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a b s t r a c t

Taylor’s power law of fluctuation scaling (TL) states that for population density, population abundance,
biomass density, biomass abundance, cell mass, protein copy number, or any other nonnegative-valued
random variable in which the mean and the variance are positive, variance = a(mean)b, a > 0, or equiv-
alently log variance = log a+b× logmean. Many empirical examples and practical applications of TL are
known, but understanding of TL’s origins and interpretations remains incomplete. We show here that, as
time becomes large, TL arises frommultiplicative population growth in which successive random factors
are chosen by aMarkov chain.We give exact formulas for a and b in terms of theMarkov transitionmatrix
and the values of the successive multiplicative factors. In this model, the mean and variance asymptoti-
cally increase exponentially if and only if b > 2 and asymptotically decrease exponentially if and only if
b < 2.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Fluctuation scaling is a name popular among physicists for a
lawful relationship between the mean and variance of any ran-
dom variable when the mean and variance are functions of some
parameter. Among statisticians, such a relationship is often called
a variance function. In population biology and ecology, Taylor’s
power law of fluctuation scaling (Taylor, 1961, 1984) states that
when the mean and the variance exist and are positive functions
of some parameter, they are related by a power law: variance =

a(mean)b, a > 0, or equivalently log variance = log a + b × log
mean.

Taylor’s law (TL) began with empirical observations of insect
population densities and was verified in hundreds of biological
species (Eisler et al., 2008) including, recently, bacteria (Ramsayer
et al., 2011; Kaltz et al., 2012), trees (Cohen et al., 2012, 2013a),
and humans (Cohen et al., 2013b). TL is one of the most widely
verified empirical relationships in ecology. TL has also been
confirmed for cell populations within specific organs (Azevedo
and Leroi, 2001), stem cell populations (Klein and Simons, 2011),
counts of single nucleotide polymorphisms and genes (Kendal
and Jørgensen, 2011), cases of measles and whooping cough
(Keeling and Grenfell, 1999), the mass of single-celled organisms
of different species (Giometto et al., 2013), and in diverse other
fields (for additional references, see review by Eisler et al., 2008),
including cancermetastases, single nucleotide polymorphisms and
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genes on chromosomes, and non-biological measurements such
as precipitation, packet switching on the Internet, stock market
trading, and number theory. TL has practical applications in the
design of sampling plans for the control of insect pests (soybeans:
Kogan et al., 1974, Bechinski and Pedigo, 1981; cotton: Wilson
et al., 1989; glasshouse roses: Park and Cho, 2004).

There is little consensus aboutwhy TL is sowidely observed and
how its estimated parameters should be interpreted. The theoret-
ical analysis of probability distributions in which the variance is
a power-law function of the mean preceded TL (Tweedie, 1946,
1947) (in other words, Taylor did not invent Taylor’s law) and TL
has beenmuch studied theoreticallywith orwithout recognition of
its empirical roots in ecology (e.g., Anderson et al., 1982, Tweedie,
1984, Perry and Taylor, 1985, Gillis et al., 1986, Jørgensen, 1987,
Kemp, 1987, Perry, 1988, Lepš, 1993, Jørgensen, 1997, Keeling,
2000, Azevedo and Leroi, 2001, Kilpatrick and Ives, 2003, Kendal,
2004, Ballantyne and Kerkhoff, 2007, Eisler et al., 2008, Engen et al.,
2008, Kendal and Jørgensen, 2011, Cohen et al., 2013a). Davidian
and Carroll (1987) andWang and Zhao (2007) emphasized the im-
portance of modeling correctly how the variance is related to the
mean if one desires statistical efficiency in estimating the mean.
They consideredmultiple variance functions including TL. But they
did not identify a power-law variance function with TL or discuss
models that might explain the origin of these variance functions.

Cohen et al. (2013a) showed that the Lewontin and Cohen
(1969) (no relation to the present author) stochastic multiplicative
population model (a geometric random walk with independently
and identically distributed [i.i.d.] multiplicative increments) im-
plies TL. Cohen et al. (2013a) calculated log a and b explicitly. Here
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we consider a more general model in which the factors that multi-
ply the population density at each time step are history-dependent,
not independent as in the Lewontin–Cohen model. We show that
a multiplicative model of change in a Markovian environment
leads to TL in the limit of large time, and we calculate log a and b
explicitly.

2. Taylor’s law

Let a family of nonnegative random variables N(t) be param-
eterized by t ∈ Θ , where Θ is an index set. Assume that, for all
t ∈ Θ , the mean E (N(t)) and the variance Var (N(t)) are finite
and positive, so log Var (N(t)) and log E (N(t)) are well defined.
We may think of N(t) as population density at time t .

Definition. TL applies to N(t) exactly for all t ∈ Θ if and only
if there exist real constants a > 0 and b such that, for all t ∈

Θ, Var (N(t)) = a (E (N(t)))b. Equivalently, TL applies to N(t) ex-
actly for all t ∈ Θ if and only if there exist constants a > 0 and b
such that

log Var (N(t)) − b log E (N(t)) = log a. (1)

The mean E (N(t)) and the variance Var (N(t)) refer to an
ensemble mean and ensemble variance at t (the mean and
the variance over independent realizations, e.g., in sufficiently
separated regions in space), not to a mean and variance over t .

Definition. TL applies to N(t) in the limit as t approaches some
finite or infinite limit θ ∈ Θ if and only if there exist real constants
a > 0 and b such that

lim
t→θ

[log Var (N(t)) − b log E (N(t))] = log a. (2)

These definitions intentionally leave unspecified the base of
the logarithms (e.g., e, 10, or 2) because TL is equally valid for
logarithms to any base. For the following analysis, log = loge.

3. Scalar discrete-time Markovian multiplicative growth

Assume N(0) is a fixed positive number. Suppose that

N(t) = A(t − 1)A(t − 2) · · · A(0)N(0), t = 0, 1, 2, . . . . (3)

Then A(t − 1) = N(t)/N(t − 1), t = 1, 2, . . . represents
the random factor of change from time t − 1 to time t . Assume
that each value of A(t) is taken from a finite set of positive num-
bers {d1, . . . , ds}, s > 1, at least two of which are distinct.
Intuitively, s is the number of states of the environment. By as-
sumption, each state of the environment determines a multiplica-
tive factor of change: if A (t − 1) = di, thenN(t) = diN (t − 1), for
i = 1, . . . , s and t = 1, 2, . . . . Assume {A(t), t = 0, 1, 2, . . .} is
a finite-state homogeneous Markov chain (‘‘a Markovian environ-
ment’’) with an s × s column-to-row (j → i) transition probability
matrix P =


pij

with pij ≥ 0,

s
i=1 pij = 1, i, j = 1, . . . , s and

Pr

A(t) = di|A (t − 1) = dj


= pij, i, j = 1, . . . , s; t = 1, 2, . . . .

(Notational aside: in many works on Markov chains, it is custom-
ary for the transition matrix P to specify row-to-column (i → j)
transition probabilities. But in many works on stochastic popula-
tion models in Markovian environments, the opposite convention
has become usual because it conforms with usual matrix–vector
multiplication. Onemust pick one convention or the other, and the
latter is used here.) Assume P has equilibrium probability s × 1
vector π = (πi) such that

s
i=1 πi = 1 and Pπ = π , and that

πi > 0, i = 1, . . . , s. Also assume that π is the initial distribution
of the Markov chain, i.e., Pr {A(0) = di} = πi, i = 1, . . . , s. Conse-
quently, Pr {A(t) = di} = πi, i = 1, . . . , s for all t = 0, 1, 2, . . . .
This model is a scalar case of much studiedMarkovianmultipli-
cativemodels for age- and stage-structuredpopulations (Bharucha,
1960, Furstenberg and Kesten, 1960, Bharucha, 1961, Cohen, 1976,
1977a,b, Tuljapurkar and Orzack, 1980, Tuljapurkar, 1982, 1986,
1990; review by Caswell, 2001; Tuljapurkar et al., 2009). The in-
crements {A(t)} are Markovian (by assumption) and therefore the
pair (A(t),N(t)) is Markovian, but N(t) by itself is not Markovian
unless {A(t)} are independent. (In the Lewontin and Cohen (1969)
model, N(t) is Markovian because {A(t)} are independent.)

Our main result is that, under certain conditions, this model
predicts TL in the limit of large time, and the parameters a and
b of TL can be expressed as functions of the parameters of the
Markovian model of A(t). To state this theorem precisely, we give
some definitions and notation.

Define the s × s diagonal matrix D = diag(di) to be zero every-
where except on the diagonal. The diagonal element dii = di > 0
is the value of A(t) in state i of the environment. We say that a di-
agonal matrix is scalar if it is some scalar multiple of the identity
matrix I , i.e., if all its diagonal elements are equal. Our assumption
that at least two values in {d1, . . . , ds} are distinct means that D is
not scalar.

For any s × s matrix Z , let r(Z) be the spectral radius of Z . The
spectral radius is themaximumof themagnitude of any eigenvalue
of Z . For any square matrix Z, r


Z t


= (r(Z))t ≡ r t(Z), t =

0, 1, 2, . . . .
By definition, a nonnegative s × s matrix A with s > 1 is ir-

reducible if and only if for each row i and each column j with
1 ≤ i, j ≤ n, there exists an integer p such that (Ap)ij > 0. The
transpose of A iswritten AT . A nonnegative s×smatrix Awith s > 1
is, by definition, two-fold irreducible if and only if A is irreducible
and ATA is irreducible (O’Cinneide, 2000; Altenberg, 2013).

Define 1T to be the row s-vector with each element 1. The
assumption that P is column-stochastic (each column sum is 1) is
equivalent to 1TP = 1T . For any real number p, (3) implies

(N(t))p = (A (t − 1))p · · · (A(0))p (N(0))p , t = 1, 2, . . . . (4)

Henceforth assume p > 0. Then because 0 < (N(t))p ≤

[(maxi=1,...,s di )tN(0)]p < ∞ with probability 1, E

(N(t))p


> 0

is well defined for p > 0. For t = 1,

E

(N(1))p


= E


A(0)p


N(0)p =


s

i=1

(di)pπi


N(0)p

= 1T (Dpπ)N(0)p = 1T (DpPπ)N(0)p. (5)

The last equality in (5) follows from π = Pπ . In (5) and (6),
π appears because the Markov chain was assumed stationary,
i.e., starting at its equilibrium distribution. Summing (4) over all
trajectories,

E

(N(t))p


= 1T DpP

t−1 DpPπ

N(0)p

= 1T DpP
t

πN(0)p, t = 1, 2, . . . . (6)

We assumed the diagonal of D is positive. We assume further
that P is two-fold irreducible. In an empirical application, P is likely
to be positive. Since every positive matrix is two-fold irreducible,
the assumption that P is two-fold irreducible is likely to be easily
satisfied in an empirical application. The assumption that P is two-
fold irreducible is the minimal condition necessary and sufficient
to prove the eigenvalue inequalities which we use to prove our
main result (Cohen, in press). It remains unknown whether our
main result could be proved under the weaker assumption of
Tuljapurkar (1982) that P is primitive (irreducible and aperiodic
or ergodic).
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By the Perron–Frobenius theorem (Gantmacher, 1960), DpP has
spectral radius r (DpP) > 0, left (row) eigenvector w(p)T > 0 and
right (column) eigenvector v(p) > 0 such that w(p)Tv(p) = 1 and

lim
t→∞


DpP

t
/

r

DpP

t
= v(p)w(p)T . (7)

In particular (p = 1), the expected value of N(t) grows geomet-
rically in proportion to the tth power of r(DP). So E(N(t)) neither
grows nor declines in the limit of large t if and only if r(DP) = 1
or log r(DP) = 0.

The main result is:

Theorem 1. In the scalar stationary discrete-time Markovian model,
assume that D is not scalar and P is two-fold irreducible and
log [r(DP)] ≠ 0. Then N(t) obeys TL (2), limt→∞[log Var(N(t)) −

b log E(N(t))] = log a, with

b = log

r(D2P)


/ log [r(DP)] ,

a =

1Tv(2)w(2)TπN(0)2


/

1Tv(1)w(1)TπN(0)

b
.

(8)

A proof and further interpretation are provided in theAppendix.
Altenberg (personal communication, December 11, 2013)

pointed out that if the leading right eigenvector v(p) of DpP is
normalized so that 1Tv(p) = 1, p = 1, 2 (which makes the
leading left and right eigenvectors unique), in addition to the as-
sumed w(p)Tv(p) = 1, then the formula for a simplifies to a =

N(0)2−b

w(2)Tπ


/

w(1)Tπ

b.
3.1. When assumptions of Theorem 1 do not hold

If D is scalar, i.e., D = dI for some d > 0, then E(N(t)) =

N(0)dt = N(t) with probability 1, and E((N(t))2) = (N(0))2d2t =

(N(t))2 with probability 1, and r(D2P) = [r(DP)]2 = d2r(P) = d2.
So Var(N(t)) = 0 while the second moment of N(t) grows in
proportion to d2t . In this case, the formula for b in (8) reduces to
b = (2 log d)/ log d = 2, but (1) and (2) no longer apply because
the variance is 0. The behavior of the secondmoment in this exam-
ple differs radically from the behavior of the variance.

Theorem 1 may also fail to hold for non-scalar D if, contrary
to assumption, P is irreducible but not two-fold irreducible. The
following example is taken from Cohen (in press) and is analyzed
further here. Let d > 1 andD =


d 0
0 1


, P =


0 1
1 0


. HereD is not

scalar, P is column-stochastic and irreducible (but not primitive
and not two-fold irreducible, because PTP = I), and

for p ∈ (0, ∞) , Dp
=


dp 0
0 1


,

DpP =


0 dp

1 0


, r


DpP


= dp/2.

Hence r(D2P) = d = [r(DP)]2. Now suppose the initial proba-
bility distribution of theMarkov chain for A(t) is the column vector
π = [

1
2 ,

1
2 ]

T . Then Pπ = π , so the Markov chain is stationary with
probability distribution π at every time. It is elementary to calcu-
late that if t is odd, then

(E (N(t)))2 = (N(0))2

d

t+1
2 + d

t−1
2

2

2

,

E

(N(t))2


= (N(0))2


dt+1

+ dt−1

2


,

Var (N(t)) = E

(N(t))2


− (E (N(t)))2

= N(0)2dt−1 (d − 1)2 /4 > 0, for t odd,
Fig. 1. Behavior of b = log[r(D2P)]/ log[r(DP)] as a function of r12 = [r(DP)]2 and
r2 = r(D2P), assuming D has at least 2 distinct diagonal elements and P is column-
stochastic and two-fold irreducible. The diagonal line represents r12 = r2 . When
0 < r12 < 1, then r1 > r12 .

and since we assumed d > 1, for increasing odd t we have

lim
odd t→∞

Var (N(t)) = ∞.

But if t is even, then

(E (N(t)))2 = (N(0))2 dt , E

(N(t))2


= (N(0))2 dt ,

so for all even t we have Var (N(t)) = E

(N(t))2


− (E (N(t)))2 =

0. Hence, although E(N(t)) converges to an increasing exponential
function for large t , Var(N(t)) does not converge to an increasing
exponential function for large t (the limit in (16) in the Appendix
does not exist), so TL cannot hold as t → ∞.

We do not know whether the conclusions of Theorem 1 always
hold ifD is not scalar and P is primitive but not two-fold irreducible.
Our proof (Appendix) uses a strict eigenvalue inequality (27) to
obtain the conclusions. That strict eigenvalue inequality holds if
and only if P is two-fold irreducible (not merely primitive) and
D is not scalar (Altenberg, 2013; Cohen, in press). Whether the
conclusions of Theorem 1 can be reached by another route under
weaker assumptions remains to be determined.

3.2. Behavior of b = log[r(D2P)]/log[r(DP)]

We shall describe the behavior of b over the nonnegative
quadrant with abscissa r12 = [r(DP)]2 = r(DPDP) and ordinate
r2 = r(D2P) (Fig. 1). The denominator of b is r1 but the horizontal
axis of Fig. 1 is r12 (the exponent is 2). The most interesting (and
unexpected) finding is that when r2 > 1, as r12 increases smoothly
from left to right across the vertical half line in Fig. 1 at r12 = 1, b
jumps discontinuously from negative values (approaching−∞) to
positive values (starting from +∞).

Because of (27) in the Appendix, (r21 , r2) never falls on or below
the diagonal line in Fig. 1 and the zone labeled A (including the
diagonal line r21 = r2, where b = 2) is inaccessible under the
conditions of Theorem 1. The value of b in the remaining zones is
calculated in Table 1. Across the semi-infinite vertical line r21 =

1, r2 ≥ 1, the value of b jumps discontinuously from −∞ just
left of the line to +∞ just right of the line. Cohen (2013b) gave
a concrete example of this discontinuity and a discussion of its
ecological implications.

As t increases, E(N(t)) asymptotically increases exponentially
if r1 > 1 and b > 2 (zone E, Table 1). As t increases, E(N(t))
asymptotically decreases exponentially if r1 < 1 and b < 1 (zones
B, C, D, Table 1).
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N(t) decreases as t increases, or at least does not grow, in every
environment if max dii ≤ 1. If max dii ≤ 1, then 1 < b < 2
(zone D), because then at least one diagonal element of D is strictly
less than 1 and none is greater than 1, so every non-zero element
of DP is not greater than the corresponding element of P and at
least one element of DP is less than the corresponding element of
P . Hence r(DP) < r(P) = 1. Moreover, by the same reasoning,
D2

≤ D, D2
≠ D, so r2 = r


D2P


< r(DP) = r1. While

max dii ≤ 1 is sufficient to assure 1 < b < 2, it is not necessary
for 1 < b < 2.

As t increases, N(t) increases (or at least does not decrease) in
every environment if min dii ≥ 1. If min dii ≥ 1, then 2 < b
(zone E), because then at least one diagonal element of D is strictly
greater than 1 and none is less than 1, so every non-zero element
of DP is at least as large as the corresponding element of P and at
least one element of DP is larger than the corresponding element
of P . Hence r(DP) > r(P) = 1. While min dii ≥ 1 is sufficient to
assure 2 < b, it is not necessary for 2 < b.

To investigate numerically how often values of b fall in each
zone in Fig. 1, we set the number of states of the environment to be
s = 2 in two simple probabilistic models, both chosen for math-
ematical simplicity rather than realism. In model 1, we assigned
each diagonal element of D an independent exponential distribu-
tionwith parameter 1 (calculated as dii = − logU, i = 1, 2, where
U is uniformly distributed on [0,1] and independent for each i).
Each element of the first row of P took the value of an indepen-
dent uniform random variable on [0, 1], and p2j = 1−p1j, j = 1, 2.
For each pair (D, P) randomly generated in this way, we calculated
b and the zone in Fig. 1. Approximately 49% of one million simula-
tions yielded 1 < b < 2 and approximately 40% yielded 2 < b. In
model 2, we assigned each diagonal element of D an independent
lognormal distribution exp(N (0, 1)), each element of the first row
of P an independent Beta(1/2, 1/2) distribution on [0,1] (probabil-
ity density was concentrated at low and high extremes compared
to the uniform distribution), and p2j = 1 − p1j, j = 1, 2. Approx-
imately 35% of one million simulations yielded 1 < b < 2 and
approximately 58% yielded 2 < b. The quantitative proportions in
each zone varied between models, but both models assigned most
values of b to 1 < b < 2 or 2 < b.

The estimates of the frequencies of each zone were subject to
multinomial sampling error. To estimate the sampling uncertainty
of a single proportion, it is valid to ignore the multinomial
dependence among proportions and use a binomial distribution
for a single proportion. For example, the standard deviation of the
estimate of 5.4% for the frequency of occurrence of zone B inmodel
1 was approximately


0.054 × (1 − 0.054)/106

= 0.02%. The
standard deviation of the estimate of 49.1% for zone D in model
1 was approximately 0.05%.

The value of b in these simulations has no sampling error,
because the simulation does not generate a trajectory of the
dynamic process but generates only the values of D and P . Values
of b are calculated numerically from D and P by an exact formula
(8) without sampling error. Numerical error in the calculation of
b is negligible here because no knife-edge equalities are reported,
only inequalities involving b.

Both models yielded a few percent of simulations with 0 <
b < 1 (zone C). The existence of values of D and P that imply
0 < b < 1 demonstrates that exponential dispersion models and
Tweedie distributions do not include all distributions that obey TL
in the limit of large t , because 0 < b < 1 is impossible for ex-
ponential dispersionmodels and Tweedie distributions (Jørgensen,
1987, p. 133, Theorem 2; Jørgensen, 1997, p. 130, his Table 4.1).

The high proportion of simulated values of b such that 1 < b <
2 and the low proportion of values such that b < 1 agreed quali-
tatively with the histograms of empirical values of b assembled by
Anderson et al. (1982, their Fig. 2) and Kendal (2004, p. 196, his
Fig. 1). This qualitative agreement supported the plausibility of the
Markovian model analyzed here but did not verify any details of
the mechanisms it assumed.
Table 1
Relations of r21 = [r(DP)]2 , r2 = r(D2P), and b = log[r(D2P)]/ log[r(DP)] in the
zones of Fig. 1 and in 106 simulations of each of two stochastic models described in
the text.

Zone Relations of r1, r2 b = log r2/ log r1 Frequency (%)
Model 1 Model 2

A 0 < r2 ≤ r21 Inaccessible 0 0
B 0 < r21 < r1 < 1 < r2 −∞ < b < 0 5.4% 3.7%
C 0 < r21 < r1 < r2 < 1 0 < b < 1 5.6% 3.2%
D 0 < r21 < r2 < r1 < 1 1 < b < 2 49.1% 34.9%
E 1 < r1 < r21 < r2 2 < b 39.9% 58.1%

4. Branching processes and birth-and-death processes

Taylor’s power law of fluctuation applies asymptotically to
other Markovian population processes in addition to the example
just studied.

First, the discrete-generation Galton–Watson branching pro-
cess (Bartlett, 1955, 1966, Section 2.3, Eq. (3), p. 40 in 1955, p. 42 in
1966) assumes that each individual of the tth generation indepen-
dently has a stochastically distributed number of offspring in the
next generation. If the initial number of individuals ism0 > 0, and
the mean and variance of the number of offspring per individual
arem ≠ 1 and v, respectively, then

m(t) = mtm0, v(t) = m2tv0 + mt−1(1 − mt)m0v/(1 − m).

Hence limt→∞ t−1 logm(t) = logm. The variance v(t) of the
number of individuals in generation t is a sum of two terms. The
first term contains a factor v0, here assumed positive, representing
the variance in the 0th generation. The second term contains a
factor v. If v = 0, then v(t) = m2tv0 = v0(m(t)/m0)

2
=

(v0/m2
0)(m(t))2 so TL holds exactly for all t with b = 2. Henceforth

assume v > 0. Then

t−1 log v(t) = t−1 log[m2tv0 + mt−1(1 − mt)m0v/(1 − m)]

= t−1 log[mt
{mtv0 + m−1(1 − mt)m0v/(1 − m)}]

= logm + t−1 log[mtv0

+m−1(1 − mt)m0v/(1 − m)].

If m > 1, then t−1 log v(t) → 2 logm as t → ∞ and from (23),
b = limt→∞ t−1 log v(t)/ limt→∞ t−1 logm(t) = 2. If 0 < m < 1,
then as t → ∞,mtv0 + m−1(1 − mt)m0v/(1 − m) → 0 +

m0v/[m(1 − m)]. Hence

lim
t→∞

t−1 log v(t)

= logm + lim
t→∞

t−1 log[mtv0 + m−1(1 − mt)m0v/(1 − m)]

= logm + lim
t→∞

t−1 log


m0v

m(1 − m)


= logm.

Hence b = 1. Thus if 0 < m < 1, TL holds with b = 1, whereas if
m > 1 or v = 0, then TL holds with b = 2. If m = 1, v ≠ 0,
then v(t) = v0 + tm0v. Hence limt→∞ t−1 log v(t) = 0 and
limt→∞ t−1 logm(t) = 0, so b is not defined.

For the Bellman–Harris and other processes, an asymptotic TL
can be proved by very similar arguments from formulas for their
mean and variance (Haccou et al., 2005, pp. 74–75).

Second, the continuous-time birth and death process assumes
a birth rate λ per individual and a death rate µ per individual. As-
suming one initial individual, independence among that individual
and all offspring, and λ > 0, µ > 0, λ ≠ µ, the mean and vari-
ance of the number of individuals at time t are (Bartlett, Section
3.4, Eq. (9), p. 70 in 1955, p. 74 in 1966)

m(t) = e(λ−µ)t , v(t) =


λ + µ

λ − µ


e(λ−µ)t

[e(λ−µ)t
− 1].
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Hence limt→∞ t−1 logm(t) = λ − µ and t−1 log v(t) = λ − µ +

t−1 log{( λ+µ

λ−µ
)[e(λ−µ)t

− 1]}.
If λ > µ, then as t → ∞, t−1 log v(t) → 2(λ − µ). Hence

b = 2. Ifµ > λ, then as t → ∞, (
λ+µ

λ−µ
)[e(λ−µ)t

−1] → (
λ+µ

µ−λ
) and

t−1 log v(t) → λ − µ. Hence b = 1. Thus if µ > λ, TL holds with
b = 1, whereas if λ > µ, TL holds with b = 2. If λ = µ, v(t) =

2λt . Hence limt→∞ t−1 log v(t) = limt→∞ t−1 logm(t) = 0 and b
is not defined.

Bartlett (1955, 1966) did not comment on the asymptotic
relation between the mean and the variance in these models.

5. Multiple models lead to Taylor’s law

A wide range of models can yield TL exactly or in the limit
of large time. For example, a deterministic model of exponen-
tial clonal growth (Cohen, 2013a; Cohen et al., 2013b), the Gal-
ton–Watson branching process (with v = 0 or m > 1), and the
birth and death process (with λ > µ) all converge (for large time)
to TL with b = 2. The gamma distribution satisfies TL exactly with
b = 2. Hence b = 2 in TL need not indicate deterministic popu-
lation growth. Both the model of Lewontin and Cohen (1969) with
i.i.d. multiplicative factors (Cohen et al., 2013a) and the model of
Markovian scalar multiplicative increments analyzed here predict
TL asymptoticallywith b thatmay range from−∞ to+∞, depend-
ing on the parameters of the model. Anderson et al. (1982) gave
further examples of Markovian processes consistent with TL. The
Tweedie distributions analyzed by Jørgensen (1997) lead to TLwith
any real value of b excluding the interval (0, 1).

Consequently the power-law form and parameter values of
TL can yield at most limited information about the underlying
process. Interpreting the parameters of TL in terms of a specific
model requires investigatingwhether themodel’s assumptions are
verified. It is impossible to infer the underlying stochastic process
solely from the observation that a random variable satisfies TL.

It is not surprising that diverse processes satisfy TL. If the mean
changes as a non-constant exponential function of time (exactly
or asymptotically) and the variance also behaves as any exponen-
tial function (constant or non-constant) of time (exactly or asymp-
totically), then the variance is a power-law function (constant
or non-constant) of the mean (exactly or asymptotically) (Cohen,
2013a, Eqs. (13)–(15)). In themodels justmentioned, themean and
variance are asymptotically exponential functions of time, so TL
follows.

5.1. Historical context

In various stochastic ergodic theorems about population age
structure and long-run population growth rate, Cohen (1976,
1977a,b) assumed Markovian transition matrices that were ape-
riodic and irreducible (i.e., primitive). Corollary 2 of Cohen (1977a,
p. 25) also assumed that all the row-stochastic transition matrices
of the Markov chain had a positive column. This assumption made
them all two-fold irreducible (as Lee Altenberg pointed out pri-
vately). Cohenmade no statements about the long-run growth rate
of the variance (the central second moment) of population size.

Tuljapurkar (1982, p. 118) quoted formulas for asymptotic
rates of growth of all moments about zero of population size,
assuming that ‘‘the temporal sequence of environments is an
ergodic aperiodic Markov process’’ (Tuljapurkar, 1982, p. 117).
When the number of environmental states is finite, the transition
matrix of an ergodic aperiodic Markov process is primitive, but not
necessarily two-fold irreducible. Using β to denote the asymptotic
long-run growth rate of the second moment about zero (his β
equals our r2 = r(D2P)), he asserted (p. 118, after his Eq. (5)), but
did not prove, that ‘‘Asymptotically then the variance must grow
geometrically at rate β ’’.
Tuljapurkar (1982, p. 117) did not explicitly assume that the
matrix of vital rates (his multidimensional version of our scalar
growth rate di) differed in at least two different environmental
states, but it is reasonable to suppose that he thought so. If all
di = d > 0, we showed (in an example above and in the Appendix
Theorem 4) that the variance will not grow at the same long-
run rate as the second raw moment because the variance over
realizations at any time t is zero while the second moment about
zero grows like d2t . Assuming at least two different di (or matrices
of vital rates, in Tuljapurkar’s multidimensional case) in different
environmental states, it appears to be unknownat presentwhether
having a primitive transitionmatrix P guarantees that the variance
has a long-run growth rate equal to the long-run growth rate of the
second rawmoment. A heuristic argument in favor of Tuljapurkar’s
(1982) claim is that, if P is primitive, then for a finite time T ∗, PT∗

>
0 (every element is positive). So if we consider time in blocks of
length T ∗, then the blockwise transition matrix PT∗

is positive and
therefore two-fold irreducible. Then our Theorem 1would apply to
the multiplicative process in blocks of time. If Tuljapurkar’s (1982)
claim that ‘‘the variance must grow geometrically at (his) rate β ’’
is true, a detailed proof remains to be worked out.

Acknowledgments

I thank Lee Altenberg (as colleague and self-identified re-
viewer), Roy Malka, Michael Plank, Shripad Tuljapurkar, Meng Xu,
and an anonymous reviewer for very helpful comments, Priscilla K.
Rogerson for assistance, Michael Plank and the family ofWilliam T.
Golden for hospitality during this work, and the US National Sci-
ence Foundation grants EF-1038337 and DMS-1225529 and the
Marsden Fund of the Royal Society of New Zealand (08-UOC-034)
for partial support.

Appendix. Proofs of mathematical claims

The following proof of Theorem 1 assumes the two-fold irre-
ducibility of P (the transition matrix of the Markov chain of envi-
ronmental states) as a sufficient condition to prove that the second
term of the variance, [E(N(t))]2, can be neglected asymptotically
compared to the first term, E([N(t)]2), and hence that the asymp-
totic rate of growth of Var(N(t)) is given by log r(D2P). Whether it
is necessary that P be two-fold irreducible to attain this conclusion
remains unknown.

The mean M and the variance V of every A(t), for all t =

0, 1, 2, . . . , are the mean and variance of A(0) because, by con-
struction, the sequence {A(t), t = 0, 1, 2, . . .} is stationary. So

M = E(A(0)) =

s
i=1

πidi, (9)

V = Var(A(0)) = E(A2(0)) − (E(A(0)))2

=

s
i=1

πid2i − M2 > 0. (10)

We assumed at least two distinct values in {d1, . . . , ds}. Since π >
0, we have V > 0. Combining (6) and (7) gives

lim
t→∞

E[(N(t))p]/[r(DpP)]t = lim
t→∞

1T (DpP)tπN(0)p/[r(DpP)]t

= 1Tv(p)w(p)TπN(0)p. (11)

Taking t−1 log of both sides of (11) yields

lim
t→∞

t−1 log E[(N(t))p] − log[r(DpP)] = 0. (12)

If p = 1, (12) becomes

lim
t→∞

t−1 log E[N(t)] = log[r(DP)]. (13)
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If p = 2, (12) becomes

lim
t→∞

t−1 log E[(N(t))2] = log r(D2P). (14)

Now, assuming temporarily that the limits in (15) and (16) exist,
define

logµ := lim
t→∞

t−1 log E(N(t)), (15)

logβ := lim
t→∞

t−1 log Var(N(t))

= lim
t→∞

t−1 log(E(N2(t)) − [E(N(t))]2). (16)

(We use β for the long-run growth rate of the variance, not of the
second rawmoment, and prove thatβ equals the growth rate of the
second rawmoment under certain conditions.) By (13), the limit on
the right side of (15) exists because r(DP) > 0, and

logµ = log r(DP). (17)

Moreover, since the variance is always nonnegative, the rate of
growth of the second moment must be at least as large as the rate
of growth of the square of the mean (Cauchy’s inequality). Hence
(Cohen, in press)

r(D2P) ≥ [r(DP)]2. (18)

These results are known (Bharucha, 1960; Furstenberg and Kesten,
1960; Bharucha, 1961; Cohen, 1976, 1977a,b; Tuljapurkar and
Orzack, 1980; Tuljapurkar, 1982, 1986, 1990). But to prove that the
long-run rate of growth of the variance (16) exists and equals the
rate of growth of the second moment (14), we now invoke an ad-
ditional assumption, two-fold irreducibility of P . We do not know
whether this assumption can be weakened.

Theorem 2. If P is two-fold irreducible and D is not scalar, then the
limit in (16) exists and is given by (14), i.e.,

logβ = log r(D2P). (19)

Proof. Assuming temporarily that the limit in (16) exists, we have
by definition (16) and result (14),

logβ = lim
t→∞

t−1 log Var(N(t))

= lim
t→∞

t−1 log

Var(N(t))
E[(N(t))2]

E[(N(t))2]


= lim
t→∞

t−1 log

E[(N(t))2] − [E(N(t))]2

E[(N(t))2]


+ lim

t→∞
t−1 log E[(N(t))2]

= lim
t→∞

t−1 log(1 − [E(N(t))]2/E[(N(t))2])

+ log r(D2P). (20)

So logβ = log r(D2P) if

lim
t→∞

t−1 log(1 − [E(N(t))]2/E[(N(t))2]) = 0. (21)

To prove (21), it suffices to show that

lim
t→∞

[E(N(t))]2/E[(N(t))2] = 0. (22)

Using (11) with p = 1, squaring both sides, and dividing the result
by (11) with p = 2 gives

lim
t→∞


E[(N(t))]
[r(DP)]t

2 
[r(D2P)]t

E[(N(t))2]


= lim
t→∞


(E[N(t)])2

E[(N(t))2]


r(D2P)

[r(DP)]2

t


=
(1Tv(1)w(1)Tπ)2

1Tv(2)w(2)Tπ
≡ K , 0 < K < ∞.

IfA is two-fold irreducible andD is not scalar, then r(D2P) > r2(DP)
(Cohen in press) so as t → ∞, (r(D2P)/[r(DP)]2)t → ∞ geomet-
rically fast and therefore necessarily (E[N(t)])2/E[(N(t))2] → 0
geometrically fast. �

If every column of P equals the positive stationary probability
distribution π , then {A(t), t = 0, 1, 2, . . .} is an i.i.d. sequence. In
this case (Cohen et al., 2013a), logµ = log E(A(0)) = logM and
logβ = log E[(A(0))2] = log(V + M2), where M and V are given
explicitly by (9) and (10).

In the scalar non-stationary discrete Markovian model, the ini-
tial (equilibrium) probability vector π may be replaced by an ar-
bitrary initial probability vector π0. In this extension, {A(t), t =

0, 1, . . .} is no longer stationary. Then (5) would be replaced by
E[(N(1))p] = 1T (Dpπ0)N(0)p and (6) by E[(N(t))p] = 1T (DpP)t−1

(Dpπ0)N(0)p. But a two-fold irreducible transition matrix is prim-
itive (Altenberg, 2013), and a Markov chain specified by a primi-
tive transition matrix and any initial probability vector is ergodic,
so we speculate that the same limiting arguments should remain
valid and at most minor modifications of the limiting formulas (8)
might be expected.

Theorem 3 (Cohen et al., 2013a). If TL applies to N(t) exactly for all
t ∈ Θ or in the limit as t → ∞, then logβ = b logµ. If logµ ≠ 0,
then

b = logβ/ logµ. (23)

The proof is so easy that we repeat it. Divide (2) by t and let
t → ∞. Then, from the definitions of logµ (15) and logβ (16),
logβ = 0 + b logµ. If logµ ≠ 0, then (23) is well defined. �

We now prove the main result.

Theorem 1. In the scalar stationary discrete Markovian model,
assume that D is not scalar, P is two-fold irreducible, and logµ =

log[r(DP)] ≠ 0. Then N(t) obeys TL (2) in the limit as t → ∞ with

b = log[r(D2P)]/ log[r(DP)],

a = (1Tv(2)w(2)TπN(0)2)/(1Tv(1)w(1)TπN(0))b.
(24)

Proof. The assumptions imply that the denominators in both
expressions in (24) are non-zero, so both expressions are well
defined. Now taking log of the left-most member and the right-
most member of (11) yields, for any real p,

lim
t→∞

{log E[(N(t))p] − t log[r(DpP)]}

= log(1Tv(p)w(p)TπN(0)p). (25)

Let γ be any real number. In (25), put p = 1, multiply the resulting
equation by γ , and subtract that result from (25) in which p = 2.
Then

lim
t→∞

{log E[(N(t))2] − t log[r(D2P)]

− γ log E[(N(t))] + γ t log[r(DP)]}

= log(1Tv(2)w(2)TπN(0)2) − γ log(1Tv(1)w(1)TπN(0)).

Then if we set γ = b and use a taken from (24), we find

lim
t→∞

{log E[(N(t))2] − b log E[N(t)]} = log a. (26)
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Then (14), (19) and (26) imply TL (2):

lim
t→∞

{log Var[N(t)] − b log E[N(t)]} = log a. �

Theorem 4. Assume that D is any diagonalmatrix with positive diag-
onal elements, P is any column-stochastic matrix, and log[r(DP)] ≠

0. Define rh := r(DhP) > 0, h = 1, 2. Then b := log r2/ log r1 is
well defined and finite since (by assumption) log r1 ≠ 0. Also assume
that N(t) is defined by the multiplicative process (3). If the growth
rate is the same in every environment, i.e., D = dI, d > 0, d ≠ 1, or
if the sequence of environments is a deterministically repeated cycle,
i.e., P is a blockwise permutation matrix with constant values of A(t)
within each block, or both, then b = 2. But if at least two diagonal el-
ements of D are distinct, all diagonal elements of D are positive, and
P is two-fold irreducible, then b ≠ 2.

Proof. If D = dI, d > 0, d ≠ 1, then b = 2 log d/ log d = 2,
for any column-stochastic P . (The assumption d ≠ 1 excludes
r1 = r(DP) = 1 and guarantees that b is well defined and finite.)

If D ≠ dI for any d > 0 and if P = I , then rh = r(Dh) =

(max dii)h, h = 1, 2, hence if max dii ≠ 1, then b = 2. If P ≠ I is a
blockwise permutation matrix with constant values of A(t) within
each block, again r2 = r21 . Hence if r1 ≠ 1 then b = 2. (The long but
still elementary proof reduces this case to the previous case by rais-
ing P to the power needed to produce a block diagonal matrix and
replacing the diagonal elements ofD by appropriate corresponding
products of the dii.)

Now resume the assumptions of Theorem 1: at least two diag-
onal elements of D are distinct, all diagonal elements of D are pos-
itive, and P is two-fold irreducible. (If A(t) is independently and
identically distributed for all τ , then P = π1T is positive and there-
fore two-fold irreducible.) Now strict inequality holds in (18) (Co-
hen, in press), or equivalently

r2 > r21 , (27)

which implies that b cannot equal 2. �
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