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Quadratic ordering of rectangular real matrices implies Chebyshev’s

inequality: If A1, . . . , Ar are m × n real matrices and B1, . . . , Br
are n × q real matrices such that, for all i, j with 1 � i, j � r,

elementwise (Ai − Aj)(Bi − Bj) � 0m×q, then for any real pj �
0, j = 1, . . . , r,

∑
j pj = 1, elementwise (

∑
j pjAj)(

∑
j pjBj) �∑

j pjAjBj . Further, linear ordering of rectangular real matrices im-

pliesGrüss’s inequality: If, elementwise,Aj � Aj+1, j = 1, . . . , r−1

and elementwise Bj � Bj+1, j = 1, . . . , r − 1 then elementwise∑
j pjAjBj − (

∑
j pjAj)(

∑
j pjBj) � 1

4
(Ar − A1)(Br − B1). The bounds

are sharp. These inequalities lead to inequalities for the spectral ra-

diusofnonnegativematrices. Linearorderingandquadratic ordering

are equivalent for real scalars but not for real matrices.

1. Introduction and definitions

The inequalities of Chebyshev [6, p. 43, Theorem 43], [11, p. 76, Eq. (5.8)] and Grüss [5,11, p. 119]

have been generalized from sequences of real numbers to square, complex, Hermitian positive definite

or semidefinite matrices and orthonormal families of vectors in real or complex inner product spaces

[1–3,7–10]. Here we generalize these inequalities to rectangular real matrices and derive inequalities

involving the spectral radius of nonnegative matrices.

Let N = {1, 2, . . .} be the natural numbers, m, n, q, r, s ∈ N. Let R = (−∞,+∞) be the

real line and R
m×n the set of real matrices of size m × n, i.e., with m rows and n columns. Let
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P
r = {p = (p1, . . . , pr) | 0 � pj � 1, j = 1, . . . , r,

∑r
j=1 pj = 1} be the set of r-dimensional

probability vectors. The m × n matrix with all elements equal to c ∈ R is written cm×n. For any two

matrices A1, A2 ∈ R
m×n , A1 � A2 means that elementwise 0m×n � A2 − A1. Whereas � is a total

ordering of the set of real numbers, it is a partial ordering of the set of real matrices with 2 or more

elements. For A1, A2 ∈ R
m×n, A1 < A2 means that A1 � A2 and A1 �= A2.Matrix A ∈ R

m×n is positive

if elementwise 0m×n is strictly less than A and is nonnegative if 0m×n � A.

LetV = {(Aj, Bj) |Aj ∈ R
m×n, Bj ∈ R

n×q, j = 1, . . . , r}beasetof r pairsof realmatriceswitheach

pair labeled by j. Assumehenceforth that r > 1. LetA = {Aj ∈ R
m×n} be the set of first components of

the pairs in V , and let B = {Bj ∈ R
n×q} be the set of second components of the pairs in V , each labeled

as inV .We sayA, B, V are positivewhen everymatrix in them is positive and similarly for nonnegative.

For any two scalars a, b ∈ R, define V(a, b) = {(Aj + am×n, Bj + bn×q) | (Aj, Bj) ∈ V, j = 1, . . . , r}.
Clearly, for every V , there exist a, b ∈ R such that every element of every matrix in V(a, b) is positive.

Definition 1. The set V is linearly ordered when there exists a permutation σ of {1, . . . , r} such that

Aσ(j) � Aσ(j+1) and Bσ(j) � Bσ(j+1) for j = 1, . . . , r − 1.

When V is linearly ordered, it entails no loss of generality to permute the subscripts of both com-

ponents by the same permutation so that A1 � · · · � Ar and B1 � · · · � Br . Such a relabeling will be

assumed.

Definition 2. The set V is quadratically ordered when, for all i, j such that 1 � i, j � r, (Ai − Aj)(Bi −
Bj) � 0m×q.

When V is quadratically ordered, it remains quadratically ordered if any permutation is applied

equally to the labels of the matrices in both A and B. In the scalar case, m = n = q = 1, V is linearly

ordered if and only if V is quadratically ordered [6, p 43]. This equivalence fails in general.

Example 1. Letm = 1, n = 2, q = 1, r = 2 with A1 = (+1, −1), A2 = (0, 0), Bj = AT
j , j = 1, 2.

(Superscript T denotes the matrix transpose.) Then (A1 − A2)(B1 − B2) = A1B1 = 2 > 0 so V is

quadratically ordered but not linearly ordered.

Definition 3. Letmax(A) be them×nmatrix such that the element in row g and column h ofmax(A)
is the maximum of the elements in row g and column h of the matrices Ai ∈ A, i = 1, . . . , r. Define
min(A), max(B), min(B) analogously.

When V is linearly ordered, then max(A) = Ar ∈ A, min(A) = A1 ∈ A, max(B) = Br ∈
B, min(B) = B1 ∈ B. When V is quadratically ordered, these inclusions need not hold. In Example 1,

max(A) = (1, 0), min(A) = (0, −1) and neither max(A) nor min(A) is an element of A.

2. Main results and proofs

Theorem 1. Let V = {(Aj, Bj) | Aj ∈ R
m×n, Bj ∈ R

n×q, j = 1, . . . , r} be a set of r pairs of real matrices,

r > 1, and p ∈ P
r . Let

D(V, p) =
r∑

j=1

pjAjBj −
⎛
⎝

r∑
j=1

pjAj

⎞
⎠

⎛
⎝

r∑
j=1

pjBj

⎞
⎠ (1)

and

U(V) = 1

4
(max(A) − min(A)) (max(B) − min(B)) . (2)
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If V is quadratically ordered, then (Chebyshev’s inequality)

∀p ∈ P
r, 0m×q � D(V, p), (3)

with equality if there exists 1 � j � r such that pj = 1, and (Grüss’s inequality)

∀p ∈ P
r, D(V, p) � U(V), (4)

with equality in (3) and (4) if all Aj, j = 1, . . . , r are equal or all Bj, j = 1, . . . , r are equal.

Proof. If V is quadratically ordered, then for any i �= j, (Aj−Ai)(Bj−Bi) � 0m×q and pipj(Aj−Ai)(Bj−
Bi) � 0m×q. Summing over all pairs i, j, we have, for any p ∈ P

r ,

0m×q � 1

2

∑
1�i,j�r

pipj(Aj − Ai)(Bj − Bi) (5)

= 1

2

∑
1�i,j�r

pipj(AiBi + AjBj − AiBj − AjBi)

= 1

2

∑
1�i,j�r

pipj(AiBi + AjBj) − 1

2

∑
1�i,j�r

pipj(AiBj + AjBi)

= 1

2

⎛
⎝ ∑

1�i�r

piAiBi +
∑

1�j�r

pjAjBj

⎞
⎠

− 1

2

⎡
⎣

⎛
⎝ ∑

1�i�r

piAi

⎞
⎠

⎛
⎝ ∑

1�j�r

pjBj

⎞
⎠ +

⎛
⎝ ∑

1�i�r

piBi

⎞
⎠

⎛
⎝ ∑

1�j�r

pjAj

⎞
⎠

⎤
⎦

=
r∑

j=1

pjAjBj −
⎛
⎝

r∑
j=1

pjAj

⎞
⎠

⎛
⎝

r∑
j=1

pjBj

⎞
⎠ = D(V, p).

(6)

This proof of (3) follows the proofs in [6, p. 43] and [11, pp. 77-78] for scalars.

The summation in (5) includes r terms with i = j. Such terms must be 0m×q, so when any pj = 1,

then p2j = 1 and D(V, p) = 0m×q.

We may also write, using (5) and the last line of (6)

D(V, p) = ∑
1�i<j�r

pipj(Aj − Ai)(Bj − Bi). (7)

For all i < j, 0m×q � pipj(Aj −Ai)(Bj −Bi) � pipj (max(A) − min(A)) (max(B) − min(B)). LetD′ be
the sum obtained from (7) by replacing the summand p1pr(Ar − A1)(Br − B1) with p1pr (max(A)−
min(A)) (max(B) − min(B)). Then D(V, p) � D′. We maximize D′ over all p ∈ P

r by assigning all

probability mass to i = 1, j = r, and putting 0 probability mass on any other couple i < j, so that

D′ = p1pr (max(A) − min(A)) (max(B) − min(B)), where pr = 1 − p1. Then the maximum of p1pr
is attained when p1 = pr = 1/2, so that p1pr = 1/4. This proves (4). �

Lemma 1. If V is linearly ordered, then V is quadratically ordered. If V is quadratically ordered and n = 1

and every two elements ofA are distinct and every two elements ofB are distinct, then V is linearly ordered.

Proof. Let V be linearly ordered. By transitivity, for all i, j, if i � j then Ai � Aj and Bi � Bj and

therefore Aj − Ai � 0m×n and Bj − Bi � 0n×q. Because the product of two nonnegative matrices is

nonnegative, i � j implies (Aj − Ai)(Bj − Bi) � 0m×q. Because (Ai − Aj)(Bi − Bj) = (Aj − Ai)(Bj − Bi)
we have (Ai − Aj)(Bi − Bj) � 0 whether i � j or j � i. Hence V is quadratically ordered.
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NowassumeV is quadraticallyorderedandn = 1andevery twoelementsofAaredistinct andevery

two elements of B are distinct. Each Ai is a columnm-vector,m � 1, with elements aig, g = 1, . . . ,m.

Each Bi is a row q-vector, q � 1, with elements bih, h = 1, . . . , q. The product (Ai − Aj)(Bi − Bj) � 0

is a rank-one matrix with element (aig − ajg)(bih − bjh) � 0, g = 1, . . . ,m, h = 1, . . . , q in row g

and column h. We shall prove that these conditions imply that Ai � Aj, Bi � Bj or Aj � Ai, Bj � Bi,

i.e., that (possibly after a simultaneous permutation of the labels of A and B) V is linearly ordered. It

suffices to consider i = 1, j = 2.

We are given that (a2g − a1g)(b2h − b1h) � 0, g = 1, . . . ,m, h = 1, . . . , q and that A1 �=
A2, B1 �= B2. Then for at least one value of g, say g′, a2g′ − a1g′ > 0 or a2g′ − a1g′ < 0 and for at

least one value of h, say h′, b2h′ − b1h′ > 0 or b2h′ − b1h′ < 0. If a2g′ − a1g′ > 0, then necessarily

b2h′ − b1h′ > 0 because (a2g′ − a1g′)(b2h′ − b1h′) � 0. In this case, for no g �= g′ could we have

a2g′ − a1g′ < 0 because then, for such a g, (a2g − a1g)(b2h′ − b1h′) < 0. Hence a2g − a1g � 0

for all g = 1, . . . ,m and by a similar argument b2h − b1h � 0 for all h = 1, . . . , q. Consequently,
A2 � A1, B2 � B1. In the second case, if a2g′ − a1g′ < 0, then by the same argument A2 − A1 � 0 and

B2 − B1 � 0. This proves that the relation � orders every two elements of V . Hence, possibly after a

permutation of labels, V is linearly ordered. �

Example 2. In Example 1, where n > 1, V is quadratically ordered but not linearly ordered even

though every two elements of A are distinct and every two elements of B are distinct.

This example also shows that equality is not guaranteed to hold in (4) above nor in (9) below if

there exists 1 � j � r such that pj = 1. By (3), D(V, p) = 0 whenever some pj = 1 but here
1
4
(max(A) − min(A)) (max(B) − min(B)) = 1

4

(
(1, 1)(1, 1)T

)
= 1

2
.

Example 3. To see that V being quadratically ordered need not imply that V must be linearly ordered

if n = 1 while two elements of A or two elements of B are identical, let A1 = A2 = 02×1, B1 =
(+1, −1), B2 = (0, 0). Then (A1 −A2)(B1 −B2) = 02×2 so V is quadratically ordered but not linearly

ordered.

Example 4. The assumption that every two elements of A are distinct and every two elements of

B are distinct is stronger than the assumption that every two elements of V are distinct. Example 3

shows that V may be quadratically ordered but not linearly ordered under the weaker assumption

that for every i �= j, the pairs (Ai, Bi) and (Aj, Bj) are distinct, even when n = 1. In this example,

(A1, B1) �= (A2, B2) because B1 �= B2.

Corollary 1. If V is linearly ordered, then Chebyshev’s inequality (3) holds and Grüss’s inequality (4) takes

the form

∀p ∈ P
r, D(V, p) � 1

4
(Ar − A1)(Br − B1). (8)

Moreover, inf{D(V, p) | p ∈ P
r} = 0m×q and sup{D(V, p) | p ∈ P

r} = 1
4
(Ar − A1)(Br − B1), i.e., the

lower and upper bounds cannot be improved.

Proof. If V is linearly ordered, then it is quadratically ordered so (3) holds. In (7), for every i < j,

0m×q � (Aj − Ai)(Bj − Bi) � (Ar − A1)(Br − B1), so sup{D(V, p) | p ∈ P
r} is attained by maximizing

p1pr and putting 0 probability mass on any other summand. The maximum of p1pr , 1/4, is attained

when p1 = pr = 1/2. �

Corollary 2. If V is quadratically ordered and n = 1 and every two elements of A are distinct and every

two elements of B are distinct, then (3) and (8) hold.

Proof. By Lemma 1, V is linearly ordered. Apply Corollary 1. �
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Proposition 1. For any a, b ∈ R, V is linearly (alternatively, quadratically) ordered if and only if V(a, b)
is linearly (alternatively, quadratically) ordered, and D(V, p) = D(V(a, b), p).

Proof. For Ai, Aj ∈ A, we have Ai � Aj if and only if, for every a ∈ R, Ai + am×n � Aj + am×n.

Hence V is linearly ordered if and only if every V(a, b) is. Also, if a, b ∈ R, Ai, Aj ∈ A, Bi, Bj ∈ B, then
(Ai −Aj)(Bi −Bj) = ((Ai +am×n)− (Aj +am×n))((Bi +bn×q)− (Bj +bn×q)). Hence V is quadratically

ordered if and only if every V(a, b) is and (7) implies D(V, p) = D(V(a, b), p). �

Corollary 3. Let ρ(·) be the spectral radius (maximum magnitude of the eigenvalues) of a square matrix

argument. If m = q and V is quadratically ordered, then

∀p ∈ P
r, ρ(D

(V, p)
) � ρ

(
U(V)

)
. (9)

Equality holds in (9), and both sides equal 0, if all Aj, j = 1, . . . , r are equal or all Bj, j = 1, . . . , r are
equal. If V is quadratically ordered and also nonnegative, then

∀p ∈ P
r, ρ

⎛
⎝

⎛
⎝

r∑
j=1

pjAj

⎞
⎠

⎛
⎝

r∑
j=1

pjBj

⎞
⎠

⎞
⎠ � ρ

⎛
⎝

r∑
j=1

pjAjBj

⎞
⎠ . (10)

Equality holds in (10) if there exists 1 � j � r such that pj = 1 or all Aj, j = 1, . . . , r are equal or all

Bj, j = 1, . . . , r are equal.

Proof. By (3) and (4), D(V, p) � 0m×m and U(V) � 0m×m. The spectral radius, here the Perron-

Frobenius root, is nondecreasing when any element of its nonnegative square matrix argument in-

creases [4, vol. 2, p. 57]. Apply this fact to (4) to get (9) and to (3) to get (10). �

3. Generalizations to products of more than two matrices

Hardy et al. [6, p. 44] offered as “an immediate deduction" from Chebyshev’s inequality the gener-

alization that (
∑

j pja
t
j )

1/t(
∑

j pjb
t
j )

1/t · · · (∑j pjl
t
j )

1/t < (
∑

j pja
t
j b

t
j · · · ltj )1/t if t > 0 and the vectors

a = (aj), b = (bj), . . . , l = (lj) “are all similarly ordered". But their definition [6, p. 43] of what

it means for a pair of vectors a, b to be “similarly ordered,” namely, (ai − aj)(bi − bj) � 0 for all

i, j, would not generalize usefully to, for example, (ai − aj)(bi − bj)(ci − cj) � 0 for all i, j, because
(ai − aj)(bi − bj)(ci − cj) = −(aj − ai)(bj − bi)(cj − ci). Both (ai − aj)(bi − bj)(ci − cj) � 0 and

(aj − ai)(bj − bi)(cj − ci) � 0 would imply both are 0.

When t = 1 (whichmakesChebyshev’s inequality valid for real scalars, notonlynonnegative scalars

[6, p. 43 footnote]), it is not sufficient for the proof of the generalization that every pair of vectors be

linearly ordered in the senseofDefinition1. For example, ifa = (1, 2), b = (−2, +1), c = (−2, +1),
then a, b, c are all in nondecreasing order but b1c1 = 4 > b2c2 = 1 so the elementwise product vector

(bjcj)
2
j=1 is ordered oppositely from the vector a. Assuming nonnegativity avoids this problem.

Definition 4. Let V = {(Aj, Bj, Cj) | Aj ∈ R
m×n, Bj ∈ R

n×q, Cj ∈ R
q×s, j = 1, . . . , r} be a

set of r triples of matrices with each triple labeled by j. V is similarly ordered if some simultaneous

permutation of the labels produces A1 � · · · � Ar and B1 � · · · � Br and C1 � · · · � Cr . Define

C = {Cj, j = 1, . . . , r | (Aj, Bj, Cj) ∈ V}.
Theorem 2. Let V be a similarly ordered set of r triples of nonnegative matrices, r > 1, and p ∈ P

r . Let

D(V, p) =
r∑

j=1

pjAjBjCj −
⎛
⎝

r∑
j=1

pjAj

⎞
⎠

⎛
⎝

r∑
j=1

pjBj

⎞
⎠

⎛
⎝

r∑
j=1

pjCj

⎞
⎠ (11)
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and

U(V) = 1

4
(Ar − A1) (Br − B1) (Cr − C1) . (12)

Then (Chebyshev’s inequality)

∀p ∈ P
r, 0m×q � D(V, p), (13)

with equality if there exists 1 � j � r such that pj = 1, and (Grüss’s inequality)

∀p ∈ P
r, D(V, p) � U(V), (14)

with equality in (13) and (14) if, for at least two of the three sets A, B, C, all the matrices in each set equal

the other matrices in that set.

Proof. Because (by assumption) A, B, C are similarly ordered and the matrices in each set are non-

negative, we have B1C1 � · · · � BrCr . By Theorem 1,

r∑
j=1

pjAj(BjCj) �
⎛
⎝

r∑
j=1

pjAj

⎞
⎠

⎛
⎝

r∑
j=1

pjBjCj

⎞
⎠ �

⎛
⎝

r∑
j=1

pjAj

⎞
⎠

⎛
⎝

r∑
j=1

pjBj

⎞
⎠

⎛
⎝

r∑
j=1

pjCj

⎞
⎠ .

This proves (13). The proof of (14) is the same as the proof of (4). The conditions for equality are

straightforward, as before. �

Corollary 4. If V is a similarly ordered set of r triples of nonnegative matrices, r > 1, m = s, and p ∈ P
r ,

then

∀p ∈ P
r, ρ(D

(V, p)
) � ρ

(
U(V)

)
(15)

and

∀p ∈ P
r, ρ

⎛
⎝

⎛
⎝

r∑
j=1

pjAj

⎞
⎠

⎛
⎝

r∑
j=1

pjBj

⎞
⎠

⎛
⎝

r∑
j=1

pjCj

⎞
⎠

⎞
⎠ � ρ

⎛
⎝

r∑
j=1

pjAjBjCj

⎞
⎠ . (16)

Equality holds in (15) and (16) if there exists 1 � j � r such that pj = 1 or if, for at least two of the three

sets A, B, C, all the matrices in each set equal the other matrices in that set.
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