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Taylor's law (TL), a widely verified quantitative pattern in ecology
and other sciences, describes the variance in a species’ population
density (or other nonnegative quantity) as a power-law function
of the mean density (or other nonnegative quantity): Approxi-
mately, variance = a(mean)®, a > 0. Multiple mechanisms have
been proposed to explain and interpret TL. Here, we show analyt-
ically that observations randomly sampled in blocks from any
skewed frequency distribution with four finite moments give rise
to TL. We do not claim this is the only way TL arises. We give
approximate formulae for the TL parameters and their uncer-
tainty. In computer simulations and an empirical example using
basal area densities of red oak trees from Black Rock Forest, our
formulae agree with the estimates obtained by least-squares re-
gression. Our results show that the correlated sampling variation
of the mean and variance of skewed distributions is statistically
sufficient to explain TL under random sampling, without the in-
tervention of any biological or behavioral mechanisms. This find-
ing connects TL with the underlying distribution of population
density (or other nonnegative quantity) and provides a baseline
against which more complex mechanisms of TL can be compared.

delta method | least-squares regression | skewness | variance function

Taylor’s law (TL), named after Taylor (1), relates the variance
and the mean of population sizes or population densities of
species distributed in space and time by a power-law function:

variance = a(mean)b [1]

or equivalently as a linear function when mean and variance are
logarithmically transformed:

log(variance) =log(a) + b x log(mean). [2]

Egs. 1 and 2 may be exact if the mean and variance are popula-
tion moments calculated from certain parametric families of
probability distributions (e.g., @ = 1 and b = 1 for a Poisson
distribution). Eqs. 1 and 2 may be approximate if the mean
and variance are sample moments based on finite random sam-
ples of observations. Most empirical tests of TL have not spec-
ified the random error associated with Egs. 1 or 2.

TL has been verified for hundreds of biological species and
nonbiological quantities in more than a thousand papers in
ecology, epidemiology, biomedical sciences, and other fields (2-4).
Recently, examples of TL were found in bacterial microcosms (5, 6),
forest trees (7, 8), human populations (9), coral reef fish pop-
ulations (10), and barnacles (11, 12). TL has been used practi-
cally in the design of sampling plans for the control of insect
pests of soybeans (13, 14) and cotton (15).

Scientific studies of TL largely focus on the power-law expo-
nent b (or slope b in the linear form), which Taylor believed to
contain information about how populations of a species aggre-
gate in space (1). Empirically, b often lies between 1 and 2 (16).
Ballantyne and Kerkhoff (17) suggested that individuals’ re-
productive correlation determines the size of b. Ballantyne (18)
proposed that b = 2 is a consequence of deterministic population
growth. Cohen (19) showed that b = 2 arose from exponentially
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growing, noninteracting clones. Kilpatrick and Ives (20) pro-
posed that interspecific competition could reduce the value of b.
Other models that implied TL were the exponential dispersion
model (21-23), models of spatially distributed colonies (24, 25),
a stochastic version of logistic population dynamics (16), and the
Lewontin—Cohen stochastic multiplicative population model (8).
The diversity of empirical confirmations suggests that no specific
biological, physical, technological, or behavioral mechanism ex-
plains all instances of TL. Such empirical ubiquity suggests
that TL could be another of the so-called universal laws (26)
like the laws of large numbers (27) and the central limit theorem
(28). For example, independently of the present study, Xiao
et al. (29) showed numerically (not analytically) that random
partitions and compositions of integers led to TL with slopes
often between 1 and 2, as commonly observed in empirical
examples of TL.

The present work was kindred in spirit and intent, although
distinct in technical approach and results. Here we demon-
strated that, when independently and identically distributed (iid)
observations are sampled in blocks (not necessarily of equal size)
from any nonnegative-valued skewed probability distribution
with four finite moments, TL arises. We do not assert this is the
only way TL arises. If these conditions are not satisfied in an
empirical confirmation of TL, other mechanisms are likely to be
in play. Under these assumptions (iid sampling in blocks from
a skewed probability distribution with four finite moments), we
derived analytically the explicit approximate formulae for the TL
slope (b in Eq. 2), intercept [log(a) in Eq. 2], and standard error
(SE) of the slope estimator [s(b), see Theorem in Results]. In
simulated random samples from probability distributions, these
theoretical formulae approximated well the TL parameters. An
empirical example using basal area densities of red oak trees in a
temperate forest showed that our theory explained some published
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estimates of the TL slope when the assumptions of the theory were
satisfied, and also successfully predicted the TL slope when the
assumptions of the theory were shown to be mildly violated. Our
results showed that TL may arise without any complicated mech-
anisms, and provided simple assumptions (skewed and iid obser-
vations) against which empirical applications of TL can be tested.

Results

Analytical Results. Suppose X is a nonnegative real-valued random
variable with cumulative distribution function F, finite mean E(X) =
M > 0, finite varlance (or second central moment) var(X) =
EX?) - [EX)]? = V > 0, and finite third and fourth central
moments E([X — ]\/[] ) = up, h =3, 4. Consider N > 2 “blocks” or
sets of iid observations (random samples) of X. Let x; denote
observation i of block j, i = 1, ..., n;, assuming the number of
observations in block j satisfies n; > 3,j =1, ..., N. The total
number of observations is n; + n, + ** + ny. For block j the
sample mean of observations and the expectation and variance
of the sample mean are, respectively, m;= (xy+ " +xu;) /1),
E(mj)=M, var(m;)=V /n;. The unbiased sample variance of
observations in block j and its expectation and variance are,
respectively,

n,-—3

1
E(vj) =V, var(vj) =n—j </44 g 1V2>-

The formula for var(v;) is from Neter et al. (30). As n; - oo,
Prob{m; = 0} — 0 and Prob{v; = 0} — 0 by Chebyshev’s tail
inequality (31). We assume that #; is large enough that m; > 0
and v; > 0.

In this theory, the variation between blocks in the sample
mean and the variation between blocks in the sample variance
are small because every block is randomly (iid) sampled from the
same distribution. Because any two smoothly varying functions
can be locally linearly related, the logarithm of the sample var-
iance of a block can be approximated as a linear function of the
logarithm of the sample mean of that block. The theorem below
quantifies this qualitative observation.

In empirical examples, if the variation of sample means among
blocks is too large to arise from random sampling alone (e.g.,
if ANOVA rejects homogeneity of block means), then the
assumptions of the theorem do not apply, and it remains to be
determined empirically whether the theorem’s conclusions apply,
as if the theorem’s assumptions were close enough to reality. We
give empirical examples, based on published data, where the
theorem’s assumptions do, and do not, hold and the conclusions
do hold in both situations.

By definition, the coefficient of variation of X is CV = Vl/ M,
the skewness is y; = u3/V>%, and the kurtosis is k = ua/V>. Most
empirical tests of TL estlmated the intercept log(a) and the slope
b of TL using ordinary least-squares regression of log(v;) as the
dependent variable and log(;) as the independent variable, and
we analyze this practice. We do not assume that the sample mean
is an error-free estimate of the population mean: the theorem
deals with a relation among sample moments.

Definition: Suppose a random variable Y is a function of a ran-
dom sample of size n from a distribution F, and suppose the
expectation E(Y) exists. Then the expression Y ~ K, where K is
a constant independent of the random sample is defined to
mean that, for some p>0, E(Y)=K+o(n?), where o(n?)
refers (in Landau’s little-o notation) to any function f(n) such
that lim,_.f(n)/n? =0 (e.g., see ref. 31, p. 121).

Theorem. Suppose the nonnegative real-valued random variable X
has finite first four moments, with strictly positive mean and strictly
positive variance. Suppose that n; > 3 observations x; (i =1, . . ., n))
of X are randomly assigned to block j (j =1, ...,N), N > 2, and all
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of the observations, which number Z]Ai 1 in total, are iid. Let m;, v
be the sample mean and the sample variance, respectively, of the n;
observations in block j, and suppose n; is large enough that m; and
v; are strictly positive. Let b and log(a) denote the least-squares
estimators, respectively, of b and log(a) in TL, namely,
log(vj) =log(a) + b xlog(m;), j=1,...,N (Eq 2). Let s(b) denote
the SE of the least-squares slope estimator b. Then, in the limit of
large N and large nj,

cov(mj,vj) [var (m,)

br % Az =M /Vi=n/CV, [3]
log(a )~logV—— logM, [4]

M2 y4V V3—ﬂ) K—l—y%
7 ;- 15l

(N=-2)1 (N =2)(CV)

Proof of this Theorem is given in SI Text. Because CV > 0, Eq. 3
shows that random sampling in blocks of any right-skewed dis-
tribution (one with y, > 0) generates a positive TL slope.
Squaring both sides of Eq. 5 yields the estimated variance of b.
Because any variance is nonnegatlve the numerator of the var-
iance estimate (x — 1 —y?) is nonnegative. Eq. 5 thus provides an
alternatlve proof and adds a new interpretation of the inequality
k—1—y2>0 that was obtained by Rohatgi and Székely (32).

Numerical Simulations. We illustrate our theory of TL using six
probability distributions, five of which are positively skewed. We
created six square matrices (here N = n) to mimic the blocks
commonly found in ecological field data. Each column can be
viewed as a block containing n observations (rows). For each
matrix, we plotted (Fig. 1) the log of the sample variance v; of
each column j on the ordinate against the log of the sample mean
m; on the abscissa, j = 1, ..., N.

For each of the five posmvely skewed distributions, an ap-
proximately linear relationship with positive slopes was observed
(Fig. 1 A-E). The lognormal slope (Fig. 1E) was larger than most
estimates observed in ecological applications. For the shifted
normal distribution, which had zero skewness, no relationship
between the log sample variance and the log sample mean was
observed (i.e., analytically b = 0 and numerically and by re-
gression b = 0) (Fig. 1F).

To illustrate our Theorem numerically, we applied the theo-
retical formulae (Eqgs. 3-5) to each of the six probability dis-
tributions and analytically computed the predicted values of the
slope and intercept in Eq. 2, and the SE of the slope estimator.
The first four moments used in the formulae are standard results
for these distributions. For each distribution, we also generated
10,000 random copies of the n (= 100) by N (= 100) matrix
and fitted a linear regression and a quadratic regression to the
log(m;) and log(v;), j = 1, ..., N from each random copy. We
obtained an approximate sampling distribution for each param-
eter of TL and for the quadratic coefficient ¢ in the hypothetical
quadratic relatlonshlp log(variance) = log(a) + b X log(mean) +
¢ x [log(mean)]*. Medians and 95% confidence intervals (CIs) of
TL parameters, SE of the slope estimator, and the quadratic
coefficient were calculated respectively from the 50, 2.5, and
97.5% quantiles of the sampling distribution of the corre-
sponding linear and quadratic regression point estimates. To test
the robustness of our theory, the n x N observations in each
matrix were used to calculate sample estimates of the first four
moments of the corresponding probability distribution, as if the
first four moments were not known a priori but were based on
a sample. These estimates were then plugged into the formulae
(Egs. 3-5) to evaluate the theoretical TL slope, intercept, and SE
of the slope estimator. Their medians and 95% CIs were similarly
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Fig. 1. Taylor's law with positive slope arises from random samples from
a single (A) Poisson (1 = 1), (B) negative binomial (r = 5, p = 0.4), (C) expo-
nential (2 = 1), (D) gamma (a« = 4, g = 1), and (E) lognormal (u =1, 6 = 1)
distribution, but not from a (F) shifted normal [5 + N(0,1)] distribution [i.e.,
a N(0,1) distribution with 5 added to each value to make each block’s mean
positive with high probability]. For each panel, 10,000 iid observations from
the selected distribution were arranged randomly in a square matrix with
n =100 rows and N = 100 columns. For each column j, the sample mean m;
and the sample variance v; were calculated and plotted on log-log coor-
dinates using open circles, j =1, ..., N. The solid black line is the least-squares
linear regression logo v; = logig @ + b logio m;. The dotted curved lines
above and below the solid black line give the 95% confidence interval of the
regression line. Slope and intercept of the dashed black line were computed
analytically from Eqgs. 3 and 4, respectively (Table 1), using the population
moments used to generate the observations, not the sample moments of the
observations. Population skewness in each distribution is 1 (Poisson), 0.9238
(negative binomial), 2 (exponential), 1 (gamma), 6.1849 (lognormal), and
0 (shifted normal).

calculated from the 10,000 random copies of the matrix drawn
from the true distribution. Estimates from the regression were
compared with the corresponding theoretical predictions com-
puted from the formulae analytically and numerically (Table 1 and
Figs. S1-S3).

The mean, variance, third and fourth central moments, com-
puted analytically using the given parameters, are respectively 1,
1, 1, and 4 for Poisson (1 = 1), 7.5, 18.75, 75, and 1,495.3125 for
negative binomial (r =5, p = 0.4), 1, 1, 2, and 9 for exponential
(A=1),4, 4,8, and 72 for gamma (a = 4, f = 1), ~4.4817,
34.5126, 1,254.0009, and 135,711.9683 for lognormal (u =1, o =
1), and 5, 1, 0, and 3 for shifted normal [5 + N(0,1)] dis-
tributions. Except for the shifted normal distribution, a positive
slope estimate b was observed when a linear regression was fitted
to the independent variable log mean and dependent variable log
variance. In all cases except the shifted normal distribution, the
95% CI of b under regression was on the right side of zero. The
95% CI of b under regression for the shifted normal contained
zero and therefore a linear relationship between log mean and
log variance was not observed. These findings were consistent
with Fig. 1. The 95% CI of the quadratic coefficient ¢ from
quadratic regression contained zero in all six distributions,
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so there was no statistically significant evidence that quadratic
regression provided a better model than linear regression when
describing the relationship between log variance and log mean.
Therefore, TL was confirmed for each for the five skewed
probability distributions.

Except for the lognormal distribution, the theoretical values of
b (Fig. S1) and log(a) (Fig. S2) predicted analytically from Egs. 3
and 4, and the SE of the slope estimator (Fig. S3) calculated
from Eq. 5, fell within the corresponding 95% CI from linear
regression. In the lognormal distribution, the analytical pre-
dictions of the slope b and the SE of its estimator were on the
right side of the corresponding 95% CI from regression, meaning
that the theoretically predicted values were significantly larger
and more variable than those estimated from linear regression.
Under the more robust calculations using random copies of n x
N iid samples, for each combination of probability distribution
and parameter, the 95% CI of the parameter from the theoret-
ical formulae and from the regression overlapped.

Empirical Data. The basal area density of red oaks (Quercus rubra,
abbreviated as RO) in Black Rock Forest (BRF) illustrates
empirically that random sampling of iid data can generate TL,
and that the TL parameters and their CIs calculated from least-
squares linear regression using random samples agree with the
corresponding values predicted analytically using our formulae.
Moreover, four empirical methods of grouping observations into
blocks give estimates of the TL slope that are not statistically
distinguishable from the estimates of TL given by our random-
sampling theory. The complete data on which this example is
based were published and analyzed for other purposes (33).
Measuring population density by basal area density, rather than
stems per unit area, is widespread in forestry and is explained in
ref. 33.

BRF is a 1,550-ha forest preserve in Cornwall, New York (34).
In a 1985 forest-wide survey, 218 sampling points were randomly
designated to sample the basal area density of tree species. Each
forest location was equally likely to be selected as a sampling
point with no repeated measurements at any sampling point (33).
The 218 measurements of basal area density could reasonably be
interpreted as representing an iid sample of each tree species’
basal area density in BRF in 1985.

We tested TL using the basal area density data of RO because
RO was the most dominant tree species in the 1985 survey
(32.72% of all 2,078 stems sampled) and served as a biological
indicator of the forest composition and timber production (Fig.
2E). Taylor et al. (35) argued that when testing TL, the number
of blocks should be at least 5 and the number of observations per
block should be at least 15. Following this practice, we randomly
assigned the 218 observations into 14 blocks (15 observations in
each of the first 13 blocks and 23 observations in the 14th block)
and computed the means and variances of RO basal area density
across the observations within each block. The sample size per
block here, namely, 15 observations except in one block with 23
observations, is smaller than the sample size per block in the
numerical simulations, namely, 100, so we expected greater
variability in the sample mean and sample variance of each block
for the tree data. We then fitted an ordinary least-squares re-
gression of log variance of each block as a linear function of the
log mean of the block and obtained point estimates for the slope
and the intercept, and the SE of the slope estimator. Repeatedly
randomizing the assignment of observations into blocks 10,000
times, we calculated the median and 95% percentile CI of the
slope, intercept, and SE of the slope estimator, respectively, from
the corresponding 10,000 regression point estimates (Fig. 2. A-C).
In this empirical application, the true underlying distribution
was unknown, so we randomized the sample of observations. To
check for nonlinearity between log mean and log variance, we
also fitted a quadratic regression under each random assignment
of observations to blocks and calculated the median and 95% CI
of the quadratic coefficient from the corresponding 10,000 qua-
dratic regression point estimates.
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Table 1. Estimates of the slope (b), intercept [log(a)l, and SE of the slope estimator in Taylor's law using the theoretical formulae Eqs.
3-5 and linear regression for six probability distributions
Quadratic
b Iog]za) s(b) coefficient
Probability Formula  Formula Formula  Formula Formula  Formula
distribution (analytic) (numeric) Regression (analytic) (numeric) Regression (analytic) (numeric) Regression Regression
Poisson (4 = 1) 1.0000 0.9976 1.0027 0.0000 —0.0001 —0.0043 0.1429 0.1424 0.1416 0.0550
(0.9458, (0.7211, (-0.0119, (-0.0164, (0.1357, (0.1157, (—4.9482,
1.0551) 1.2775) 0.0118) 0.0076) 0.1508) 0.1738) 4.9072)
Negative binomial 1.6000 1.5972 1.6017 -0.1271 -0.1250 —0.1351 0.2711 0.2701 0.2703 0.2370
(r=5p=04) (1.4860, (1.0729, (-0.2340, (-0.6023, (0.2573, (0.2214, (—16.0949,
1.7213) 2.1367) —-0.0263) 0.3312) 0.2882) 0.3322) 16.6441)
Exponential (A = 1) 2.0000 1.9929 1.9972 0.0000 —0.0001 -0.0123 0.2020 0.1990 0.1920 0.0332
(1.8709, (1.6235, (-0.0174, (—0.0288, (0.1812, (0.1560, (-6.4607,
2.1518) 2.3849) 0.0174) 0.0042) 0.2313) 0.2352) 7.0247)
Gamma 2.0000 1.9957 2.0011 —0.6021 —-0.5995 —0.6096 0.3194 0.3180 0.3178 —-0.0815
(a=4,p=1) (1.8562, (1.3760, (-0.6928, (—0.9848, (0.3019, (0.2607, (-22.7731,
2.1496) 2.6237) -0.5140) -0.2312) 0.3411) 0.3900) 22.7344)
Lognormal 47183 4.0982 3.5991 -1.0970 -1.1320 —0.8815 0.6660 0.4155 0.2662 3.6911
w=10=1) (3.2918, (3.0485, (-3.2884, (—1.2848, (0.2880, (0.2132, (—3.7832,
7.4927) 4.2296) —0.6054) —0.5294) 0.9895) 0.3305) 12.3419)
Shifted normal 0.0000 —0.0009 0.0011 0.0000 —0.0006 —0.0062 0.7143 0.7140 0.7249 -0.1759
[5 + N(0,1)] (-0.2407, (-1.4290, (-0.1659, (-1.0024, (0.6946, (0.5933, (—128.0845,
0.2386) 1.4273) 0.1694) 0.9936) 0.7345) 0.8843) 124.9325)

Each parameter was first predicted analytically from the corresponding formula using the given distribution parameters [Formula (analytic)]l, then
approximated using the n x N random observations of each distribution from the formulae [Formula (numeric)] and from the regression (Regression)
separately. For the last two methods, median and 95% Cl of each parameter were calculated from 10,000 random copies of the n x N iid observations
(95% ClI is given below the associated median value). For each distribution, the median and 95% Cl of the quadratic coefficient from the least-squares
quadratic regression were similarly calculated from the 10,000 random copies of the n x N iid observations.

Eq. 2 held with median slope 0.8391 and 95% CI (0.0146,
1.5975) and median intercept 0.4196 and 95% CI (0.0469,
0.8335). The median of the SE of the slope estimator was 0.4045
with 95% CI (0.2257, 0.7272). Quadratic fitting did not indicate
statistically significant nonlinearity in the relationship between
log mean and log variance: the median quadratic coefficient was
—1.0665 and 95% CI was (—11.0598, 8.4996). Thus, TL held for
RO basal area density with positive slope and positive intercept
under random assignment of observations to blocks. In linear
regressions fitted to repeatedly randomly assigned observations,
50% of the coefficients of determination (R?) fell below 0.3019
and 19.81% of the R? fell above 0.5. This example of our theory
did not account for the large R* of TL observed in some em-
pirical data (36). Whether the observed positive intercept is due
to measurement error, sampling scale, environmental variation
in habitat suitability, or biological interactions of RO with con-
specifics or other species remains to be determined.

We computed the sample estimates of the mean (3.1193),
variance (7.0917), skewness (0.6435), and kurtosis (2.5550) of
RO density from the 218 observations. From the theoretical
formulae (Egs. 3-5), the predicted slope, predicted intercept,
and SE of the slope estimator were, respectively, 0.7537, 0.4784,
and 0.3230, all of which were comparable with the corresponding
median values and fell within the corresponding 95% CI calcu-
lated from point estimates under linear regression (Fig. 2 A-C).
Our theory provided a reasonable estimate of the TL parameters
for skewed biological field observations randomly grouped
into blocks.

We also compared the TL slope estimated from random
grouping in blocks with the published TL slopes estimated from
four biological methods of grouping (ref. 33, tables S1-S4). In
summary, all four point estimates of the slope of TL under the
four biological groupings fell within the 95% CI of the slope
under random assignment of sampling points to blocks, and all
four 95% ClIs of the slope under the biological groupings esti-
mated from normal theory heavily overlapped the 95% CI of the
slope under random assignment of sampling points to blocks.
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In detail, for Friday’s grouping, the point estimate of the slope,
0.9854, fell within the 95% CI (0.0146, 1.5975) from the random
grouping of sampling points into blocks, and the 95% confidence
interval of the slope of TL under Friday’s grouping, (0.0552,
1.9156), heavily overlapped the 95% CI under random grouping.

Under Schuster’s grouping, the point estimate of the slope,
0.9316, again fell within the 95% CI (0.0146, 1.5975) from random
grouping and the 95% CI, (0.6940, 1.1692), of the slope of TL from
Schuster’s method fell entirely within that of random grouping.

Under the watershed grouping, the point estimate of the TL
slope, 0.6234, again fell within the 95% CI (0.0146, 1.5975) from
random grouping, and the 95% CI of the slope of TL under the
watershed grouping, (—0.2666, 1.5133), almost contained the
95% CI under random grouping.

Finally, under the topography grouping, the point estimate of
the slope of TL, 0.2603, again fell within the 95% CI (0.0146,
1.5975) from random grouping and the 95% CI, (-0.8830,
1.4037), again almost contained the 95% CI under random
grouping.

The random sampling model of TL would explain the agree-
ment between the slope from random grouping and the slopes
from the four biological groupings if the model’s assumption of
iid sampling within and across all blocks were valid. To test that
assumption, we did an ANOVA of the mean basal area density
by block, for each method (Fig. 3). For Friday’s, Schuster’s, and
watershed groupings, the null hypothesis that all blocks had
equal means was rejected (P = 0.014, P < 0.001, and P = 0.009,
respectively), contrary to the random sampling model. Under the
topography grouping, the mean basal area density did not differ
significantly from one block to another (P = 0.115).

This example shows that the random sampling model can
predict the exponent of TL even when some of its assumptions
are violated or some other mechanisms are in play. How robust
the predictions are with respect to violations of the assumptions
is a question for future theoretical and empirical research.
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Fig. 2. Testing TL using basal area density of RO in BRF. (A-C) Histograms of
the slope, intercept, and SE of the slope estimator, respectively, estimated by
regression from 10,000 random assignments of observations into blocks,
with the theoretically predicted values marked by the solid vertical lines.
(D) A least-squares regression (solid line) of the dependent variable log(vari-
ance) as a linear function of the independent variable log(mean) under one
realization of random groupings. Each open circle represents a mean and
a variance calculated over observations within a single block. (E) The histo-
gram of basal area density of RO at 218 sampling points is right-skewed.

Discussion

Our results show that random sampling of a distribution in
blocks leads to TL. Moreover, the first four moments of the
distribution and the number of blocks predict the TL parameters
and the SE of the slope estimator. No biological or physical
mechanisms need be invoked to explain TL under this form of
sampling. In the empirical example of RO, the 95% CI of the TL
slope calculated from our theory (0.0146, 1.5975) overlapped the
range of 1-2 commonly but not universally observed in ecological
data (36). Our examples show that this model has relevance to
some, but not all, published empirical examples of TL.

Our random sampling model does not purport to be a uni-
versal explanation of TL in all or most circumstances. For ex-
ample, when the mean population densities in large samples of
different species of widely different body masses range over
seven or more orders of magnitude (37), the differences in mean
and variance of population density probably cannot be attributed
to random sampling variation from a single underlying distribu-
tion. However, when the mean population densities range over
little more than one order of magnitude (ref. 11, p. 12, figure 7),
the invariance of TL parameters under different regimes of pop-
ulation dynamics might be accounted for by our sampling model.

In our numerical examples, the discrepancy between the the-
oretical prediction and the regression estimate of TL slope
b under random sampling was largest for the lognormal distri-
bution, which also had the least realistic values of b (Fig. S1E). A
possible reason is that s(b) = 0.6660 for the lognormal distribu-
tion was twice as large as s(b) for any of the other four skewed
distributions, the second largest being 0.3194 for the gamma
distribution (Table 1), whereas the sample sizes for all of the
distributions were the same n = 100. In addition, because the
fourth moment of lognormal distribution grows exponentially as
a function of the parameter o2, our estimates of the variance for
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the lognormal distribution were likely to be least reliable among
the estimates for the skewed distributions [see formula for var(v;)
in Results, Analytical Results]. Among tested distributions, the
fourth central moment of the lognormal distribution was at least
90 times the fourth moment of any other distribution. Evidently,
in the lognormal example, we did not simulate enough linear
regressions to sample adequately the full range of variation of
the parameters. Nevertheless, when applied to the 10,000 ran-
dom copies of n x N lognormal observations, our formula pro-
vided a robust theoretical estimate of b compatible with that
from the regression (Table 1).

Previous works have analyzed TL in relation to frequency
distributions. For example, Taylor (2) observed that insect pop-
ulations at progressively higher densities conformed to different
frequency distributions (e.g., Poisson, negative binomial, and
lognormal) with identical slope parameter b, but he did not ex-
plain why TL arises from these distributions. Our results connect
TL with the underlying probability distribution but do not ex-
plain why the distribution of observations (e.g., Fig. 2E) was
right-skewed. Future studies on TL and other general empirical
scaling patterns should give attention to the role of population
distributions in understanding these patterns.

The usefulness of TL in inferring biological information about
population aggregations is a subject of continuing scientific de-
bate. Alternative mean-variance relationships have been pro-
posed as competitors of TL (25, 38, 39). It has been argued that
sampling error and sampling coverage may lead to TL-like pat-
terns as statistical artifacts (40) and to substantially biased TL
parameters (41). Our results offer another statistical mechanism
that leads to TL.

Methods

Throughout, log = logo. P represents the P value and « is the significance
level of any hypothesis testing (except when « is used as a parameter of the
gamma distribution).
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Fig. 3. Boxplots of basal area density of RO in BRF, according to four bi-

ological methods of assigning plots to blocks. In each boxplot, the median is
the bold black bar, the box covers the interquartile range, and the whiskers
cover the entire range of basal area density within a block. One-way un-
balanced ANOVA tests of the null hypothesis of no difference between blocks
in mean basal area density rejected the null hypothesis (P < 0.05) for all
grouping methods except for the topography grouping. (A) Friday's grouping.
(B) Schuster’s grouping. (C) Watershed grouping. (D) Topography grouping.

PNAS Early Edition | 5of 6

ECOLOGY

STATISTICS


http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1503824112/-/DCSupplemental/pnas.201503824SI.pdf?targetid=nameddest=SF1

Traditionally, when tested against empirical data, TL has been taken to be
confirmed if the fitted linear regression Eq. 2 had statistically significantly
nonzero linear coefficient b (with P < a; here a = 0.05), and if a least-squares
quadratic regression between the independent variable log(mean) and de-
pendent variable log(variance) did not yield a statistically significant quadratic
coefficient ¢ (P> ). The use of the doubly logarithmic scale in the testing of TL
and other bivariate allometric relationships (e.g., scaling of metabolic rate
with body mass) has been questioned (39, 42-44) and defended (45, 46).

Our numerical examples combined the ordinary least-squares regression
approach with random sampling. Specifically, in multiple realizations, we sampled
from a single probability distribution, grouped observations into blocks, calcu-
lated the mean and the variance of observations per block, recorded the
parameters and quadratic coefficient estimates from the corresponding linear
and quadratic regressions (47, p. 155), respectively, for each realization, and
constructed Cls of the parameters using percentiles of the corresponding ap-
proximate sampling distributions obtained from all realizations.

In the empirical example of RO trees, we randomly grouped observations
into blocks and obtained TL parameters from linear regression fitted to
repeatedly randomly grouped samples. We also analyzed biologically based
groupings (33) of these trees that gave rise to TL. Linear and quadratic
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regressions were performed using the MATLAB (The MathWorks, Inc.)
function “regress.”

The analytical formulae for the TL parameter estimators and the SE of the
slope estimator were derived using the delta method (48, 49). The delta
method, which is commonly used by statisticians, relies on Taylor series
expansions (not the same Taylor as in Taylor’s law) for moments of functions
of random variables. To implement the delta method we relied on a mo-
ment estimate of the difference between population mean and sample
mean by Loéve (50) and the consistency of sample estimators (S/ Text). The
delta method is increasingly accurate as the variation around the point of
expansion becomes smaller. Because the variation in sample means and
sample variances is small when sufficiently large random samples are
blocked, the delta method yields quite accurate approximations to TL
parameters estimated from linear regression.
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SI Text
If X is a real-valued random variable with finite mean E(X) and finite variance var(X), and if a real-valued function f of real x is twice
differentiable at E(X), then the delta method (ref. 1 and ref. 2, pp. 355-358) gives the approximations

FOO) =FEX)) + (X =EGD] (0 Lo

E(() ~F(E(X) + {f )

X=E(X>} -var(X),

var(f(X { (f'x) } var(X).

In practice, we compute sample moments from observations of X, plug them in to replace the population moments, and accept the
result as approximations to the left sides.

Lemma 1. Suppose Y is a nonnegative real-valued random variable with finite mean E(Y) = M > 0 and finite variance var(Y) =V > 0.
Assume sampled observations are iid and the sample size in block jis nj (j=1, 2, ..., N) and N is the number of blocks. If m; is
the sample mean of observations in block j, then the approximations given by the delta method are logm; ~logM + (m; —M) /M, E(logm;) ~
logM -V /(2m;M?), var(logm;) =V / (n;M?).

Proof: In the approximations from the delta method, we set X = mj, f(x) = log(x), x > 0. Therefore, f'(x)=1/x and f"(x) =—1/x%.
Because E(m;) = M and var(m;) = Vin,,

logm; ~f(M)+ (mj —M) -Ai/[=logM+ (mj—M) /M,

E(logmy) zf(M)+(—L2) n—j_logM v/ (2nM?),

var(logmj)z(]\l/l) ,% v/ ().

The proof is complete.

Lemma 2. Under the assumptions of Lemma 1 also assume the third and fourth central moments of the random variable Y are finite and
positive, that is, u, = E(Y — M]") > 0, h = 3, 4. Suppose v; is the unbiased sample variance of observatzons in block j and E(v)) =

V> 0. Then the approximations given by the delta method are logv;=logV + (v; =V)/V, var(logv;) = (/44 - V2> / (nV'?), E(logv)) ~

n—l

Proof: Setting X = v; and following the same arguments as in the proof of Lemma 1 give the results.

Lemma 3. Under the assumptions of Lemmas 1 and 2, the covariance of the sample mean and sample variance is cov(vj, mj) =3 /n;.
Zhang (3) gives a proof of this classical formula, which has been known at least since 1903 (ref. 4, p. 279, equation xiii; ref. 5, p. 7,
equation xxvi; ref. 6, p. 479, equation 67; and ref. 7, p. 402, equations 3 and 4).
Proof of Theorem: When all blocks are weighted equally, the least-squares estimators of slope b and intercept log(a), and SE of the slope
estimator s(b) are, respectively (8, p. 155),

b=cov, (logvj, logmy;) /var, (logm;),

log(a) =mean. (logv;) —b - mean.. (logm;),

s (15) = \/[var+ (logv;) /var, (logm;) — {cov, (logv;, logm;) }* / {var, (logm;) }*] /(N = 2).

The notations mean. (- ), vary(-), and cov, (-, -) are to be read as the mean, variance, and covariance across all blocks and not as
referring to any single block j. Explicitly, the sample estimators are defined by

mean., (logm;) = Z logm;,
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mean., (logv;) = Zlogv/,

1 1 (Y ’
var, (logmj) _—1 Z (logmj)z —m(z logm]) s
Jj=1 Jj=1
1 & 2 1 S ’
var, (10gV]) =m Z (lOgV1> —]\7(1\]_1)<Zlogvj> ;
f= =

N N N
cov, (logv;, logm;) = Z logm; -logv;) — (Nl_ 0 (Zlogmj) (Zlogvj).
j=1 j=1 j=1

They are all consistent by the law of large numbers: as N — oo, mean..(logm;) —p E(logm;), mean..(logv;) —p E(logv;), var, (logm;) — p
var(logm;), var, (logv;) —p var(logv;), and cov (logv;,logm;) —p cov(logv;,logm;). Here the symbol “ —p” means convergence in prob-
ability.

To find the limits in probability of b and s(b), we approximate the above estimators by the delta method using Lemmas 1, 2, and 3.
We first approximate the numerator and the denominator of b separately. For the numerator of b, namely, cov.. (log v;, logmy;), the first
term is approximately

N

1 Y .
N_o1 ; logm; -logv;) ~ Z{logM+ —M)} . {IOgV‘Fv(Vj—V)}

Jj=1

N logl & logM & 1
=N_ logM 10gV+7Z(mj—M)+7VZ(Vj—V)+7M

The second term of the numerator of b is approximately

m (ilogmj> (Zlogvj> Nl 0 i{logM+Ai4 (m; —M)} -i{logV+% (v —V)}

N logl & logM &
= logM logV BT S (= M)+ B S (=)

N N
NN -1)MV Z Z vi=V).
j=
Therefore

1 N 1 N N
covy (logv;, logmy) zm > (mj—=M)(vi=V) " N(N-1)MV Z (m;—M) Z vi=V)
=

1 N 1 ul N cov.(mj,v))
_(N—l)MVjzzlmjvj_N(N—l)MVijZVj_ My

Similarly, the denominator of b is approximately

1 1 U 1 N ?
var+(logmj)zm{(N_l) ‘ Jz—m<2m,) }:var+(mj)/M2.

=1 =1

Consequently, for large n;, j=1,2,...,N, b NW/% By consistency, for large N, using Lemma 3 in the numerator,

cov(m;,vj) var(mj)_ s V
MV M2 uMV/ M2

b~ =M [V:=y, /CV.

Using the consistency of estimator mean,(-) and existing expressions for E(logmy;), E(logy;) and b, for large N and nj,
j=1,2, ..., N,
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The derivation of var, (logv;) is the same as that of var, (logm;). Replacing m; with v; and M with V yields var, (logv;) ~var, (v;) /2. For
large N and n;, j=1, 2, ..., N, substituting into the formula for s(b) the estimators corresponding to var, (m;), var,(v;), and b yields

AW 1 2 M2y4V V3—;4)
s(b)N N- 2[ /M2 usM/V2)° \/ N-2v+

where k = p4/V? is the kurtosis. This completes the proof.
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Fig. S1. Comparison of TL slope estimator b predicted from theory and computed using linear regression for (4) Poisson (1 = 1), (B) negative binomial (r = 5
p =0.4), (C) exponential (2 = 1), (D) gamma (e =4, p = 1), (E) lognormal (u = 1, 6 = 1), and (F) shifted normal [5 + N'(0,1)] distributions. Gray histogram shows the
distribution of point estimates of b from 10,000 linear regressions. For each distribution, the black solid line and dashed lines give, respectively, the median and
95% Cl of b calculated from 10,000 random copies of n x N iid samples using the theoretical formula (Eq. 3).
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binomial (r =5, p = 0.4), (C) exponential (2 = 1), (D) gamma (a = 4, § = 1), (E) lognormal (x = 1, ¢ = 1), and (F) shifted normal [5 + A(0,1)] distributions. Gray
histogram shows the distribution of point estimates of the SE of b from 10,000 linear regressions. For each distribution, the black solid line and dashed lines
gave, respectively, the median and 95% Cl of the SE of b calculated from 10,000 random copies of n x N iid samples using the theoretical formula (Eg. 5).
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