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Two competing models currently offer to explain empirical regularities 
observed in food webs. The Lotka-Volterra model describes population 
dynamics; the cascade model describes trophic structure. In a real eco­
logical community, both population dynamics and trophic structure are 
important. This paper proposes and analyses a new hybrid model that 
combines population dynamics and trophic structure: the Lotka­
Volterra cascade model (LVCM). The LVCM assumes the population 
dynamics of the Lotka-Volterra model when the interactions between 
species are shaped by a refinement of the cascade model. A critical surface 
divides the three-dimensional parameter space of the LVCM into two 
regions. Tn one region, as the number of species becomes large, the 
limiting probability that the LVCM is qualitatively globally asymp­
totically stable is positive. In the region on the other side of the critical 
surface, and on the critical surface itself, this limiting probability is zero. 
Thus the LVCM displays an ecological phase transition: gradual changes 
in the probabilities of various kinds of population dynamical interactions 
related to feeding can have sharp effects on a community's qualitative 
stability. The LVCM shows that an inverse proportionality between con­
nectance and the number of species, and a direct proportionality between 
the number of links and the number of species, as observed in data on 
food webs, need not be directly connected with the qualitative global 
asymptotic stability or instability of population dynamics. Empirical 
testing of the LVCM will require field data on the population dynamical 
effects of feeding relations. 

1. INTRODUCTION 

Two competing models currently offer to explain a majority of empirical regu­
larities observed in food webs (Lawton & Warren 1988; Lawton 1989). One model 
emphasizes dynamics, the other structure. The dynamical model of ecological 
communities-· the Lotka-Volterra model- offers qualitative predictions about 
the long-run behaviour of the population sizes of interacting species, but is silent 
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about how the interactions between species are determined (Pimm 1982). The 
Lotka-Volterra model is a system of nonlinear autonomous first-order ordinary 
differential equations. By contrast, the structural model, called the cascade model, 
describes many structural features of food webs or feeding relations among organ­
isms (Cohen et al.1990), but is silent about the population dynamics of the organ­
isms. The cascade model is based on random directed graphs (digraphs). The 
Lotka-Volterra and the cascade models have evident shortcomings (some of which 
are mentioned below) and are by no means the only theoretical explanations for 
special aspects of structure in food webs (see Lawton (1989) for a review), but they 
are the two most general explanations proposed so far. 

In a real ecological community, both population dynamics and trophic structure 
are important. There is an intellectual and empirical challenge in trying to connect 
the competing dynamic and structural models. Caswell (1988, p. 38) explicitly 
defends the connective role of theory in ecology. 

This paper proposes and analyses a new hybrid model- called the Lotka­
Volterra cascade model (LVCM) --that assumes the population dynamics of the 
Lotka-Volterra model when the interactions between species are shaped by a 
refinement of the cascade model (§2.3). Mathematical analysis of the LVCM com­
bines the theory oflarge random digraphs with the qualitative theory of nonlinear 
differential equations to characterize the qualitative global asymptotic stability of 
ecological communities in the double limit of large time and large numbers of 
species. This form of stability describes a global tendency of hypothetical popu­
lations to approach an equilibrium, and may or may not have an important 
counterpart in the behaviour of real populations in Nature. 

One major finding (§ 3.1) is that there exists a phase transition in qualitative 
global asymptotic stability, i.e. a sharp transition from a positive probability to 
a zero probability that the LVCM is qualitatively globally asymptotically stable 
(q.g.a.s.). This finding resembles a threshold property that May (1972, 1973) 
attributed to a much simpler, single-parameter model of community dynamics and 
structure, but differs in that our analysis is global and nonlinear. Unlike demon­
strations in other models of an abrupt shift from one stable state to another as a 
result of a change in parameters or stochastic perturbations (see, for example, May 
1977; Steele & Henderson 1984; Bondi 1985), our finding concerns transitions 
between stability and instability. 

A second major finding (§4.1) is that, in the LVCM, the location of the phase 
transition in stability is not determined by a critical value of the product of the 
number of species and the connectance (defined in various ways). This finding 
differs from a conclusion that May (1972, 1973) drew about his model ecosystems. 
By contrast, in the LVCM, the location of the phase transition in stability is 
determined by a critical surface (described explicitly in §3.1) in a three­
dimensional parameter space. On one side of the critical surface, there is a positive 
probability that the LVCM is q.g.a.s., while on the other side of the critical surface, 
and on the critical surface itself, there is a zero probability that the LVCM is q.g.a.s. 

Efforts to link population dynamics and trophic structure in ecological theory 
have a venerable history (Hutchinson 1978; Pimm 1982). The LVCM and our 
analysis of it seem novel in two respects. First, the models for population dynamics 
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(Lotka-Volterra) and for trophic structure (cascade) each have some independent 
credibility, at least for some community ecologists; neither is an ad hoc construct 
for the purpose of achieving a synthesis. Second, the global behaviour of the fully 
nonlinear dynamic model is analysed. Previous efforts have often dealt with the 
local behaviour near equilibrium of linearized versions of dynamic models (see, for 
example, May (1972, 1973); Cohen & Newman (1988)) or have relied mainly on 
numerical simulations to demonstrate model behaviour (see, for example, Steele 
& Henderson (1984)). 

Candour requires us to admit that both the Lotka-Volterra model and the 
cascade model have shortcomings, although each seems useful in limited circum­
stances. Among the defects of the Lotka-Volterra model as a description of the 
population dynamics of real populations are the assumptions that there are no 
mutualistic interactions between species (in the form of the model usually used by 
ecologists), that all interactions are strictly pairwise, and that the pairwise inter­
actions follow a simple mass-action law specified by the product of abundances or 
biomasses. Among the defects of the cascade model as a description of the food 
webs of real communities are the assumption that trophic cycles (including canni­
balism) are always absent, that feeding relations are static in time, and that each 
feeding relation is determined by a stochastic process independently of population 
abundances and independently of any other feeding relation. Both the Lotka­
Volterra and the cascade models ignore genetic heterogeneity and age structure in 
populations as well as spatial and temporal heterogeneity (periodic or stochastic) 
in parameters, though each can be modified to accommodate these factors. This 
list of shortcomings of the Lotka-Volterra and cascade models does not purport 
to be exhaustive. 

The LVCM shares the limitations of the Lotka-Volterra and cascade models, and 
has further limitations, described in §2.3. Thus the LVCM is not to be taken literally 
as a universal, realistic claim about Nature. The specific details of the LVCM are 
offered in the hope that the LVCM may lead to better models. The following 
developments illustrate how nonlinear dynamic models and stochastic structural 
models may be combined, analyzed, and related to observable facts about nature. 
Estimation of the LVCM's parameters and empirical testing of its predictions 
require field data on the population dynamical effects offeeding relations. A highly 
simplified lake food web is analysed to illustrate the empirical testing and use of 
the LVCM (§4.3). 

2. MODELS: CASCADE, LOTKA-VOLTERRA, AND LOTKA-VOLTERRA 

CASCADE 

We now describe the cascade model, the Lotka-Volterra model, and the hybrid 
Lotka-Volterra cascade model. 

2.1. 1'he cascade model 

The cascade model (Cohen & Newman 1985a) assumes a community has n 
species. The species are assumed to be labelled or numbered 1, 2, ... , n (think of 
an ordering by increasing size). It is assumed that a species with a lower number 



610 J. E. Cohen and others 

can never eat a species with a higher number, but a species with a higher number 
has a probability cjn (where cis some positive constant less than n) of eating any 
species with a lower number, independently for all pairs of species. The most recent 
data indicate that the numerical value of c in nature is near 4 (Cohen 1990). 

This model food web may be represented by a random digraph on n vertices, one 
vertex per species. A feeding relation is represented in this digraph by an arrow 
from a prey species to a predator species; the direction of the arrow shows the 
direction in which energy and materials flow. For any two vertices if i < j, 
there is no arrow (j, i) from vertex j to vertex i with probability 1. There is an 
arrow (i,j) from i toj with probability cjn, independently for all pairs i andj with 
i <j. We shall let W (for 'web') refer to this model of a random digraph, and let 
Pw(i,j) denote the probability of an arrow (i,j) in W. Thus Pw(i,j) = 0 if i > j and 
Pw(i,j) = cjn for all1 ~ i <j ~ n. 

This cascade model should not be confused with the model by the same name 
of Carpenter et al. (1985). The biological example in §4.3 below, based on the work 
of Carpenter and colleagues, will show a connection between their 'cascade' model 
and the Lotka-Volterra cascade model defined here. 

2.2. The Lotka-Volterra model 

The Lotka-Volterra model (as described by Redheffer & Zhou (1989)) assumes 
that the community has n species, labelled 1, 2, ... , n. If ui is the abundance or 
biomass of the ith species, then it is assumed that there exist a real n x n matrix 
p = (Pii) and a real n x 1 vector e = (ei), with both p and e independent of timet, 
such that, for all tE[O, oo), 

i = 1, ... ,n. (1) 

The coefficient Pii measures the effect of species j on the growth rate of species i. 
It is assumed that (1) has a positive stationary solution, i.e. that there exists a 
constant n x 1 vector q = (qi) such that 

n 

0 = ei+ ~ Piiqi, qi > 0, i = 1, ... ,n. 
j-1 

(2) 

As the values of the interaction coefficients in the matrix pin (1) can never be 
known exactly, but the signs of the coefficients can be determined more reliably, 
it is natural to consider the behaviour of ( 1) when the value of any interaction 
coefficient Pi.t is changed to some other number with the same sign, whereas an 
interaction coefficient that is zero is left at zero. Under certain conditions, some 
ofwhich will be described in a moment, the Lotka-Volterra model (1) bequeathes 
its stability to the whole family of equations obtained by replacing the interaction 
coefficients by others with the same signs. Under such conditions, ( 1) is said to be 
qualitatively stable. Qualitative stability is a natural concept for linking dynamic 
models with structural models based on random graphs, because structural models 
deal with the presence or absence of certain interactions, and not with the mag­
nitudes of those interactions. What is surprising is that it is possible to say things 
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about qualitative stability that connect usefully with structural food web models. 
Now we state these ideas more precisely. 

For any real finite scalar s, define sign (s) = + 1 if s > 0, sign (s) = -1 if s < 0 
and sign (s) = 0 if s = 0. Define p ~ p if and only if, for all i,j, sign (P;) = sign (p;1). 

Let N refer to the family of equations ( 1) when (i) pis replaced by any n X n matrix 
p ~ p, and (ii) e is replaced by any n x 1 vector esuch that 0 = e + pqhas a positive 
solution q > 0. Positive initial conditions u(O) > 0 are assumed throughout. A 
result is considered 'qualitative' if it refers to all of N. 

A matrix pis defined to be sign semistable if, for every p ~ p, eve.ry eigenvalue 
of p has a non-positive (i.e., zero or negative) real part. Redheffer & Zhou (1989) 
proved results that contain the following as a special case. 

THEOREM A. Suppose P;; < 0, for i = 1, ... , n. If p is sign semistable, then every 
solution of every system in the family N is bounded, has a limit as t--+ oo and that limit 
is independent of the initial condition. 

We need a converse of Theorem A. 

THEOREM B. If every solution of every system in the family N is bounded, has a 
positive limit qas t--+ oo and that limit qis independent ofthe initial condition (though 
dependent on p and e), then p is sign semistable. 

Proof. Suppose the nonlinear system (1) is globally asymptotically stable rela­
tive to the assumed positive stationary solution q, i.e. every solution is bounded 
and has the limit q as t--+ oo and that limit q is independent of the initial condition. 
Then no eigenvalue of its Jacobian matrix J(q) evaluated at q can have positive 
real part (for if there were an eigenvalue of J(q) with positive real part, there would 
exist a direction such that from this direction q would not be attractive). By direct 
calculation, J(q) is the matrix with (i, j) element qi Pw By the hypotheses of the 
theorem, if we take any p ~ p and any q > 0 and let e = -pq, then also the matrix 
(i]; P;;) cannot have eigenvalues with positive real part. Choosing ilt = 1 for all i for 
each p ~ p, we conclude that the matrix p is sign semistable. 

The combination of Theorems A and B shows that, assuming Pii < 0 for 
i = 1, ... , n, the matrix p of interaction coefficients is sign semistable if and only 
if every solution of every system in the family N is bounded and has a limit as 
t--+ oo and that limit is independent of the initial condition. We shall say that 
a Lotka-Volterra system (1) with these characteristics is qualitatively globally 
asymptotically stable ( q .g.a.s.). 

There is a digraph D(p) associated with the matrix p of interaction coefficients. 
Following Jeffries et al. (1977, 1987) and Redheffer & Zhou (1989), we define the 
digraph D(p) of pas follows. D(p) has n vertices, an arrow (j, i) from vertex j to 
vertex i if Pt; i= 0 and P;; = 0, and a bidirectional arrow {i, j} between i and j 
(equivalent to a pair of unidirectional arrows (j, i) and (i,j)) ifp;1 P;; < 0. (The case 
Pt; P;; > 0 with i i= j will be excluded.) Whereas the food web digraph W represents 
feeding relations, the digraph D(p) represents population dynamical interactions. 
There seems to be no standard name for D(p), so we propose to call it the 
interaction digraph. 

23 Vol. 240. B 
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Quirk & Ruppert (I 96 5) showed that p is sign semistable if and only if Pii < 0, 
Pii Pit < 0 for i =f. j, and D(p) has no k-cycles for k;?:: 3. By using this fact in 
combination with Theorems A and B (and excluding the case Pi; PJt > 0 with i =f. j), 
it is possible to determine whether a matrix p of interaction coefficients with 
negative diagonal elements determines a q.g.a.s. Lotka~Volterra system simply 
by inspecting the interaction digraph D(p) for the presence of k-cycles for any 
k;?:: 3. This observation is the key to our main new mathematical result (§3.1). 

With slightly different hypotheses, Bone et al. (1988, their Theorem 7.4) proved 
conclusions similar to those of theorem A. Instead of assuming that Pii < 0 for 
i = 1, ... , n, and that pis sign semistable, they assumed that pis sign stable (i.e. 
for every p ~ p, every eigenvalue of p has a negative real part) and that the digraph 
D(p) has a single strong component (i.e. every vertex of D(p) can be reached from 
every other vertex ofD(p) by a directed path following the arrows in D(p)). Now 
if Pii < 0, fori = 1, ... , n, and p is sign semis table, then p is sign stable, but a sign 
stable matrix may have many diagonal elements equal to zero. On the other hand, 
Theorem A allows D(p) to have many strong components. 

2.3. Lotka~Volterra cascade model 

The Lotka~ Volterra cascade model (LVCM) links the cascade model to the Lotka~ 
Volterra model by discriminating among the possible population dynamical effects 
caused by each feeding link. In principle, when speciesj eats species i, there could 
be a positive, a negative, or no effect on the population growth rate of species j, 
and a positive, a negative, or no effect on the population growth rate of species i, 
for a total of nine possible pairs of effects. As a first approximation to portions of 
reality, the LVCM ignores the five possible pairs of effects where j eating i hurts the 
population growth rate of species j or helps the population growth rate of species 
i. Thus if species j eats species i, the LVCM supposes that one of four biological 
effects occurs : 

(i) the feeding has no effect on the growth of species j but hurts the growth of 
species ~; or 

(ii) the feeding helps the growth of species j but has no effect on the growth of 
species i ; or 

(iii) the feeding helps species j and hurts species i; or 
(iv) the feeding has no effect on the growth of either j or i. 

Corresponding to each biological effect, assume that: 
(i) p1i = 0 and Pti < 0, so (j, i) is an arrow of D(p); or 
(ii) p1i > 0 and Pii = 0, so (i, j) is an arrow of D(p); or 
(iii) p1i > 0 and Pt; < 0, so {i, j} is a bidirectional arrow of D(p); or 
(iv) Pit= Pti = 0, so no arrow of any kind exists between i and j in D(p). 

Because of ,(iv), the event: 
(iv') no arrow of any kind exists between vertices i andj in D(p); represents two 

biologically distinct situations: predation without dynamic effects (described by 
(iv)) (e.g. the old lady who accidentally swallowed a fly), and the absence of 
predation (i.e. the absence of an edge (i, j) in W). 

The LVCM assumes that events (i), (ii), (iii) and (iv') occur, independently for 
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each pair i,j = l, ... , n such that i <j, with probabilities, respectively, rjn, sjn, 
tjn, and 1-(r+s+t)jn, where r, s, tare non-negative constants that do not 
depend on n. (Predation without dynamic effects (iv) occurs with probability 
cjn- (r+s+t)jn.) 

More formally, for n = 1, 2, ... , let Nn be the system (1) with randomly chosen 
coefficients where, with probability 1, Pii < 0 fori = 1, ... , nand the pairs {pji' P;j} 
for each i, j = 1, ... , n with i <j are chosen independently with 

(i) prob {pji = 0 and Pij < 0} = rjn, 

(ii) prob {pji > 0 and Pij = 0} = sjn, 

(iii) prob {pji > 0 and Pij < 0} = tjn, 

(iv') prob {pji = 0 and Pij = 0} = 1-(r+s+t)jn, 

and the vector en = (e;)f~ 1 is chosen (depending on Pn = (P;j)f.j~ 1 ) so that for some 
vector qn > 0 (also depending on Pn), 0 =en +Pn qn- The sequence of systems 
{Nn}~~ 1 defines the LVCM. 

Pimm's (r982) studies ofLotka-Volterra models derived from hypothetical food 
webs represented each trophic link by a linkage of type (iii), with the further 
quantitative assumption that IP;jl > pji" Lawton (r989, pp. 56-57) argues that 
dynamic links of types other than (iii) need to be considered, and reviews examples 
of links of type (ii), called 'donor control,' and of type (iv). Lawton (r989, p. 55) 
suggests that links of type (i) 'may occur with very polyphagous predators, where 
individual species of prey have trivial effects on the predator's dynamics, [but] the 
problem has received no attention in the food web literature.' His examples, and 
others, make it clear that dynamic links of types in addition to (iii) should be 
considered in a dynamic food web model. 

In some respects, the LVCM is an even more limited model of community 
dynamics than the Lotka-Volterra model. As examples, the LVCM excludes a 
favourable effect of predation on the prey species (evidence for which is reviewed 
by Bianchi et al. ( r 989)); pairs of coefficients such that Pij < 0 and pji < 0, which 
could represent competition between species i and j; and pairs of coefficients such 
that Pij > 0 and pji > 0, which could represent mutualism between species i and 
j (examples of which are described by Kawanabe (r987)). Thus the LVCM is not the 
last word on models that relate deterministic, dynamic descriptions with stoch­
astic, structural descriptions of communities. 

3. MATHEMATICAL ANALYSIS: THE CRITICAL SURFACE FOR 
QUALITATIVE GLOBAL ASYMPTOTIC STABILITY 

The LVCM has what physicists call a phase transition. As the parameters of the 
LVCM cross a certain critical surface, the probability of being qualitatively globally 
asymptotically stable changes from positive to zero. The critical surface for the 
phase transition in the stability of the LVCM is exactly the same as the critical 
surface for a phase transition when a giant strongly connected component sud­
denly appears in the digraph D(p) (Luczak & Cohen 1990). The following theorem 

2]-2 
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shows where the critical sur~a.ce is and how the LVCM behaves on either side of the 
surface as well as on it. 

or 

or 

3.1. Theorem: limiting probability of qualitative global asymptotic stability 

Let x: [1, oo)--+ (0, 1] be the smallest root of x(z) e-x(z) = z e-•. 
(i) If 

r+t < 1 and s+t < 1 

r+t ~ 1 but s+t < x(r+t) 

s+t ~ 1 but r+t < x(s+t) 

(3) 

(4) 

(5) 

then lim prob {Nn is q.g.a.s.} = lim prob {Pn is sign semistable} = p > 0 (6) 
n-+co 

where 
{ 

(r+t)(s+t)/2 (r+t)es+t_(s+t)er+t 
e , r-=/= s. 

p = r-s 
e<r+t)'/2 er+t (1-r- t), r = s. 

When (r+t)(s+t) > 0, then p < 1. 
(ii) If 

r+t ~ 1 and s+t ~ x(r+t) 

or s+t ~ 1 and r+t ~ x(s+t) 

then lim prob {Pn is sign semistable} = 0. 

(7) 

(8) 

(9) 

Informally speaking, a critical surface divides the three-dimensional parameter 
space {(r, s, t)lr ~ 0, s ~ 0, t ~ 0} of the LVCM into two regions. In region (i), where 
(3) or (4) or (5) holds, as the number of species becomes large, the probability that 
the LVCM is qualitatively globally asymptotically stable (q.g.a.s.) approaches a 
positive limit, which is given explicitly by (7). In region (ii), where (8) or (9) holds, 
as the number of species becomes large, the probability that the LVCM is q.g.a.s. 
approaches zero. 

3.2. Proof of the theorem 

(i) By Theorems A and B, it suffices to show that, under the hypotheses, 
limn prob {Pn is sign semistable} = p with p > 0 given by (7). By the assumptions 
of the LVCM, Pii < 0 and Pij Pji ~ 0 for i -=1= j with probability 1. Hence by the 
theorem of Quirk & Ruppert (1965) (quoted above after Theorems A and B), it 
suffices to show that limn__,.co prob {D(Pnl has no k-cycles for k ~ 3} = p with 
p > 0. Now D(Pnl is precisely the digraph denoted by Dn(r, s, t) in the main 
theorem of Luczak & Cohen (1990). They proved that under the hypotheses 
(3-5), the number of cycles (i.e. directed cycles of length ~ 3) in Dn(r, s, t) is 
asymptotically Poisson distributed as n--+ oo with a finite mean A given by (A 1) 
in the Appendix. Starting from their expression, in the Appendix we derive the 
formulae (A 8) and (A 18), which immediately give (7) with p = e-A. 

(ii) When s + t > x(r + t) orr+ t > x(s + t), part (ii) of the main theorem of Luczak 
& Cohen (1990) asserts that limn prob {Dn(r, s, t) contains a k-cycle for some 
k ~ 3} = 1. By the theorem of Quirk & Ruppert (1965), it follows that limn prob 
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{Pn is sign semistable} = 0. Now assume that s+t = x(r+t). (A similar argument 
will apply when r+ t = x(s+t).) Then it suffices to show that p--+0 ass t x(r+t) -t. 
This follows easily from (7). 

3.3. Illustration of the critical surface 

The asymptotic (n--+ 00) probability that every Nn is globally asymptotically 
stable (g.a.s.) is p, given by (7) where p > 0 and is zero otherwise. Figure 1 plots 
the level contours of p as a function of r + t and s + t. The probability of sign 
semistabiljty is zero in the large region in the upper right of the figure and 
approaches one near the coordinate axes. The top curve in figure 1 is the frontier 
of stability, the curve that separates the region of zero probability of sign semi­
stability from the region of positive probabilities of sign semistability; this curve 
plots the function x(.) given at the start of §3.1. Figure 2 plots pin the special case 
r = s < 1 as a function of r + t E [0, 1]. Figure 2 may be viewed as a partial cross­
section through the surface in figure 1 along the diagonal r + t = s + t. When 
r =sand r+t > 1,p = 0. Thus forr+t > 1, the derivative ofp is evidently zero, but 
as r+t approaches 1 from below, the derivative of p approaches -ei. The transition 
from the region of positive probability to the region of zero probability of sign 
semistability is abrupt in the sense that the derivative of p changes discontinuously 
as the frontier of stability is crossed. Figure 3 plots a perspective view of the critical 
surface; p = 0 in the flat region in the foreground, where r + t and s + t are large, 
and takes positive values near the coordinate axes in the rear. 

4 

3 

...., 
+ 2 
"-' 

0 2 3 4 

r+t 
FIGURE 1. Contours of the probability of sign semistability or qualitative global asymptotic 

stability in the Lotka-Volterra cascade model, in the limit as the number of species 
approaches infinity, as a function of r + t and s + t. The limiting probability is 0 in the region 
on and above the top curve. The curves below the top one show the contours where the 
limiting probability is 0.25, 0.5 and 0.75, respectively. The limiting probability is 1 along 
the (r+t)-axis and along the (s+t)-axis. Thus small values of r+t and s+t assure a high 
limiting probability of qualitative global asymptotic stability. 
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1.0 t--~-~-~ 

0.8 

p 

0.4 

0 0.4 
r+t 

FIGURE 2. The probability of sign semistability or qualitative global asymptotic stability in the 
Lotka-Volterra cascade model, in the limit as the number of species approaches infinity, as 
a function of r+t, assuming r = 8. Small values of r+t assure a high probability of global 
asymptotic stability. For values of r + t = 8 + t > 1 (not shown in this figure), the probability 
IS zero. 

1 

p 

p 

4 

FIGURE 3. Perspective view of the probability of sign semistability or qualitative global asymp­
totic stability in the Lotka-Volterra cascade model, in the limit as the number of species 
approaches infinity, as a function ofr+t and 8+t. The limiting probability is 0 in the flat 
region in the foreground. Small values of r + t and 8 + t assure a high limiting probability of 
qualitative global asymptotic stability. 
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4. BIOLOGICAL INTERPRETATION 

4.1. Oonnectance, species-link scaling, and stability: May's criterion 

An influential milestone in the history of efforts to link population dynamics 
and trophic structure was the claim by May (1972; 1973, p. 65) that the global 
stability of a linearized dynamic model is determined by limn-•oo n0a2

• Here n is 
the number of species, as usual; the connectance 0 (the fraction of all possible links 
that actually occur) depends on n; and a 2 (the mean squared interaction strength) 
is often assumed to be a constant independent of n. May asserted that if 
limn-.oo n0a2 > 1, then his linear model is unstable with a probability that tends 
to one, while if limn->oo n0a2 < 1, then his linear model is stable with a probability 
that tends to one. 

Without additional hypotheses, May's claim is not mathematically correct for 
his model, though it does hold for related models (Cohen & Newman 1984, 1985 b). 
However, empirically testable consequences follow from the suppositions that a 2 

is a constant independent of n, that limn-.oo n0a2 exists and that real communities 
move to the frontier of stability where this limit equals one. Then, for large n, 
connectance 0 must be inversely proportional to the number of species n, as is 
observed approximately (Rejmanek & Stary 1979; Pimm 1982). If each non-zero 
element or each symmetrically located non-zero pair of elements in the community 
matrix of May's model corresponds to a fixed number of trophic links, then an 
inverse proportionality between 0 and n is equivalent to a direct proportionality 
between the expected number of trophic links and the number of species, as is 
observed approximately (Briand & Cohen 1984). 

In retrospect, May (I 984, p. 7) commented, and we agree: 'It is lunacy to 
imagine that the dynamical behaviour of real communities bears anything but the 
vaguest metaphorical relation to the linearized stability properties of the conven­
tional "community matrix"' found in Levins (1968) and May (1973). We agree, 
even if May's comment applies to models of ours (Cohen & Newman 1984, 1985 b, 
1988) as well as to a model of his. (See also the review by Pimm (1984).) 

Nevertheless, this background raises two interesting questions for the LVCM. 

First, does the LVCM predict an inverse proportionality between connectance and 
the number of species, or equivalently a direct proportionality between the number 
oftrophic links and the number of species? Secondly, does limn~oo nO determine the 
stability of the LVCM? That is, if limn-.oo nO exists in the LVCM, is there a constant 
K (analogous to a- 2 in May's claim) such that the limiting probability that the 
LVCM is q.g.a.s. is positive if limn-.oo nO< K and the limiting probability that the 
LVCM is q.g.a.s. is zero if limn-.oo nO> K? 

We now show that the answer to the first question is yes; to the second, no. In 
the LVCM, there are two plausible ways to count links and two corresponding 
definitions of connectance. We define#{.} to mean the number of elements in the 
set {. }. Let the number of links in D(p), counting bidirectional arrows as one 
link, be L 1 = #{(Pii• Pi;)li # j and IP;il + IPiil > 0} and let 0 1 = L 1 j[n(n-1)j2]. 
Let the number of links in D(p), counting bidirectional arrows as two links, be 
L 2 = #{p;jli # j and IPiil > 0} and let 0 2 = L 2/[n(n-1)]. It is easy to see that 
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lim n01 = r+s+t, ) 
n-+oo 

l
. 

0 
r+s+2t 

1m n 2 = 
2 

, 
n-+oo 

(10) 

lim L1 = r+s+t } 
n-+oo n 2 ' 

lim L 2 = r+s+2t. 
n~oo n 2 

(11) 

Thus according to either definition of connectance, in the LVCM there is an inverse 
proportionality between connectance and the number of species, and a direct 
proportionality between the number of links and the number of species, for very 
large numbers of species. These conclusions are built into the LVCM by the assump­
tion that the arrows of types (i), (ii) and (iii) in the interaction digraph occur with 
a probability inversely proportional to the number n of species, because the 
number of possible links in the definitions of connectance 0 1 and 0 2 is asymp­
totically proportional to n 2

• 

A single one of the limits in (10) does not suffice to determine the limiting 
probability of qualitative global asymptotic stability in the LVCM. For example, 
from the connectance 0 1 , suppose r+s+t = 4. If r = 4 whiles= t = 0, then (4) 
holds, and the limiting probability is one that the LVCM is q.g.a.s. But if r = s = 1 
and t = 2 (so that r+s+t = 4 still holds), then (8) holds (since s+t > 1): x(r+t)), 
so the limiting probability is zero that the LVCM is q.g.a.s. Similarly, from the 
connectance 0 2 , suppose (r+s+2t)j2 = 2. If r = 4 whiles= t = 0, then (4) holds, 
and the limiting probability is one that the LVCM is q.g.a.s. But if r = s = t = 1 (so 
that still (r+s+2t)/2 = 2), then (8) holds (because s+t > 1): x(r+t)), so the 
limiting probability is zero that the LVCM is q.g.a.s. 

The LVCM shows that an inverse proportionality between connectance and the 
number of species, and a direct proportionality between the number of links and 
the number of species, need have no simple connection with the qualitative global 
asymptotic stability or instability of population dynamics. Because the LVCM 

distinguishes four dynamic effects of a trophic link, multiple parameters (r, s, t) are 
required to describe the relative frequencies of these effects. The phase transition 
in the LVCM model occurs across a critical surface in parameter-space, rather than 
at a critical value of a single parameter, as claimed in May's (1972) model. 

4.2. Reconciliation with the cascade model 

According to the cascade model, the probability of a feeding link from any 
trophic species ito any trophic speciesj with i < j is approximately 4/n. According 
to the LVCM, the probability of an arrow (in either direction or both) between any 
two distinct vertices in the interaction digraph D(pn) ofpn (counting bidirectional 
arrows as one, since a bidirectional arrow represents a single trophic link) is 
(r+s+t)jn. If the trophic species of the cascade model may be identified with the 
species of the LVCM, then consistency between the cascade model and the LVCM 

requires that 
r+s+t ~ 4, (12) 
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with equality unless some predator-prey links affect the dynamics of neither 
predator nor prey populations [the event (iv) in §2.3]. On the assumption that at 
least some observed ecological communities have a positive probability of being 
q.g.a.s., we now consider how (12) can be reconciled with the hypotheses (3-5) of 
the theorem, part (i). 

If (3) holds, then r + 8 + 2t ~ 2. Therefore at least half of observed trophic links 
must be without any dynamic consequences. 

If (4) holds, the maximal possible value oft occurs when 8 = 0. In this case, the 
maximal value oft satisfies t = x(r+t). Assuming equality in (12) and 8 = 0 gives 
r+t = 4, hence t = x(4). Numerical solution of this equation gives the approximate 
solution t = 0.08. Therefore r = 4-t = 3.92 approximately. The overwhelming 
majority of trophic links hurt the prey population but have no dynamic impact 
on the predator population. 

If (5) holds, a symmetrical argument with r and 8 exchanged leads to the 
symmetrical conclusion that the overwhelming majority of trophic links help the 
predator population but have no dynamic impact on the prey population. Both of 
the last two conclusions follow from assuming equality in (12), and need not follow 
if many trophic links are without any dynamic consequences. 

Mathematical analysis alone is insufficient to determine which, if any, of the 
conditions (3-5) is closest to reality, assuming that a real ecological community 
has a positive probability of being q.g.a.s. Empirical studies are required to 
discriminate among the possibilities. 

4.3. Simplified biological example: a lake food web 

A highly simplified example illustrates the possibilities for using data to test the 
LVCM and for using the LVCM to interpret data. The food web shown in figure 4a 
is based on studies of lakes in the north-central United States (Carpenter 1988; 

(a) (b) 
number in the food web interaction 
cascade model directed graph directed graph 

4 bass. bass 

i iJ, 

.3 minnows minnows 

i J, 

2 Daphnia Daphnia 

i J, 

1 algae algae 

FIGURE 4. Schematic food web (a) and interaction digraph (b) of a lake in the north-central 
United States, based on drastic simplification of the reports of Carpenter (1988), Carpenter 
& Kitchell (1987), and Carpenter et al. (1985). In (a), arrows show the direction of flow of 
food from prey to predator. In (b), arrows show the direction of influence of one population 
on the per capita growth rate of the other population. Other interaction-directed graphs are 
equally plausible descriptions of this lake; see text for further details. 
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Carpenter & Kitchell 1987; Carpenter et al. 1985; and their references), but makes 
no pretence of doing justice to the complexity of the web as described in the 
original reports. In this strictly illustrative caricature of a web, large-mouth bass 
represent piscivores; minnows represent zooplanktivores (including invertebrate 
zooplanktivores such as Chaoborus); Daphnia represent zooplankton (including 
rotifers); and algae represent the aggregated edible phytoplankton. This simpli­
fication omits phosphorus altogether. 

Carpenter et al. (1985, p. 636) write: 'An increase in piscivore density cascades 
through the food web in the following way. Vertebrate zooplanktivores are reduced 
while planktivory by invertebrates increases, shifting the herbivorous zooplankton 
community toward larger zooplankters and higher biomass. Chlorophyll a con­
centration declines.' 

Based on this verbal description, the equations of Carpenter (I 988, pp. 122-123), 
and the schematic food web of Carpenter & Kitchell (1987, p. 419), we infer that 
the signs of the interaction coefficients in a Lotka-Volterra model for the popu­
lations of bass (abbreviation: B), minnows (M), Daphnia (D) and algae (A) are: 

A D 

Ar -1 
sign (p) = D 0 -1 

M 0 0 
B 0 0 

M B 

0 
-1 
-1 

+1 
J) 
-1 

(13) 

The minnows are assumed to have a positive effect on the per capita population 
growth rate of the bass (sign (PBM) = + 1) because no other food source for pisci­
vores is shown in the web of Carpenter & Kitchell (1987, p. 419). The bass are 
assumed to have a negative effect on the per capita population growth rate of the 
minnows (sign (PMB) = -1) because, in the model of Carpenter (1988, p. 123), 'the 
survivorships of the small fishes decline linearly as piscivore biomass increases.' 
The remaining off-diagonal signs are derived or guessed similarly. The diagonal 
elements Pii are assumed to be negative in this illustration because, even in the 
absence of limits on population growth set· by food supplies or predat-ors, at 
sufficiently high equilibrium densities intraspecific crowding and interference com­
petition seem likely to intervene. The interaction digraph D(p) derived from (13) 
is shown in figure 4b. 

As Stephen R. Carpenter (personal communication, 30 July 1989) pointed out, 
'several sign configurations for the matrix p may be defensible .... [Other] equally 
reasonable configurations would be: (i) all predators are helped by consuming prey, 
so all subdiagonals (PBM• PMD• PnA) are positive. (ii) All compartments are regulated 
mainly by their predators, and are satiated by available food. Available food for 
a compartment is the compartment it eats plus 'alternate' foods not represented 
in the model. For example, Daphnia eat detritus and algae; minnows eat peri­
phyton and zooplankton; bass eat benthos and minnows.' These alternative con­
figurations would change the conclusions of the following illustrative analysis 
based on (13). More seriously, according to Carpenter (personal communication, 30 



Food-web structure and dynamics 621 

July 1989), 'the dynamics of (1) do not resemble those of lake communities.' We 
emphasize that this example is illustrative. 

The sign matrix (13) and the interaction digraph satisfy the criteria of Quirk & 
Ruppert (1965) for sign semistability. (The criteria for sign semistability, but not 
the hypotheses of Theorem A, are satisfied even if some or all of the diagonal signs 
in (13) are changed from -1 to 0.) Whatever may be the numerical values of the 
interaction coefficients (Pii), so long as they have the sign pattern ( 13), the solutions 
of the Lotka-Volterra equations will be q.g.a.s., according to Theorem A. We now 
investigate whether arbitrarily large Lotka-Volterra systems with the same stat­
istical properties will have a positive probability of being q.g.a.s. 

The parameters of the LVCM may be estimated by simple counting. We denote 
the statistical estimates, based on data, of the model's parameters r, s and t by f, 
§, and i, respectively. The number of species is n = 4. There are six pairs of off­
diagonal elements. Of these, two correspond to 'down' arrows ({pDM < 0, PMn = 0} 
and {PAD< 0, PnA = 0}) so fjn = i or f = i· Similarly, there are no pairs of off­
diagonal elements corresponding to 'up' arrows so § = 0. There is one pair of off­
diagonal elements corresponding to a bidirectional arrow ({PMB < 0, PBM > 0}) so 
tjn = lori = j. Thus f+i = 2 > 1 and s+i = O+j > x(r+t) = x(2) = 0.4064. Ifthe 
estimates of r, sand t did not change as n increased without limit, then (8) would 
apply, and the LVCM with these parameter values would have a zero limiting 
probability of being q.g.a.s. Obviously, parameter estimates based on n = 4 have 
high variance and do not provide much information about what would actually 
happen in the limit of large n. 

Suppose, still for illustration, that r =!and s = 0. Biologically, we are supposing 
that the trophic links arise only when (i) the predator hurts the prey or when (iii) 
the predator hurts the prey and the prey helps the predator, but not when (ii) the 
prey helps the predator but is not itself hurt. Then the critical value oft (which 
is the probability of bidirectional effects (iii)), that is, the value oft that separates 
the region of possible limiting stability from the region of instability is, according 
to (4) and (8), the solution oft= x(!+ t). Numerically we find t = 0.48 approxi­
mately. Estimating c = 2Lj(n-1) by formula (6.9) of Cohen & Newman (1985 a, 
p. 435), where Lis the number of trophic links in the web (L = 3 in figure 4a) gives 
c = 2 (lower than the typical value of 4; Cohen 1990). Assuming, for the sake of 
discussion, that the web is in the region of possible stability and therefore t < 0.48, 
it follows that the probability of predation without dynamic effects 

[c-(r+s+t)]jn, 

is at least [2-(!+0.48)]/4 = 0.05 approximately. Such predictions could be 
checked against observations. 

5. CONCLUSIONS AND PROSPECTS 

5.1. Synopsis of results 

A globally asymptotically stable (g.a.s.) Lotka-Volterra model approaches a 
positive limit independent of the initial conditions. For some, but by no means all, 
ecological communities, this property may usefully formalize what is meant by 
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ecological stability (Pimm 1984). A Lotka-Volterra model is qualitatively g.a.s. 
(q.g.a.s.) if all Lotka-Volterra models with interspecific and intraspecific inter­
action parameters that share the sign pattern of the given model are also g.a.s. 

The Lotka-Volterra cascade model (LVCM) assumes that the effects of any one 
species on the per capita growth rate of any other (the dynamic interactions) are 
present or absent according to a stochastic process like the one that determines 
whether any one species eats or is eaten by any other (the trophic interactions). 
Three parameters (r, 8, t) determine the dynamic consequences of each predator­
prey link or feeding relation that would be recorded in a food web. If n is the 
number of species, a trophic link hurts the prey but does not help the predator 
with probability rjn, helps the predator but does not hurt the prey with prob­
ability 8/n, and helps the predator and hurts the prey with probability tjn. Here 
'helps' means 'increases the population's per capita growth rate' and 'hurts' 
means 'decreases the population's per capita growth rate.' 

Although we have derived the Lotka-Volterra cascade model from the cascade 
model by partitioning food web links according to their dynamic effects (or lack 
of effects), the LVCM can also be viewed as a free-standing model in its own right, 
independent of any derivation from a food web model. 

Under the assumptions of the Lotka-Volterra cascade model, we have shown 
that, as the number of species becomes arbitrarily large, the probability of pro­
ducing a q.g.a.s. Lotka-Volterra model approaches a limiting probability, which 
depends on the model's three parameters. A critical surface divides the parameter 
space {(r, 8, t)ir ~ 0, 8 ~ 0, t ~ 0} of the LVCM into two regions. In the region of 
possible stability, which lies below the critical surface, as the number of species 
becomes large, the limiting probability that the LVCM is q.g.a.s. is positive. Except 
when r+ t = 0 or 8 + t = 0, this limiting probability is strictly less than one, so that 
there is a positive limiting probability that not every Lotka-Volterra model with 
the given pattern of interaction parameters will be g.a.s., even though each species 
is assumed to have negative density-dependence (Pii < 0, i = 1, ... , n). Above or on 
the critical surface, the limiting probability that the LVCM is q.g.a.s is zero. 

The critical surface between the region of possible stability and the region of 
instability reveals the trade-offs (3-9) among the three key probabilities of the 
LVCM. The higher the probability (tjn) of dynamic links that both help the predator 
and hurt the prey, the lower must be the probabilities of the other kinds of link. 
For a fixed probability of bidirectional dynamic links that both help the predator 
and hurt the prey, there is a trade-off between the probability (rjn) of dynamic 
links that hurt the growth of the prey only and the probability (8/n) of dynamic 
links that help the growth of the consumer only. As either probability increases 
from zero, the maximum possible value of the other that is consistent with a 
positive probability of being q.g.a.s. declines. 

The LVCM sheds new light on May's ( 1972, 1973) criterion for the asymptotic 
stability of a linearized model of community dynamics. The LVCM implies an 
inverse proportionality between connectance and the number of species, and a 
direct proportionality between the number of links and the number of species, but 
the limit of the product of the number of species times connectance does not 
determine whether the limiting probability of being q.g.a.s. is zero or positive. 



Food-web structure and dynamics 623 

Thus the scaling of links with species needs have no simple connection with the 
qualitative global asymptotic stability or instability of population dynamics. 

5.2. Mathematical prospect 

The theory of the qualitative stability oflinear and nonlinear systems has made 
great progress since the pioneering paper of Quirk & Ruppert (1965). Jeffries et al. 
(1987) and Jeffries (1988b) review and extend this progress. The qualitative 
stability of linear systems is closely connected to the qualitative stability of 
Lotka-Volterra systems (as demonstrated in slightly different ways by Bone et al. 
(1988, their Theorem 7.4) and Redheffer & Zhou (1989)). An open scientific 
opportunity is to exploit recent discoveries about the qualitative stability oflinear 
systems (such as those in Jeffries et al. ( 1987)) and of nonlinear systems (such as 
those of Jeffries (1988a) and Redheffer (1989)) to give new information about 
stochastic families of nonlinear dynamical systems like the Lotka-Volterra cas­
cade model. 

5.3. Biological prospect 

Food webs alone are not enough to predict dynamic behaviour. Field ecologists 
need to determine, by experiments or observations, at least the matrix of the signs 
of the population dynamical effects of feeding relations, as illustrated by (13). 
When species j eats species i, what are the consequences for the population growth 
rates of species j and of species i? Do the interaction digraphs of most real 
ecological communities fall in the region of (r, s, t)-space where, according to the 
Lotka-Volterra cascade model, they have a positive limiting probability of being 
qualitatively globally asymptotically stable? 

Information about qualitative global asymptotic stability could assist the 
design of managed ecological systems such as closed ecological life support systems 
for space travel, nature reserves, and complex chemostats, microcosms and meso­
cosms. Qualitatively globally asymptotically stable systems may be desirable for 
practical and aesthetic reasons, because perturbations that do not change the signs 
of the interactions between species will not alter the existence of a long-run 
globally stable equilibrium. If future empirical studies confirm its usefulness, the 
LVCM would suggest designs that maximize (subject to some constraints) the 
probability of being q.g.a.s., asymptotically for large numbers of species; those are 
designs that satisfy the hypotheses of §3.1 (i) with large values of p. The Lotka­
Volterra cascade model would suggest avoiding ecological designs that have little 
chance of being q.g.a.s., asymptotically for large numbers of species; those are 
designs that satisfy the hypotheses of §3.1 (ii). 

Apart from its potential uses in ecological design, the LVCM warns of the possi­
bility that gradual, smooth changes in the probabilities r, s, and t of various kinds 
of dynamic interactions related to feeding can have abrupt effects on the long-run 
probability of qualitative global stability or instability of ecological communities. 

APPENDIX 1: EvALUATION OF p 

Under the hypotheses (4) and (5) Luczak & Cohen (1990) obtained the following 
expression for A, the asymptotic mean number of cycles (i.e., directed cycles of 
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length;?: 3) in the digraph D(Pnl (denoted Dn(r, s, t) in Luczak & Cohen (1990)) as 
n-+ oo: oo 1 k-1 

i\ = k~a k! u~1 C(k, u) (r+t)k-u(s+W. (A 1) 

Here C(k, u) is the number of directed cycles of length k that pass through each 
vertex of the set {1, ... , k} with exactly u 'up arrows', i.e. arrows that go from a 
smaller vertex i to a larger vertex j > i. In this Appendix, we will obtain a simple 
closed-form expression for the infinite series in (A 1) when (r+t)(s+t) > 0. 

We define an integral operator G (acting on functions u(x) in the Hilbert space 
£2([0, 1], dx)) by 

G J1 {a=r+t,x>y, ( u) (x) = g(x, y) u(y)dy, g(x, y) = b _ 
o =s+t,x<y. 

(A2) 

For k ;?: 2, Gk is trace class and its trace may be evaluated as 

tr (Gk) = J: ... J: g(x1 , x2 ) g(x2 , x3 ) .•• g(xk_1 , xk) g(xk, x1 ) dx1 ••• dxk 

J ... J g(x,1 , x,2 ) ••• g(x,k, x,1 ) dx1 ••• dxk =~ 
1T 

(A3) 

where the first two sums are over all permutations 7T of {1, . .. , k} and u(7T) denotes 
the number of up arrows of 7T, i.e. the number of pairs (7Ti, 7T(i+ 1)), i = 1, ... , k, 
such that 7Ti < 7T(i+ 1) (here 7T(k+ 1) = 7T1 by definition). We shall see below that G 
has a complete set of eigenfunctions lfn: n E Z} with eigenvalues {i\n: n E Z}; it then 
follows from (A 1), (A 3) and the identity, tr (G2) = ab, that 

p = e-A = eab12 exp (- :f:! tr (Gk)) 
k~2 k 

= eab/2exp 

n 

n 
(A4) 

where n runs over the integers Z in the summations and products above. Absolute 
convergence of the infinite series and products appearing in (A 4) is guaranteed by 
(4) and (5). 

To find the eigenvalues and eigenfunctions, we take the eigenvalue equation, 

/if(x) = (Gj) (x) =a J:f(y) dy+b J>(y) dy, (A5) 
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differentiate it and evaluate it at x = 0 and 1. This yields 

AJ(x) = (a-b)j(x), 

/if(O) = b J:f(y)dy, /if(1) =a J>(y)dy. 
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(A6) 

(A 7) 

When a = b, the kernel g(x, y) in (A 2) is the constant a; hence one eigenfunction 
is u 0 (x) = 1 with eigenvalue a and the orthogonal complement of u 0 is an eigenspace 
of eigenvalue 0. Hence for a = b, we have 

(A8) 

Henceforth, we assume that a-=/= b. In this case, (A 6)-(A 7) yield 

f( x) = e<a-b)xf;>. ~ =j(1) = e<a-b)f;>. 

' b j(O) ' 
(A9) 

where we have chosen the normalization j(O) = 1. Then the eigenvalues An are 

given by a-b a-b a-b . 
A0 =ln(ajb)E(0, co), --x:-=--x;;-+I2nn (A10) 

and the eigenfunctions are, of course, 

(A 11) 

Because the set {ei2mrx :nEZ} is complete in L 2 ([0, 1), dx), it follows that so is 
Un(x) :nEZ}. Thus 

~(G)= fle;.n(1-An) = flewfwn(1-wfwn) = h(w), (A 12) 
n n 

where, again, the products are over all nEZ, with 

wn = 1n(ajb)+i2nn, w =a-b. (A 13) 

The function h is an entire function of exponential order 1 with (simple) 
zeros exactly at the wn- Because this is also the case for the function 
sinh([w-ln (ajb)]/2), it follows that 

h(w) = Kecw sinh (w-l~ (ajb)) (A 14) 

for some constants K and c, which must be chosen so that h given by (A 14) has 
h(O) = 1 and h'(O) = 0, as implied by (A 12). We thus obtain 

x =[sinh( -In ~afb))Tl = ~(~~t, (A 15) 

c = ! coth (!In~) = ! a+ b . 
2 2 b 2a-b 

(A 16) 

Inserting these expressions into (A 14), setting w =a-band doing some straight-
forward algebra, we obtain a eb _ b ea 

~(G)= a-b . (A 17) 
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Thus, with a= r+t and b = s+t, 

(A 18) 

The expression in (A 18) can be shown to converge to that in (A 8) when b-+a. 
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