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Quadratic ordering of rectangular real matrices implies Chebyshev’s
inequality: If Ay, ..., A, are m X n real matrices and By, ..., Br
are n X q real matrices such that, for all i,j with 1 < i,j < 1,
elementwise (A; — Aj)(B; — B;j) > 0™*Y, then for any real p; >
0,j=1,...,r, >2;pj = 1, elementwise (3; pjA}) (2 pjBj) <
> PjA;B;. Further, linear ordering of rectangular real matrices im-
plies Griiss’sinequality: If, elementwise,Aj < Ajy1,j=1,...,7—1
and elementwise B; < Bjyq, j = 1,...,r — 1 then elementwise
% piAB; — (3 piA) (3 piB) < §(Ar — A1) (By — By). The bounds
are sharp. These inequalities lead to inequalities for the spectral ra-
dius of nonnegative matrices. Linear ordering and quadratic ordering
are equivalent for real scalars but not for real matrices.
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1. Introduction and definitions

The inequalities of Chebyshev [6, p. 43, Theorem 43], [11, p. 76, Eq. (5.8)] and Griiss [5,11, p. 119]
have been generalized from sequences of real numbers to square, complex, Hermitian positive definite
or semidefinite matrices and orthonormal families of vectors in real or complex inner product spaces
[1-3,7-10]. Here we generalize these inequalities to rectangular real matrices and derive inequalities
involving the spectral radius of nonnegative matrices.

Let N = {1, 2, ...} be the natural numbers, m,n,q,r,s € N.Let R = (—o00, +00) be the
real line and R™*" the set of real matrices of size m x n, i.e., with m rows and n columns. Let

* U.S. National Science Foundation grant EF-1038337 partially supported this work.
E-mail address: cohen@rockefeller.edu

0024-3795/$ - see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.1aa.2013.03.003


http://dx.doi.org/10.1016/j.laa.2013.03.003
http://www.sciencedirect.com/science/journal/00243795
www.elsevier.com/locate/laa
http://dx.doi.org/10.1016/j.laa.2013.03.003
http://dx.doi.org/10.1016/j.laa.2013.03.003
mailto:cohen@rockefeller.edu
http://dx.doi.org/10.1016/j.laa.2013.03.003
http://dx.doi.org/10.1016/j.laa.2013.03.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.laa.2013.03.003&domain=pdf

134 J.E. Cohen / Linear Algebra and its Applications 447 (2014) 133-138

Pr={p=(1,....p)10<p <1, j=1,...,r, 3i_pj = 1} be the set of r-dimensional
probability vectors. The m x n matrix with all elements equal to ¢ € R is written ¢™*". For any two
matrices A;, A, € R™"  A; < Ay means that elementwise 0™*" < Ay — Ay. Whereas < is a total
ordering of the set of real numbers, it is a partial ordering of the set of real matrices with 2 or more
elements. ForA;, A, € R™" A; < Ay meansthatA; < Ay andA; # Ay.MatrixA € R™ " is positive
if elementwise 0™*" is strictly less than A and is nonnegative if 0™*" < A.

LetV = {(4;, B)) |Aj € R™*", B e R4, j =1, ..., r}beasetofr pairsof real matrices with each
pair labeled by j. Assume henceforth thatr > 1.Let A = {A; € R™*"} be the set of first components of
the pairsin V, and let B = {B; € R"*%} be the set of second components of the pairs in V, each labeled
asinV.Wesay A, B, V are positive when every matrix in them is positive and similarly for nonnegative.
For any two scalars a, b € R, define V(a, b) = {(4j + a™*", Bj + b | (A;, B)) € V,j=1,...,1}
Clearly, for every V, there exist a, b € R such that every element of every matrix in V(a, b) is positive.

Definition 1. The set V is linearly ordered when there exists a permutation o of {1, ..., r} such that
As() < As(j+1)and By ) < Byrpyforj=1,...,r—1.

When V is linearly ordered, it entails no loss of generality to permute the subscripts of both com-
ponents by the same permutation so thatA; < --- < Arand By < - - - < B;. Such arelabeling will be
assumed.

Definition 2. The set V is quadratically ordered when, for all i, j such that 1 < i,j <, (A; — A))(Bi —
Bj) = 0™,

When V is quadratically ordered, it remains quadratically ordered if any permutation is applied
equally to the labels of the matrices in both 4 and B. In the scalar case, m = n = q = 1, Vis linearly
ordered if and only if V is quadratically ordered [6, p 43]. This equivalence fails in general.
Example1. Letm =1, n=2, ¢ =1, r = 2withA; = (+1, —1), A, = (0, 0), B =A]-T, i=1,2.
(Superscript T denotes the matrix transpose.) Then (A; — A;)(By — By) = A{B; = 2 > 0soVis
quadratically ordered but not linearly ordered.

Definition 3. Let max(.A) be the m x n matrix such that the element in row g and column h of max(.A)
is the maximum of the elements in row g and column h of the matrices A; € A, i = 1, ..., r.Define
min(A4), max(B), min(B) analogously.

When V is linearly ordered, then max(4) = A, € A, min(4) = A1 € A max(B) = B; €
B, min(B) = B; € B. When V is quadratically ordered, these inclusions need not hold. In Example 1,
max(A4) = (1, 0), min(A4) = (0, —1) and neither max(.4) nor min(.A) is an element of A.

2. Main results and proofs

Theorem 1. LetV = {(4;, Bj) |Aj € R™*", B; e R™Y, j =1, ..., r}beasetofr pairs of real matrices,
r>1,andp € P". Let

D(V,p) = D pjAiBj — (ZPJAJ) (ZPJBJ) (1
j=1 =1 !

and

uw) = % (max(A) — min(A)) (max(8) — min(B)) . (2)


http://dx.doi.org/10.1016/j.laa.2013.03.003

J.E. Cohen / Linear Algebra and its Applications 447 (2014) 133-138 135

If v is quadratically ordered, then (Chebyshev’s inequality)

VpeP', 0™9<DO,p), (3)
with equality if there exists 1 < j < r such that p; = 1, and (Griiss’s inequality)

Vpe P, D(V,p) <UW), (4)
with equality in (3) and (4) ifall Aj, j =1, ..., rareequalorall B;, j =1, ..., rareequal

Proof. If Vis quadratically ordered, then foranyi # j, (Aj —A;)(Bj — B;) > 0™*%and p;p;(A; —A;) (B; —
B;) > 0™*4, Summing over all pairs i, j, we have, for any p € ",

1
0™ < — > pipj(Aj — A)(Bj — By) (5)
1<ij<r

1
= 5 > pibj(AiBi + AjBj — AiBj — A;B;)
1<ij<r

= 2 Z plp](AlBl +A]B] 2 Z plp](A B; +A]Bl)
1<i,j<r 1<i,j<r

1
=2 < > piABi+ > ij,~3,-> ()

1<i<r 1gj<r

1
1<i<r 1<j<r 1<i<r 1<<r

r r r
= D _biAiB — (Z ijj) (/Z ijj> =D, p).
j=1 =1 =1
This proof of (3) follows the proofs in [6, p. 43] and [ 11, pp. 77-78] for scalars.
The summation in (5) includes r terms with i = j. Such terms must be 0™*9, so when any p; = 1,
then p? = 1and D(V, p) = 0™<1.,
We may also write, using (5) and the last line of (6)

D(V,p)= > pipj(Aj —A)(Bj — By). (7)
1<i<j<r

Foralli < j,0™*9 < p;pj(Aj — Ai)(Bj — B;) < pipj (max(A) — min(A4)) (max(B) — min(B)).Let D’ be
the sum obtained from (7) by replacing the summand p1p,(Ar — A1) (B; — By) with p1p, (max(A)—
min(A4)) (max(8) — min(B)). Then D(V, p) < D'. We maximize D’ over all p € P" by assigning all
probability mass toi = 1, j = r, and putting 0 probability mass on any other couple i < j, so that
D' = p1p; (max(A) — min(A)) (max(B8) — min(B)), where p, = 1 — py. Then the maximum of p;p;
is attained when p; = p; = 1/2, so that p1p, = 1/4. This proves (4). O

Lemma 1. IfV is linearly ordered, then V is quadratically ordered. If V is quadratically ordered and n = 1
and every two elements of A are distinct and every two elements of B are distinct, then V is linearly ordered.

Proof. Let V be linearly ordered. By transitivity, for all i, j, if i < jthen A; < Aj and B; < Bj and
therefore Aj — A; > 0™>*" and B; — B; > 0"*9. Because the product of two nonnegative matrices is
nonnegative, i < jimplies (A; —A;)(Bj — B;) > 0™*9. Because (A; — Aj)(B; — Bj}) = (Aj — A) (B; — B)
we have (A; — Aj)(B; — Bj) > O whetheri < jorj < i. Hence V is quadratically ordered.
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Now assume Vis quadratically orderedand n = 1and every two elements of A are distinct and every

two elements of B are distinct. Each A; is a column m-vector, m > 1, with elements a;z, g = 1, ,m.
Each B; is a row g-vector, q 2> 1, with elements biy, h =1, ..., q. The product (A; — A;)(B; — B]) > 0
is a rank-one matrix with element (aj; — ajg) (bih — bjn) 2 0,g=1,...,m, h=1, ,ginrow g

and column h. We shall prove that these conditions imply that A; < Aj, B; < B;j or Aj g A,-, Bj < B;,
i.e., that (possibly after a simultaneous permutation of the labels of A and B) V is linearly ordered. It
suffices to consideri =1, j = 2.

We are given that (azg —aig)(bop — bip) 2 0, g =1, ,m, h = 1,...,qand that A; #
Ay, By # By. Then for at least one value of g, say g/, aye' — a1g/ > 0oray — ajy < 0and for at
least one value of h, say I’, by — by > 0 or by — by < 0.1If apg' — d1g > 0O, then necessarily
by — biw > 0 because (azg' — a1g/)(boy — byy) = 0. In this case, for no g # g’ could we have
aye — a1 < 0 because then, for such a g, (ayz — aig)(byy — biy) < 0. Hence ayg —ajg > 0
forallg = 1,..., m and by a similar argument by, — by, > Oforallh = 1, ..., q. Consequently,
Ay > Aq, Bz > Bj.Inthe second case, ifazgr — a1y < 0, then by the same argument A; — A; < Oand
B; — By < 0. This proves that the relation < orders every two elements of V. Hence, possibly after a
permutation of labels, V is linearly ordered. O

Example 2. In Example 1, where n > 1, V is quadratically ordered but not linearly ordered even
though every two elements of A are distinct and every two elements of B are distinct.

This example also shows that equality is not guaranteed to hold in (4) above nor in (9) below if
there exists 1 < j < r such that p; = 1. By (3), D(V, p) = 0 whenever some p; = 1 but here

1 (max(4) — min(A)) (max(8) — min(8)) = 1 ((1, DA, 1)T) =1

Example 3. To see that V being quadratically ordered need not imply that V must be linearly ordered
if n = 1 while two elements of A or two elements of 3 are identical, let Ay = Ay = 0?1, B; =
(+1, —1), By = (0, 0).Then (A1 —A)(B; — By) = 0**? so V is quadratically ordered but not linearly
ordered.

Example 4. The assumption that every two elements of A are distinct and every two elements of
B are distinct is stronger than the assumption that every two elements of V are distinct. Example 3
shows that V may be quadratically ordered but not linearly ordered under the weaker assumption
that for every i # j, the pairs (A;, B;) and (A;, B;) are distinct, even when n = 1. In this example,
(A] s B]) # (Az, Bz) because Bq ;ﬁ B».

Corollary 1. IfVis linearly ordered, then Chebyshev’s inequality (3) holds and Griiss’s inequality (4) takes
the form

1
VpeP', D(V.p) < Z(Ar — A1) (Br — By). (8)

Moreover, inf{D(V, p) | p € P} = 0™*% and sup{D(V,p) |p € P} = %(Ar — A1)(B; — By), i.e., the
lower and upper bounds cannot be improved.

Proof. If V is linearly ordered, then it is quadratically ordered so (3) holds. In (7), for every i < j,
0™*9 < (Aj — A (Bj — Bi) < (Ar — A1) (Br — By), sosup{D(V, p) | p € P"} is attained by maximizing
p1pr and putting 0 probability mass on any other summand. The maximum of p1p;, 1/4, is attained
whenp; =p, =1/2. O

Corollary 2. IfV is quadratically ordered and n = 1 and every two elements of A are distinct and every
two elements of B are distinct, then (3) and (8) hold.

Proof. By Lemma 1, V is linearly ordered. Apply Corollary 1. O
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Proposition 1. Forany a, b € R, V is linearly (alternatively, quadratically) ordered if and only if V(a, b)
is linearly (alternatively, quadratically) ordered, and D(V, p) = D(V(a, b), p).

Proof. For A;, Aj € A, we have A; < A if and only if, for every a € R, A; 4+ a™" < Aj + a™".
Hence V is linearly ordered if and only if every V(a, b) is. Also, ifa, b € R, A;, Aj € A, B;, Bj € B, then
(Ai —Aj)(Bi —Bj)) = ((Ai+a™ ") — (Aj+a™ ™)) ((B; +b"*7) — (B; + b"*7)). Hence V is quadratically
ordered if and only if every V(a, b) is and (7) implies D(V, p) = D(V(a, b), p). O

Corollary 3. Let p(-) be the spectral radius (maximum magnitude of the eigenvalues) of a square matrix
argument. If m = q and V is quadratically ordered, then

Vpe P, p(DW,p) < pUW)). 9)

Equality holds in (9), and both sides equal O, if all Aj, j = 1, ..., rareequalorall B;, j =1,...,rare
equal. If vV is quadratically ordered and also nonnegative, then

VpeP', p ((ZP;’/‘U) (Zm&)) <p (/ZPJ’AJ‘BJ‘) - (10)
j=1 =1 j=1

Equality holds in (10) if there exists 1 < j < r such thatp; = 1 orallAj, j =1, ..., r are equal or all
Bj, j=1,...,rareequal

Proof. By (3) and (4), D(V,p) = 0™™ and U(V) > 0™ ™. The spectral radius, here the Perron-
Frobenius root, is nondecreasing when any element of its nonnegative square matrix argument in-
creases [4, vol. 2, p. 57]. Apply this fact to (4) to get (9) and to (3) to get (10). O

3. Generalizations to products of more than two matrices

Hardy et al. [6, p. 44] offered as “an immediate deduction” from Chebyshev’s inequality the gener-
alization that (3 pjaf) /! (3 pib) '/t -+ (3 pilH)V" < (3 pjafbf - [)V/'if t > 0 and the vectors
a = (a),b = (bj),...,I = (I;) “are all similarly ordered". But their definition [6, p. 43] of what
it means for a pair of vectors a, b to be “similarly ordered,” namely, (a; — a;)(b; — b;) > 0 for all
i, j, would not generalize usefully to, for example, (a; — a;)(b; — bj)(¢c; — ¢j) > 0 for all i, j, because
(ai — aj)(bi — bj)(ci — ¢j) = —(aj — a;)(bj — bj)(¢j — ¢;). Both (a; — a;)(b; — bj)(c; — ¢;) > 0 and
(a; — a;)(bj — b;)(¢cj — ¢;) = 0 would imply both are 0.

Whent = 1(which makes Chebyshev’s inequality valid for real scalars, not only nonnegative scalars
[6, p. 43 footnote)), it is not sufficient for the proof of the generalization that every pair of vectors be
linearly ordered in the sense of Definition 1. For example,ifa = (1, 2), b = (-2, +1), ¢ = (-2, +1),
thena, b, c are allin nondecreasing orderbut bjc; = 4 > byc; = 1 sothe elementwise product vector
(bjcj)jz=1 is ordered oppositely from the vector a. Assuming nonnegativity avoids this problem.

Definition 4. Let Vv = {(Aj,Bj,Cj) |Aj e Rmxn, Bj c R™4, C] € RI*S, j=1,...,r} bea
set of r triples of matrices with each triple labeled by j. V is similarly ordered if some simultaneous
permutation of the labels produces Ay < --- < ArandB; < --- < Brand C; < --- < (. Define
C={q,j=1,...,r|(Aj,Bj,Q) eV}

Theorem 2. Let V be a similarly ordered set of r triples of nonnegative matrices, r > 1, and p € P". Let

DV, p) = D piABG — (ZPJAJ') (Zm%) (/ijcj) (11)
1 =1 =1

j=1
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and
1
uw) = Z(Ar_Al)(Br_Bl)(Cr_Cl)- (12)

Then (Chebyshev'’s inequality)

VpeP', 0™9<DV,p), (13)
with equality if there exists 1 < j < r such that p; = 1, and (Griiss’s inequality)

Vp e P', D(V,p) <UY), (14)

with equality in (13) and (14) if, for at least two of the three sets A, B, C, all the matrices in each set equal
the other matrices in that set.

Proof. Because (by assumption) A, B, C are similarly ordered and the matrices in each set are non-
negative, we have B;C; < --- < B;C;. By Theorem 1,

r r r r
Z pjA;i(BiG) = Z piA | | 2opiBiG ) = | 2 A | | 2opiBi | | 2opiG
=1 =1 =1 =1

j=1

This proves (13). The proof of (14) is the same as the proof of (4). The conditions for equality are
straightforward, as before. O

Corollary 4. IfV is a similarly ordered set of r triples of nonnegative matrices,r > 1, m = s,andp € P',
then

VpeP', p(D(V,p) < pUD) (15)

and

r r r r
VpeP' p(2pAi| | 2pBi | | 22RiG ) ) < o | 2 PiABG | - (16)
- - - <

Equality holds in (15) and (16) if there exists 1 < j < r such thatp] = 1 or if, for at least two of the three
sets A, B, C, all the matrices in each set equal the other matrices in that set.
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