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Abstract How does fishing affect the mean and variance of
population density in the presence of environmental fluctua-
tions? Several recent authors have suggested that an increas-
ing ratio of standard deviation to mean (coefficient of varia-
tion, or CV) in population density indicates declining popula-
tion stability. We investigated the relationship between the
mean and variance of population density in stochastic, densi-
ty-dependent, stage-structured fish population models. Our
models included either compensatory or overcompensatory
density dependence affecting either fertility or juvenile sur-
vival. Environmental stochasticity affected either juvenile sur-
vival (when density dependence affected fertility) or fertility
(when density dependence affected juvenile survival). The
mean and variance of population density were compared as
fishing mortality changed. In some cases, the relationship
between the natural logarithms of mean and variance is linear
under some parameters (life history strategy) of some models
(the type of density dependence and the timing of density
dependence and stochasticity), supporting Taylor’s law. In
other cases, the relationship can be non-linear, especially
when density dependence is overcompensatory, and depends
on the stage observed. For example, the variance of adult
density may increase with its mean while the variance of
juvenile density of the same population may decline, or vice
versa. The sequence in which individuals experience

stochasticity and density dependence matters because density
dependence can attenuate or magnify the fluctuation. In con-
clusion, the use of the CVas a proxy for population instability
is not appropriate, and the CVof population density has to be
interpreted carefully for other purposes.
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Introduction

Empirical evidence has suggested that the variance of the
population density of a given taxon is often a power function
of its mean (Taylor and Woiwod 1980):

V ¼ aMb; ð1Þ

where M and V are the mean and variance of population
density, respectively, and a and b are coefficient and power
(or exponent), respectively. This pattern is called Taylor’s law
(TL; Taylor 1961). This relationship has been found for hun-
dreds of taxa, among the populations of a single or several
related species (Eisler et al. 2008; Ramsayer et al. 2012;
Taylor and Woiwod 1980). TL has been verified with both
temporal and spatial variance of population densities (Taylor
and Woiwod 1982). In this paper, we focus on temporal TL
relationships and examine the relationships between V and M
at varying levels of exploitation (fishing mortality).

A large number of models have been developed to explain
the TL relationship theoretically (e.g., Anderson et al. 1982;
Ballantyne 2005; Cohen 2014; Cohen et al. 2012a, b, 2013;
Keeling 2000; Kilpatrick and Ives 2003; Perry 1994;
Yamamura 1990, 2000). For example, Cohen et al. (2012a)
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demonstrated that the TL relationship holds for density (de-
noted by u(x,t) where x and t are individual size and time,
respectively) at given individual size x when u(x,t) is periodic
in time t. The authors also demonstrated that the results are
insensitive to fishery exploitation as long as fish of different
sizes are targeted equally (balanced harvesting). Here, we
present new results on the mean and variance of fish density
under stochastic density-dependent stage-structured popula-
tion models experiencing fishery exploitation. We investigate
how the mean and variance of stage-specific densities change
when different levels of exploitation rates are imposed on a
population or populations exhibiting the same life history
strategy. The use of stage-specific rather than total density
reflects the fact that we rarely observe the total density in
practice and often use stage density as a proxy.

Define fishing mortality μ=1−f as the complement of the
fishing escapement rate f. Define V(μ) and E(μ) as the vari-
ance and mean, respectively, of stage density over time of a
specified model population subjected to fishing mortality μ.
Cohen (2013, p. 95, his equation (7)) defined the “local
exponent” (in the context of this paper, b(μ)) of the vari-
ance–mean relationship as

b μð Þ ¼ dlogV μð Þ
dlogE μð Þ ; ð2Þ

assuming differentiability. The local exponent b(μ)=b is con-
stant at all levels of fishing mortality μ if and only if the power-
law form of TL (1) describes the relation between VandM at all
μ. Cohen (2013, p. 96, his Fig. 1(d)) demonstrated that when
the local exponent is viewed as a function of time, the local
exponent experienced very abrupt changes (singularities) in a
deterministic model of heterogeneous exponentially growing
clones. Jiang et al. (2014, their Fig. 3) showed that very abrupt
changes of the local exponent (as a function of time) occurred in
a linear birth-and-death population model, where stochasticity
was purely demographic (affecting each individual indepen-
dently in a constant environment). Here, we investigate wheth-
er, and under which conditions, the local exponent b(μ) exhibits
singularities in stage-structured, density-dependent fishery
models with environmental stochasticity only.

The mean and variance over time of population density are
important quantities in population biology in general. For
example, in conservation ecology, these two measures were
proposed as the major determinants of the viability of a
population (Beissinger and McCullough 2002). In fisheries,
the coefficient of variation (CV), which is the standard devi-
ation (square root of the variance) divided by the mean, is
often used as a measure of population variability (Anderson
et al. 2008; Hsieh et al. 2006). When the exponent b=2 in TL,
the CVof population density is constant. But when b>2 and b
<2 (McArdle et al. 1990), the CV increases and declines,

respectively, with increasing mean. Whether the mean and
variance of population density are compared directly or other
quantities are derived from them, for their proper interpreta-
tions, it is crucial to understand how they are related to each
other for various underlying population processes.

The models used in this study are two-stage matrix popu-
lation models with environmental stochasticity, density de-
pendence, and fishery exploitation. A similar model was
previously used to demonstrate the effect of fishery exploita-
tion on transient and asymptotic dynamics of fish populations
exhibiting various life history strategies (Fujiwara 2012). This
model complements previous attempts to understand the TL
relationship. For example, Perry (1994) investigated the TL
relationship with a population model exhibiting chaotic dy-
namics, Kilpatrick and Ives (2003) used a competition model,
and Cohen et al. (2013) used a stochastic multiplicative model
without stage or age groups. Here, we show the effects of (1)
the order of stochasticity and density dependence experienced
by individuals, (2) type of density dependence (compensatory
vs. overcompensatory), (3) the stage targeted by exploitation,
and (4) life history strategies on the mean and variance of
stage densities. In this analysis, the positive equilibrium point
of the models without stochasticity was stable; therefore,
fluctuation is primarily driven by the environmental
stochasticity although other processes can attenuate or mag-
nify the fluctuation.

Materials and methods

Two-stage population models

The two stages in the models are for juveniles and adults; the
life cycle graph for the models can be found in (Online
Resource A). Although the stage structure is simple, the
models can incorporate a wide range of life history strategies
of organisms by varying parameters as described in Neubert
and Caswell (2000). The population matrix is given as

A ¼ s 1−mð Þ r
sm p

� �
; ð3Þ

where r is a fertility rate (r>0), s is a juvenile survival rate (0<s<
1), p is an adult survival rate (0≤p<1), andm is a maturation rate
(0<m≤1). These rates are finite per-capita rates, and the time unit
is assumed to be 1 year. Hereafter, these rates are collectively
called life history parameters. State variables are the densities of
juveniles and adults, denoted by n1 and n2, respectively. The

population vector at time t is given as nt ¼ n1 n2½ �Tt , and it is
projected from time t to t+1 as

ntþ1 ¼ Ant: ð4Þ
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By letting one of the life history parameters be density
dependent and another be stochastically fluctuating, we de-
velop stochastic density-dependent models. Fishery exploita-
tion is also incorporated into the model by including the rate of
escaping the exploitation (an escapement rate). These are
described below.

Density dependence

Density dependence is incorporated into one of two life his-
tory parameters: fertility and juvenile survival rates. In the first
model, the fertility rate depends on adult density. This is
denoted by r[n2], and this model is called a density-
dependent fertility model. In the second model, the juvenile
survival rate depends on juvenile density. This is denoted by
s[n1], and this model is called a density-dependent juvenile
survival model.

For the density-dependent fertility model, density depen-
dence is expressed as

r n2½ � ¼ α
1þ βn2ð Þγ ; ð5Þ

where α, β, and γ are density-dependent parameters (Fig. 1).
Parameter α determines the maximum number of juveniles
produced per adult; therefore, the intercepts with the vertical
axis in Fig. 1a are given by α. Parameters β and γ determine
how fast the fertility rate declines with increasing adult density
n2. The product of r[n2] and n2 is generally known as a stock–
recruitment (spawner–recruitment) function in fishery litera-
ture when n2 is stock density and stage 1 is the stage to be
recruited (Fig. 1b). When γ=1, this function is said to be
compensatory and is also known as the Beverton–Holt func-
tion (Beverton and Holt 1957). When γ>1, for a sufficiently
large n2, r[n2] declines faster than an increase in n2; this type
of stock–recruitment relationship is known as overcompensa-
tory (Hilborn and Walters 1992) because recruitment r[n2]n2
can decline with increasing n2 (Fig. 1b).

For the density-dependent juvenile survival model, density
dependence is expressed as

s n1½ � ¼ 1

1þ βn1ð Þγ : ð6Þ

This is the same as that for the density-dependent fertility
rate (Eq. 5) except α is set to 1, which is the maximum
possible value of a survival rate.

Fishing mortality

Fishing mortality was incorporated into the density-dependent
fertility model as

An ¼ s 1−mð Þ α f
1þ β f n2ð Þγ

sm pf

0
@

1
A; ð7Þ

where f is the annual escapement rate from fishing. Therefore,
1−f is an annual fishing mortality rate. Fishing is assumed to
target only adults in this model, but the escapement rate also
appears in the <1,2> element because the sequence of events
is assumed to be (1) fishing, (2) reproduction, and (3) the
survival of offspring over 1 year. This order of the events was
assumed in order to avoid the situation in which adults do not
experience fishing mortality at all before the first reproduc-
tion; this is problematic for fish with semelparous life history
(p=0). Another way to incorporate fishing mortality is to
multiply the <2,1> element by f, rather than the <1,2> ele-
ment, assuming fishing occurs immediately before time pro-
gresses from 1 year to the next.

Similarly, fishing mortality was incorporated into the
density-dependent juvenile survival model as

An ¼
1−m

1þ βn1ð Þγ r f

m

1þ βn1ð Þγ pf

0
B@

1
CA: ð8Þ

Fishing often targets adults, but some fisheries, such
as Japanese eel (Tsukamoto 2012) and bluefin tuna
(Fromentin and Powers 2005) fisheries, also target ju-
veniles. When juveniles are affected by fishing exploi-
tation, the <1,1> and <2,1> elements of the population
matrix are multiplied by f. However, qualitative results
did not change whether only adults, only juveniles, or
both juveniles and adults are targeted by fisheries.
Therefore, we present selected results when adults are
targeted by fisheries in the main text, and the other
results are presented in Online Resource B.

Stability of deterministic models

Under the deterministic density-dependent fertility model, if
the dominant eigenvalue of the population matrix after replac-
ing r[n2] with α was greater than 1, the model has a single
positive equilibrium point because the dominant eigenvalue is
a decreasing function of r[n2] according to the Perron–
Frobenius theorem (see Caswell 2001) and r[n2] is also a
decreasing function of n2. Similarly for the juvenile survival
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model, when the dominant eigenvalue of the population ma-
trix after replacing s[n1] with 1 is greater than 1, the model has
a single positive equilibrium point. Hereafter, the positive
equilibrium point is denoted by n*.

The equilibrium point, however, may not be stable. One
way to determine its stability is to apply the Jury Criteria (Jury
1974) to a linearized density-dependent population matrix
around the equilibrium point:

J ¼ An� þ ∂An

∂n1
n

∂An

∂n2
n

� �
n�
: ð9Þ

Matrix J is called Jacobean (see Caswell 2001). According
to the Jury Criteria, the equilibrium point is stable when the
following conditions are satisfied:

1−trJþ detJ > 0;
1þ trJþ detJ > 0;

1−detJ > 0:
ð10Þ

In this analysis, we consider the results only when the
equilibrium point of the deterministic model is stable (stable
models).

Stochasticity

Stochasticity was incorporated into the stable models by
allowing one of two life history parameters to fluctuate sto-
chastically. Under the density-dependent fertility model,
stochasticity was incorporated into juvenile survival (i.e.,
stochasticity occurring after density dependence). To simulate
juvenile survival, the beta distribution with mean s (0 < s≤1 )
and the variance of 0.001 was used. Under the density-
dependent juvenile survival model, stochasticity was incorpo-
rated into the fertility term (i.e., stochasticity occurring before
density dependence). To simulate the fertility rates, the gamma
distribution withmean r (r > 0 ) and the variance of 0.001 was
used. Although a variance of 0.001 appears to be small, small
variance, depending on the associated mean, can translate into a
large fluctuation in a population growth rate, which in turn can

Fig. 1 Density-dependent
fertility functions: a per-capita
recruitment (Eq. 5) as a function
of adult density and b total
recruitment (r[n2]n2) as a function
of adult density. Parameters: α=
10, which appears as intercepts in
a, and β=1
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translate into a large fluctuation in stage densities. To investi-
gate the effect of increased variance, we also simulated different
levels of variance up to 0.1. Some of the results with higher
variance are presented in Online Resource D.

Analysis

When fishing mortality was imposed on the adult stage,
changes in the mean and variance of both juvenile and
adult densities were investigated for a wide range of life
history strategies, which are determined by the juvenile
survival, adult survival, and maturation rates. For a
given life history strategy (i.e., a given set of s, p,
and m), a fertility rate r that makes the dominant ei-
genvalue of population matrix (3) equal to 1 is

r ¼ 1−pð Þ ms−sþ 1ð Þ
ms

: ð11Þ

Equation (11) was obtained by writing the equation for the
dominant eigenvalue of matrix A in Eq. (3), setting the eigen-
value to 1 and solving the equation for r.

For the density-dependent fertility model, α in
Eq. (5) was set to 10 times the value of r obtained
with Eq. (11). Then, for both the density-dependent
fertility and juvenile survival models, the equilibrium
adult density when there was no fishing mortality (f=
1) was set to 100, and juvenile density was obtained by
calculating the stable stage distribution. Then, for a
given value of parameter γ , the other density-
dependent parameter β was obtained by substituting
the equilibrium stage densities n2

* or n1
* when f=1 into

the density-dependent Eq. (5) or (6), respectively, and
solving the equations for β. Consequently, without any
fishing mortality, the adult equilibrium density without
stochasticity is always 100, but it changes as a different
level of fishing mortality is imposed.

For each set of life history parameters (s, m, and p);
density-dependent parameter (γ); and fishing escapement
rate (f), the Jury Criteria were applied to determine the
stability of the equilibrium point. If the equilibrium
point was stable, s was used for the mean survival rate
s in the stochastic density-dependent fertility model,
and r obtained by Eq. (11) was used for the mean
fertility rate r in the stochastic density-dependent juve-
nile survival model. Then, a population vector was
simulated over 10,100 time steps starting from the equi-
librium point of the corresponding deterministic model.
Then, the mean and variance of each stage density were
calculated after discarding the first 100 time steps. This
was repeated for different sets of parameters (Table 1).

To determine the number of time steps to be used in the
simulations, different numbers (1000, 5000, 10,000, and
40,000) of time steps were tried under selected parameter sets.
Generally, the time steps required for the convergence
depended on parameter values, and the variance took more
time steps to converge than the mean. Frommany trials, it was
decided that 10,000 time steps were sufficient to see the
patterns in the relationships between the mean and variance
of stage densities.

Results

The natural logarithm of the variance of stage densities
was plotted against the natural logarithm of the mean
stage density (Figs. 2, 3, 4, and 5). In the figures, the
variance and mean change as different levels of fishing
mortality were imposed on a population. There is 1 point
for each of the 501 levels of fishing mortality. Hereafter,
these curves are called the variance–mean curves. We
present the results first for compensatory density depen-
dence (first with density-dependent fertility, then with
density-dependent juvenile survival), followed by the re-
sults for overcompensatory density dependence (again, first
with density-dependent fertility, then with density-
dependent juvenile survival). Then, we describe the effects
of fishing mortality on mean stage densities when density
dependence was overcompensatory. Finally, we describe
the effects of increased variance in the stochastic term
on the mean stage densities.

Table 1 Parameters used in the analyses

Parameter Notation Values
evaluated

Juvenile survival rate s 0.2, 0.5, 0.8a

Maturation rate m 0.1, 0.5, 1.0

Adult survival rate p 0, 0.5, 0.9

Fertility rate r See Eq. (11)b

Density-dependent parameters α 10r

β See main textb

γ 1, 2, 3

Fishing escapement f 0.2–1.0c

Variance of stochastic distributions
of juvenile survival and fertility

0.001, 0.1

a The results with s=0.2 and 0.8 are shown in Online Resource B, C, and
D
b r and β are functions of other parameters
c Evaluated at 501 points equally spaced within the range
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Mean and variance of stage densities

When density dependence is compensatory (γ=1) and fertility
is density dependent (Fig. 2), the variance–mean curves for
adults were linear with slopes between 1 and 2. This supports
TL. However, the relationships for juveniles were not always
linear. The local exponent b(μ) for juveniles (but not for
adults) is very negative when the maturation rate m=1 and
fishing mortality μ are small (Fig. 2, in the three panels on the
right, solid curves; also see Online Resource C2). The juvenile
stage consists of newly produced juveniles and those that
survived and remained in the juvenile stage from the previous
year. The former fluctuate much less than the latter because
stochasticity affects the survival of juveniles and fluctuation in
the newly produced is attenuated by density dependence as the
density of adults increase. The attenuation can be seen in
Fig. 1b where the slope of compensatory density curve

declines as density increases; consequently, the same amount
of fluctuation in adult density translates into small fluctuation
in the density of newly produced juveniles as adult density is
increased. As juvenile density increases under the same juve-
nile survival and maturation rates, the proportion of newly
produced juveniles in the stage increases. This in turn reduces
the variance of juvenile density.

When density dependence is compensatory (γ=1) and
juvenile survival is density dependent (Fig. 3), the variance
of juvenile density increased convexly (faster than linearly)
with the mean. The log variance of adults also increased with
its log mean with slopes between 1/2 and 2, but when the
mean juvenile survival rate was lower, the variance of adult
density could decline with increasing mean adult density
(Online Resource B9), reversing the pattern observed with
the density-dependent fertility model. The variance of juvenile
density increased with increasing mean juvenile density with

Fig. 2 Natural logarithm of variance and natural logarithm of mean of
juvenile (solid curve) and adult (dashed curve) densities over 10,000 time
steps of a stochastic density-dependent fertility model. The slopes b of
fitted linear regression lines are also shown in each panel. The simulations

are under s ¼ 0:5 , and other life history parameters are shown above
each panel. Density dependence is compensatory (γ=1). As we go down
the panels, an adult survival rate is increased, and as we go to the right, a
maturation rate is increased
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slopes between 1.3 and 2.5 (Fig. 3), meaning that the CV
could increase or decline with increasing mean juvenile
density.

When density dependence is overcompensatory (γ=3) and
fertility is density dependent (Fig. 4), the local exponent b(μ)
for juveniles is again very negative for the two higher matu-
ration rates m. However, the variance and mean could have a
trough and/or peak at an intermediate fishing mortality rate
(Fig. 4). Consequently, the variance–mean curves exhibit the
cusp or fold (a singularity) at the density where the stock–
recruitment curve is at its peak (asterisks; see Fig. 1b).

When density dependence is overcompensatory (γ=3) and
juvenile survival is density dependent (Fig. 5), the local ex-
ponent b(μ) for adults (but not for juveniles, the reverse of the
previous situation) clearly passes through a singularity. For
example, in the middle row of Fig. 5, the dotted curve (for
adults) has a very negative slope just to the left of the asterisk

and a very positive slope just to the right of the asterisk, so the
local exponent b(μ) jumps discontinuously from extremely
negative to extremely positive values as fishing mortality
decreases (see Online Resource C17) through the peak of
the recruitment curve.

Effects of fishing mortality on mean stage densities

The mean and variance of stage densities were not monotonic
functions of the fishing mortality rate when density
dependence was overcompensatory (Figs. 4 and 5).
Counterintuitively, the mean stage density could also increase
with an increasing fishing mortality rate (Fig. 6). In particular,
juvenile density tended to increase with an increasing fishing
mortality rate under the overcompensatory density-dependent
fertility model (Fig. C7-C9, C13-C15). This was because, as
fishing removed individuals from the adult stage, it was

Fig. 3 Natural logarithm of variance and natural logarithm of mean of
juvenile (solid curve) and adult (black curve) densities over 10,000 time
steps of a stochastic density-dependent juvenile survival model. The
slopes of fitted linear regression lines are also shown in each panel. The

simulations are under s*=0.5, and other life history parameters are shown
above each panel. Density dependence is compensatory (γ=1). As we go
down the panels, an adult survival rate is increased, and as we go to the
right, a maturation rate is increased
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overcompensated by increased reproduction. This, in turn,
increased juvenile density. Adult density could also be
overcompensated if organisms had a short-lived adult stage
(p=0; top row of Fig. 6), but the adult density of organisms
with a long-lived adult stage (p=0.9; bottom row of Fig. 6)
showed declining adult density with an increasing fishing
mortality rate. Finally, when organisms exhibited an interme-
diate level of adult survival (p=0.5; middle row of Fig. 6),
adult density could increase and then decline as the fishing
mortality rate was increased from 0 to 0.8. This contributed to
creating the folding in the variance–mean relationship (Fig. 4).

Finally, under the density-dependent juvenile survival
models, juvenile density declined with an increasing fishing
mortality rate in all of the cases we investigated (Online
Resource C4-C6, C10-C12, C16-C18). Adult density also
tended to decline with fishing mortality, but when organisms
had a short-lived adult stage (p=0) and experienced strong

overcompensatory density dependence (γ=3), adult density
could increase with fishing mortality (top row of figure in
Online Resource C16).

In many cases, the stability of the positive equilibrium
point was lost as the fishing mortality rate was increased
(e.g., panels (g)–(i) in Fig. C1 of Online Resource C). This
occurred when 0 (extinction) became stable. On the other
hand, under the density-dependent fertility model with strong-
ly overcompensatory density dependence (γ=3; panels (a)–(c)
of Fig. C13 and panels (b) and (c) of Fig. C14 and C15 in
Online Resource C), the positive equilibrium became stable as
fishing mortality was increased and as the dynamics changed
from periodic to a stable equilibrium point (this was confirmed
by plotting bifurcation diagrams).

When the variance of the life history parameters was in-
creased from 0.001 to 0.1, the mean stage densities generally
declined (cf. Online Resources C and D). On the other hand,

Fig. 4 Natural logarithm of variance and natural logarithm of mean of
juvenile (solid curve) and adult (dashed curve) densities over 10,000 time
steps of a stochastic density-dependent fertility model. Stars (*) indicate
the density at which the stock–recruitment curve r[n2]n2 is at its peak. The

simulations are under s ¼ 0:5 , and other life history parameters are
shown above each panel. Density dependence is overcompensatory (γ=
3). As we go down the panels, adult survival rate is increased, and as we
go to the right, maturation rate is increased
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the qualitative results described under the low variance
remained the same in the majority of the cases investigated.
Estimating mean densities became difficult under some pa-
rameters because computational rounding errors were intro-
duced as mean density was reduced toward 0. This effect was
particularly clear in Fig. D1, D7, and D13 in Online Resource
D because population densities tended to be close to 0 and the
frequency distribution of the survival rate was U shaped (i.e.,
the rate was frequently close to 0) because of high variance
relative to its mean.

Discussion

Our analysis examined the changes in the mean and variance
of stage densities at different levels of fishery exploitation.

This can be viewed as comparison of different populations
exhibiting the same life history strategy when different levels
of fishery exploitation, or more generally additional mortality,
were imposed. The comparison can also be between the
periods of experiencing different levels of fishing pressure
for the same population. The temporal TL was supported
under some parameter values (life history strategies) of some
models (the type of density dependence and the timing of
density dependence and stochasticity). Specifically, under
compensatory density dependence, both juvenile and adult
density, depending on the timing of density dependence and
stochasticity, supported TL and gave estimates of the slope
that were reasonable compared to empirical observations
(Figs. 2 and 3; Online Resource B1-B16). However, under
overcompensatory density dependence, the variance and
mean relationships were more complicated (Figs. 4 and 5,
Online Resource B17-B50). Our results show that a cusp or

Fig. 5 Natural logarithm of variance and natural logarithm of mean of
juvenile (solid curve) and adult (dashed curve) densities over 10,000 time
steps of a stochastic density-dependent juvenile survival model. Stars (*)
indicate the density at which the stock–recruitment curve r[n1]n1 is at its

peak. The simulations are under s*=0.5, and other life history parameters
are shown above each panel. Density dependence is overcompensatory
(γ=3). As we go down the panels, adult survival rate is increased, and as
we go to the right, maturation rate is increased
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fold (a singularity) can be observed in the variance–mean
function of stage-structured density-dependent stochastic
models. Similar singularities were also demonstrated with
other population models previously (Cohen 2013, 2014;
Jiang et al. 2014).

When fish populations are sampled in the field, a certain
stage or a set of stages is often targeted; we rarely observe the
entire population. Our results suggested that the stage ob-
served matters because the mean and variance of stage densi-
ties could change differently among different stages as fishery
exploitation was imposed (Figs. 2, 3, 4, and 5). In some cases,
variance–mean curves had a positive slope for one stage
and a negative slope for the other (Figs. 2, 4, and 5).
This suggests that how we measure population density
is very important in understanding its variance–mean
relationship.

Similarly, fishery exploitation can also target different
stages. However, the general patterns between the mean and

variance relationships were similar whether juveniles, adults,
or both were targeted by fishing (Online Resource B) although
the ranges of a fishing mortality rate for stable positive equi-
librium were different. This result is different from that in
Cohen et al. (2012a). They showed that the mean–variance
relationship of the size spectrum was insensitive to fishing
mortality under “balanced harvesting,” but it was sensitive
when only larger individuals were targeted. There are two
major differences in the models used in our study and Cohen
et al. (2012a). First, we compared the mean and variance of
the same stage of populations experiencing different levels of
the fishery exploitation rates whereas Cohen et al. (2012a)
calculated the mean and variance of the density of individuals
of a given size and compared how the mean and variance
changed with the individual size within the same population.
Second, in our models, the source of fluctuation is
stochasticity whereas, in the model of Cohen et al. (2012a),
the source of fluctuation is deterministic periodic cycles.

Fig. 6 Mean densities of juvenile (solid curve) and adult (dashed curve)
stages as a function of a fishing mortality rate under a stochastic density-
dependent fertility model. The simulations are under s ¼ 0:5 , and other

life history parameters are shown above each panel. Density dependence
is overcompensatory γ=3. As we go down the panels, the adult survival
rate is increased, and as we go to the right, a maturation rate is increased
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With fish and other populations, the relative timing of
density dependence and environmental fluctuation affecting
a population is highly uncertain (Fujiwara et al. 2014; Ralston
and O’Farrell 2008). In our results, the order in which indi-
viduals experienced density dependence and stochasticity was
an important determinant of the mean–variance relationship.
Under compensatory density dependence, if density depen-
dence came before stochasticity, adult density followed the
temporal TL, but juvenile density did not (Fig. 2, Fig. B1-B2
in Online Resource B). On the other hand, if stochasticity
came before density dependence, juvenile density followed
the temporal TL (Fig. 3, Fig. B9-B10 in Online Resource B).
Under the latter model, adult density also followed TL when
the annual juvenile survival rate was 0.5 (Fig. 3), but with
another juvenile survival rate, adult stage might or might not
follow TL (Fig. B9-B10 in Online Resource B). We suggest
that the variance–mean relation may be used to elucidate the
relative timing of the density dependence and environmental
fluctuation affecting population rates by comparing the pat-
terns in empirical data and theoretical models.

The type of density dependence also mattered. Under over-
compensatory density dependence, the same mean could be
associated with two different values of the variance in popu-
lation density (and vice versa). The folding of the variance–
mean curve occurred at the peak of the stock–recruitment
relationship. This suggests that when formulating a population
model, the density dependence chosen for the model needs to
approximate the true process. If overcompensatory density
dependence is used and the population density is estimated
to be near the peak of the density-dependent curve (Fig. 1b),
the variance of population density can have a non-monotonic
relationship with its mean.

When the temporal TL was supported, the slopes of the
variance–mean curves tended to be less than 2 (Figs. 2 and 3),
so that, with increasing mean density, the CV decreased, i.e.,
the standard deviation did not increase as fast as the mean. In
other cases, the log mean and log standard deviation were not
linearly related (Figs. 4 and 5) or had a negative slope (Figs. 3,
4, and 5). These results suggest the CV is not generally an
informative proxy for fluctuations in population density, or
instability, and should be interpreted carefully.

We did not include age structure in the current analysis, but
it would be interesting to extend the analyses to include age
structure in future research. Age is often a strong determinant
of survival, maturation, and reproduction for many natural
populations. Age-structured and stage-structured population
models differ because the latter can reduce the delay in the
response of population density to environmental fluctuation
and/or density dependence. This reduction arises because a
stage-structured model may lump different age classes togeth-
er in one stage. For example, in our density-dependent fertility
model, increase in juvenile density by increasing fertility rate
can increase population maturation rate immediately.

However, in reality, individuals may need to spend a certain
period of time in a juvenile stage before maturing, thus creat-
ing delay. Such delay along with density dependence can
produce population cycles (e.g., Gurney et al. 1980), which
are common dynamics with overcompensatory density depen-
dence. Therefore, we speculate that incorporating age struc-
ture into a model with compensatory density dependence
would cause the variance–mean relationship to become sim-
ilar to the current model with overcompensatory density de-
pendence, and incorporating age structure into the current
model with overcompensatory density dependence would
exacerbate the complexity of the variance–mean relationship.
However, whenmultiple age classes in juvenile or adult stages
are lumped together to calculate stage density, the effect of
statistical averaging must also be considered.
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