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PERTURBATION THEORY OF A NONLINEAR 
GAME OF VON NEUMANN* 

EZIO MARCHit, JORGE A. OVIEDOt, AND JOEL E. COHEN* 

Abstract. Von Neumann and others considered a two-person zero-sum game with nonlinear payoff function 
x T Ay I xTBy, where A and B are m X n matrices, xT is the row m-vector strategy of the maximizing player 
(player I), andy is the column n-vector strategy of the minimizing player (player 2). This game is defined to 
be completely mixed if every solution (or optimal strategy) (x, y) is such that all elements of x and all elements 
of y are positive. In such a game, it is supposed that the matrices A and B are infinitesimally perturbed by 
matrices of perturbations, i.e., multiple elements of each matrix are perturbed simultaneously. The effect of 
such perturbations on the solution and value of the game is calculated. 
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1. Introduction. This paper develops the perturbation theory of a finite, two-person, 
zero-sum game with a nonlinear payoff function proposed by von Neumann [ 13] in a 
model of economic growth. Subsequent development of the model has been synthesized 
by Morgenstern and Thompson [ 11]. The same payoff function appears in a special case 
of a stochastic game proposed by Shapley [ 12]. Because the game has more than economic 
interpretations, we shall not emphasize the economic view of the game nor restrict our 
assumptions to those that might be plausible in an economic application. 

Von Neumann's game has m pure strategies for player 1, the maximizing player, 
and n pure strategies for player 2, the minimizing player, where 1 ~ m, n < oo. The 
strategy of player 1 is specified by a row m-vector xT, where X; is the probability that 
player 1 chooses pure strategy i, for i = 1, · · · , m. The strategy of player 2 is specified 
by a column n-vector y, where yj is the probability that player 2 chooses pure strategy 
j, for j =; 1, · · · , n. The payoff function of the game, that is, the amount of money player 
2 must pay player 1 if player 1 has strategy x T and player 2 has strategy y, is x T Ay I x T By, 
where A and B are real m X n matrices. This payoff function is defined (though possibly 
equal to +oo) provided its numerator and denominator are not simultaneously equal to 
zero; additional conditions will be provided to assure that the payoff function is always 
defined. As there does not appear to be a standard name for this game, we shall call it a 
rational game specified by (A, B), because the payoff function is a ratio of lin­
ear forms. 

Marchi [ 8] extended and generalized the equilibrium points of a rational game to 
an n-person game with a rational payoff function. Marchi [7] and Marchi, Tarazaga, 
and Elorza [ 9] applied such results to expanding economies. 

The perturbation theory of a game describes how small variations in the parameters 
of the payoff function affect the solution and value of the game. The perturbation theory 
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of games in general, and of rational games in particular, is of practical interest for both 
estimation and control. The value of a rational game has an economic interpretation as 
the asymptotic rate of change (growth or decrease) of an economy. In economic appli­
cations of the game, the matrices A (the output matrix) and B (the input matrix) must 
be estimated from data. The first derivative of the value with respect to the elements of 
A and B indicates the value's sensitivity to errors in the values of these elements, and 
therefore indicates which elements should be measured with greatest precision. Kuhn 
and Tucker [ 6, p. viii] recognized the importance of perturbation theory for control in 
their introduction to the work of Mills [ lO]: "This study promises practical application 
whenever these parameters [the matrix elements] can be controlled or altered since it 
indicates which changes will have a beneficial effect on the value." 

To our knowledge, the perturbation theory of rational games has not been studied 
before, except in the linear special case when B = lm,n• where lm,n is them X n matrix 
with every element equal to one. In this case, a rational game reduces to an ordinary 
two-person zero-sum matrix game. Previous studies of the perturbation theory of zero­
sum matrix games are reviewed by Cohen [ 1] and Cohen, Marchi, and Oviedo [ 3]. 

We now establish notation and state some results which are mostly standard or 
readily proved. 

Let Pn = { x E R n: X; ~ 0, i = 1, 2, · · · , n, and L: 7~ 1 X; = 1} and P~ = 
{ x E Pn: X; > 0, i = 1, · · · , n}. Vectors are assumed to be column vectors, and the 
superscript T denotes transpose. 

Given two real m X n matrices A and B we say that a pair of vectors (.XT, y) E 

P m X Pn is a solution of the matricial problem if 

(xTAy)(xTBy)-(xTAy)(xTBj/)~0 VxEPm, 

(xTAy)(xTBy)- (.XTAy)(xTBy) ~ 0 VyEPn. 

To prove the existence of a solution to the matricial problem, we recall a result of Marchi 
[ 8] which is a special case of a theorem of Karamardian [ 5 ] . 

LEMMA. Consider a real continuous function¢:~ X~- !R defined on the Cartesian 
square of~, a nonempty, compact, convex set in a Euclidean space. If¢(·, r) is concave 
for any r E ~. then there exists a point a- E ~ such that 

¢( 0:, a-)= max ¢( rr, 0:). 
uE:l: 

THEOREM 1. For any realm X n matrices A and B, a matricial problem has a 
solution. 

The theorem is easily proved by using the lemma. Essentially this theorem was 
known to von Neumann [ 13]. Under the conditions given by von Neumann [ 13], namely, 

aiJ+biJ>O, i,j= 1, · · · ,n, 

the solution of the matricial problem determines a solution or saddle point of the rational 
zero-sum game with payoff function xTAyjxTBy. In what follows, instead of von Neu­
mann's assumptions we assume B > 0, i.e., every element biJ of B is positive real. Shapley 
[ 12] considers the same assumption. Then a solution of the matricial problem satisfies 

xTAy xTAy xTAy 
xTBy ~ .XTBy~ .XTBy VxEPm, VyEPn, 

which is a saddle point of the rational game. Any saddle point determines the value v of 
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the game v = (.xrAy)f(.xrBy), and furthermore 

v =max min (xTAy)f(xTBy) =min max (xTAy)j(xTBy). 
xePm yePn yePn XEPm 

Solutions are interchangeable. That is, if (.X, jl) and (x, y) are two saddle points of a 
rational game, then (.X, jl) and (x, jl) are also saddle points. The proof is identical to the 
proof for ordinary zero-sum matrix games. Optimal strategies for both players may be 
defined as in matrix games. The set of optimal strategies of each player is a nonempty 
convex polyhedron. 

A rational game is defined to be completely mixed (abbreviated "em") when, for 
every solution (x, y), x > 0 and y > 0. When B = Jm,n• this definition reduces to 
Kaplansky's [ 4] definition of a completely mixed matrix game. Completely mixed rational 
games exist. For example, let m = n, B = Jn,n and let A be a diagonal matrix with positive 
elements on the main diagonal. This rational game is an ordinary zero-sum matrix game, 
and Kaplansky [ 4] proved that it is em. 

In a rational game (A, B) with B > 0 (as we assume throughout), if (x, y) is a 
solution, then (Ay)J(By)i < v implies xi= 0 and (xTA)j/(xTB)1 > v implies y1 = 0. 
Therefore, in a em rational game specified by (A, B) with B > 0, if(x, y) is a solution, 
then (Ay)J(By)i = v, for all i = 1, · · · , m, and (xTA)j/(xTB)1 = v, for all)= 1, · · · , 
n. Equivalently, Ay = vBy and xTA = vxTB. If, in addition, A =I= 0 and A~ 0 (i.e., each 
element au of A is nonnegative real), then v > 0. The proofs of these remarks are straight­
forward and are omitted. 

Let p(A) denote the spectral radius (maximum modulus ofthe eigenvalues) of an 
n X n matrix A. Under certain conditions, there is a direct connection between the value 
of a em rational game specified by (A, B) and the spectral radius of A- 1B. 

PROPOSITION 1. In a em rational game specified by (A, B) with m = n and B > 0, 
if A is nonsingular and A- 1B > 0, then v = 1fp(A- 1B) > 0 and, for every solution 
(x, y), y is unique and xTB is unique. These are the right and left positive eigenvectors 
of A -IB corresponding to the eigenvalue 1 jv. 

Proof By Perron's theorem for positive matrices applied to A -I B, A -I B has a unique 
positive right eigenvector in P~. But from previous remarks, y = vA -I By. As y > 0, 
A -I B > 0, evidently v > 0 and v-I y = A -I By, so y must be that unique right eigenvector 
corresponding to the positive eigenvalue v- 1 and there can exist no other T/ E P~ such 
that AT/= VBTJ. Similarly, xTA(A- 1B) = vxTB(A- 1B) or(xTB)v-1 = (xTB)(A - 1B). D 

This proposition has slightly stronger assumptions and arrives at slightly stronger 
conclusions than Theorem 5 (a) of Cohen and Friedland [ 2]. 

While xTB is unique, under the assumptions of Proposition 1, it is clear that xT 
need not be unique. 

2. Perturbation theory. Let A, B, G, H be fixed n X n real matrices, B > 0, and 
for each real number a, define 

L = L(a) =A+ aG, M=M(a)=B+aH. 

It is clear that if B > 0 and A is nonsingular and A -I B > 0, then there exists a real number 
r > 0 such that, for all real a with I a I < r, (i) M( a)> 0, (ii) L( a) is nonsingular, (iii) 
[L(a)r 1 M(a) > 0, and (iv) p([L(a)]- 1 M(a)) is analytic in a. 

Define a rational game specified by (A, B) to be nonsingular if A and B are both 
n X n and both nonsingular. 

PROPOSITION 2. Suppose a nonsingular rational game specified by (A, B) is em, 
B > 0, and A -I B > 0. Then there exists a real number r such that if I a I < r, the rational 



PERTURBATION THEORY OF A NONLINEAR GAME 595 

game specified by (L(a), M(a)) is nonsingular and em, the value v(a) of that game is 
given by v(a) = 1/p([L(a)r1M(a)), and the solution (x(a), y(a)) ofthat game is 
unique. 

In other words, for sufficiently small perturbations (measured by a), under the 
common assumptions of Propositions 1 and 2, the conclusions of Proposition 1 about 
the unperturbed rational game specified by (A, B) carry over to the perturbed rational 
game specified by (L(a), M(a)). 

Proof If A and Bare nonsingular, then so are sufficiently small perturbations of A 
and B. Thus, the rational game specified by ( L( a), M( a)) is nonsingular for small 
enough values of a. By Proposition 1, the game specified by (A, B) has solutions (x, y) 
such that y and zT = xTB are unique. Because B- 1 exists, zTB- 1 = xT is also unique. 
As (x, y) is the solution of a em rational game, x > 0 and xT(AB- 1

) = vxT, i.e., xT is 
the left eigenvector of AB-1 corresponding to the eigenvalue v. Sufficiently small per­
turbations of A= L(O) and B = M(O) to L(a) and M(a), respectively, will result in a 
sufficiently small perturbation of v to v( a) such that the corresponding left eigenvector 
xT( a) of L( a)[M( a) r 1 remains positive and the corresponding right eigenvector y( a) 
of [L(a)r 1 M(a) remains positive. That (x(a), y(a)) is unique is guaranteed because 
y(a) and zT(a) = xT(a)M(a) are unique by the Perron theorem and therefore xT(a) 
is unique by the nonsingularity of M( a). Thus for small enough a, every solution of 
(L(a), M(a)) is positive, i.e., (L(a), M(a)) is em. Proposition 1 then guarantees that 
v(a) = 11 p([L(a)r 1 M(a)). 0 

THEOREM 2. In a nonsingular em rational game specified by (A, B) with B > 0 
and A -IB > 0, let A be perturbed to A + aG and B be perturbed to B + aH. Then there 
exists r > 0 such that ,for I a I < r, dv(a)/ da exists. Moreover, evaluated at a= 0, the 
derivative is 

dv(O) _xT(G-vH)y 
da xTBy 

where (x, y) and v are the solution and value of the original game specified by (A, B). 
Proof The existence of the derivative follows from Proposition 2 and preceding 

remarks. Now use the chain rule. If(x(a), y(a)) and v(a) are the solution and value 
ofthe nonsingular em rational game specified by (L(a), M(a)), then 

dv(a) =!!:__( xT(a)L(a)y(a)) 
da da XT(a)M(a)y(a) 

+xT(a)M(a) d:~a)]} I (xT(a)M(a)y(a)) 2 

[ 
dxT(a) 

= da (L(a)-v(a)M(a))y(a) 

+ xT(a)( G- v(a)H)y(a) 

+ xT(a)(L(a)- v(a)M(a)) d:~a)]/ (xT(a)M( a)y( a)). 
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Because the game specified by (L(a), M(a)) is em and M(a) > 0, it follows that 
(L(a)- v(a)M(a))y(a) = 0 and xr(a)(L(a)- v(a)M(a)) = 0. Then taking a = 
0 gives the claimed formula. 0 

Under the assumptions of Theorem 2, the derivatives d2v(O)jda 2, dxr(O)/ da and 
dy ( 0) Ida exist and satisfy 

d
2
v(O) = dxr(O)(G- vH _ dv(O) B)-y-

da2 da da xTBy 

+~(G-vH- dv(O) B) dy(O) _ 2 xrHy dv(O) 
xTBy da da xTBy da ' 

dxr(O) (A- vB) = ( dv(O))xrB- xr( G- vH), 
da da 

(A- vB) dy(O) = ( dv(O))By- ( G- vH)y. 
da da 

These formulas follow from applying the chain rule to, respectively, the formula for 
dv(O)/ da and the identities 

xr(a)[L(a)- v(a)M(a)] = 0, [L(a)- v(a)M(a)]yr(a) = 0. 

It is not difficult to verify that when B = ln,n and H = 0, the preceding formulas reduce 
to those found for ordinary zero-sum matrix games by Mills [ l 0] and Cohen [ l]. 

A task for the future is to derive perturbation results similar to the preceding under 
weaker or different conditions from those assumed in Theorem 2. 

Acknowledgments. Several careful referees improved this paper. 
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