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Abstract Testing how well Taylor’s law (TL) describes

spatial variation of the population density of a species

requires grouping sampling areas (patches of habitat) into

blocks so that a mean and a variance of the population

density can be calculated over the patches in each block.

The relationship between specific groupings and TL

remains largely unknown. Here, using tree counts from a

deciduous forest, we studied the effect of four biological

methods of grouping sampling areas into blocks on the

form and parameters of TL. Regardless of the method of

grouping, the species-specific basal area densities obeyed

TL, and the estimated slopes were not significantly dif-

ferent from one grouping method to another. Surprisingly,

TL remained valid when four kinds of randomizations were

performed to the biological groupings and tree census.

These randomizations randomly assigned sampling areas to

blocks, and/or randomized the species composition within

or across sampling areas. We found that the form of TL

was robust to different grouping methods and species

randomizations, but its parameter values depended signif-

icantly on species compositions at sampling areas.

Keywords Basal area � Bitterlich sampling � Fluctuation

scaling � Linear regression � Mean–variance relationship �
Quadratic regression

Introduction

Quantifying and interpreting the spatial and temporal

variations of the population size or density of species in

nature is a central challenge in ecology (Hanski 1980,

1982, 1987). Studies of extinction (Schoener and Spiller

1992; Vucetich et al. 2000; Green 2003; Legendre et al.

2008), endangered species (McLaughlin et al. 2002),

agricultural pest control (Dalin et al. 2009), and epidemic

diseases (Isham 1991; Keeling and Grenfell 1999) all rely

on the estimation of variations in species’ population

density.

Taylor’s law (TL) is an empirical pattern quantifying

variations of species’ population densities. TL says that, in

a set of samples, the variance of population density for a

single (or a group of) species is a power-law function of the

mean density (Taylor 1961): for all samples, approximately

variance of densityð Þ ¼ a

� mean of densityð Þb; with a [ 0:

ð1Þ

Taking the logarithms of both sides of Eq. 1 yields a

log–log form of TL: for all samples, approximately,

log variance of densityð Þ ¼ log að Þ þ b

� log mean of densityð Þ: ð2Þ

Taylor (1961) confirmed Eq. 2 for 24 taxa, including

zooplankton, insects, fishes, and viral lesions. During the

last half-century, TL was confirmed for hundreds of bio-

logical taxa, such as annelids, beetles, molluscs, birds,
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bacteria, viruses, plants, and humans (Taylor et al. 1978;

Hanski 1980; Perry 1981; Keeling and Grenfell 1999;

Ramsayer et al. 2011; Kaltz et al. 2012; Cohen et al. 2012,

2013a, b). TL was also verified for cell populations within

organisms (Azevedo and Leroi 2001), hematogenous organ

metastases (Kendal 2002), genes on human chromosome 7

(Kendal 2004a), and single nucleotide polymorphisms

along domestic horse chromosome 1 (Kendal and Jørgen-

sen 2011).

Because Taylor’s discovery was confirmed by extensive

empirical data, numerous attempts were made to explain

the mechanisms underlying TL. Taylor (1984) and others

(e.g., Arruda-Neto et al. 2012) proposed that TL resulted

from behavioral interactions within species, and that the

parameters of TL reflected species-specific characteristics.

Hanski (1987) showed that large values of b could be

generated by cross-correlation in the dynamics of local

populations. Kilpatrick and Ives (2003) proposed that the

parameters of TL reflected interspecific interactions.

Jørgensen and his colleagues argued that TL has wide-

spread descriptive success in ecology and other fields

because it results from a statistical limiting process

(Jørgensen 1987, 1997; Kendal 2004b; Jørgensen et al.

2009). Our recent analyses (Cohen et al. 2012; Cohen

2013) showed that stochastic multiplicative population

dynamics in Markovian environments and linear birth-and-

death processes (Jiang et al. 2014) led to TL. This is far

from an exhaustive list of the mechanisms that have been

proposed.

In the present paper, we do not attempt to establish a

specific theory or any underlying mechanisms of TL.

Instead, we study how different ways of grouping obser-

vations could affect the form, parameters, and interpreta-

tions of TL, using the basal area density data of trees in a

deciduous forest in northeastern United States of America.

Our motivation is that these empirical analyses would

clarify the mysterious role of grouping methods and iden-

tify key biological factors to consider when interpreting

TL.

Suppose that sampling areas are grouped into blocks

according to some method and that the basal area density

(defined below) of a tree species is known for each sam-

pling area. Then by definition, a spatial hierarchical TL

states that the logarithm of the spatial variance of basal

area density of a tree species in the sampling areas of a

given block is approximately a linear function of the log-

arithm of the spatial mean basal area density of that tree

species in the sampling areas of that given block, when

different blocks are compared (Taylor et al. 1978; Cohen

et al. 2012). Basal area density of a sampling area was

defined as the ratio of basal areas of trees to the area of land

where the trees were sampled. This index is commonly

used by forest managers to estimate a forest’s timber

production. To test this TL, sampling areas of the forest

were grouped into ‘‘blocks’’, and the means and variances

of single tree species densities over all sampling areas

within a block were calculated to test the linearity between

the log mean and the log variance across blocks (TL,

Eq. 2).

The goal of this work was to use tree basal area density

data to study the effects, if any, on TL and its parameters of

various methods of grouping sampling areas into blocks. In

prior works on TL using forest trees, the most common

grouping method assigned sampling areas that were spa-

tially close to each other into a block (Taylor et al. 1978;

Cohen et al. 2012). This method of grouping was often

used in controlled experiments where sampling areas were

artificially defined ‘‘patches’’ within the study area. It was

convenient for sampling purposes but did not respect the

biological heterogeneity of sampling areas within the same

block. In a forest, spatially adjacent areas may differ bio-

logically in soil condition, slope, altitude and aspect, which

may directly or indirectly affect the growth and distribution

of tree species.

Here, we analyzed the impact of 4 biologically distinct

grouping methods on TL. If TL was confirmed under a

biological grouping method, it was tested again using

randomized grouping methods to check if the agreement

was a statistical artifact or an ecological consequence of

the biological method. Our findings are summarized at the

beginning of the Discussion.

Materials and methods

Tree censuses and sampling method

The Black Rock Forest (BRF) (Schuster et al. 2008; Xu

et al. 2012) is a 1,550 ha preserve located in the Hudson

Highlands of Orange County, NY, USA (41o240N,

74o010W). In 1985, BRF had a total area of 1,416 ha and a

forest-wide survey was used to divide a majority of the

Forest into 71 stands according to the tree canopy char-

acteristics and tree species composition. The size of a

single stand ranged from 0.4 to 57.5 ha, with an average of

18.3 ha and a standard deviation of 18.6 ha. In each stand,

at least 3 sampling points were designated randomly, based

on the stand’s shape (Avery and Burkhart 2002). Overall,

218 sampling points were located in the 71 stands (Elec-

tronic Supplementary Material (ESM) S1 and Fig. S1 give

details).

The Bitterlich method was applied to count trees in a

neighborhood (of variable physical size) of each sampling

point (Bitterlich 1984) with a 10 basal-area-factor wedge

prism. The Bitterlich method is not a plot-based sampling

approach and does not generate sampling areas of fixed
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size, since the sampling area varies depending on a tree’s

diameter at breast height (DBH). However each sampled

tree contributed equally to the basal area relative to the

sampling area. Therefore the counts of sampled trees at a

sampling point measured (were proportional to) the basal

area density at that sampling point (Gregoire and Valentine

2004). Sampled trees with DBH less than 2 inches

(5.08 cm) were eliminated from the sample and each

remaining tree (sometimes called a ‘‘stem’’) was identified

to species. The count of each single tree species recorded at

each sampling point was defined as the basal area density

of that species in the corresponding sampling area. In total,

2,078 stems were located and identified to species at the

218 sampling points. Among all 35 identified tree species,

three oak species (1,184 stems, 56.98 % of the total)

illustrated the Quercus-dominated characteristic of the

entire BRF (Schuster et al. 2008; Xu et al. 2012). The 9

most abundant species, Quercus rubra Linnaeus (red oak,

RO), Quercus prinus Linnaeus (chestnut oak, CO), Acer

rubrum Linnaeus (red maple, RM), Quercus alba Linnaeus

(white oak, WO), Tsuga canadensis Carrière (eastern

hemlock, EH), Pinus resinosa Aiton (red pine, RP), Picea

glauca hort. ex Beissn (white spruce, WS), Betula lenta

Linnaeus (black birch, BB), and Acer saccharum Marshall

(sugar maple, SM) comprised 1,826 stems (87.87 % of the

total), and were used in the data analysis. We eliminated

the other 26 less common species from this work because

their counts were mostly 0 (see Results, Descriptive sta-

tistics). Details about the forest classification and sampling

method are included in the ESM S1.

Counts of individual tree species were arranged in a

matrix of 218 rows and 9 columns (given in full in the on-

line data file ESM S2). Each row corresponded to one

sampling area and each column corresponded to one spe-

cies. Columns were arranged in the descending order of

species’ summed counts from all 218 sampling areas (e.g.,

column 1 listed counts of red oaks in each of 218 sampling

areas, column 2 listed counts of chestnut oaks in each of

218 sampling areas, etc.). The number in row i (i = 1, 2,

…, 218) and column j (j = 1, 2, …, 9) represented the

count in sampling area i of the jth most dominant species.

Grouping methods

Four biologically relevant methods were used to group

sampling areas into blocks. First, Friday’s method,

designed by J. B. Friday, was based on a classification of

stands in the 1985 forest inventory. Stands of the same

canopy type were combined and sampling areas within

those stands were grouped together as a block. Nine blocks

were defined using the species composition and canopy

height according to the following criteria: 80–100 %

hardwood of height 20–40 feet, 80–100 % hardwood of

height 40–60 feet, 80–100 % hardwood of height 60–80

feet, 80–100 % hardwood of mixed heights, 50–80 %

hardwood of height 20–40 feet, 50–80 % hardwood of

height 40-60 feet, 50–80 % hardwood of height 60–80 feet

and mixed heights, 80–100 % softwood of height 20–60

feet, and 50–80 % softwood of height 40–80 feet.

Second, Schuster’s method, designed by (coauthor) W.

S. F. Schuster, grouped sampling areas by their community

types. Community type was usually assigned based on the

most common species of tree in the largest trunk size class

in a sampling area. Community type nomenclature and

designations followed closely the system developed by

Reschke (1990) to describe the ecological communities of

New York State. The nine community types, one for each

block, were ‘‘sh’’ (successional hardwoods), ‘‘sm’’ (sugar

maple woods), ‘‘os’’ (oak slope woods), ‘‘hc’’ (hemlock

coves), ‘‘hw’’ (hilltop woods), ‘‘co’’ (chestnut oak woods),

‘‘rms’’ (red maple swamp), ‘‘cp’’ (conifer plantations), and

‘‘c ? r’’ (cliff and rock).

Third, BRF was subdivided into first- and second-order

watersheds based on stream order, using topographic

divides as the boundaries between watershed areas. Each

sampling area was categorized based on which first- or

second-order watershed area contained it. This watershed

method assigned each sampling area to one of 11 water-

sheds or sub-watersheds (in the cases of the largest

watersheds). Each block was one watershed area. Resulting

blocks were not necessarily the same or different in soil

type, aspect, hydrologic regime and other attributes. The 11

watersheds (or sub-watersheds) were named ‘‘am’’ (Aleck

Meadow, upper BRF watershed), ‘‘bm’’ (Bog Meadow),

‘‘lbrb’’ (Lower Black Rock Brook), ‘‘cas’’ (Cascade

Brook), ‘‘ch’’ (Cat Hollow), ‘‘jp’’ (Jim’s Pond), ‘‘lcb’’

(Lower Canterbury Brook), ‘‘lms’’ (Lower Mineral Springs

Brook), ‘‘ucb’’ (Upper Canterbury Brook), ‘‘ums’’ (Upper

Mineral Springs Brook), and ‘‘ur’’ (Upper Reservoir).

Fourth, the topography method assigned each sampling

area to one of eight site moisture groups based on an

ordinal (not quantitative) scale of moisture increasing from

1 (driest) to 8 (wettest). The moisture scale was based on

the site aspect, topographic position, and slope steepness of

each sampling area, and was the only grouping method

with an ordinal scale. Sampling areas in the same moisture

group were grouped together as a block. While the

watershed and topography methods used physiographic

rather than biological information of sampling areas, we

referred for convenience to all four methods as biological

grouping methods.

Randomizations of grouping methods and tree census

For each biological grouping method, we designed a ran-

dom grouping method that randomly assigned sampling
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areas into blocks, while keeping the numbers of blocks and

numbers of sampling areas within a block the same as in

the corresponding biological method. Then we tested TL

under the biological grouping method and the associated

random grouping method. The purpose of this random

method was to test if the confirmation or violation of TL

under any biological grouping was a statistical artifact. For

each random grouping, sampling areas were randomly

permuted and each sampling area appeared exactly once in

exactly one randomly selected block. The species compo-

sitions and counts within each sampling area were

preserved.

After testing TL under each biological grouping and

corresponding random method, we examined the robust-

ness of TL by testing it against randomized tree census

data. The goal was to find out whether and how the com-

position of tree species within or among sampling areas

affected TL and its parameters. Hence we designed 3

randomizations of the tree census.

First, within each sampling area, the counts of the 9

single tree species were randomly permuted among spe-

cies. Each sampling area remained in the block to which

the corresponding biological grouping assigned that sam-

pling area. In this randomization, for each species, the

distribution of its counts in the sampling areas differed

from that in the original data. We called this procedure the

species randomization.

Second, each sampling area was randomly assigned to a

block and then the counts of single species within each

sampling area were randomly permuted among the 9 spe-

cies. This randomization preserved only the set of counts in

each sampling area, not the species identity of those counts

and not the block to which the sampling area was assigned.

This method was called the sampling area-species

randomization.

Third, all 1,962 (218 sampling areas 9 9 species)

counts of single species per sampling area were randomly

permuted. This scrambling treated all 1,962 numbers as

observations of a single hypothetical random variable, the

count of one tree species per sampling area. This ran-

domization procedure erased any association of species

identity with counts in a sampling area and of sampling

areas with blocks, and in addition altered the distribution of

single species counts within a sampling area. We called it

the global randomization.

Statistical and computational methods

We tested the spatial hierarchical TL under each biological

grouping and the corresponding random grouping method.

Then, for each biological method, we tested TL again using

separately the three randomizations of the tree census data.

Any block containing fewer than five sampling areas was

excluded from the analysis. Then a spatial mean and a

spatial variance of single species counts per sampling area

were calculated over all sampling areas within each block

(including sampling areas with zero counts of the selected

species) separately for each of the nine dominant species.

Blocks with zero mean or zero variance were omitted later

in the analysis as the logarithm of zero is undefined.

A linear regression and a quadratic regression were fit-

ted separately for the dependent variable, log variance, as a

function of the independent variable, log mean, pooling the

(log mean, log variance) pairs from all nine dominant

species. The null hypothesis that b = 0 (equivalent to the

null hypothesis that there was no linear relationship

between the log variance and log mean) was rejected if the

linear regression coefficient was statistically significantly

different from zero (P \ 0.05).

Then a quadratic regression was used as an alternative to

the linear regression model to test for the presence of a

nonlinear relationship between log mean and log variance

of the species counts. The nonlinearity was not statistically

significant if the coefficient of the squared term (log

mean)2 in the quadratic regression was not significantly

different from zero (Zar 2009).

TL was tested for each of the nine individual species,

and its parameters were compared among the species (ESM

S1, Sect. 2, Figs. S2–S5, Tables S1–S4).

Under each biological grouping method, 10,000 random

groupings, 10,000 species randomizations, 10,000 sam-

pling area-species randomizations, and 10,000 global ran-

domizations of tree census data were generated to test TL.

As in the data analyses, the log means, log variances, and

linear and quadratic regressions were calculated for each

randomized grouping and set of count data, and a set of

10,000 resulting regression coefficients and regression

constants was obtained to find the point estimates (50 %

quantile) and 95 % CIs (2.5 and 97.5 % quantiles) of the

TL parameters and coefficients of the quadratic terms.

Linear and quadratic regressions were performed using

JMP 9 (SAS Institute 2010). Random permutations were

carried out using MATLAB R2012b (MathWorks 2012).

We always used log = log10 and set the level of signifi-

cance at 0.05.

Results

Numerical example

In the spatial-hierarchical TL, grouping methods deter-

mined the sample over which a spatial mean and a spatial

variance of species densities were calculated, as various

groupings assigned different sampling areas into a block.

Here we give a simple artificial example to illustrate that
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groupings could affect the values of means, variances, and

parameters of spatial hierarchical TL. Suppose column 1 in

the following matrix lists the population densities of a

hypothetical species 1 in 8 hypothetical sampling areas,

and column 2 does the same for a hypothetical species 2 in

the same 8 sampling areas.

251

134

56

169

271

84

68

627

0
BBBBBBBBBBBBBB@

126

204

462

401

316

450

197

264

1
CCCCCCCCCCCCCCA

We examined two hypothetical methods of grouping

sampling areas into blocks and computed means and var-

iance of each species within a block.

The first method defined block 1 as the group of sam-

pling areas 1 and 2 (row 1 and row 2), block 2 as the group

of sampling areas 3 and 4 (row 3 and row 4), block 3 as the

group of sampling areas 5 and 6 (row 5 and row 6), and

block 4 as the group of sampling areas 7 and 8 (row 7 and

row 8). The resulting log means and log variances for

species 1 (column 1) are (2.28, 2.05, 2.25, 2.54) and (3.84,

3.81, 4.24, 5.19) respectively. The resulting log means and

log variances for species 2 (column 2) are (2.22, 2.64, 2.58,

2.36) and (3.48, 3.27, 3.95, 3.35) respectively. Applying

simple linear regression to log means pooled from the two

species (independent variable) and log variances pooled

from the two species (dependent variable), the point esti-

mate and 95 % confidence interval (CI) are 0.44 and

(-2.56, 3.43) respectively for the slope, 2.86 and (-4.25,

9.97) respectively for the intercept.

The second method defined block 1 as the group of

sampling areas 1 and 5 (row 1 and row 5), block 2 as the

group of sampling areas 2 and 6 (row 2 and row 6), block 3

as the group of sampling areas 3 and 7 (row 3 and row 7),

and block 4 as the group of sampling areas 4 and 8 (row 4

and row 8). The resulting log means and log variances for

species 1 (column 1) are (2.42, 2.04, 1.79, 2.60) and (2.30,

3.10, 1.86, 5.02) respectively. The resulting log means and

log variances for species 2 (column 2) are (2.34, 2.51, 2.52,

2.52) and (4.26, 4.48, 4.55, 3.97) respectively. Using the

same regression procedure as method 1, the point estimate

and 95 % CI are 3.15 and (0.62, 5.69) respectively for the

slope, -3.70 and (-9.67, 2.27) respectively for the

intercept.

The means, variances and parameters of TL all differed

between the two methods. Compared to values under the

first method, the estimated slope was larger and the

estimated intercept was smaller under the second method,

although the difference was not statistically significant as

corresponding CIs overlapped each other. This artificial

example showed that the method by which sampling areas

are grouped into blocks could strongly but not statistically

significantly affect the parameters of TL. In the remaining

sections we studied if such effect was significant using

basal area density data from the 1985 Black Rock Forest

survey.

Descriptive statistics

The maximum and minimum counts of any of the 9 single

species per sampling area were 19 stems (once only) and 0

stems (more than 90 % of the 1,962 counts) respectively.

More than 98 % of the 1,962 counts of a single species per

sampling area were 8 stems or fewer. The mean counts per

sampling area among the nine species was 0.9307 stems,

with 95 % CI (0.8414, 1.0200), and the standard deviation

was 2.0171 stems (almost twice the mean).

The numbers of sampling areas per block, in ascending

order, were 6, 6, 9, 11, 12, 18, 21, 27, and 108 for Friday’s

method; 2, 2, 3, 8, 14, 15, 20, 39, and 115 for Schuster’s

method; 4, 10, 13, 14, 14, 15, 18, 23, 25, 41, and 41 for the

watershed method; and 7, 7, 14, 18, 33, 39, 45, and 55 for

the topography method. As in the analyses of randomiza-

tions, blocks with fewer than 5 sampling areas were

eliminated from the analysis.

Taylor’s law under biological groupings

Under all four biological methods of grouping sampling

areas into blocks, the linear regression of log variances of

tree counts per sampling area on log means, pooled from

the nine most abundant tree species, had estimated slopes

and intercepts that were significantly positive (Fig. 1). The

slope b did not differ significantly from one grouping

method to another: any slope between 1.1335 and 1.2887

fell within the 95 % CIs of all four biological groupings,

and this interval contained all four point estimates of the

slope from the different grouping methods. The 95 % CIs

of the intercept from any two grouping methods overlapped

(Fig. 1).

ESM S1, Sect. 2, fits TL to data from individual tree

species one at a time. Analysis of covariance showed no

statistically significant difference of slopes among the nine

single species.

Quadratic least-square regressions showed that the

coefficient of (log mean)2 was not significantly different

from zero in Friday’s (P = 0.6181) and Schuster’s

(P = 0.5206) methods, but was significantly negative in

the groupings by watershed (P = 0.0273) and topography

(P = 0.0212), rejecting the null hypothesis that quadratic
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regression was not better than linear regression for the

watershed and topography groupings. However, for any

grouping method, it was difficult to tell visually whether

log variance was a nonlinear function of log mean (Fig. 1).

Taylor’s law under randomized groupings

and randomized species counts

On visual inspection, TL was confirmed again under each

random grouping method (Fig. 2, left column). For each

biological grouping, the corresponding random method

yielded a 95 % CI of slope that overlapped the 95 % CI of

the biological grouping. Random grouping did not signifi-

cantly change the form or the slope of TL from the form or

the slope of TL in the biological grouping. For Schuster’s

and the watershed methods, the intercept of TL under the

random groupings had a 95 % CI that lay entirely above

the 95 % CI interval under the corresponding biological

grouping. For Friday’s and topography methods, the 95 %

CIs of the intercept under biological and random groupings

overlapped each other (Table 1). Despite the apparent

linearity in Fig. 2, quadratic regressions for each random

grouping method yielded a 95 % CI of the quadratic

coefficients that lay entirely to the left of zero (Table 1),

showing log variance as a slightly concave function of the

log mean, consistent with the pattern under biological

groupings.

For each biological method, randomizations of tree

census data all yielded 95 % CIs of TL parameters that lay

entirely above the 95 % CI estimated from the

a b

c d

Fig. 1 Taylor’s law held under each biological method of grouping

sampling areas into blocks when the mean and variance of each

species individually were plotted together for the nine most abundant

species. Species are numbered in descending order of stem count in

the whole study area. 1 red oak, 2 chestnut oak, 3 red maple, 4 white

oak, 5 eastern hemlock, 6 red pine, 7 white spruce, 8 black birch, and

9 sugar maple. Solid lines are least-square linear regressions. In the

following statements of the regression equations, 95 % CIs of the

parameter estimates are given after the point estimates. P is the

probability of the null hypothesis that the slope is 0. a Friday’s

grouping by species composition: log(variance) = 0.3480 (0.2881,

0.4079) ? 1.2532 (1.1335, 1.3730) 9 log(mean). P \ 0.0001, root

mean square error (RMSE) = 0.2265, R2 = 0.8832, adjusted (adj.)

R2 = 0.8812. b Schuster’s grouping by species composition: log(var-

iance) = 0.3012 (0.2200, 0.3823) ? 1.1472 (1.0058, 1.2887) 9 log

(mean). P \ 0.0001, RMSE = 0.2332, R2 = 0.8825, adj.

R2 = 0.8793. c Grouping by watershed: log(variance) = 0.3584

(0.3047, 0.4121) ? 1.2197 (1.1114, 1.3280) 9 log(mean).

P \ 0.0001, RMSE = 0.2128, R2 = 0.8861, adj. R2 = 0.8844.

d Grouping by topography: log(variance) = 0.4222 (0.3488,

0.4957) ? 1.2085 (1.0240, 1.3930) 9 log(mean). P \ 0.0001,

RMSE = 0.2682, R2 = 0.7650, adj. R2 = 0.7606

98 Popul Ecol (2015) 57:93–103

123

Author's personal copy



corresponding biological and random groupings, except for

the slope estimation under the topography method

(Table 1), suggesting that the composition of the tree

species within and among sampling areas influenced the

values of TL parameters more than did any particular

grouping method. Comparison between 95 % CIs from the

a b c d

e f g h

i j k l

m n o p

Fig. 2 Taylor’s law holds using randomized groupings and random-

ized tree censuses. Each panel shows one random realization. Each

solid circle represented one pair, (log mean, log variance) of species-

specific stem counts per block. The solid grey lines are least-square

linear regression lines. Table 1 gives parameter estimates and CIs of

regressions. Rows 1–4 correspond to Friday’s, Schuster’s, watershed,

and topography groupings respectively. Columns 1–4 correspond to

random grouping, species randomization, sampling area-species

randomization, and global randomization respectively

Popul Ecol (2015) 57:93–103 99

123

Author's personal copy



species randomization and sampling area-species ran-

domization showed that, after species compositions were

randomly permuted within a sampling area, random

assignment of sampling areas to blocks did not signifi-

cantly change the values of TL parameters, that is, that

grouping methods had no additional effect on the values of

TL parameters after species compositions were random-

ized. For each combination of biological methods and

randomizations of the tree census, the 95 % CI of the

quadratic coefficient from the quadratic regression con-

tained zero, suggesting that the simple linear regression

was sufficient to depict the relationship between log vari-

ance and log mean.

Discussion

We found that TL held for tree basal area densities

under 4 biological methods of grouping sampling areas

into blocks, and all 4 methods yielded statistically sim-

ilar estimates of the slope b of TL. Thus the form (i.e.,

the linear relationship between log mean and log vari-

ance in Eq. 2) and the slope of TL were robust with

respect to the method of grouping. To our surprise, none

of the randomized groupings of sampling areas into

blocks destroyed the form of TL or altered the slope of

TL, but randomized groupings did increase the intercept

of TL for Schuster’s and the watershed grouping meth-

ods. These increases in intercept increased the variance

by a constant factor for every mean density. These

results implied that the form and the slope of TL cannot

reflect the biological assumptions or details of the

grouping methods.

However, when we randomly permuted tree census data

within and among sampling areas, the slope parameter of

TL changed significantly. This result showed that the

species composition of sampling areas has a bigger impact

on the slope of TL than does any particular grouping

method. Overall, the robustness of the form of TL under

various grouping methods suggested that TL must intrin-

sically relate to the shared or common frequency distri-

bution of all observed basal area densities, since this

frequency distribution was the only information left

unchanged in the testing of TL after randomizations.

Calculations elsewhere confirm this suggestion (J.

E. Cohen and M. Xu, unpublished manuscript).

Our estimates of the parameters and goodness of fit of

TL relied on the traditional method of linear regression of

the log–log transformed power law, not least-squares fit-

ting of the power law itself. This procedure has been

criticized (McArdle 1988; McArdle et al. 1990; James and

Plank 2007; Packard and Birchard 2008; Packard et al.

2011; Xiao et al. 2011) and defended (Smith 2009; LaiT
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et al. 2013). Xiao et al. (2011) found that the error distri-

bution (the distribution of the residuals from the regres-

sion) determines which method is superior. After reviewing

previous arguments, Lai et al. (2013) gave a compelling

empirical example in favor of linear regression for fitting a

log-transformed allometric relation of DBH to below-

ground biomass of trees.

Using other data from Black Rock Forest, we compared

the fitting of log mean and log variance to the log–log TL

with non-linear least squares fitting of the untransformed

mean and variance to the power-law TL (Cohen et al.

2012). We found that neither the parameter estimates nor

the substantive conclusions were significantly affected by

the method of fitting. Moreover, since here we were prin-

cipally concerned with the methods of grouping sampling

areas into blocks (means over which sampling areas?

variances over which sampling areas?), we used the tra-

ditional (and consistent) method of linear regression for log

transformed data.

The use of ordinary least squares here, rather than

reduced major axis regression and its variants, is defensible

because the variance of the sample mean is much smaller

than the variance of the sample variance. Hence the log

mean has much smaller sampling variation than the log

variance, and the assumption of little variability in the

horizontal coordinate compared to the variability in the

vertical coordinate is more accurate than the alternative

assumption in reduced major axis regression that the two

variables are symmetrical (Smith 2009).

Taylor and his colleagues (Taylor et al. 1988) suggested

that, when grouping sampling areas into blocks, the num-

ber of sampling areas per block should be at least 15 and

the number of blocks in the regression should be at least

five. These minima lacked theoretical explanations and

depended on the specific data set. We followed Taylor’s

suggestions in part and required at least five sampling areas

per block and at least five blocks per regression when

testing TL.

Future research should investigate empirically and the-

oretically (following suggestive simulations by Sawyer

1989) whether and how the spatial scale (sizes of sampling

units) influences the spatial hierarchical TL. Yamamura

(1990), Figs. 1a, 2a; Table 1 therein compared the slope of

TL using smaller and larger sampling areas in eight

empirical examples of insect populations living on leaves.

In all eight examples, the larger sampling area resulted in a

larger slope of TL, but in four of those examples the

increase in slope was not statistically significant (P of the

F test was greater than or equal to 0.05). In analyzing the

variability of human population density in the municipal-

ities (smallest scale), counties (intermediate scale) and

regions (largest scale) of Norway, Cohen et al. (2013b)

‘‘saw no clear relationship between the spatial scale of the

unit of analysis (increasing from municipality to county to

region) and the size of the regression slope or local slope

…. However, when Oslo was excluded, the size of the

regression slope or local slope was always smaller for

municipalities than for counties …, reflecting perhaps

lesser demographic divergence of municipalities than of

counties.’’ The effect of various spatial scales (sizes of

sampling areas) on the parameters of TL was not tested

using the present data, because the Bitterlich method did

not produce sampling areas of fixed sizes and the data’s

spatial hierarchy did not contain sufficient levels (sampling

area as the lower level and block as the higher level). Other

ecological data sets with exactly defined sampling areas

and multi-level (greater than two) spatial hierarchies are

more suitable to be used to address this interesting

question.

Taylor (1984) attempted to analyze how TL depends

on underlying frequency distributions. He observed that

the abundance of an insect species at progressively

higher population densities conformed to different fre-

quency distributions (e.g., Poisson, negative binomial,

and lognormal) with identical slope parameter b. He used

these distributions to characterize the increase of skew-

ness and tail-length as population density increased.

Taylor did not describe in detail how he fitted these

distributions to his data, nor did he discuss any con-

nection between TL and statistical distributions. Here we

treated all observed basal area densities as a single dis-

tribution, and randomized the way species and sampling

areas were grouped. The success of TL in describing the

relation of log variance to log mean for randomized tree

census data, whether biologically or randomly grouped,

indicated to us that TL may arise as a statistical con-

sequence of randomly sampling the frequency distribu-

tion of overall basal area densities. If this conjecture can

be verified using other ecological data sets and con-

firmed using statistical theory, then we would have

connected TL, a bivariate scaling pattern of variance and

mean, with the univariate frequency distribution of spe-

cies population density. To the extent, and under the

conditions, that such a research agenda succeeds, then

explanation of TL should be based on the theoretical

understanding of observed frequency distribution. Future

work on TL using BRF tree census data or other data

sets should investigate the role of the underlying distri-

bution of counts when interpreting TL.

The results of this work could easily be tested using

available tree data from other forests. If our finding that

TL’s form and parameters do not depend on particular

grouping methods were confirmed using other tree cen-

suses, then the validity of a universal TL pattern would

eliminate the need for a forest management team to classify

sampling areas, and allows foresters to predict the
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variations of basal area densities from the basal area den-

sities directly. This could be extremely useful in monitor-

ing the spatial variations in tree growth. The sampling

method in our data was first applied by foresters for quick

calculations of basal areas to predict tree production and

growth rate. The confirmation of TL using basal area data

therefore has practical implications for the timber industry,

because it gives a guide to monitor spatial variability of

timber species.

In ecology more broadly, our findings for deciduous

trees should be tested using the rich stores of data available

for other taxa. Are the form and parameters of TL always

independent of the method of grouping sampling areas into

blocks? Is the species composition of a sampling area

always more influential on the parameter values of TL than

the method of grouping sampling areas into blocks? Can

the form and parameter values of TL always be explained

by the underlying frequency distribution, without the need

to group sampling areas? Future studies should address

these questions.
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ELECTRONIC SUPPLEMENTARY MATERIAL 

 

Section 1: Forest Classification and Sampling Design 

 

In the 1985 inventory of the Black Rock Forest (BRF), 71 stands, with an average area of 

18.31 ha, were delineated and classified according to canopy height ("2" = height 20-40 feet, 

"3" = height 40-60 feet, "4" = height 60-80 feet, or "6" = height mixed with short and tall 

trees), canopy cover ("A" = cover > 80 %, "B" = cover < 80 %, or " " = irregular cover due to 

mixed heights), and species composition ("H" = 80-100 % hardwood, "HS" = 50-80 % 

hardwood, "SH" = 50-80 % softwood, or "S" = 80-100 % softwood) (K. S. Friday and J. B. 

Friday, unpublished manuscript 1985, available from Black Rock Forest Consortium via 

coauthor W.S.F. Schuster). For example, a stand labeled with "H3A" was composed of 80-

100 % hardwood of height 40-60 feet, with canopy cover greater than 80 %. Here canopy 

cover was defined as the percentage of ground area covered by the extension of plant foliage. 

Composition was defined by canopy cover (K. S. Friday and J. B. Friday, unpublished 

manuscript 1985), so a "> 80 % softwood" stand could mean that understory hemlock (a 

typical softwood) provided a great deal of cover, rather than that softwoods predominated in 

density, basal area or volume. Classifications of these stands (with a total area of 1,300 ha) 

were based on aerial photographs taken in 1981 and field checking carried out in 1985, when 

the Forest was smaller than at present. 

To sample each stand, one or several axes were drawn on the map along the stand's "long 

axis" (or axes). As stands were often irregularly shaped, the axes were sometimes a straight 
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line and sometimes resembled a "Y", a "T", a "Z", or an "11" to sample irregular shapes or to 

skip over an inclusion. 

Several sampling points were located within each stand and trees were censused at each 

sampling point. To designate sampling points, once the axes were drawn for a given stand, 

the "sampling point interval" was defined as the total length of the axes divided by three. A 

starting location was located one chain (66 feet or 20.12 m) along the axis from the 

northernmost end of the axis at the stand boundary. To find the distance along the axis from 

the starting location to the first sampling point, a random fraction between 0 and 1 was 

chosen from a random number table in Avery and Burkhart (2002) and multiplied by the 

sampling point interval. Thus the first sampling point was located along the axis that fraction 

of a "sampling point interval" from the starting location. Then the second and third sampling 

points were located further complete "sampling point interval" distances along that axis 

moving toward its southernmost end, or further along the axes when the axis was not a 

straight line. In this way, each sampling point was one "sampling point interval" distant from 

any neighboring sampling points. This method is described by Avery and Burkhart (2002). 

The Bitterlich method was applied to sample trees at each sampling point. A 10 basal-area-

factor wedge prism was used to tally trees with diameter at breast height (dbh) ≥ 2 inches 

(5.08 cm), called stems. dbh is the diameter of the trunk or bole of a tree measured 1.4 meters 

above ground, and is often used to characterize the tree body size (Burns and Honkala 1990). 

A wedge prism is a prism with a shallow angle between its input and output surface, here 

used as a device to count a stem "in" or "out" of a sampling area (Avery and Burkhart 2002). 
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Section 2: TL Analysis for Individual Tree Species 

 

Simple linear regressions were applied to each of the nine dominant species, separately, if the 

corresponding species and grouping method yielded at least five pairs of well-defined log 

mean and well-defined log variance. Chestnut oak and eastern hemlock in Schuster's method, 

and red pine and white spruce in all methods contained fewer than five blocks and were 

therefore excluded, leaving 26 sets of blocks (for different methods of grouping and different 

species) to test the species-specific spatial hierarchical log-log TL (Eq. 2). In detail, 26 = (9 

species minus red pine and white spruce, i.e., 7 species) × 4 methods, minus chestnut oak and 

eastern hemlock in Schuster's method = 7 × 4 - 2. 

For the species-specific TL, point estimates of the slope and the intercept were positive in all 

26 linear regressions (Tables S1-S4). In 22 of the 26 regressions, the 95 % CI of the slope lay 

entirely above zero, rejecting the null hypothesis of zero slopes. In 21 of the 26 regressions, 

the 95 % CI of the slope b included 1, which is the value of b for the Poisson distribution, but 

for only 6 of the 26 regressions did the 95 % CI of log(a) include 0, which is the value of 

log(a) for the Poisson distribution. In 5 of the 26 regressions, the 95 % CI of the slope b 

included 2, which is the value of b expected for distributions with a constant coefficient of 

variation. 23 of 26 linear regressions yielded a R2 larger than 0.5. In quadratic regressions, the 

point estimate of the coefficient of the quadratic term (log mean)2 was positive in 11 

regressions and negative in 15, but was significantly different from zero in only two of 26 

regressions. Thus the log variance of abundance increased (usually statistically significantly) 

as a linear function of the increasing log mean abundance for each tested combination of 

species and grouping method, as predicted by TL. In general, TL described acceptably the 
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relation between variance and mean, but neither a family of Poisson distributions nor a family 

of distributions with constant coefficient of variation was adequate to explain this agreement. 

For each method of grouping, we tested the null hypothesis that the slope b of TL was the 

same among the nine species by analysis of covariance (ANCOVA) (Snedecor and Cochran 

1989, pp. 374-393). For no method did the slope of TL differ significantly among the seven 

species which could be analyzed individually (P in ANCOVA ranged from 0.1902 to 0.6986 

over different grouping methods). The intercept of TL differed significantly among these 

seven species only when sampling areas were grouped by topography (P = 0.0231). The two 

species with the highest intercepts, in descending order, were eastern hemlock and white oak. 

The intercept for red oak was the lowest and significantly smaller than that for eastern 

hemlock and white oak, but was not significantly different from that for sugar maple, red 

maple, black birch, and chestnut oak, in descending order. 
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Figure S1 

 

Fig. S1. Stands and sampling areas of Black Rock Forest in 1985. Map by James B. Friday, 

1985, used by permission of the Black Rock Forest Consortium. 
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Figure S2 

 

Fig. S2. Testing TL using counts of single tree species within a sampling area under Friday’s 

grouping. (a) Red oak. (b) Chestnut oak. (c) Red maple. (d) White oak. (e) Eastern hemlock. 

(f) Black birch. (g) Sugar maple. Blocks are distinguished by numbers which have no 

biological implications. In all panels, the same number represents the same block. Solid line 

in each panel is the regression line. Statistics of each regression are listed in Table S1.
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Figure S3 

 

Fig. S3. Testing TL using counts of single tree species within a sampling area under 

Schuster’s grouping. (a) Red oak. (b) Red maple. (c) White oak. (d) Black birch. (e) Sugar 

maple. Markers identify block: sh (successional hardwoods), sm (sugar maple woods), os 

(oak slope woods), hc (hemlock coves), hw (hilltop woods), co (chestnut oak woods), rms 

(red maple swamp), cp (conifer plantations), and c+r (cliff and rock). c+r is omitted from the 

tests because there are no trees in it. Statistics of each regression are listed in Table S2. 



 

10 
 

Figure S4 

 

Fig. S4. Testing TL using counts of single tree species within a sampling area under the 

watershed grouping. (a) Red oak. (b) Chestnut oak. (c) Red maple. (d) White oak. (e) Eastern 

hemlock. (f) Black birch. (g) Sugar maple. Markers identify blocks: am (Aleck Meadow 

(Upper Black Rock Brook watershed)), bm (Bog Meadow), lbrb (Lower Black Rock Brook), 

cas (Cascade Brook), ch (Cat Hollow), jp (Jim’s Pond), lcb (Lower Canterbury Brook), lms 

(Lower Mineral Springs Brook), ucb (Upper Canterbury Brook), ums (Upper Mineral Springs 

Brook), and ur (Upper Reservoir). Statistics of each regression are listed in Table S3. 
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Figure S5 

 

Fig. S5. Testing TL using counts of single tree species within a sampling area under the 

topography grouping. (a) Red oak. (b) Chestnut oak. (c) Red maple. (d) White oak. (e) 

Eastern hemlock. (f) Black birch. (g) Sugar maple. Markers identify block soil moisture scale 

(4 being driest and 11 being wettest) based on aspect, topographic position, and slope 

steepness. Statistics of each regression are listed in Table S4.  
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Figure S6 

 

Fig. S6. Frequency distribution of number of trees per sampling area by species. (a) Trees of 

all 35 species summed, regardless of species. (b) Red oak. (c) Chestnut oak. (d) Red maple. 

(e) White oak. (f) Eastern hemlock. (g) Red pine. (h) White spruce. (i) Black birch. (j) Sugar 

maple. Solid lines represent fitted normal distribution for (a) and fitted exponential 

distributions for (b)-(j). 
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Table S1. Regression statistics of TL under Friday’s grouping.  Parameter point estimates and 95 % lower and upper bounds were obtained from 

normal theory using the original data. Species' abbreviations are given in main text 

Species Number of 

blocks 

Linear regression Quadratic regression 

squared term 

Slope Intercept RMSE R2 Adjusted 

R2 

P P Sign 

Estimate Lower 

bound 

Upper 

bound 

Estimate Lower 

bound 

Upper 

bound 

RO 8 0.9854 0.0552 1.9156 0.2847 -0.1567 0.7262 0.1662 0.5282 0.4496 0.0411 0.0105 < 0 

CO 8 1.0614 0.5619 1.5610 0.4569 0.3301 0.5837 0.1013 0.8184 0.7881 0.0020 0.0549 < 0 

RM 9 1.1379 0.4139 1.8618 0.2330 0.0093 0.4568 0.2705 0.6637 0.6156 0.0075 0.3905 > 0 

WO 8 1.4855 1.1575 1.8135 0.4854 0.2891 0.6817 0.1539 0.9534 0.9456 < 0.0001 0.6410 > 0 

EH 6 1.2013 0.7963 1.6063 0.3857 0.1027 0.6688 0.2421 0.9443 0.9304 0.0012 0.6430 < 0 

BB 9 1.0593 0.5340 1.5846 0.1814 -0.1133 0.4761 0.1616 0.7646 0.7310 0.0020 0.0478 < 0 

SM 8 1.3641 0.7798 1.9485 0.4355 0.1464 0.7247 0.1952 0.8447 0.8188 0.0012 0.6373 < 0 
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Table S2. Regression statistics of TL under Schuster’s grouping. Parameter point estimates and 95 % lower and upper bounds were obtained 

from normal theory using the original data. Species' abbreviations are given in main text 

Species Number of 

blocks 

Linear regression Quadratic regression 

squared term 

Slope Intercept RMSE R2 Adjusted 

R2 

P P Sign 

Estimate Lower 

bound 

Upper 

bound 

Estimate Lower 

bound 

Upper 

bound 

RO 6 0.9316 0.6940 1.1692 0.1945 0.0855 0.3035 0.0947 0.9673 0.9592 0.0004 0.1602 < 0 

RM 6 1.3479 0.8619 1.8339 0.3337 0.2053 0.4622 0.1070 0.9368 0.9210 0.0015 0.0550 > 0 

WO 5 1.0602 0.0037 2.1167 0.4242 -0.0908 0.9392 0.2765 0.7727 0.6970 0.0496 0.3805 < 0 

BB 6 0.9061 0.1078 1.7044 0.0629 -0.4500 0.5757 0.1829 0.7129 0.6411 0.0345 0.1884 > 0 

SM 6 1.3029 0.9925 1.6134 0.4243 0.1548 0.6939 0.1642 0.9714 0.9642 0.0003 0.3425 > 0 
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Table S3. Regression statistics of TL under the watershed grouping. Parameter point estimates and 95 % lower and upper bounds were obtained 

from normal theory using the original data. Species' abbreviations are given in main text 

 

Species Number of 

blocks 

Linear regression Quadratic regression 

squared term 

Slope Intercept RMSE R2 Adjusted 

R2 

P P Sign 

Estimate Lower 

bound 

Upper 

bound 

Estimate Lower 

bound 

Upper 

bound 

RO 10 0.6234 -0.2666 1.5133 0.4974 0.0536 0.9413 0.1434 0.2459 0.1517 0.1449 0.4592 < 0 

CO 10 0.5242 -0.0850 1.1334 0.5352 0.3511 0.7192 0.1329 0.3298 0.2461 0.0825 0.5822 > 0 

RM 10 1.1249 0.3117 1.9381 0.3144 0.1259 0.5029 0.2138 0.5598 0.5048 0.0128 0.9732 > 0 

WO 10 1.3552 1.0371 1.6732 0.4084 0.2427 0.5742 0.1633 0.9235 0.9139 < 0.0001 0.5629 < 0 

EH 6 1.3536 1.0103 1.6969 0.5366 0.2874 0.7857 0.1699 0.9677 0.9596 0.0004 0.9772 < 0 

BB 9 1.3616 1.0347 1.6885 0.3570 0.1664 0.5475 0.1377 0.9327 0.9231 < 0.0001 0.1952 > 0 

SM 6 1.3246 0.9881 1.6612 0.4131 0.2062 0.6200 0.1606 0.9252 0.9146 < 0.0001 0.5499 < 0 
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Table S4. Regression statistics of TL under the topography grouping. Parameter point estimates and 95 % lower and upper bounds were 

obtained from normal theory using the original data. Species' abbreviations are given in main text 

 

Species Number of 

blocks 

Linear regression Quadratic regression 

squared term 

Slope Intercept RMSE R2 Adjusted 

R2 

P P Sign 

Estimate Lower 

bound 

Upper 

bound 

Estimate Lower 

bound 

Upper 

bound 

RO 8 0.2603 -0.8830 1.4037 0.6922 0.1476 1.2369 0.1035 0.0492 -0.1093 0.5976 0.9385 > 0 

CO 8 1.3387 0.6497 2.0277 0.2792 0.0729 0.4856 0.1997 0.7902 0.7552 0.0031 0.4000 < 0 

RM 7 1.6282 1.1771 2.0793 0.3877 0.2618 0.5135 0.1282 0.9451 0.9341 0.0002 0.7591 > 0 

WO 8 1.4165 0.7250 2.1081 0.5110 0.3252 0.7168 0.1808 0.8072 0.7751 0.0024 0.8928 > 0 

EH 6 1.3702 0.7921 1.9483 0.5899 0.2542 0.9257 0.2524 0.9154 0.8943 0.0028 0.1971 < 0 

BB 6 1.8885 -0.6623 4.4393 0.5814 -0.5242 1.6870 0.2425 0.5137 0.3921 0.1090 0.1489 < 0 

SM 7 1.0893 0.3289 1.8496 0.3068 -0.0636 0.6771 0.1949 0.7306 0.6767 0.0143 0.0756 < 0 
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