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6. Communities in Patchy Environments: A Model 
of Disturbance, Competition, and Heterogeneity 

Hal Caswell and Joel E. Cohen 

All landscapes are to some extent patchy. The biological heterogeneity of 
communities on patchy landscapes reflects the time scales of local biotic 
interactions and abiotic disturbance, the time and space scales of dispersal, 
and (especially) the interaction of these scales. To investigate these factors, 
we examine here a simple model that provides a framework for building 
models of patchy communities directly from hypotheses about time scales. 
The model has numerous applications (Caswell and Cohen, 1991, in prep­
aration); here we focus on the interplay of competition and disturbance as 
well as the kinds of biological heterogeneity that can be maintained by that 
interplay. 

Our model describes a landscape composed of an effectively infinite set 
of effectively identical patches. Species colonize these patches, interact, 
are affected by abiotic disturbance, and eventually become locally extinct. 
Each of these processes has a characteristic temporal scale, in terms of 
which we describe the stochastic dynamics of individual patches and the 
resulting statistical properties of the landscape. Because we assume that all 
patches are identical, we are providing only the bare minimum of environ­
mental heterogeneity-that produced by the independence of the patches. 
Our focus is on heterogeneity generated by the biological processes. 

Consideration of the interaction of competition and disturbance has led 
to two important ecological concepts. The first is the idea of fugitive species 
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(Hutchinson, 1951), which persist regionally even though they are ex­
cluded locally by nonfugitive or equilibrium species. Fugitive species rely 
on disturbance to perturb the process of local competitive exclusion and 
cannot persist in its absence. The existence of fugitive species makes it 
impossible to infer competitive dominance from relative abundances; de­
pending on the rates of disturbance, dispersal, and within-patch inter­
actions, fugitive species may be much more common than competitive 
dominants. 

The second concept is the maximization of species diversity at an in­
termediate disturbance frequency (Connell, 1978a,b; Huston, 1979). If dis­
turbance is too rare, local competition proceeds to equilibrium and fugitive 
species are eliminated. If disturbance is too frequent, it eliminates all spe­
cies and produces a desert. At intermediate frequencies, the combination 
of fugitive species and equilibrium species produces a maximum in species 
diversity. 

The relation between disturbance and diversity is likely to be affected by 
resource supply rates or productivity. Huston (1985), in a discussion of 
coral reef communities, proposed that at high light intensities rapid coral 
growth should lead to rapid competitive exclusion and require a higher 
frequency of disturbance to maintain diversity than at lower light intensi­
ties. Discussions of the possible role of disturbance in maintaining high 
species diversity in deep-sea benthic communities (e.g., Dayton and Hes­
sler, 1972; Grassle and Sanders, 1973; Rex, 1981, 1983) have emphasized 
the apparent low frequency of disturbance in the deep sea. However, it is 
known that growth rates and productivities in these communities (hy­
drothermal vents excluded) are low. Thus it is entirely possible that the time 
scale on which disturbance frequency must be measured is different in the 
deep sea. 

Diversity enhancement is at odds with the concept of biotic impoverish­
ment (Woodwell, 1983): that disturbance leads to shortened food chains, de­
creased diversity, and dominance by the handful of species hardy enough 
to resist the disturbance. Biotic impoverishment is a well documented 
response to radiation, pollution, and overgrazing. 

At least two resolutions exist to this apparent contradiction. First, the 
disturbances that lead to biotic impoverishment tend to be chronic, where­
as those leading to enhancement tend to be transient at any one spot. 
Whether disturbance leads to diversity enhancement or biotic impoverish­
ment might depend on disturbance frequencies. Second, some distur­
bances, especially anthropogenic ones, delay recolonization for a long time. 
Levin and Smith (1984), for example, found that whereas defaunated sedi­
ment in the Santa Catalina basin was recolonized slowly, as is usually the 
case in the deep sea, defaunated sediment enriched by kelp was essentially 
uncolonized by macrofauna for the duration of their study. Such delays in 
recolonization may keep disturbance from enhancing diversity. Evolution­
arily novel disturbances such as toxic waste are more likely to have long-
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lasting residual effects, which may make them more likely to produce biotic 
impoverishment than to enhance diversity. 

Model Structure 

Consider a patchy landscape inhabited by N species, S., S2 , ••• , SN. The 
landscape consists of an infinite set of physically identical patches. The 
state of a patch is determined by the presence or absence of each of the N 
species; there are thus ZN possible states for each patch. These states can 
be conveniently numbered from 1 to ZN by adding 1 to the binary repre­
sentation of the presence and absence of each species. Consider two com­
peting species, of which S 1 is locally superior to S2, and let 0 denote ab­
sence and 1 denote presence. We then have 

Species 2 Species 1 
(loser) (winner) State 

0 0 Xt 
0 1 Xz 
1 0 x3 
1 1 x4 

We denote the possible states of a patch by Xso s = 1, 2, ... , ZN. The 
proportion of all patches that are in X5 , is denoted by x5 ; the state of the 
landscape is given by a vector x, the elements of which give the proportion 
of patches in each of the states. This definition of the state of the landscape 
assumes that the spatial arrangement of the patches is unimportant, so that 
any landscape with a specified proportion of its patches in each state is 
effectively identical to any other such landscape. 

The dynamics of the community are described by a nonlinear, discrete­
time Markov chain 

x(t + 1) = A,x(t) (1) 

where A. is a column-stochastic matrix whose elements may depend on the 
vector x. An element ars(x) of A. gives the transition probability from Xso 
toXr. 

The transition probabilities ars are calculated from hypotheses about 
the time scales of interspecific interactions, dispersal, and disturbance. In 
general, the rate of a process is given by the inverse of the time scale on 
which that process occurs. 

Colonization plays an important role in these models because any satis­
factory description of the colonization process renders the model (1) non­
linear. The probability that a patch is colonized by S; in ( t ,t + 1] depends on 
the proportion of patches in the landscape in which S; is present. Thus the 
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entries ars that depend on colonization are functions of the current state 
vector x. 

We make the following hypotheses about competition, dispersal, and 
disturbance. 

1. Disturbance follows a Poisson process, with a time scale (mean time 
between disturbances) given by 'Td· The expected number of distur­
bances per unit time is T;J 1, and the probability of at least one disturbance 
in the interval (t ,t + 1] is 

(2) 

2. The rate of competitive exclusion is specified by 'Tn the mean time re­
quired for S1 to exclude S2 • If the probability of exclusion during the 
interval (t ,t + 1] is Pn the time required for exclusion (tc) follows a 
zero-truncated geometric distribution, with 

P(tc = k) = Pc(1- Pc)k-l k= 1, 2, ... (3) 

The mean time required for exclusion is then 'Tc = E(tc) = p;; 1• Thus 

(4) 

3. Colonization follows a Poisson process. The mean number of colonists 
of species i, i = 1, ... , N, arriving in a vacant patch in (t,t + 1] is pro­
portional to the frequency of occurrence of species i. The constant of 
proportionality (the dispersal coefficient) d; combines the effect of the 
production of offspring by populations in the occupied patches and the 
success at dispersal of those offspring. Let[; denote the frequency of S;; 
e.g., in our two-species example / 1 = x2 + x4 and 12 = x3 + x4 • The con­
ditional probability of at least one colonist arriving in a patch, given that 
the patch is vacant, is then 

C; = 1- e-d;fi (5) 

4. Either or both species may colonize a vacant (X1) patch; the winning 
species S1 may also colonize a patch (X3) containing S2 , but the losing 
species S2 may not colonize a patch (X2) that contains the winning spe­
cies. 

5. Disturbance affects only patches containing species. Thus empty patches 
(X1) are not subject to disturbance while colonization is in progress. 

Each of these hypotheses may be modified, but this simple model allows us 
to demonstrate the approach in the context of disturbance and competi­
tion. 

A directed graph showing the possible transitions among the community 

6. Communities and Patchiness 101 

&~~ 
(1-C 1 )(1-pd) (1-p

0 
)(1-pd) 

Figure 6.1. State transition graph for the two-species competition model. See text 
for definitions of states and notation. 

states is shown in Figure 6.1. The corresponding transition matrix Ax, 
which determines the dynamics in equation (1) is 

Pd 
0 

(1- c,)(1- Pd) 
C,(1- Pd) 

where the C; values are given by equation (5). 

Analysis 

(6) 

The analysis of this class of models is challenging only because of the non­
linearity introduced by the dependence of colonization probabilities ( equa­
tion 5) on the current state x(t), through[;. If not for that nonlinearity, the 
model would be a linear, finite-state Markov chain, and standard methods 
would tell us everything there is to know about it. 

The nonlinear model has several potential classes of dynamic behavior. 
The simplest is convergence of x(t) to a stable fixed point x. Once the 
community reaches such a fixed point, the matrix A is constant, and stan­
dard Markov chain methods can be applied. The nonlinear difference 
equation (1) may in principle also possess periodic, quasiperiodic, and 
chaotic attractors. We have no a priori reason to rule out these possibili­
ties, but after extensive numerical investigation we have never found any 
of them. We conjecture that this model always has at most a single fixed 
point in the interior of the unit simplex, and that this fixed point attracts all 
initial vectors in the interior of the simplex. 
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Fixed Points and Stability 

The existence of at least one fixed point in the closed unit simplex (includ­
ing its boundaries) is guaranteed by the Brouwer fixed point theorem. De­
pending on the parameter values, some of these fixed points are on the 
boundaries, corresponding to landscapes in which one or more species are 
absent. Conditions guaranteeing the existence of an interior fixed point are 
difficult to obtain. 

The stability of fixed points is surprisingly difficult to analyze. The sim­
plest possible model, with one species and two states, can be reduced to a 
one-dimensional map of the interval (Caswell and Cohen, in preparation). 
In this model, if the dispersal rate is less than the disturbance rate, 0 is the 
only fixed point. If the dispersal rate is greater than the disturbance rate, 
there is an interior fixed point that is always globally stable. However, we 
have been unable to extend this proof to higher-dimensional models. 

As an alternative, we carried out a numerical search for unstable 
equilibria, randomly sampling parameters from the sets d1 E (0,10), d2 E 

(0,10), Pd E (0,1), and Pc E (0,1). For each parameter set, we used a non­
linear equation-solving routine (part of the GAUSS software package, 
Aptech Systems, Inc., Kent, W A 98064) to find as many fixed points as 
possible. The local stability of these points was evaluated by calculating the 
linear approximation to the system at that fixed point and evaluating the 
eigenvalues of the resulting Jacobian matrix. If all the eigenvalues are less 
than 1 in magnitude, the fixed point is stable. 

Examination of several thousand samples from the parameter space re­
vealed no unstable interior fixed points. It is not a proof but it is the best we 
can do now. 

Model Output 

The output of the four-state model (or its generalizations) is surprisingly 
copious, considering its simplicity. It includes the following. 

1. State frequencies. The immediate output of the model is the vector of 
equilibrium state frequencies i, which provides the basic description of the 
landscape. The other output variables are calculated from i. 

2. Species frequencies. The frequency (or prevalence) of species i is 
given by the sum of the state frequencies for the states in which that species 
is present. 

3. Alpha diversity. Local (or alpha) species diversity is measured by the 
mean number of species per patch. For our two-species example, 

(7) 

The variance in alpha diversity provides one measure of spatial heter­
ogeneity in community structure. For the two-species example it is 
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(8) 

4. Beta diversity. Beta diversity measures spatial heterogeneity in spe­
cies composition. It can be measured in a number of ways, one of the 
simplest being the entropy of the state frequency vector. 

2N 

{3=- L:-x.Iogx. 
s=l 

(9) 

A value of {3 = 0 corresponds to a homogeneous landscape. In practice, 
beta diversity is usually considered only in terms of the biological compo­
nent of heterogeneity, with empty patches being ignored. We refer to it as 
biological beta diversity, and calculate it as 

(10) 

A value of f3h = 0 corresponds to a landscape in which all occupied patches 
are homogeneous, although there may be some heterogeneity due to the 
presence of empty patches. 

5. Species-area slope. Increasing the number of patches in a sample 
increases the number of species collected. The shape of the curve relating 
the number of species to the number of patches, or area, is sometimes used 
as a measure of diversity. It is possible to calculate the expected number of 
species found in any specified number of patches by a simple extension of 
the calculation of alpha diversity above. There are (2N)k possible combina­
tions of states in a sample of k patches (e.g., for k = 2, the two patches are 
respectively in states X 1 and X 1 with probability xr, X 1 and X 2 with prob­
ability x 1x2 , .•• , X4 and X4 with probability x~). each of which yields a 
specific number of species. The average taken over this distribution gives 
the expected number of species in a sample of k patches. 

6. Interspecific association patterns. The equilibrium state vector icon­
tains all the information necessary to calculate the association between any 
pair of species. A number of association indices are available. One of the 
simplest in the two-species case is the log odds ratio 

(11) 

which is positive when the species tend to occur together, zero when they 
are independently distributed, and negative when they tend to occur alone. 
Association indices are discrete analogues of spatial niche overlap mea­
sures, indicating the extent to which the species co-occur in space. 



104 H. Caswell and J.E. Cohen 

7. Rates of community change. Along with the equilibrium state vector 
x, the model provides the equilibrium Markov matrix Ax, which describes 
the dynamics of the landscape. Because these dynamics are described by a 
homogeneous Markov chain, it is easy to calculate a variety of measures of 
rates of community change. An ecologist following the fate of patches 
within this landscape might find some types of patch to be ephemeral, 
whereas others persist for long times. Certain developmental pathways 
(e.g., an empty, disturbed patch changing to a patch occupied by only the 
competitive dominant) might be traversed rapidly, others slowly. Insight 
into these dynamic patterns can be obtained from the following measures. 

a. Turnover rates. Although the landscape reaches an equilibrium, 
characterized by x, the individual patches change state continually. 
The probability of remaining in state s from t to t + 1 is given by as.v· 
Thus the residence time in state s is geometrically distributed with 
mean (1- ass)- 1; the turnover rate is the inverse of this mean resi­
dence time. The mean turnover rate for a randomly selected patch 
is then 

L Xs(1- ass) (12) 

b. First passage times. Consider a patch in state j. How long, on the 
average, does it take before this patch first reaches state i? This 
first passage time provides some insight into the apparent rates of 
"succession" in this landscape. For example, a landscape in which 
the mean time required to go from state X 1 (recently disturbed) to 
state X 2 (occupied by the dominant competitor) is short appears to 
undergo a much more rapid succession than a landscape in which 
this time is long. Let m;i denote the mean first passage time from 
state j to state i. This value is given by the (i,j) entry of a matrix M 
given by 

(13) 

where n = a matrix each of whose columns is x, 
Z = [I- (Ax- ll) ]-I, and E =a matrix of ones (Iosifescu, 1980, 
theorem 4.7). lldg and Zdg denote matrices containing the diagonal 
elements of n and z. 

The mean recurrence time for a state is the mean first passage 
time from that state to itself and is given by the diagonal elements 
ms.v of M. The formula simplifies for these elements to m .... = llx.,. It 
is also possible to calculate the mean passage time to state j from a 
randomly selected patch by taking the mean of mi; over the station­
ary distribution x (Iosifescu, 1980, p. 135). 
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(14) 

c. Smoluchowski recurrence time. The recurrence times mss may be 
heavily influenced by the fact that the patch may stay in states from 
t tot+ 1, in which event the recurrence time is 1. The Smoluchowski 
recurrence time 05 of state Xs is the time elapsing between leaving 
state X5 , and the next return to state X5 • Its mean is given by the 
following (Iosifescu, 1980, p. 135). 

1-£ . 
E( o.) = s 

is(1- ass) 
(15) 

Like the recurrence time, this index gives some insight into the 
rates of community development. E( 01) gives the mean time elaps­
ing between colonization of a patch and its return to the disturbed 
state. 

The Smoluchowski recurrence time can also be calculated for 
sets of states, defined as the mean time between leaving that set and 
the next return to it. This measurement is particularly useful for 
sets of states defined by the presence of a species; the recurrence 
time for such a set of states gives the mean time elapsing between 
the local extinction of a species (for whatever reason) and its next 
reappearance. Let x denote the set of states under consideration. 
Then, as noted by Iosifescu (1980) 

1-I .x. 
S£X 

(16) 

d. Rate of convergence. The dominant eigenvalue A1 of Ax is 1; the 
corresponding eigenvector is proportional to x. An idea of the 
rate of convergence to the landscape equilibrium can be had 
from the largest subdominant eigenvalue A2 of Ax. The smaller 
IA21, the more rapidly the landscape converges to the equilib­
rium x. This analysis applies only to arbitrarily small perturba­
tions from x; the rate of convergence from larger perturbations 
reflects the nonlinearity of the full model. 

Relation to Other Approaches 

A variety of complementary approaches have been used to study commu­
nity dynamics in space and time. Each has its advantages and disadvantages. 
Our models lie at one end of a spectrum: Space, time, and the state of 
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individual cells are all discrete. At the other extreme are partial differential 
equation models (e.g., Dubois, 1975; Wroblewski, 1977; Okubo, 1978), in 
which space, time, and state are continuous. Such models, especially when 
coupled with fluid mechanics for description of aquatic systems, can pro­
vide detailed insight into specific situations (Wroblewski, 1977), but they 
are complex, analytically intractable, and computationally difficult. It is 
not easy to obtain general theoretical insight from them. 

Reaction-diffusion models (Levin, 1974, 1976; Yodzis, 1978), in which 
space is discrete but each patch contains a continuous model for species 
abundances, are intermediate in complexity. However, their detail can still 
make their results difficult to interpret (Levin, 1976). 

Our models are closely related to deterministic differential equation 
models for patch state frequencies (e.g., Levins and Culver, 1971; Horn 
and MacArthur, 1972; Vandermeer, 1973; Slatkin, 1974; Hastings, 1977, 
1978, 1980; Crowley, 1979; Acevedo, 1981; Greene and Schoener, 1982; 
Hanski, 1983, 1985; Caraco and Whitham, 1984). The state variables in 
these models are the proportions of patches in each of several states. 
Analysis typically focuses on the conditions for stability of the equilibria of 
the resulting equations, with an emphasis on conditions favoring coexist­
ence. 

Some of the early models in this category (Levins and Culver, 1971; 
Horn and MacArthur, 1972; Vandermeer, 1973) are written as differential 
equations in species frequencies. Unless each patch can be occupied by 
only a single species, or species occupy patches independently (which 
usually contradicts the hypothesis that the species interact) such patch state 
frequencies do not define a probability distribution and the models cannot 
correspond to a Markov chain (Slatkin, 1974). 

More recently-certainly since Slatkin (1974)-these models have been 
written in terms of patch state frequencies, which sum to 1. The resulting 
models are nonlinear continuous time Markov processes. With the excep­
tion of Caraco and Whitham (1984), however, these studies have by and 
large failed to take advantage of the stochastic formulation underlying the 
deterministic models to get additional insight into community structure and 
dynamics. 

The analysis of patchy community dynamics in terms of Markov chains 
was introduced by Cohen (1970). He considered a linear Markov chain 
describing transitions between four states defined by the presence and abs­
ence of two species at the equilibrium of Lotka-Volterra competition equa­
tions. Our nonlinear formulation of community models in terms of Markov 
chains defined by the time scales of within-patch processes is a combination 
of that proposed by Cohen (1970) and Caswell (1978). 
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Results 

To examine the behavior of this model, we conducted a numerical experi­
ment. The model parameters were varied over all 120 combinations of the 
elements of the following sets. · 

d1 E {1,10} 
d2 E {1,10} 
Pc E {0.01, 0.1, 1} 
Pd E {10 values, log-uniformly spaced between 0:001 and 1} 

Relying on the presence of a single stable fixed point for the model, we 
iterated the model (1) until x(t) converged to a fixed point x. The elements 
of x give the proportions of the various states to be expected in a large 
landscape; the corresponding matrix Ax describes the transition dynamics 
of patches in such a landscape. The results of this experiment are shown as 
a series of figures. Most plot the response variable as a function of distur­
bance probability for several values of some other variable. 

State Frequencies 

The state frequencies Xs, s = 1, ... , 4, are plotted as a function of Pd. in 
Figure 6.2. The frequency x1 of empty patches is nearly proportional to Pd• 
with only a small amount of variation generated by the different values of 
d., d2, and Pc used in the experiment. This finding suggests that the fre-

tOO to• "1 

• I l I I ! to-• to-• . 
• 

~ !.< 
. . 

to-• t0-4 

t0-3 
t0-3 to-• tO-t tOO 

t0-7 
t0-3 to-• to·• tOO 

tOO to• 

• ! . '1 . I . . I I I tO-t • . . • . 
~ t0·7 • ~ to-4 

I .. 
I I 

t0-7 . . 
to·" 

t0-3 t0-1 tO-t to• 
to·•• 

t0-3 to-• to·• tOO 

DISTURBANCE PROBABILITY DISTURBANCE PROBABILITY 

Figure 6.2. Equilibrium state frequencies x . ., s = 1, ... , 4, plotted as functions of 
the disturbance probability for the results of the numerical experiment described in 
the text. 
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quency of empty patches could be used as an index of disturbance probabil­
ity in natural systems. 

At low disturbance frequencies, i 2 = 1 and almost all patches are oc­
cupied by the dominant competitor. As Pd increases, Xz decreases and be­
comes more variable as the dispersal rates and competitive exclusion rates 
come to play a part in determining community structure. 

At any given disturbance frequency, the frequencies i3 and X4 of patches 
containing the inferior competitor vary over six to eight orders of magni­
tude, depending on the rates of competitive exclusion and dispersal. This 
variability is reflected in the variety of community patterns generated by 
the model. 

Species Frequencies 

The frequency It of the winning competitor is independent of the losing 
competitor. Thus the dynamics of St can be described by the one-species, 
two-state model described above: It> 0 if and only if dt > pd, and It de­
clines with increasing disturbance frequency independently of Pc (Fig. 6.3). 

The losing competitor S2 is a genuine fugitive species. In the absence of 
disturbance, it is eventually excluded by S1 in every patch. In the presence 
of disturbance, however, it can persist and reach high frequencies. Figure 
6.4 shows some results. When dt = d2 , fz is usually maximized at an in­
termediate frequency of disturbance. Numerically, it appears that h begins 
to increase above 0 when 
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Figure 6.4. Equilibrium frequency fz of the losing competitor as a function of the 
disturbance frequency, dispersal rates, and rate of competitive exclusion. In (A,B) 
dispersal rates are fixed and competitive exclusion rates vary. In (C,D) competitive 
exclusion rates are fixed and dispersal rates vary. 

Thus the minimum disturbance frequency required to maintain the fugitive 
species is directly proportional to the rate of competitive exclusion and 
inversely proportional to the dispersal rate of the fugitive. The disturbance 
frequency at which fz is maximized increases with Pc· 

It is apparent from Figure 6.4A,B that the dispersal rate has an impor­
tant positive influence on fz. Fugitive species are often characterized as 
producing large numbers of propagules, but it is often also assumed that a 
fugitive species must have a dispersal advantage over the superior competi­
tor. This assumption is not true (Fig. 6.4C,D). If d2 is high enough, the 
relative values of dt and d2 have no impact on fz. If d2 is lower (d2 = 1 in 
our calculations), a dispersal advantage on the part of the superior com­
petitor prevents the fugitive from persisting. 

Diversity Enhancement 

The interaction of competition, disturbance, and dispersal in this model is 
capable of enhancing local species diversity at intermediate disturbance 
frequencies. Figures 6.5 and 6.6 show the results. 
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F!gure 6.5. Mean alpha diversity as a function of the disturbance probability and 
dtspersal rates (d., d2) for three rates of competitive exclusion. 

When dispersal rates are low and equal (d1 = d2 = 1), alpha diversity is 
enhanced only when competition is slow (Pc = 0.01) (Fig. 6.6A). When the 
fugitive species has a dispersal advantage (d1 = 1, d2 = 10), diversity is en­
hanced (by as much as 80%) for Pc = 0.01 and Pc = 0.1 (Fig. 6.6B) but not 
for the fastest rate of exclusion. The same pattern holds when d 1 = d2 = 10, 
so it apparently depends more on an adequate dispersal rate for the fugi­
tive species than on the dispersal advantage per se. When the winning com-
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Figure 6.6. Mean alpha diversity as a function of the disturbance probability and 
rate of competitive exclusion for four combinations of dispersal rates. 

petitor also has a dispersal advantage (d1 = 10, d2 = 1) there is no trace of 
diversity enhancement, regardless of Pc (Fig. 6.6D). 

Spatial Heterogeneity 

In the absence of disturbance, this model converges to a uniform land­
scape, with every patch occupied by S1• Disturbance and the processes of 
colonization and interaction that follow disturbance create spatial hetero­
geneity in local community structure. The three measures of spatial hetero­
geneity-beta diversity (equation 9), biotic beta diversity (equation 10), 
and the variance in alpha diversity are highly correlated with each other 
and show similar patterns. Here we show the results for f3b (Fig. 6.7). 

When dispersal is low (d1 = d2 = 1) (Fig. 6.7A), f3b generally increases 
with disturbance probability and decreases with the rate of competitive 
exclusion. At the other extreme, when d1 = d2 = 10 (Fig. 6.7D), f3b is maxi­
mized at a disturbance frequency Pd = Pc· The patterns when d1 and d2 

differ are more complex. When the fugitive species has a dispersal advan- . 
tage (dt = 1, d2 = 10) (Fig. 6.7B), f3b shows a bimodal pattern for slow ex­
clusion rates and a peak at high disturbance rates for faster exclusion rates. 
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Figure 6. 7. Biotic beta diversity (f3b) as a function of the disturbance frequency 
and the rate of competitive exclusion for different combinations of dispersal rates. 

When the fugitive has a dispersal disadvantage, f3b is low (Fig. 6.7C), 
reflecting the nearly complete absence of S2 in this situation. 

Interspecific Association 

The landscape-level pattern of association of two species tells remarkably 
little about their local interaction. In this case, the two species are pure 
competitors, and their association, were it to reflect that fact, would be 
negative. Figure 6.8 shows the results, and it is clear that association may 
be either positive or negative, depending on the parameters. 

In general, association is more positive when the winning competitor 
has a high dispersal coefficient. Association tends to increase with Pd (Fig. 
6.8A,B), although when the winning competitor has a dispersal advantage 
it decreases again at high values of Pd (Fig. 6.8C). When d1 is high, associa­
tion is positive over the entire range of disturbance probabilities. When d 1 

is low, the association appears negative or positive, depending on the rate 
of disturbance. 

Rates of Community Change 

An observer following the fate of a randomly selected set of patches within 
the landscape described by this model would see continual change as 
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Fig~re 6.8. Interspecific association, measured by the log odds ratio, as a function 
of dtsturbance frequency and competitive exclusion rates for various combinations· 
of dispersal rates. 

patches are disturbed and colonized and as species interact with and ex­
clude each other. The rates of this process of change can be measured in 
several ways. 

Mean Turnover Rates 

The mean turnover rate is an overall measure of the rate of community 
change, regardless of direction. In this model, it is determined almost com­
pletely by disturbance rate and in fact is nearly equal to the disturbance 
rate except when disturbance is so frequent relative to dispersal ability that 
the species begin to be driven to regional extinction (Fig. 6.9). 

First Passage Times 

The ~ntries m;i of the first passage time matrix M give the expected time 
reqmred for a patch to reach state X; for the first time, given that it starts in 
state Xi. Here we examine m;1, i = 1, ... , 4: the mean first passage times 
from the disturbed state. 

The mean first passage time from X; to itself (recurrence time) is xj 1• 

Thus mu = x1 1 ~ p;t 1• The mean first passage times from X1 to X2 , X3 , 

and X4 are shown in Figures 6.10 and 6.11. 
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Figure 6.9. Log of the mean turnover rate as a function of disturbance frequen~y 
and competitive exclusion rate for low dispersal rates. The patterns for other dis­
persal rates are almost identical, except that they lack the drop in turnover ~ate at 
the highest disturbance probability. This drop reflects the fact that both spec~es are 
being driven to extinction because their dispersal rates cannot match the disturb­
ance rate. 

State X 2 is the local equilibrium for this system, the "climax" of the 
two-species successional process described by the model. The mean first 
passage time m21 is thus a measure of how long an empty patch should take 
to reach the climax. At low dispersal rates (di = d2 = 1), m2I is low and 
insensitive to Pd• except when competitive exclusion is slow (Fig. 6.10A). 
In that case, there is a sudden increase in m21 when Pd exceeds Pc (thus 
permitting the persistence of S2). Finally, m21 increases again, regardless of 
Pco as Pd increases enough to begin to eliminate both species. 

At high dispersal rates (d1 = d2 = 10) the pattern is similar (Fig. 6.11A). 
There is a sudden increase in m21 when Pd exceeds Pc· Then there is a 
plateau where m21 is inversely proportional to Pc, reflecting the fact that 
most patches arriving in X 2 must go through X4 , and that the transition 
from X4 to X 2 is determined by Pc· Finally, when Pd is large, m21 increases 
again as the reduction in/1 caused by the disturbance rate inhibits coloniza­
tion by species 1. 

The mean first passage time m31 to X 3 decreases with increasing Pd 
(Figs. 6.10B and 6.11B), as this state can be reached onl~ by coloni~ati?n 
of empty patches by the fugitive species. It also tends to mcrease wtth m­
creasing Pc because when competition is more rapid the frequency, and 
hence the colonization probability, of the losing competitor is less. 

Finally, the mean first passage time to X4 also decreases with increasing 
Pd and with decreasingpc. Like X 3 , X 4 is reachable only by colonization of 
empty patches (by both species in this case). Thus it is reached more rapid-
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Figure. 6.10. Mean first passage times from state XI to states Xz, XJ, and x4. for 
low dispersal rates (d1 = d2 = 1). 

ly when empty patches are more common and when colonization is rapid 
enough to fill them with both species. The colonization rate increases with 
decreasing Pc and with increasing dispersal rates for both species (Figs. 
6.10C and 6.11C). 

This survey of mean first passage times reveals a wealth of patterns. The 
most reasonable candidate for a measure of the "rate of succession," m2., 

suggests that there is a relatively sharp threshold value of disturbance fre­
quency that, once exceeded, switches the community from one in which 
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Figure 6.11. Mean first passage times from state X 1 to states X2, X3, and X4 for 
high dispersal rates (d1 = d2 = 10). 

succession proceeds almost immediately to its climax to one in which suc­
cession is much slower. In the latter case, a patch may cycle through dis­
turbed and preclimax states many times before it reaches the climax state. 

Smoluchowski Recurrence Time 

The Smoluchowski recurrence time 0; for state X; measures the expected 
time between leaving X; and returning to it for the first time. It is thus a 
measure of the rate at which a patch state recurs but without counting 
patches that remain in their present state. 
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In this experiment, 0; = m;t. i = 1, ... , 4, which implies that the pro­
cess of returning to a given state includes a passage through X1, and that 
most of the variation in 0; reflects variation in the time required to get from 
X 1 back to X;. That time, of course, is measured by m;1• 

Convergence Rate 

The rate of convergence of community structure, as measured by the 
second eigenvalue of Ai, shows a remarkable lack of variation compared to 
the variation in the other parameters. This fact suggests that the likelihood 
of a community being near its equilibrium distribution is independent of 
the parameter values, and hence observed differences between communi­
ties reflect differences in equilibria (at the landscape level) rather than dif-
ferences in the rate of approach to equilibria. · 

Discussion 

The results of this chapter demonstrate that the time scales of disturbance, 
dispersal, and competitive exclusion can interact to produce a variety of 
patterns in patchy communities. Studies of diversity, spatial heterogeneity, 
interspecific association, and rates of community change must take these 
time scales into account in order to make any sense of observed patterns of 
community structure. 

Our results allow us to examine the relation between disturbance, rate 
of competitive exclusion, and alpha diversity, as discussed by Huston 
(1985). Figure 6.12 shows alpha diversity as a function of disturbance fre­
quency and rate of competitive exclusion. In our model, diversity is maxi­
mized at intermediate disturbance frequencies and at low rates of competi­
tive exclusion. At high enough disturbance rates, the competitive exclusion 
rate effect disappears. The value of pd, which maximizes diversity, in­
creases in log-log fashion with Pc· Huston (1985) proposed a somewhat 
different relation, in which diversity is maximized at intermediate values of 
Pd andpc. 

These results have important implications for discussions of diversity in 
low disturbance environments (e.g., of deep-sea benthic diversity). Alpha 
diversity is determined not by the disturbance rate per se but by that rate 
in relation to the rate of competitive exclusion. In environments charac­
terized by low rates of competitive exclusion (e.g., low productivity, low 
growth rates), even very low rates of disturbance can significantly enhance 
species diversity and community heterogeneity. Comparisons between en­
vironments differing in disturbance frequency must also take into account 
differences in the rate of competitive exclusion. 

We can also examine the apparent dichotomy between biotic impover­
ishment and diversity enhancement. The rate at which a disturbed patch 
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Figure 6.12. Contours of alpha diversity as a function of disturbance probability 
and the rate of competitive exclusion for high dispersal (d1 = d2 = 10) (top) and low 
dispersal (d1 = d2 = 1) (bottom) communities. In both graphs, diversity is at a mini­
mum in the upper right corner. 

recovers and becomes available for colonization influences whether the 
main effect of disturbance is diversity enhancement or biotic impoverish­
ment. To illustrate this point we augment the basic model by adding a fifth 
state, corresponding to disturbed patches that are unavailable for coloniza­
tion. 

Unavailable s2 s. State 

0 0 0 1 
0 0 1 2 
0 1 0 3 
0 1 1 4 
1 0 0 5 

The graph for this model is shown in Figure 6.13, with the corresponding 
matrix A •. 
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Figure 6.13. Transition graph for the residual effects model. Disturbance produces 
patches in X5 that are unvailable for colonization until a recovery period ( charac­
terized by the recovery rate p,) has passed. 
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The rate of recovery of disturbed patches is given by Pr; all other param­
eters are as in equation (6). 

The rate of recovery determines the response of diversity to disturbance 
(Fig. 6.14A). Even when dispersal is high and competitive exclusion slow, 
diversity is enhanced by disturbance only if the rate of recovery is high 
enough. If recovery is slow enough (Pr = 0.01 in this example), disturbance 
leads only to biotic impoverishment. 

This biotic impoverishment reflects the increasing proportion of patches 
in Xs as disturbance becomes more frequent (Fig. 6.14B). At least in this 
case, in which dispersal rates are high (d1 = d2 = 10), it appears that 
Xs::::. PdiPr for low disturbance frequencies. As Pd increases, x 5 eventually 
approaches 1, the sooner the lower the value of p,. 

Summary 

We have presented a simple modeling framework for studying the inter­
action of the rates of disturbance, dispersal, and competitive exclusion 
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Figure 6.14. Alpha diversity (A) and log x5 (B) for the residual effects model 
as a function of the disturbance rate and the rate of recovery (p,) of disturbed 
patches. 

in a patchy environment. The model is a nonlinear Markov chain, the 
transition probabilities of which are derived from hypotheses about the 
aforementioned rates. The state of a patch is defined by the presence and 
absence of the two competing species and the state of the landscape by the 
probability distribution of patch states. Numerical studies strongly suggest 
that the model has, at most, one stable fixed point in the interior of the unit 
simplex; this fixed point represents an equilibrium community at the land­
scape level, although equilibrium is never attained at the level of the indi­
vidual patch. The output of the model includes species frequencies, alpha 
and beta diversity, interspecific association patterns, and measures of com­
munity change. 
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The model shows that disturbance can generate heterogeneity, both 
spatially and temporally, in patchy communities. The resulting patterns 
depend strongly on the relation between the time scales of the interacting 
processes. 

The results are used to examine the relation between productivity and 
the phenomenon of diversity enhancement by disturbance. A single model 
can account for both diversity enhancement and biotic impoverishment, 
depending on the relations among its parameters. 
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