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A fact about the determinant (abbreviated det) that is usually taught early and is very
useful later is that det(AB) = det(A)det(B), where A and B are n X n matrices and n
is a finite positive integer. This multiplicative identity for the determinant is related
to a host of generalizations. In some generalizations, det is replaced by another
real-valued or matrix-valued function f with matrix argument, where f is related in
some way to the determinant. In some generalizations, the equality is replaced by an
inequality. When the function f that replaces det satisfies f(AB) > f(A)f(B), f is
said to be supermultiplicative; when f(AB) < f(A)f(B), f is said to be submultiplica-
tive. Clearly, det is both supermultiplicative and submultiplicative.

The purpose of this note is to consider two.well-known, apparently unrelated
supermultiplicative functions of nonnegative matrices and to show that they are
special cases of a natural, more general supermultiplicative function. All of these
functions may be viewed as relatives of the determinant. Further, these supermulti-
plicative functions are surprisingly useful in the theory of products of random
matrices. An application to products of random matrices is sketched at the end of this
note.

For a fixed finite positive integer n, an- n X n matrix with all nonnegative real
elements will be called a nonnegative matrix. The well-known supermultiplicative
functions of a nonnegative matrix to be considered here are the diagonal elements
and the permanent (Theorems A and B).

Treorem A. If A=(a;;) and B=(b,;) are nonnegative matrices, then the ith
diagonal element (AB);; of AB is related to the ith diagonal elements a,; of A and b;;
of Bby (AB),; = a;b;, fori=1,...,n. '

PTOOf (AB)“ = Z;zlai]‘bﬁ > aiibii'

Recall that per(A), the permanent of A, is a determinant that thinks positively, i.e.,
if o=(Q),...,0(n)) is a permutation of (1,...,n), then per(A) =
08y 5(1)83,0@) - On, o(zy Where the summation runs over all permutations o. Minc
gives an encyclopedic account of permanents [6].

Tueorem B (Brualdi 1966). If A and B are nonnegative, then per(AB)>
per(A)per(B).

Brualdi’s (1966) proof of Theorem B is elementary. In outline, every term in
per(A)per(B) appears as a term of per(AB), and the other terms of per(AB) are
nonnegative. »

The previously known Theorems A and B are both special cases of a more general
set of inequalities involving the permanent.

For k =1,...,n, define the kth permanent-compound of A (any matrix over a field

will do, not necessarily a nonnegative matrix) as an (2) X(:) matrix Ay with
elements constructed as follows.
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Let Qp , ={(i}, iy,..., 3,11 <i; <iy < -+ <i, <n} and choose an ordering, say
lexicographic, of the k-tuples in Q ,. By a slight abuse of notation, the elements of
Ay will be indexed by pairs (i, j) € Q; , X Q, , rather than by pairs of integers. For
i=0y. i) € Q10 5= (s s i) € O o define Ald; j] to be the k Xk matrix
that contains the elements in the intersections of rows i,...,i;, and columns
Ju -5 Jx- Then Ay, is the (:) X (;‘) matrix with (i, j) element (A;)),;; = per(A[4; j].

As examples, if we assume the lexicographic ordering of the elements of Q; , is
chosen, Ap=A and if n = 3, then

a1)890 G911y G11053F 091013 015095+ agay
A= | 9183 tanay, andyptagya;y apaptagag
Ug183 1 a3185 G5 a33F a51853 G503+ A500a

Regardless of the ordering of Q, ,, A[,;=per(A). Changing the ordering of the
elements of Q, , simultaneously permutes the rows and columns of the permanent-
compound matrix, leaving the diagonal elements (A[;));; on the diagonal. The kth
permanent-compound of the n X n identity matrix is the (’;) X (2) identity matrix.
For any scalar ¢, (cA)y, = c"A{k . If A* denotes the conjugate transpose of A, then
(A p* = (A%, because per(Ai=per(AT), where AT is the transpose of A ([6],
p. 16) and the conjugate of a product of two complex numbers is the product of their
conjugates.

Theorem A is the special case of the following Theorem 1 when k = 1 and Theorem
B is the special case when k =n. Thus Theorem 1 is a natural generalization of
Theorems A and B.

Tueorem 1. If A and B are nonnegative matrices, then for k=1,...,n, and all
i€ Oy, (AB)p)y > (A (Bpy )y

Before proving Theorem 1, note that Theorem 1 is unaffected by the ordering
chosen for Q, , because the theorem deals only with diagonal elements of the
permanent-compound. ,

To prove Theorem 1, two easy lemmas are needed. Let (AB)[i; j] denote the k X k
matrix that contains the elements in the intersections of rows i,,..., i, and columns
J1s+++s Jx of the product matrix AB.

LemMa 1. For any i € Q) , and any nonnegative A, B, (AB){i;i} > Ali; i]Bl4;il,
where the inequality applies elementwise.

Proof. For 1<g,h<k, let i, and i, denote any two elements of i. Then
n k ‘
(AB)ii, = Zlaigmbmih > Zlaigi,,bi,,i,, = (A[i§ i]B[i; i])igih~
m= p=

Lemma 2. For any nonnegative A, B, if A = B (elementwise), then per(A) > per(B).
This is obvious.

~ Proof of Theorem 1. Let i denote the ith element of Q; , in the chosen ordering.
Then for any nonnegative A, B,

((AB)x)),; = per{(AB)[4;i]}
> per{A[4;i]B[i;i]} (by Lemmas 1 and 2)
> per{A[i;i])per{B[i;i]} (by Theorem B)
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= (A[k])ﬁ(B[k])u'

Tueorem 2. If A and B are nonnegative, then for k=1,...,n, and (g',j)e
Qk,n X Ok, >

((AB)y)y > max{(A[k])ih(B[k])hj the Qk,n}-

The proof parallels the proof of Theorem 1 exactly. The supermultiplicative
inequality in Theorem 1 describes the special case of Theorem 2 when i =h =j.

‘The permanent-compound is closely related to similarly defined objects, some of
which have similar properties, e.g., the determinant-compound or adjugate matrix
(5], pp. 86-87), the induced matrix ([6], p. 87) and the combinatorial compound
matrix [2). The determinant-compound matrix is defined in the same way as the
permanent-compound matrix except that per is replaced by det. The induced matrix
is defined in terms of permanents of submatrices of a given matrix, but the definition
is a bit more elaborate than that of the permanent-compound matrix given above.
Like the simple determinant, both the determinant-compound matrix and the induced
matrix preserve the product of matrices, i.e., the determinant-compound matrix of a
product of matrices is the product of the determinant-compound matrices, and
similarly for the induced matrices ([5], pp. 86-87; [6], p. 87). Although I know of no
earlier definition of the permanent-compound matrix, I make no claim to be the first
to consider it.

To conclude, I sketch the application of supermultiplicative functions to the theory
of products of random matrices [4]. To avoid complications, I will describe only a
special case of available results. Even so, this sketch presumes some familiarity with
probability theory and does not pretend to be self-contained. Details appear in Key’s
paper [4]. Mathematical background and scientific applications are given in Cohen,
Kesten and Newman [3]. ,

Suppose {A;: j=1,2,...} is a sequence of matrices chosen independently and
identically distributed from a finite set of positive n X n matrices. Suppose [|All is any
fixed norm of a matrix A. For any positive integer ¢, let M,=A A,...A, be the
product of the first ¢ matrices from the sequence. Denoting the mathematical
expectation or average by the symbol E(-), as is customary in probability theory, the
limiting rate of growth of the norm

log A = lim ¢~'E(loglIM,lI)
t— o0

exists in this example (as well as for many other random sequences {A si=L2... D.
In the degenerate case when all the A; = A for some fixed positive matrix A, log A is
just the logarithm of the largest eigenvalue of A. So the limiting growth rate denoted
by log A may be thought of as the analog, for products of random matrices, of the
logarithm of the largest eigenvalue of a fixed positive matrix.

Let f be a continuous, homogeneous, supermultiplicative function of a positive
matrix argument. Here homogeneous means that for ¢ > 0, f(cA) = ¢f(A). Key [4]
proved that for such a function f,

log A = lim t™'E(log f(M,)) and log A = lim t™'log f(M,)
t— oo t—®

with probability 1, and, moreover, the function f, defined by f,=u"'Elog f(M,),
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where u =2, increases monotonically to log A with increasing ¢. Key's result
provides a means of bounding log A from below, namely, by computing f, for finite
values of .

For sequences of positive matrices, Key cited two nontrlwal functions of a positive
matrix argument that satisfy the requirements of being continuous, homogeneous and
supermultiplicative: the ith diagonal element, and the permanent raised to the power
1/n. Theorem 1 above expands the set of nontrivial functions that can be used to
bound log A from below, for it implies easily that, for k=1,...,n, the functions
{(ApY/ k are continuous, homogeneous, and supermultlphcatlve
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