Mobius Inversion of Random Acyclic Directed Graphs

By Joel E. Cohen

Suppose a random acyclic digraph has adjacency matrix A with independent
columns or independent rows. Then the mean Mdbius inverse of the zeta matrix
I+A is the Mdobius inverse of the mean zeta matrix, i.e., E[(I+A) !]=
(I+ EQA)]L

The purpose of this note is to show that, under natural conditions, the mean
Mobius inverse of a random acyclic directed graph (digraph) equals the Mébius
inverse of the mean acyclic digraph.

Let the vertex set V be {1,...,n} for a fixed integer n, 1 < n <, and let R be
a subset of ¥V X V. An element (i, j) € R is called an arc from i to j. A digraph
D is an ordered pair D =(V, R) of vertices and arcs. A topologically ordered
acyclic digraph (TOAD) is a digraph D = (V, R) such that every arc (i,j) in R
satisfies i < j. It is well known that every acyclic digraph can be converted to a
TOAD by permuting the labels of the vertices, and conversely every acyclic
digraph can be obtained by permuting the labels of the vertices of a TOAD.
The adjacency matrix 4= A(D)= A(V,R) of any digraph D=(V,R) is an
n X n matrix such that a;;=1if (i,/))€R, a;;=0if (i,j} € R. It is also well
known that (V, R) is a TOAD if and only if A(V, R) is strictly upper triangular,
i.e., a;; = 0 whenever i > j. (See [4] for background on digraphs.)

The zeta function of any acyclic digraph D with adjacency matrix A4 is
defined by { =1+ A4, where [ is the n X n identity matrix. { is the adjacency
matrix of the digraph formed from D by adjoining loops to each vertex, i.e., by
adjoining all the arcs (i,i) where i € V. The Mdbius inverse u={¢"! exists,
because if P is a permutation matrix such that PAP~! is strictly upper
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triangular, then det(I + A)=det{P(1 + A)P~']1=det(I + PAP~')=1. (Recall
that for a permutation matrix P, P~!'= PT, so PAP~! is the matrix obtained by
relabeling the indices of the rows and columns of A4 according to P.) (See [5; 2,
Chapter 2; 3, Chapter 25] for background on Mdgbius inverses.)

Let S be the set of all strictly upper triangular 0—1 n X n matrices, and let U
be the set of all matrices PAP?, where P is a permutation matrix and 4 € §.
The matrices in § are exactly the adjacency matrices of the set of all TOAD:s,
and the matrices in U are exactly the adjacency matrices of the set of all acyclic
digraphs.

A random acyclic digraph is specified by a probability distribution on U.
Specifically, if A denotes the random adjacency matrix of a random acyclic
digraph D, then for every A€ U, p(A4)= P{A= A). The mean adjacency
matrix of D is E(A)=3,.,A4p(A). The mean M&bius inverse of D is E(p) =
3 ey(I+ A)7'p(A4). Under natural conditions, stated in Theorem 2, E(p) =
[I+ E(A)]™ L. This follows from a slightly more general result, stated as Theo-
rem 1. ’

Let M be a random »n X n matrix (implicitly, a space of nXn matrices
together with a probability measure on that space). Say that M =(m;;) has
independent columns if and only if, for all j,k such that 1 <j<k <n, the
vector consisting of column j of M and the vector consisting of column k& of M
are independent. (Arbitrary dependence within any column is allowed.) Say that
a random matrix has independent rows if its transpose has independent columns.
If the rows or columns of M are independent, so are those of PMP7, for any
permutation matrix P.

As usual, “a.s.” means “almost surely.”

For any deterministic matrix M= (M,-j), the skeleton of M is another
deterministic matrix H = (h;;) such that h;;=1if m;;+ 0, h;; =0if m;; = 0. For
any random matrix M, define the movie of M to be the random matrix H
formed by taking the skeleton of each realization of M. For any random matrix
M, define the still of M to be the deterministic matrix H defined by &;; =0 if
m;;=0as., h;;=1if P{m;; # 0}> 0. For example, if

2
m=(o o) =[5 0)

and PIM = M,}= %, P(M = M,} = 2, then the movie

0 1
0 0

0 0

H=( 10

) whenever M = M,, H = ( ) whenever M = M,,

and the stiil

a2 )

Though H is acyclic a.s., the skeleton of E(H), namely H, is not acyclic.
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Define a deterministic matrix M to be nilpotent if there exists a positive
integer k such that M* = 0. It is well known that M is nilpotent if and only if
the skeleton of M is in U, i.e., if and only if PMPT is strictly upper triangular
for some permutation matrix P. The previous example shows that it is possible
to have M be nilpotent a.s. while the still of M is not nilpotent. However, if M
has independent rows or columns, such a possibility is excluded.

LEMMA. Let M be a complex-valued random matrix with independent rows or
independent columns and such that M is nilpotent a.s. Then the still of M is
nilpotent.

Proof: Let H =(h,;) be the still of M. Then P{M is nilpotent} = 1 implies that
for every k, 1<k <n and for every set {i,...,i,} of k distinct elements of
V={1,. ,n}

P{m, ‘m; ; #0} = 0.

’1'2 '2’3 igly
Since the rows or columns of M are independent,

0=Pm,, ---m,,; #0} = P{m,

iz ixiy

#0}--- P{m;, #0},

iyiz ixiy

which implies that at least one factor on the right is 0. Therefore, at least one of

iyig» Rigiyp+- >Ry, 18 0. Since this is true for every set {i},...,i,} of k distinct
elements of V, H is nilpotent. 0O

Define the off-diagonal part of a random matrix A to be the random matrix B

such that b;; = a;; a.s. for all (i,j) with i # j, and b; =0 a.s. for all i e V.

THEOREM 1. Let M be a complex-valued random matrix such that

(i) the expectation E(M) exists;

(ii) the off-diagonal part of M is a.s. nilpotent, i.e., the movie of the
off-diagonal part of M is a.s. nilpotent;

(iii) m; = ¢; a.s., where c; # 0 is a nonzero constant;

(iv) M has independent columns or M has independent rows.

Then EMM ™) exists and EM ™) =[E(M)]~L

Proof: By the Lemma, the still of the off-diagonal part of M is nilpotent, and
therefore so is the expectation of the off-diagonal part of M. Hence E(M) is
nonsingular.

Let K =(k;;) have elements §;c;, where §,; is Kronecker’s delta, &, =1,
6;;=0if i#j. Then H=K"'M has all dlagonal elements equal to 1 as. Let
I-H=L. Then L has a.s. the same movie as the off-diagonal part of M and is
a.s. nilpotent, so a.s. L" = 0. Therefore, (/] ~L) !=T+L+L2+ --- +L" 1 as.
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Hence a.s.
= (KH)'=H'K'=(I-L)"'K!
= (I+L+L?+ --- +L" 1)K,
so if E(M™1) exists, it must be
EM™) = [I+E(L)+ E(L})+ --- + E(L* Y] K.

Now for k=2,...,n—1,

n

Lk)u Z Z Z Li,ilLiliz "'Lik_.,j'

i1=1i=1 fe_1=1

Because L is a.s. nilpotent, the only terms on the right that are not a.s. 0 are
those in which i,i,,i,,...,i,_;,J are all distinct. Then, since L has independent
columns or rows (inherited from M and H),

E[(Lk)ij] = Z E(Ll iiiy 'Lik-l,j)
{i,iy,...,ix_y,j) all distinct
= X E(Li,il)E(Li,iz) tee E(Lik_.,j);
{i,iys.. ig-y,J}) all distinct

hence E(L*)=[E))* if E(L) exists, and E(L)= I — K~ 'E(M) does exist by (i).
Thus E(M™1) exists and equals

EM™) = {I+ E(QL)+[E(L)])*+ - +[E@L)]" T}k
- I-EW] 7K = [K(I- EW)] ™
= [E(M)] L .

By contrast with Theorem 1, if X is a nondegenerate random variable such
that X >0 a.s. and E(X) and E(X™!) exists, then [E(X)]~! < E(X)~. [Since
f(x)=x"1 is strictly convex on (0,), the inequality follows by Jensen’s inequal-
ity.] The matrix equality obtained in Theorem 1 differs from the scalar inequal-
ity because, of course, the 1X1 case of the matrix M is a.s. a constant, not a
nondegenerate scalar random variable; for a constant scalar or degenerate
random variable X, [EX)] " != EX"H=X"!

THEOREM 2. Suppose a random acyclic digraph has adjacency matrix A with
independent columns or independent rows. Then E(A) exists and the mean Mobius
inverse is E[((1 +A)~']=[I+ E(A)]" .
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Proof: E(A) exists because the elements of A are drawn from {0,1}, so
{ = I + A satisfies hypothesis (i) of Theorem 1. The off-diagonal part of the zeta
matrix {=7+A is just the adjacency matrix A, so {=1+A satisfies (i), (iii)
because {; =1 a.s., and (iv) by assumption. The conclusion of Theorem 2 then
follows from Theorem 1. O

Example of Theorem 2 (The cascade model [1]): Suppose a; =0 a.s. if i 2 j,
while a;; = 1 with probability p and a,; = 0 with probability g = 1— p, indepen-
dently for all (i,j) with i <j, where 0 < p <1. Then E(a;)=pJ;_;, where
Jiap=1if i<j, Jyo;=0if i=j. Let M=(m)= E(u)= E(I+A)~'1=[I+
E(A)]~L Then it is easy to check that

- (0 if i>],
m.. = {1 if i=j,

—p(l—p)j_i_l if i<j.

For example, if n = 4, then

0 p p p
0 0 p p
E(A) =
(A) 00 0 p|
0 0 0 O
1 -p =-p(1-p) -pQ1-p)
‘E(p) =[I+E@Q]'=|0 1 -p - p(1-p)
~ 0 0 1 -p
0 0 0 1

In the ecological interpretation of the cascade model [1] the elements of V'
represent groups of organisms called trophic species, a;; =1 means species j
eats species i, and a;; = 0 means species j does not eat species i. The TOAD
specified by A is called a food web. Let x”=(x,,...,x,) and y"=(y,,...,y,) be
row vectors such that y7 = xT(I +A), i.e., y; is the sum of x; plus all the x; such
that j eats i according to A. Then y7(J+A)~'=x". Now suppose y” is
fixed, e.g., y7 can be measured directly with negligible error. Then E(x7)=
yTE[(I+A)~']=y"™M provides a way of estimating the mean of x” from
measurements of y7 and the average structure of the food web; the latter may
be derived from the cascade model in the absence of more detailed data.
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