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A fact about the determinant (abbreviated det) that is usually taught early and is very 
useful later is that det(AB) = det(A)det(B), where A and B are n X n matrices and n 
is a finite positive integer. This multiplicative identity for the determinant is related 
to a host of generalizations. In some generalizations, det is replaced by another 
real-valued or matrix-valued function f with matrix argument, where f is related in 
some way to the determinant. In some generalizations, the equality is replaced by an 
inequality. When the function f that replaces det satisfies f(AB);;;. f(A)f(B), f is 
said to be supermultiplicative; when f(AB) ~f(A)f(B), f is said to be submultiplica
tive. Clearly, det is both supermultiplicative and submultiplicative. 

The purpose of this note is to consider two . well-known, apparently unrelated 
supermultiplicative functions of nonnegative matrices and to show that they are 
special cases of a natural, more general supemmltiplicative function. All of these 
functions may be viewed as relatives of the determinant. Further, these supermulti
plicative functions are surprisingly useful in the theory of products of random 
matrices. An application to products of random matrices is sketched at the end of this 
note. 

For a fixed finite positive integer n, an. n X n matrix with all nonnegative real 
elements will be called a nonnegative matrix. The well-known supermultiplicative 
functions of a nonnegative matrix to be considered here are the diagonal elements 
and the permanent (Theorems A and B). 

THEOREM A. If A= (a;) and B = (b;) are nonnegative matrices, then the ith 
diagonal element (AB);; of AB is related to the ith diagonal elements a;; of A and h;; 
of B by (AB);;;;;. a;;h;;, for i = 1, ... , n. 

Proof (AB);; = 'E'J= 1aiibii;;?; a;;hw 

Recall that per(A), the permanent of A, is a determinant that thinks positively, i.e., 
if u = (u(l), ... , u(n)) is a permutation of (1, ... , n), then per(A) = 
'Eual,u(l)a 2.u(2) ••• an,u(n) where the summation runs over all permutations u. Mine 
gives an encyclopedic account of permanents [6]. . 

THEOREM B (Brualdi 1966). If A and B are nonnegative, then per(AB);;;. 
per(A)per(B). 

Brualdi's (1966) proof of Theorem B is elementary. In outline, every term in 
per(A)per(B) appears as a term of per(AB), and the other terms of per(AB) are 
nonnegative. 

The previously known Theorems A and B are both special cases of a more general 
set of inequalities involving the permanent. 

For k = 1, ... , n, define the k th permanent-compound of A (any matrix over a field 

will do, not necessarily a nonnegative matrix) as an (~)X (n matrix A[kJ with 
elements constructed as follows. 
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Let Qk,n = {(i1, i 2 , ... , ik)l1:;:;;; i1 < i2 < < ik:;:;;; n} and choose an ordering, say 
lexicographic, of the k-tuples in Qk,n· By a slight abuse of notation, the elements of 
AlkJ will be indexed by pairs (!, j) E Qk, n X Qk, n rather than by pairs of integers. For 
! = (il, ... , ik) E Qk,n• j = (j1, . ."., jk) E Qk,n• define A[!; j] to be the k X k matrix 
that contains the elements in the intersections of rows il, ... , ik and columns 
j 1, ... , ik· Then A[kJ is the (~) X(~) matrix with (f, j) element (A[kJ)ij = per(A[!; jD. 

As examples, if we assume the lexicographic ordering of the elements of Qk n is 
chosen, A111 =A and if n = 3, then . 

auaz3 + a2lal3 

aua33 + a31a13 

a21a33 + a31a23 

Regardless of the ordering of Qk,n• AlnJ = per(A). Changing the ordering of the 
elements of Qk,n simultaneously permutes the rows and columns of the permanent
compound matrix, leaving the diagonal elements (A[kJ)i! on the diagonal. The k th 
permanent-compound of the n X n identity matrix is the ( ~) X ( ~) identity matrix. 
For any scalar c, (cA)[kJ = ckAlkJ' If A* denotes the conjugate transpose of A, then 
(A1k1)* = (A*\kJ because per(A) = per(AT), where AT is the transpose of A ([6], 
p. 16) and the conjugate of a product of two complex numbers is the product of their 
conjugates. 

Theorem A is the special case of the following Theorem 1 when k = 1 and Theorem 
B is the special case when k = n. Thus Theorem 1 is a natural generalization of 
Theorems A and B. 

THEOREM 1. If A and B are nonnegative matrices, then for k = 1, ... , n, and all 
! E Qk,n• ((AB)lkJ\i ~ (AlkJ)iBlkJ)ii' 

Before proving Theorem 1, note that Theorem 1 is unaffected by the ordering 
chosen for Qk,n because the theorem deals only with diagonal elements of the 
permanent-compound. 

To prove Theorem 1, two easy lemmas are needed. Let (AB)[f; j] denote the k X k 
matrix that contains the elements in the intersections of rows i 1, ~ .. , ik and columns 
j 1, ... , h of the product matrix AB. 

LEMMA 1. For any ! E Qk,n and any nonnegative A, B, (AB)[!;!] ~A[!; f]B[!;!], 
where the inequality applies elementwise. 

Proof For 1:;:;;; g, h:;:;;; k, let ig and ih denote any two elements of !· Then 

n k 

{AB);g;h = L aigmbmih ~ L a;g;ph;p;h = (A[f; !]B[!; !]);g;h. 
m=l p=l 

LEMMA 2. For any nonnegative A, B, if A~ B (elementwise), then per(A) ~ per(B). 

This is obvious. 

. Proof of Theorem 1. Let ! denote the ith element of Qk,n in the chosen ordering. 
Then for any nonnegative A, B, 

{{AB)lkJ);; =per{( AB) [!; !]} 

~per{ A[!; !]B[!; !]} (by Lemmas 1 and 2) 

~ per{A[!; !]}per{B[!; !]} (by Theorem B) 
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THEOREM 2. If A and B are nonnegative, then for k = 1, ... , n, and (!,f) E 

Qk,n X Qk,n• 

(( AB)!kl)iJ ~max{ ( A!kl)il! ( B!kl)a! ll! E Qk,n}. 

The proof parallels the proof of Theorem 1 exactly. The supermultiplicative 
inequality in Theorem 1 describes the special case of Theorem 2 when ! = l! = j. 

The permanent-compound is closely related to similarly defined objects, some of 
which have similar properties, e.g., the determinant-compound or adjugate matrix 
([5], pp. 86-87), the induced matrix ([6], p. 87) and the combinatorial compound 
matrix [2]. The determinant-compound matrix is defined in the same way as the 
permanent-compound matrix except that per is replaced by det. The induced matrix 
is defined in terms of permanents of submatrices of a given matrix, but the definition 
is a bit more elaborate than that of the permanent-compound matrix given above. 
Like the simple determinant, both the determinant-compound matrix and the induced 
matrix preserve the product of matrices, i.e., the determinant-compound matrix of a 
product of matrices is the product of the determinant-compound matrices, and 
similarly for the induced matrices ([5], pp. 86-87; [6], p. 87). Although I know of no 
earlier definition of the permanent-compound matrix, I make no claim to be the first 
to consider it. 

To conclude, I sketch the application of supermultiplicative functions to the theory 
of products of random matrices [4]. To avoid complications, I will describe only a 
special case of available results. Even so, this sketch presumes some familiarity with 
probability theory and does not pretend to be self-contained. Details appear in Key's 
paper [4]. Mathematical background and scientific applications are given in Cohen, 
Kesten and Newman [3]. 

Suppose {A 1: j = 1, 2, ... } is a sequence of matrices chosen independently and 
identically distributed from a finite set of positive n X n matrices. Suppose IIA II is any 
fixed norm of a matrix A. For any positive integer t, let M 1 = A1A2 ... A 1 be the 
product of the first t matrices from the sequence. Denoting the mathematical 
expectation or average by the symbol E( · ), as is customary in probability theory, the 
limiting rate of growth of the norm 

log A= lim r 1E(logiiM,II) 
, ..... 00 

exists in this example (as well as for many other random sequences {A/ j = 1; 2, ... }). 
In the degenerate case when all the A1 =A for some fixed positive matrix A, log A is 
just the logarithm of the largest eigenvalue of A. So the limiting growth rate denoted 
by log A may be thought of as the analog, for products of random matrices, of the 
logarithm of the largest eigenvalue of a fixed positive matrix. 

Let f be a continuous, homogeneous, supermultiplicative function of a positive 
matrix argument. Here homogeneous means that for c ~ 0, f(cA) = cf(A). Key [4] 
proved that for such a function f, 

log A= lim t- 1E(logf(M1)) 
, ..... oo 

and log A= lim t- 1 logf(M1) 
, ..... oo 

with probability 1, and, moreover, the function f, defined by f, = u -IE log f(M"), 
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where u = 21
, increases monotonically to log A with increasing t. Key's result 

provides a means of bounding log A from below, namely, by computing f 1 for finite 
values of t. 

For sequences of positive matrices, Key cited two nontrivial functions of a positive 
matrix argument that satisfy the requirements of being continuous, homogeneous and 
supermultiplicative: the ith diagonal element, and the permanent raised to the power 
1/n. Theorem 1 above expands the set of nontrivial functions that can be used to 
bound log A from below, for it implies easily that, for k = 1, ... , n, the functions 
{(A[kJ\)1/k are continuous, homogeneous, and supermultiplicative. 
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