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Abstract Taylor's law (TL), widely verified in empirical
ecology, states that the variance of population density approx-
imates a power function of the mean population density, with
exponent denoted b. A model of multiplicative increments in
population density, where the increments are determined by a
Markovian environment, predicts TL with an explicit formula
for b . We give a simple theoretical example where, unexpect-
edly, smooth changes in environmental autocorrelation lead to
an abrupt, infinite discontinuity in b . As the daily probability
of change in environmental state increases from 0 to 1, b rises
from 2 slowly at first, then explodes to +∞ when the popula-
tion becomes critical, drops to -∞, and rises again to 2. In this
model, an exponent b of large magnitude (positive or nega-
tive) signals the proximity of a population's criticality and of a
singularity in b . A comparable real-world singularity in b
could adversely affect fisheries, forestry, agriculture, conser-
vation, and public health.

Keywords Markovian environment . Regime change . Power
spectra . Population density . Fluctuation scaling

Introduction

Earth's climate (Broecker 2003) and biota (Barnosky et al.
2012) have experienced what Broecker (2003, p. 1522) de-
scribed as "large and abrupt changes so richly recorded in ice
and sediment." Sometimes, an abrupt biotic change resulted
from an abrupt environmental change, such as an asteroid
impact or volcanic eruption. Sometimes, an abrupt biotic
change was a non-linear response to a smooth environmental

change (Scheffer et al. 2001). For example (deMenocal et al.
2000), the vegetation cover of much of the Sahara disappeared
abruptly ∼5,700–5,200 years before the present, at the end of
the so-called African Human Period (AHP), though the tran-
sition wasmore gradual in some places. The AHP ended when
summer monsoons dropped off as a result of a smooth decline
in summer insolation, a decline driven by the precession
(wobble) of the Earth's axis. The abruptness, timing, magni-
tude, and spatial localization of the biotic changes in different
parts of northern Africa remain under investigation
(deMenocal and Tierney 2012).

Some dynamical systems exhibit recognizable precur-
sors of dramatic shifts in state or behavior (Scheffer
et al. 2009; D'Odorico et al. 2013) and some do not
(Hastings and Wysham 2010). In a simplified model of
the thermohaline circulation system in the North Atlantic,
Kleinen (2005) showed that a change in the flux of fresh
water into the ocean could push the thermohaline circu-
lation to a saddle-node bifurcation. In this model, as the
freshwater flux approaches its critical value at the bi-
furcation point, the power spectrum of the circulation
strength shifts upward. Consequently, the total variance
of circulation strength (the area under the spectral den-
sity function) increases, mainly at low frequencies
(Kleinen 2005, p. 18, his Fig. 2.2). In this theoretical
example, as the freshwater flux approaches its critical
value, the system gives premonitory signals of increas-
ing variance in the circulation strength. The variance
increases because of increased amplitudes of oscillations
of very low frequencies. Such increases in the ampli-
tudes of low-frequency oscillations would be very diffi-
cult to detect from short-term observations. In the real
world, it could be difficult to identify with assurance
the precursors of dramatic shifts in the thermohaline
circulation.

The causes, necessary and sufficient conditions, leading
indicators, and consequences of abrupt biotic responses to
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smooth environmental changes remain insufficiently under-
stood (Scheffer and Carpenter 2003; Russell et al. 2012) and
new ideas continue to be proposed (Lorenzo and Ohman
2013; Doney and Sailley 2013; D'Odorico et al. 2013). In this
context, we investigated theoretically the effect on Taylor's
law (TL), one of the most widely verified empirical patterns in
ecology, of a gradual, continuous increase in the daily proba-
bility of a change in the environment. This change, we show,
is equivalent to an increase in the slope of the environmental
power spectral density from the negative slope of a reddened
power spectrum (dominated by low frequencies of environ-
mental change) to the zero slope of a white (flat) power
spectrum and then the positive slope of a blue power spectrum
(dominated by high frequencies of environmental change).

We show here, apparently for the first time, that a dramatic
and abrupt shift (a singularity) can occur in the slope b of the
log-linear form of TL (which is also the exponent b of the
power-law form of TL) as a consequence of a sufficiently
large, gradual, and continuous increase or decrease in the
temporal autocorrelation of environmental states. The singu-
larity occurs when the population becomes critical (the aver-
age population density neither declines towards extinction nor
explodes in the long run). Quantifiable precursors of popula-
tion criticality and of a singularity in b are values of b of large
magnitude, positive or negative.

For the sake of transparency, and to avoid an extensive
mathematical apparatus that underlies the result presented
here, we focus on a highly idealized, simplified abstraction
of real ecological dynamics, and on a simple example of the
abstraction. This strategy of exploration and exposition iden-
tifies phenomena not previously suspected, and is therefore
useful. But this example is not intended to replace subsequent,
more realistic, more complex modeling, data analysis, and
quantitative testing. By analogy, understanding a deterministic
model of exponential population growth is useful, even
though no biological population can grow exponentially
forever.

This work forms part of a large and long-flowing stream of
research on population dynamics in randomly varying envi-
ronments, which includes the early Pimm and Redfearn
(1988) and Lawton (1988) and the recent Schreiber et al.
(2011) and Evans et al. (2013).

Material and methods

(a) Taylor's power law of fluctuation scaling

Taylor's law presumes the following framework of obser-
vations. Suppose we have a large numberO of observations of
the density (number of individuals per unit of area or volume)
of a set of populations. Suppose these observations are
partitioned into B blocks. (A block is simply a subset of the

observations, but the term "block" is conventional in the
statistical theory of experimental design.) Suppose the blocks
are labeled j =1, …, B and the number of observations in
block j is nj, so that n1 +…+ nB = O . For every block j , we
calculate the sample mean mj and the sample variance v j of
the observations in block j . Since there are B blocks, we have
B pairs (mj, v j). Suppose none of the means and none of the
variances is zero, and all are finite. Then we may plot these B
points on log–log coordinates.

Taylor (1961, 1984) and colleagues (e.g. Taylor et al. 1980)
observed that, in many species, the logarithm of the sample
variance was an approximately linear function of the
logarithm of the sample mean: for some a > 0, log(v j) ≈
log(a ) + b × log(mj). This relationship, equivalent to the
power law, v j ≈ a (mj)

b, was previously observed in the spatial
distribution of Ribes by Fracker and Brischle (1944), but
because Taylor et al. emphasized its generality and impor-
tance, it became known as Taylor's law (henceforth TL). Most
empirical tests of TL have ignored the sampling error in
log(mj) when fitting a linear regression by the usual least-
squares formulas. For large enough numbers nj of observa-
tions per block and a sufficiently wide range of values of
log(mj), the error introduced by this procedure may not be
serious.

TL has multiple forms depending on how the blocks and
samples within each block are defined. For example, suppose
the observations are organized in a rectangular table with R
rows and C columns, and suppose each row is a sampling site
or quadrat and each column is a census date. In a spatial TL,
each block is one census date, i.e., the observations in that
block are the elements in one column of the data matrix, and
the mean and variance of density are calculated over different
sites (rows) at a given time; here, B = C . Alternatively, with
the same array of data, in a temporal TL, each row is a block,
and the mean and variance of density are calculated over
different censuses (columns) at a given site; here, B = R .
In a hierarchical spatial TL, each quadrat is subdivided
into smaller subplots, and the mean and variance of
density are calculated over the subplots within each
quadrat. In a hierarchical temporal TL, each block is a
longer time interval (e.g., decade) and each observation
within that block refers to density observed in a shorter
time interval (e.g., a year) within each decade. There
are other forms of TL as well.

In its various forms, TL has been verified in hundreds of
species (Eisler et al. 2008) including, recently, bacteria in labo-
ratory experiments (Ramsayer et al. 2012; Kaltz et al. 2012) and
trees in a temperate forest (Cohen et al. 2012a, 2013). TL also
describes the relation of variance to mean in populations
of stem cells (Klein and Simons 2011), stock market
trading, precipitation, packet switching on the Internet,
measles cases, and the occurrence of single nucleotide
polymorphisms (see the review by Eisler et al. 2008).
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Here, we focus on a spatial TL. In theoretical models of TL,
the sample mean and sample variance are replaced by the
population mean and population variance, respectively. A
spatial TL applies exactly to the population moments, by
definition, if and only if there exist real constants a >0
and b such that the population mean E (N (t )) and the
population variance Var(N(t)) of the density N(t ) satisfy, at
every time t ,

log Var N tð Þð Þ–b log E N tð Þð Þ ¼ log a: ð1Þ
Here, the approximate equality (≈) in the empirical form of

TL is replaced by exact equality (=). We emphasize that
E (N (t )) in Eq. (1) pertains to an average over space
(ensemble average) at a given time t , and Var(N(t)) pertains to
a variance over space at a given time t , not to an average or
variance over time. TL applies in the limit as t gets large, by
definition, if and only if there exist real constants a >0 and b
such that

limt→∞ log Var N tð Þð Þ–b log E N tð Þð Þ½ � ¼ log a: ð2Þ

If TL holds for any base of logarithms, it holds for all
choices. For the following mathematical analysis, log = loge.
The value of b remains the same for any choice of the base of
logarithms and regardless of the units in which N (t) is mea-
sured (e.g., cells per cubic millimeter or cells per cubic kilo-
meter), though the value of log a changes. Hence attention
here, and in much work on TL, focuses on the slope b rather
than on the intercept.

(b) Example

In this example, we first create a model of an envi-
ronment and then create a model of a population whose
dynamics depend on this environment. This population
has no stage-, age-, sex-, or other structure; it is "single-
type." For expository convenience, we select the unit of
time in this model as 1 day.

In defining the model of the environment, we distinguish
between "climate" (a pattern of weather) and "weather" (the
conditions on a particular day). We model a climate as a
sequence of transitions among different states of weather,
and we model these transitions by using a finite-state, homo-
geneous Markov chain (the Appendix gives details). Suppose
a climate has two states of weather. State 1 represents "good
weather" and state 2 represents "bad weather." Assume that
the probability that tomorrow's weather will differ from to-
day's weather is λ , so the probability that tomorrow's weath-
er will be the same as today's is 1-λ, where 0≤λ ≤1. Assume
that initially (at time 0), good weather occurs with probabil-
ity π1=1/2 and bad weather occurs with probability π2=1/2.

We summarize the transition probabilities P (λ ) and the
initial probability distribution π of the climate in matrix
form:

P λð Þ ¼ 1−λ λ
λ 1−λ

� �
;π ¼ 1=2

1=2

� �
: ð3Þ

Then it is easy to check that P(λ )π = π , regardless of λ .
This means that in every climate, no matter what the value of
λ , π1=1/2 and π2=1/2 is the stationary probability distribu-
tion of the weather, i.e., these probabilities of good and bad
weather, respectively, are the same for all times t =0, 1, 2,… .
Intuitively, that is because the transition from good to bad
weather is just as likely as the reverse transition, so by sym-
metry, the two states of weather are equally likely at every
time.

Now we add to this model of a Markovian environ-
ment a highly simplified model of multiplicative popu-
lation dynamics. Assume that a population starts with
some positive initial population density N (0)>0. Since
we will be interested only in long-run growth rates, the
initial population density has no effect, provided it is
positive, so no generality is lost if we assume N (0)=1.
Assume that in good weather, the population density
increases by a factor of A (t )=d 1>1. Assume that in
bad weather, the population density falls by a factor of
A (t )=d 2<1. We chose d 1=2, so that the population
density doubles in good weather, and d 2=1/4, so that
the population is reduced to 1/4 its previous density in
bad weather.

The choices d1=2 and d2=1/4 guarantee that the average
multiplicative growth factor is E (A (t ))=(2+1/4)/2=9/8>1
but that E (log A(t))=(ln 2+ln(1/4))/2=(ln 2–2 ln 2)/2=(−ln
2)/2<0.

An elementary (but long) calculation shows that,
regardless of the values of d 1 and d 2, the first-order
autocorrelation of the time series {A (t )} is exactly
p 11(λ )–p 12(λ )=1–2λ , which is also the second eigen-
value of P (λ ) (the first eigenvalue being 1). When λ≈
0, the autocorrelation is near 1 and the power spectrum
of {A (t )} is red. The climate has long runs (sojourn
times) of good weather (the population grows by a
factor of A (t )=d 1>1 on each such day), and the climate
also has long sojourn times of bad weather (the popu-
lation falls by a factor of d 2 on each such day), and the
weather changes rarely from good to bad or vice versa.
When λ≈ 1, the autocorrelation is near -1 and the power
spectrum is blue. Two days in a row rarely have the
same weather.

When λ =1/2, the autocorrelation is 0, successive values of
A(t) are independent, and the power spectrum is white. This
special case of serial independence of successive values of
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A(t) is assumed in the model of Lewontin and Cohen (1969)
[no relation to the present author]. The Lewontin–Cohen
model cannot be used to investigate how differences in envi-
ronmental autocorrelation affect TL because its environmental
autocorrelation is always 0. From Eq. (3),

limt→∞ 1=tð Þ log E N tð Þð Þ ¼ limt→∞ 1=tð Þ ½log E N 0ð Þð Þ
þ log E A 0ð Þð Þ þ⋯þ log E A t−1ð Þð Þ�
¼ log E A 0ð Þð Þ > 0: ð4Þ

The mean population density (averaged over an infinite
ensemble of infinitely precise simulations or bacterial dishes
of infinite capacity) at time t diverges to +∞ with increasing
time t , because some of those realizations will have long runs
of good weather. But

limt→∞ 1=tð ÞE log N tð Þð Þ ¼ limt→∞ 1=tð Þ ½E log N 0ð Þð Þ
þ E log A 0ð Þð Þ þ⋯þ E log A t−1ð Þð Þ�
¼ E log A 0ð Þð Þ < 0; ð5Þ

so almost every realization of the process (trajectory of pop-
ulation density) approaches (but never reaches) 0 with increas-
ing time t . This apparently paradoxical situation was
discussed extensively by Lewontin and Cohen (1969).

For each fixed value of λ from 0 to 1, we calculated
an exact, explicit formula for the log-linear TL slope
b = b (λ ). This method is known as "comparative stat-
ics" in mechanics and economics. It assumes λ is per-
manently fixed at different values in different climates
and compares the TL parameter b = b (λ ) in different
climates. When we speak of the effects of changes in λ ,
we are comparing the outcomes in the limit of large
time t in different climates in which λ is constant at
different values. This method approximates usefully
what should be expected if λ , rather than being as-
sumed constant, changed much more slowly than (1/t )
log Var (N (t )) converges to a linear function of (1/t ) log
E (N (t )). We summarize the results in the following
section and give detail in the Appendix.

Results: a singularity in the slope of Taylor's law

In terms of sample paths (or infinitely precise simulations with
no underflow and no overflow) of the population density N(t )
in this model generally (under broad conditions) and in this
example, the spatial mean density E (N(t )) grows or declines
exponentially or is constant with increasing time t . Thus log
E(N(t )) is a linear function of t and log r1(λ) is the slope of
that linear function. Likewise, the spatial variance of density
Var(N(t )) grows or declines exponentially or is constant with

increasing time t . Thus log Var(N(t )) is a linear function of t
and log r2(λ ) is the slope of that linear function.

For each possible climate with a fixed probability λ of a
change in the weather from 1 day to the next, Fig. 1a shows
the limiting exponential growth rate per unit time of the mean
density, r1(λ ), and the limiting exponential growth rate per
unit time of the variance of population density, r2(λ ). These
quantities are defined mathematically in (9) (Appendix) and
are calculated explicitly there for this example. Both r1(λ ) and
r2(λ ) are positive for all 0≤λ ≤1, but are greater than 1 for λ
near 0 and less than 1 for λ near 1. Consequently, the slopes of
both log E (N (t )) and log Var (N (t )) as functions of t are
positive for λ near 0 and negative for λ near 1. Since the
slopes are continuous functions of λ , theymust pass through 0
for some value of λ between 0 and 1. The surprising singu-
larity happens precisely where the slope of log E (N(t )) passes
through 0, as now described in further detail.

Figure 1b shows b (λ ), the limiting value at large time of
the log-linear TL slope b in Eq. (2). It is derived from the two
curves in Fig. 1a as the ratio of their logarithms (see Eq. (5)),
b (λ ) = log r2(λ )/log r1(λ ). This formula shows that b (λ ) is a
ratio of the two slopes described in the previous paragraph.
We now describe the behavior of r1(λ ) and r2(λ ) and b (λ )
from left to right as λ increases from 0 to 1.

When λ =0, the weather never changes so the only ran-
domness is in the initial conditions: does day 0 have good
weather or bad? In this case, the long-run rate of growth of the
mean density is r1(0)=2, meaning that, in the long run, the
mean density doubles every day. Half of all realizations, or
sample paths, are stuck initially and permanently with bad
weather. For them, the density is multiplied by d2=1/4 every
day. These realizations approach 0 but never vanish. The other
half of all realizations have good weather initially and perma-
nently, and the density in those realizations doubles at every
time step because d1=2. So the mean density (over all realiza-
tions, including the half of all realizations that approach zero)
also asymptotically doubles at every time step, and that mean is
just half of the density in the realizations with permanent good
weather. Hence the absolute difference between the mean and
the minimum density (as well as the absolute difference be-
tween the mean and the maximum density) asymptotically
doubles at every time step. So the variance, which is the average
of the squared deviations from the mean, asymptotically qua-
druples with each time step.

When 0<λ <1, both r1(λ ) and r2(λ ) decrease with increas-
ing λ (Fig. 1a). A plot of log E (N(t )) as a function of t has
slope 2 when λ =0, and this slope, log r1(λ ), decreases as λ
increases.When λ =3/5, the slope of log E(N (t )) as a function
of t is exactly 0. Hence, for large t , changes in log E(N (t )) are
negligible compared to t , and a plot of log E (N (t )) as a
function of t is asymptotically flat when λ =3/5.

Meanwhile, a plot of log Var(N(t)) as a function of t has
slope 4 when λ =0, and this slope, log r2(λ ), also decreases as
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λ increases. But when λ =3/5, the slope log r2(λ ) of log
Var(N(t)) as a function of t is still positive, meaning that the
variance ofN(t) is still growing exponentially (or logVar(N(t))
is still growing linearly) while log E(N(t)) is changing negli-
gibly compared to t . In this situation, when λ=3/5, if you try to
regress a linearly changing quantity log Var(N(t)) as a function
of an essentially unchanging quantity log E(N(t)), you get an
infinite slope. This explains why the slope b(λ) of TL becomes
singular at λ =3/5. As λ→ 3/5 from below, b(λ) diverges to +∞
because log r1(λ), the denominator of b(λ), approaches 0, and
not because the variance explodes.

In the vicinity of λ =3/5, a very small difference in λ
(which implies a very small difference in the autocorre-
lation) may alter b (λ ) dramatically and discontinuously.
A very slight deviation of λ below 3/5 makes the regression
slope b (λ ) extremely positive. A very slight deviation
of λ above 3/5 makes the regression slope b (λ ) extremely
negative.

In the interval 0≤λ <3/5, the increase of b (λ ) with
increasing λ means that any given fractional increase in
mean density is associated (in the long term) with an
ever greater fractional increase in the variance of density as λ
increases.

The singularity in b (λ ) and the large absolute values of
b (λ ) show (Fig. 1b) that the relation of variance to mean
population density described by TL can be exquisitely sensi-
tive to smooth changes in the pattern of environmental vari-
ability, even when the mean and variance of density separately
are well behaved and changing smoothly (Fig. 1a). The sharp
singularity at λ =3/5 looks just as sharp on a plot of log b (λ )
as on the linear scale in Fig. 1b.

In climates with 3/5<λ <15/19, b (λ ) increases rapidly
from -∞ through negative values. A negative value b (λ )<0
means that the log variance of density decreases with increas-
ing log mean density. Then as λ increases from 15/19 toward
1, b (λ ) increases slowly toward 2.

When λ =1, the weather alternates deterministically between
good and bad. Again, the only randomness is in the initial
conditions: half the realizations start out with good weather,
half with bad, but all realizations alternate weather daily.
Therefore, over any two successive days, the mean density
grows deterministically for all realizations by a factor of
d1d2=2×(1/4)=1/2, so r1(λ)=limt→∞ [E(N(t))]1/t=(1/2)1/2<
1, so log r1(λ)<0, i.e., log E(N(t)) has a negative slope as a
function of t , and the population is subcritical. In both extreme
cases, λ =0 and λ =1, the TL slope is b(0)=b(1)=2, i.e., the
variance is proportional to (mean)2, or the coefficient of varia-
tion (standard deviation divided bymean) of population density
is constant. This behavior is expected for deterministic dynam-
ics (Ballantyne 2005; Cohen 2013a).

Discussion

(a) Principal findings

Under certain broad conditions specified in the Appendix,
but not under all conditions, a simple model of multiplicative
population growth in a Markovian environment implies TL in
the limit of large time, and the limiting slope b of TL (Eq. 8)
can be any real number, positive or negative (Cohen 2013c).
The variation in population growth may be driven by

a bFig. 1 a The long-run rate of
growth r1 of mean population
density (solid curve) and the
long-run rate of growth r2 of the
variance of population density
(dotted curve) and b the slope
b(λ) of Taylor's law (solid
curves) depend strongly on the
daily probability λ of change in
the weather from good to bad or
from bad to good. a The larger the
probability λ , the smaller r1 and
r2. b As λ increases, the slope
b = b(λ) of TL increases slowly
at first, then more rapidly, and
then explodes when the mean
population density becomes
critical at λ =3/5, i.e., r1(3/5)=1
or log r1(3/5)=0, so the
denominator of Eq. (8) is 0 when
λ =3/5. When λ >3/5, b(λ)
increases rapidly through
negative values and more slowly
through positive values toward 2
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environmental variation and/or demographic stochasticity. In
the model, b depends on the values of the multiplicative
factors in different environments (summarized in this
particular example by d 1 and d 2) and on the sequential
dependence in the occurrence of different environmen-
tal states (summarized by the transition probabilities in
the matrix P (λ ) in this example), even when the long-
run relative frequency of different environmental states (sum-
marized by the stationary probability vector π ) is held
constant.

TL has been studied theoretically from many different
perspectives (e.g., Anderson et al. 1982; Tweedie 1984;
Perry and Taylor 1985; Gillis et al. 1986; Jørgensen 1987;
Kemp 1987; Perry 1988; Jørgensen 1997; Keeling 2000;
Azevedo and Leroi 2001; Kilpatrick and Ives 2003; Kendal
2004; Ballantyne and Kerkhoff 2007; Eisler et al. 2008;
Engen et al. 2008; Fronczak and Fronczak 2010; Cohen
et al. 2012b, 2013; Cohen 2013a, c). Probability distributions
in which the variance is a power-law function of the mean
were studied (Tweedie 1946, 1947) even before the "law" was
named for Taylor. Nevertheless, there is little consensus about
why TL is so widely observed and how its estimated param-
eters should be interpreted.

Here, in a simple example, we compared hypothetical
climates with differing rates of change from good
weather to bad and vice versa, holding constant the
probability of good or bad weather on an average day.
As the daily probability λ of a change in weather
increased from 0 to a threshold value of 3/5 in this
example, the slope of TL rose from b =2 with increas-
ing rapidity and then diverged to +∞ when the mean
population density became critical (Fig. 1b), i.e., when
log(r 1(λ ))=0 or r 1(λ )=1. This critical case includes,
but is not limited to, constant mean population density.
Variations in mean population density that are sufficient-
ly small compared to large time are not excluded. With
further increase in λ beyond the threshold 3/5, the slope
of TL dropped instantaneously to -∞ and then rose, first
rapidly then more slowly, approaching b =2 from below
as λ approached 1. In this example, a slope b of very large
magnitude, positive or negative, was a premonitory signal of
a population's approach to criticality (the dividing line
between ultimate extinction and exponential growth in
mean population density).

This discovery of a singularity in b resulting from
smooth change in λ in a simple example was unexpected. It
may stimulate and contribute to a theory of abrupt biotic
change.

(b) Generality and significance

From Fig. 1, it is clear that a singularity in b would occur in
any dynamical model with three characteristics. First, the long-

run exponential rate of growth r1 of mean population density
and the long-run exponential rate of growth r2 of the variance of
population density are both functions of some parameter θ . (In
our example, θ =λ .) Second, there exist two distinct values of θ ,
say, θ1 and θ2, such that r1 is positive at one of these values and
negative at the other, i.e., r1(θ1)r1(θ2)<0, and r1 is continuous
in the closed interval from θ1 to θ2. Then there exists at least one
intermediate value, say θ*, such that r1(θ*)=0, by the interme-
diate value theorem of the calculus. Third, r2(θ*)≠1. Under
these three conditions, b(θ∗)=log r2(θ

∗)/log r1(θ
∗) is singular

at θ = θ*.
These conditions seem likely to be satisfied by a very wide

variety of models. The condition that r1(θ) be positive at one
value of θ and negative at another requires that the parameter θ
be good for population growth at some value and bad for
population growth at some other value. Temperature, salinity,
precipitation, pH, and a host of other environmental factors all
satisfy such a condition.

The example given here could be generalized immediately
tomodels of population dynamics inMarkovian environments
with s >2 environmental states, general multiplicative growth
factors d1,…, ds, general transition probabilities, and an age-
or stage-structured population instead of a single-type popu-
lation, provided only that the three conditions above be
satisfied.

The model of multiplicative population dynamics in a
Markovian environment (Appendix (a)), and not only the
example above, allows, as a special case, independent multi-
plicative increments, as assumed in the Lewontin and Cohen
(1969) model. The Lewontin–Cohen model satisfies TL
(Cohen et al. 2013, p. 3). In the Lewontin–Cohen model, for
a given fixed positive variance in the multiplicative factors
A(t), the TL slope b is less than 2 if and only ifE (A(t ))<1 (the
mean population density approaches zero), and b is greater
than 2 if and only if E (A(t ))>1 (the mean population density
explodes). In the present model where the successive multi-
plicative factors A(t ) are selected by a Markov chain, under
broad conditions, and not merely for the specific example
given here, similar relationships hold. Specifically (Cohen
2013c), b (λ )>2 if and only if r1(λ )>1 and b (λ )<2 if and
only if r1(λ )<1.

The probability λ of a change in weather from 1 day to the
next in the model is reflected in the shape of the power
spectrum of environmental variation. Caswell and Cohen
(1995, p. 308) showed that the n th order autocovariance
function of an environmental function of a Markov chain
specified by Eq. (3) decays exponentially with increasing n .
The spectral density function is dominated by low frequencies
(is said to be "red," as the spectral density function decreases
with increasing frequency) when 0<λ <1/2, is dominat-
ed by high frequencies (is "blue," as the spectral density
function increases with increasing frequency) when 1/2
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<λ <1, and is white (the spectral density function is
flat, or the same for every frequency) when λ =1/2.
Caswell and Cohen (1995, p. 303, their Fig. 1) graphed
illustrative sample paths of a function of the environ-
ment with two states and λ =1/10, 1/2, and 9/10.

The comparison of hypothetical climates with differ-
ent values of λ and therefore with different spectral
colors has some relevance to the real world, though
there is a large gap between reality and the idealized
model analyzed here. García-Carreras and Reuman
(2011, p. 1046) demonstrated a statistically significant
global shift towards bluer power spectral densities of
mean summer temperature time series from 1911–1950
to 1951–1990. Not all regions experienced the same
shift. The spectra of North and South America and
Europe became bluer, those of Asia and Australasia
redder, and that of Africa was not significantly changed.
Had values of b in TL been estimated during 1911–
1950 and 1951–1990, and had all of those values been
positive (as is commonly the case today), the example
analyzed here would predict that the values of b should
be larger in the second period than in the first where
spectra became bluer (North and South America and
Europe), and should be smaller in the second period
than in the first where spectra became redder (Asia
and Australasia), and should not be changed much
where spectra did not shift significantly (Africa). It is
not clear whether the observed shifts in the power
spectra would have been enough to cause a singularity
in b . See also García-Carreras and Reuman (2013).

In fisheries, forestry, and agriculture, efforts to in-
crease yields or harvests may sometimes be associated
with efforts to increase mean population densities of
harvested species. TL applies in all these fields (for
fisheries, Cohen et al. 2012b; for forestry, Fracker and
Brischle 1944; Cohen et al. 2012a, 2013; for agriculture,
Smith 1938; Wilson et al. 1989). TL implies that increased
mean population densities should be associated with
increases (if b >0) or decreases (if b <0) in the variance
of population density. For positive b , the greater b is,
the greater the increase in variance for a given increase
in mean population density. Increases in the variance of
the population density of the species that produce food
and fiber could increase the fluctuations in the supplies
available for human consumption, increase the variabil-
ity of prices of these products, and increase the proba-
bility of demographic collapse (with genetic bottlenecks)
or extinction of species. Increases in the variance of the
population density of the species that carry, transmit, or
cause human, animal, and zoonotic infections could
increase the risk of outbreaks of diseases for humans
and their domestic and game animals. At extremes of

population density, density-dependence (e.g., positive
Allee effects when density is low, negative effects of
competition when density is high) may weaken the
applicability of TL.

(c) Experimental testing and further theoretical analysis

This example's predictions could be tested experimentally
using, for example, bacterial microcosms (Ramsayer et al.
2012; Kaltz et al. 2012) in incubators with differing probabil-
ities λ of daily (or even hourly) change in temperature or other
environmental factors that promote or reduce population
growth.

This model has no density dependence. In future empirical
work, it would be desirable to examine whether populations of
the flour beetle Tribolium castaneum , which are known to be
density-dependent, satisfy TL. A parallel theoretical question
is whether empirically validated density-dependent models of
Tribolium population dynamics such as the Larvae–Pupae–
Adult family of models (Dennis et al. 1997, 2001; Reuman
et al. 2006, 2008) satisfy TL. If these data and models do
satisfy TL, they can be used to investigate how the TL slope b
depends on the parameters of the laboratory experiments and
models. If these data andmodels do not satisfy TL, they can be
used to shed light on the conditions under which TL succeeds
or fails.

Acknowledgments The author would like to thank Lee Altenberg, Carl
Boettiger, Stephen R. Carpenter, Peter B. deMenocal, Alan Hastings,
Michael Hochberg, Marcel Holyoak, Oliver Kaltz, Daniel C. Reuman,
Meng Xu, and anonymous referees for helpful comments, US National
Science Foundation grants EF-1038337 and DMS-1225529 for support,
Priscilla K. Rogerson for assistance, and Michael Plank and the family of
William T. Golden for their hospitality during this work.

Appendix

(a) Multiplicative population dynamics in a Markovian
environment

In a model of multiplicative population dynamics in a
Markovian environment (Cohen 2013c), the density N (t )
of a single-type population changes in discrete time t =
0, 1, 2, … as a result of multiplication by a stochastic
factor A (t ):

N tð Þ ¼ A t−1ð ÞN t−1ð Þ; t ¼ 1; 2;… ð6Þ

The factor A (t -1) by which population density changes
from t -1 to t is selected by a finite-state Markov chain from
a finite set of possible values {d1, …, ds}, where di>0, i =1,
2, …, s . Specifically, suppose the environment has a finite
number s >1 of possible states (e.g., of temperature, wind
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velocity, sunshine, precipitation, or some combination of
measurable factors) that translate into net population changes
with no time delays. Let the probability that environmental
state j on day t -1 is followed by state i on day t be given by
pij and let P = (pij) be the s × s transition matrix of these
transition probabilities. The prior state corresponds to column
j of P, the next state to row i of P, and the sum of each column
equals 1. If P is a positive matrix (all elements satisfy pij>0),
then a stationary distribution π (a column vector of s positive
probabilities π j, j =1,…, s ) exists such that Pπ =π (such a
stationary distribution exists under much weaker assumptions
on the transition matrix P, but those assumptions are not
needed in the example investigated here). This means that if
the probability distribution of the states of the environment at
the initial time t =0 has the stationary distribution π , then for
all future times, the probability distribution of states of the
Markov chain will remain π . IfA(t-1)=dj, thenN(t)=djN(t-1),
for j=1,…, s and t=1,2,… . The multiplicative factor changes
from one time step to the next according to the transition
probabilities of the Markov chain starting from its stationary
distribution:

Pr A tð Þ ¼ dijA t−1ð Þ ¼ d j

� � ¼ pij;Pr A 0ð Þ ¼ dif g
¼ πi; i; j ¼ 1;…; s and t ¼ 1; 2;…

ð7Þ

Define the s × s diagonal matrix D = diag(di) to be zero
everywhere except on the diagonal. The i th diagonal element
di is the value of A(.) when the environment is in state i . The
spectral radius of a square matrix, denoted r (⋅), is the maxi-
mum of the absolute value (or modulus) of the eigenvalues of
the matrix. If P is a positive matrix and at least two values of
di are different, and if log Var(N(t )) is graphed as a function
of log E(N (t)) for a succession of values of t , then the plotted
points will approximate a straight line, as in Eq. (2), and,
provided log[r (DP)]≠0, the slope b of that line will be

b ¼ log r D2P
� �� 	

=log r DPð Þ½ �: ð8Þ

The formula for a is more complicated (Cohen 2013c) and
is not needed here. Formula (8) is less mysterious than it might
seem at first sight. Under the assumed conditions that P >0
and at least two elements of {di, i =1,…, s} are different
(Altenberg 2013, Cohen 2013b, c), the numerator is
log[r(D2P )]=limt→+∞ [log Var(N (t))]/t , which is the limiting
linear growth rate of the log variance, and the denominator is
log[r(DP )]=limt→+∞ [log E(N (t ))]/t , which is the limiting
linear growth rate of the log mean. The condition before
Eq. (8) that log[r (DP)]≠0 means that the population is not
critical, i.e., that mean population density is either increasing
or decreasing for large t . Dividing TL in Eq. (1) by t and
letting t get large gives limt→+∞ [log Var (N (t )) - b log
E(N(t ))]/t =0, and solving this equation for b gives Eq. (8).
The assumption that all elements of P are positive is stronger
than necessary to guarantee that

log r D2P
� �� 	 ¼ limt→þ∞ log Var N tð Þð Þ½ �=t

is the limiting linear growth rate of the log variance. The
weaker necessary and sufficient conditions (Altenberg 2013,
Cohen 2013b, c) are more complex and are not needed here.

This model is a special case of a widely studied model of
age-structured populations in Markovian environments
(Cohen 1976; Tuljapurkar 1990; see review byCaswell 2001).

(b) Example

For D ¼ 2 0
0 1=4

� �
, we calculated r(DP(λ)) ≡ r1(λ) and

r(D2P(λ)) ≡ r2(λ) explicitly by using the quadratic formula to
calculate the eigenvalues of the 2×2 matrices DP (λ ) and
D2P(λ). We then computed b = b(λ)=log(r2(λ))/log(r1(λ))
from Eq. (8). The results are:

r1 λð Þ ¼ lim
t→∞

E N tð Þð Þð Þ 1=tð Þ ¼ r DP λð Þð Þ ¼ 81λ2−98λþ 49
� �1

2

8
þ 9

8
1−λð Þ;

r1 0ð Þ ¼ 2; r1
1

2

� �
¼ 9

8
; r1

3

5

� �
¼ 1; r1 1ð Þ ¼ 1ffiffiffi

2
p ;

r2 λð Þ ¼ lim
t→∞

Var N tð Þð Þð Þ 1=tð Þ ¼ r D2P λð Þ� � ¼ 4225λ2–7938λþ 3969
� �1

2

32
þ 65

32
1−λð Þ

r2 0ð Þ ¼ 4; r2
1

2

� �
¼ 65

32
; r2

3

5

� �
≈1:66; r2

15

19

� �
¼ 1; r2 1ð Þ ¼ 1

2
;

b λð Þ ¼ logr2 λð Þ
logr1 λð Þ; b 0ð Þ ¼ 2; b

1

2

� �
≈6:02; b

3

5

� �−� �
¼ þ∞; b

3

5

� �þ� �
¼ −∞; b 1ð Þ ¼ 2:

ð9Þ
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From Eq. (9), it may be proved that dr1(λ )/dλ <0 and
dr2(λ )/dλ <0, as observed numerically.

At the extremes λ =0 and λ =1,P (λ ) is no longer a positive
matrix. Because r1(λ ) and r2(λ ) are continuous functions of
λ , we may evaluate these functions at the extremes λ =0 and
λ =1 by using the same formulas as when 0<λ <1.

In this example, it was observed numerically that, with
increasing λ in 0≤λ ≤1, b(λ) increases (except for the singular-
ity in b(λ) at λ=3/5) and that b(λ) is convex for λ in 0≤λ<3/5
and concave for λ in 3/5<λ≤1. There have been no mathemat-
ical proofs of these conjectures.
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