: 0.563 479 

F-statistic: 109.4 on 1 and 83 DF,  P value: < 2.2e-16 480 

------- 481 

Quadratic model: lm(formula = log10(temporal variance) ~ I(log10(temporal mean)2) + 482 

log10(temporal mean)) 483 

Coefficients:  Estimate SE 95%CI t-statistic P value 484 

 (Intercept) -0.828 0.488 -1.799 – 0.143 -1.696 0.094 485 

log10(temporal mean)2 -1.292 0.742 -2.767 – 0.184 -1.742 0.085 486 

log10(temporal mean) 3.895 1.218 1.471 – 6.318 3.197 0.002 487 

Residual standard error: 0.266 on 82 degrees of freedom 488 

Multiple R2: 0.584, Adjusted R2: 0.574 489 
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F-statistic: 57.55 on 2 and 82 DF,   P value: 2.426e-16 490 

------- 491 

Analysis of covariance: simulated log10(temporal variance) and observed log10(temporal 492 

variance) as a single vector as a linear function of simulated log10(temporal mean) and observed 493 

log10(temporal mean) as a single vector, observed/simulated indicator (o/s), and their interaction 494 

: lm(formula = log10(temporal variance) ~ log10(temporal mean) * o/s) 495 

Coefficients:  Estimate SE 95%CI t-statistic P value 496 

(Intercept) 0.282 0.145 -0.005 – 0.569 1.939 0.054 497 

log10(temporal mean) 1.602 0.166 1.274 – 1.930 9.637 < 2.2e-16 498 

os -0.294 0.186 -0.661 – 0.073 -1.580 0.116 499 

log10(temporal mean): o/s 0.192 0.220 -0.242 – 0.625 0.873 0.384 500 

Residual standard error: 0.225 on 166 degrees of freedom 501 

Multiple R2:  0.649 Adjusted R2: 0.642 502 

F-statistic: 102.1 on 3 and 166 DF, P value:  < 2.2e-16 503 

  504 
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Table S12. Summary of analyses of the relationship between log10(spatial mean) of density and 505 

log10(spatial variance) of density for the Synchronized et simulation based on Fisher counts and 506 

the parameters estimated by the Yule-Walker method. SD was adjusted by the following 507 

equation: adjusted SDj = estimated SDj – 0.065  loge(estimated temporal mean). Linear and 508 

quadratic models were fitted, and an analysis of covariance used “observed” or “simulated” as 509 

covariate. 510 

 511 

Linear model (Taylor's law): lm(formula = log10(spatial variance) ~ log10(spatial mean)) 512 

Coefficients:  Estimate SE 95%CI t-statistic P value 513 

 (Intercept) 0.304 0.204 -0.112 – 0.721 1.493 0.146 514 

log10(spatial mean) 1.540 0.251 1.028 – 2.053 6.148 1.06e-6 515 

Residual standard error: 0.186 on 29 degrees of freedom 516 

Multiple R2:  0.566, Adjusted R2: 0.551 517 

F-statistic: 37.8 on 1 and 29 DF,  P value: 1.06e-6 518 

------- 519 

Quadratic model: lm(formula = log10(spatial variance) ~ I(log10(spatial mean)2) + log10(spatial 520 

mean)) 521 

Coefficients:  Estimate SE 95%CI t-statistic P value 522 

 (Intercept) 1.549 0.987 -0.473 – 3.571 1.569 0.128 523 

log10(spatial mean)2 1.940 1.507 -1.146 – 5.026 1.288 0.208 524 

log10(spatial mean) -1.611 2.459 -6.028 – 3.426 -0.655 0.518 525 

Residual standard error: 0.184 on 28 degrees of freedom 526 

Multiple R2: 0.590, Adjusted R2: 0.561 527 
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F-statistic: 20.16 on 2 and 28 DF,  P value: 3.77e-06 528 

------- 529 

Analysis of covariance: simulated log10(spatial variance) and observed log10(spatial variance) as 530 

a single vector as a linear function of simulated log10(spatial mean) and observed log10(spatial 531 

mean) as a single vector, observed/simulated indicator (o/s), and their interaction 532 

Model: lm(formula = log10(spatial variance) ~ log10(spatial mean) * o/s) 533 

Coefficients:  Estimate SE 95%CI t-statistic P value 534 

(Intercept) 0.549 0.110 0.329 – 0.769 4.989 5.85e-06 535 

log10(spatial mean) 1.242 0.128 0.986 – 1.498 9.725 8.64e-14 536 

os -0.245 0.224 -0.693 – 0.203 -1.093 0.279 537 

log10(spatial mean):os 0.298 0.272 -0.245 – 0.842 1.099 0.276 538 

Residual standard error: 0.178 on 58 degrees of freedom 539 

Multiple R2: 0.702, Adjusted R2: 0.686 540 

F-statistic: 45.48 on 3 and 58 DF,  P value: 3.02e-15 541 
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File list (files found within DataS1.zip) 

App1RawCountsOfVoles.csv 
App2TrappingEffortTrapNights.csv 
App3BayesCountsParameterEstimates.csv 
App4SpatialMeanVarianceByYear.csv 
App5WinBUGSCodeBayesianAnalysis.txt 

 

Description 

App1RawCountsOfVoles.csv 

Raw data: the total number of trapped voles, in a T × N matrix with T = 31 rows, one for each 
year t = 1962, 1964, …, 1992, and N = 85 columns j = 1, 2, …, 85, one for each ranger office 

 

Joel E. Cohen
Text Box
The data supplement is available from the Wiley website onlinelibrary.wiley.com for 
Ecology as file ecy1575-sup-0002-DataS1.zip  .



App2TrappingEffortTrapNights.csv 

Raw data: amount of trapping effort (trap-nights), in the same format as Appendix S1 

 

App3BayesCountsParameterEstimates.csv 

Bayesian estimates of the density and the Gompertz parameters for each population at each 
survey and location using WinBUGS. For each population j, 11 additional rows at the bottom 
give: the temporal mean ௝݉ = (∑ ௧ܰ,௝

ଵଽଽଶ
௧ୀଵଽ଺ଶ )/ܶ in the logarithm to the base 10, the temporal 

variance in the logarithm to the base 10, the Bayesian estimate of a1,j, the Bayesian estimate of 
a2,j, the Bayesian estimate of the standard deviation SDj of the normal error term in the Gompertz 
model, latitude and longitude (in degrees and decimal fractions of degrees) of locations of the 
study sites; the Yule-Walker estimate of a1,j, the Yule-Walker estimate of a2,j, the Yule-Walker 
estimate of the standard deviation SDj of the normal error term in the Gompertz model, and the 
Adjusted SD (see text for method of calculating Adjusted SD). 

 

App4SpatialMeanVarianceByYear.csv 

Logarithm to the base 10 of the spatial mean (݉௧ = (∑ ௧ܰ,௝
଼ହ
௝ୀଵ )/ܰ) and spatial variance (for 85 

vole populations) of Bayes population density in each year. 

 

App5WinBUGSCodeBayesianAnalysis.txt 

WinBUGS code for Bayesian analysis of counts and trapping effort 
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