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A fact about the determinant (abbreviated det) that is usually taught early and is very 
useful later is that det(AB) = det(A)det(B), where A and B are n X n matrices and n 
is a finite positive integer. This multiplicative identity for the determinant is related 
to a host of generalizations. In some generalizations, det is replaced by another 
real-valued or matrix-valued function f with matrix argument, where f is related in 
some way to the determinant. In some generalizations, the equality is replaced by an 
inequality. When the function f that replaces det satisfies f(AB);;;. f(A)f(B), f is 
said to be supermultiplicative; when f(AB) ~f(A)f(B), f is said to be submultiplica­
tive. Clearly, det is both supermultiplicative and submultiplicative. 

The purpose of this note is to consider two . well-known, apparently unrelated 
supermultiplicative functions of nonnegative matrices and to show that they are 
special cases of a natural, more general supemmltiplicative function. All of these 
functions may be viewed as relatives of the determinant. Further, these supermulti­
plicative functions are surprisingly useful in the theory of products of random 
matrices. An application to products of random matrices is sketched at the end of this 
note. 

For a fixed finite positive integer n, an. n X n matrix with all nonnegative real 
elements will be called a nonnegative matrix. The well-known supermultiplicative 
functions of a nonnegative matrix to be considered here are the diagonal elements 
and the permanent (Theorems A and B). 

THEOREM A. If A= (a;) and B = (b;) are nonnegative matrices, then the ith 
diagonal element (AB);; of AB is related to the ith diagonal elements a;; of A and h;; 
of B by (AB);;;;;. a;;h;;, for i = 1, ... , n. 

Proof (AB);; = 'E'J= 1aiibii;;?; a;;hw 

Recall that per(A), the permanent of A, is a determinant that thinks positively, i.e., 
if u = (u(l), ... , u(n)) is a permutation of (1, ... , n), then per(A) = 
'Eual,u(l)a 2.u(2) ••• an,u(n) where the summation runs over all permutations u. Mine 
gives an encyclopedic account of permanents [6]. . 

THEOREM B (Brualdi 1966). If A and B are nonnegative, then per(AB);;;. 
per(A)per(B). 

Brualdi's (1966) proof of Theorem B is elementary. In outline, every term in 
per(A)per(B) appears as a term of per(AB), and the other terms of per(AB) are 
nonnegative. 

The previously known Theorems A and B are both special cases of a more general 
set of inequalities involving the permanent. 

For k = 1, ... , n, define the k th permanent-compound of A (any matrix over a field 

will do, not necessarily a nonnegative matrix) as an (~)X (n matrix A[kJ with 
elements constructed as follows. 
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Let Qk,n = {(i1, i 2 , ... , ik)l1:;:;;; i1 < i2 < < ik:;:;;; n} and choose an ordering, say 
lexicographic, of the k-tuples in Qk,n· By a slight abuse of notation, the elements of 
AlkJ will be indexed by pairs (!, j) E Qk, n X Qk, n rather than by pairs of integers. For 
! = (il, ... , ik) E Qk,n• j = (j1, . ."., jk) E Qk,n• define A[!; j] to be the k X k matrix 
that contains the elements in the intersections of rows il, ... , ik and columns 
j 1, ... , ik· Then A[kJ is the (~) X(~) matrix with (f, j) element (A[kJ)ij = per(A[!; jD. 

As examples, if we assume the lexicographic ordering of the elements of Qk n is 
chosen, A111 =A and if n = 3, then . 

auaz3 + a2lal3 

aua33 + a31a13 

a21a33 + a31a23 

Regardless of the ordering of Qk,n• AlnJ = per(A). Changing the ordering of the 
elements of Qk,n simultaneously permutes the rows and columns of the permanent­
compound matrix, leaving the diagonal elements (A[kJ)i! on the diagonal. The k th 
permanent-compound of the n X n identity matrix is the ( ~) X ( ~) identity matrix. 
For any scalar c, (cA)[kJ = ckAlkJ' If A* denotes the conjugate transpose of A, then 
(A1k1)* = (A*\kJ because per(A) = per(AT), where AT is the transpose of A ([6], 
p. 16) and the conjugate of a product of two complex numbers is the product of their 
conjugates. 

Theorem A is the special case of the following Theorem 1 when k = 1 and Theorem 
B is the special case when k = n. Thus Theorem 1 is a natural generalization of 
Theorems A and B. 

THEOREM 1. If A and B are nonnegative matrices, then for k = 1, ... , n, and all 
! E Qk,n• ((AB)lkJ\i ~ (AlkJ)iBlkJ)ii' 

Before proving Theorem 1, note that Theorem 1 is unaffected by the ordering 
chosen for Qk,n because the theorem deals only with diagonal elements of the 
permanent-compound. 

To prove Theorem 1, two easy lemmas are needed. Let (AB)[f; j] denote the k X k 
matrix that contains the elements in the intersections of rows i 1, ~ .. , ik and columns 
j 1, ... , h of the product matrix AB. 

LEMMA 1. For any ! E Qk,n and any nonnegative A, B, (AB)[!;!] ~A[!; f]B[!;!], 
where the inequality applies elementwise. 

Proof For 1:;:;;; g, h:;:;;; k, let ig and ih denote any two elements of !· Then 

n k 

{AB);g;h = L aigmbmih ~ L a;g;ph;p;h = (A[f; !]B[!; !]);g;h. 
m=l p=l 

LEMMA 2. For any nonnegative A, B, if A~ B (elementwise), then per(A) ~ per(B). 

This is obvious. 

. Proof of Theorem 1. Let ! denote the ith element of Qk,n in the chosen ordering. 
Then for any nonnegative A, B, 

{{AB)lkJ);; =per{( AB) [!; !]} 

~per{ A[!; !]B[!; !]} (by Lemmas 1 and 2) 

~ per{A[!; !]}per{B[!; !]} (by Theorem B) 
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THEOREM 2. If A and B are nonnegative, then for k = 1, ... , n, and (!,f) E 

Qk,n X Qk,n• 

(( AB)!kl)iJ ~max{ ( A!kl)il! ( B!kl)a! ll! E Qk,n}. 

The proof parallels the proof of Theorem 1 exactly. The supermultiplicative 
inequality in Theorem 1 describes the special case of Theorem 2 when ! = l! = j. 

The permanent-compound is closely related to similarly defined objects, some of 
which have similar properties, e.g., the determinant-compound or adjugate matrix 
([5], pp. 86-87), the induced matrix ([6], p. 87) and the combinatorial compound 
matrix [2]. The determinant-compound matrix is defined in the same way as the 
permanent-compound matrix except that per is replaced by det. The induced matrix 
is defined in terms of permanents of submatrices of a given matrix, but the definition 
is a bit more elaborate than that of the permanent-compound matrix given above. 
Like the simple determinant, both the determinant-compound matrix and the induced 
matrix preserve the product of matrices, i.e., the determinant-compound matrix of a 
product of matrices is the product of the determinant-compound matrices, and 
similarly for the induced matrices ([5], pp. 86-87; [6], p. 87). Although I know of no 
earlier definition of the permanent-compound matrix, I make no claim to be the first 
to consider it. 

To conclude, I sketch the application of supermultiplicative functions to the theory 
of products of random matrices [4]. To avoid complications, I will describe only a 
special case of available results. Even so, this sketch presumes some familiarity with 
probability theory and does not pretend to be self-contained. Details appear in Key's 
paper [4]. Mathematical background and scientific applications are given in Cohen, 
Kesten and Newman [3]. 

Suppose {A 1: j = 1, 2, ... } is a sequence of matrices chosen independently and 
identically distributed from a finite set of positive n X n matrices. Suppose IIA II is any 
fixed norm of a matrix A. For any positive integer t, let M 1 = A1A2 ... A 1 be the 
product of the first t matrices from the sequence. Denoting the mathematical 
expectation or average by the symbol E( · ), as is customary in probability theory, the 
limiting rate of growth of the norm 

log A= lim r 1E(logiiM,II) 
, ..... 00 

exists in this example (as well as for many other random sequences {A/ j = 1; 2, ... }). 
In the degenerate case when all the A1 =A for some fixed positive matrix A, log A is 
just the logarithm of the largest eigenvalue of A. So the limiting growth rate denoted 
by log A may be thought of as the analog, for products of random matrices, of the 
logarithm of the largest eigenvalue of a fixed positive matrix. 

Let f be a continuous, homogeneous, supermultiplicative function of a positive 
matrix argument. Here homogeneous means that for c ~ 0, f(cA) = cf(A). Key [4] 
proved that for such a function f, 

log A= lim t- 1E(logf(M1)) 
, ..... oo 

and log A= lim t- 1 logf(M1) 
, ..... oo 

with probability 1, and, moreover, the function f, defined by f, = u -IE log f(M"), 
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where u = 21
, increases monotonically to log A with increasing t. Key's result 

provides a means of bounding log A from below, namely, by computing f 1 for finite 
values of t. 

For sequences of positive matrices, Key cited two nontrivial functions of a positive 
matrix argument that satisfy the requirements of being continuous, homogeneous and 
supermultiplicative: the ith diagonal element, and the permanent raised to the power 
1/n. Theorem 1 above expands the set of nontrivial functions that can be used to 
bound log A from below, for it implies easily that, for k = 1, ... , n, the functions 
{(A[kJ\)1/k are continuous, homogeneous, and supermultiplicative. 
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REFERENCES 

1. Richard A. Brualdi, Permanent of the direct product of matrices, Pacific Journal of Mathematics 16(3) 
(1966), 471-482. 

2. Richard A. Brualdi and Li Qiao, On the combinatorial compound matrix, Journal of Mathematical 
Research and Exposition (China) 1 (1988), 153-162. 

3. Joel E. Cohen, Harry Kesten, and Charles :\1. Newman, eds., Random Matrices and Their Applications, 
Contemporary ~1athematics, Vol. 50, American Mathematical Society, Providence, Rl, 1986. 

4. Eric S. Key, Lower bounds for the maximal Lyapunov exponent; Journal of Theoretical Probability 3(3) 
(1990), 477-488. 

5. C. C. MacDuffee, The Theory of Matrices, Chelsea Publishing, New York, 1946. 
6. Henryk Mine, Permanents, Encyclopedia of Mathematics and Its Applications, Vol. 6, Addison-Wesley 

Publishing Co., Reading, MA, 1978. 


