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When the diets of different organisms O\ •;rlap in natural communities, the 
possibility arises that the different consumers may compete for food (Grant 1986) 
or may interact mutualistically (Kawanabe 1986, 1987). Competitive or mutual
istic interactions over food may influence the evolution of the competing or 
cooperating consumers. Hence, overlaps in the diets of different organisms are of 
both ecological and evolutionary interest. 

The diets of organisms, and the relations among the diets of different kinds of 
organisms, vary greatly from one ecological community to another. The minimum 
number of variables required to describe or represent the overlaps among con
sumers' diets has been called the dimension of trophic-niche space (Cohen 1978). 
A priori, the dimension of trophic-niche space would be expected to vary among 
communities. If, in a particular community, this dimension were one, then inter
vals of some single variable, perhaps food size, would be necessary and sufficient 
to describe when the diet of one species overlaps that of another. If the dimension 
were greater than one, then intervals of no single variable, such as food size alone, 
would suffice to describe when the diets of consumers overlap. That is, if the 
dimension exceeded one, then it would be necessary to consider at least two 
variables, perhaps food size and time of day, to account for or describe the 
presence or absence of overlaps in the diets of different organisms. The dimension 
of trophic-niche space is one measure of the complexity of the dietary relations 
among consumers in a given community. 

This paper reports new theoretical and empirical information about the overlaps 
among the diets of organisms in natural communities. On the basis of mathemat
ical calculations, computer simulations, and new analyses of 113 community food 
webs, we show that, in nature and in theory, the larger the number of trophic 
species in a web, the larger the probability that the dimension of a community's 
trophic-niche space exceeds one. Equivalently, the larger the number of species in 
a web, the smaller the probability that it is an interval web. 
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In addition to intervality (formally defined below), the overlaps among the diets 
or among the consumers of organisms in natural communities may possess an
other property (also defined below) called triangulation (Sugihara 1982). Again on 
the basis of mathematic'al calculations, computer simulations, and new analyses of 
113 community food webs, we show that the larger the number of trophic species 
in a web, the smaller the probability that either the overlap graph or the resource 
graph of the web is triangulated. The mathematical calculations and computer 
simulations use a stochastic model of community food webs called the cascade 
model (Cohen and Newman 1985). 

The remainder of this introduction gives further details on the background of 
this work. The terms used in this paper are defined, including community food 
web, trophic species, trophic link, consumer or niche overlap graph, resource or 
common-enemy graph, interval graph, interval web, link-species scaling law, and 
triangulated web. None of these terms is new; readers familiar with theoretical 
developments in food webs over the last decade could jump directly to the section 
on intervality. There, the data and theory on the frequency of intervality are 
described and compared. The description of theoretical results is meant to be 
intelligible to those who are willing to deal with quantitative concepts but are not 
interested in the details of proofs, which are provided in the Appendix. The 
following section compares the observed and predicted frequency of webs with 
triangulated overlap graphs and triangulated resource graphs. The final section 
summarizes the results and relates them to previous work. In the Appendix, we 
analyze mathematically the cascade model's implications for overlap and resource 
graphs. 

Background 

The ecological niche of a species has been defined as "a region of hyperspace, 
every point of which corresponds to a set of values of the variables permitting the 
organism to exist" (Hutchinson 1965, p. 32). In Hutchinson's usag~, and here, 
dimension refers to the minimum number of variables needed to describe the 
niche and should not be confused with the physical dimension (e.g., flat, or two
dimensional, vs. solid, or three-dimensional) of a habitat (Silvert 1984, pp. 158-
161; Briand and Cohen 1987). Hutchinson's definition raises several questions. 
What is the minimum number of variables required to describe the factors that 
influence species in a community? Is the dimension the same or different in differ
ent communities? 

Food webs offer information about the number of trophic dimensions in the 
niches of species in a community (Cohen 1977, 1978). If two species eat a common 
food species, then their niches must overlap along the trophic dimensions; other
wise, the two consumers would not have access to the same food. If the dietary 
overlaps among consumers in a community can be described by the overlaps 
among intervals of a single variable, the web of the community is said to be an 
interval web and to have the property of intervality. If intervals of more than one 
variable are required to describe the dietary overlaps among consumers in a 
community, the web is said to be a non-interval web. 

In the first collection of webs assembled to investigate the trophic dimension of 
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ecological niches, 22 or 23 of 30 webs were found to be interval (Cohen 1977). The 
exact number (22 or 23) depended on how the data in the web were edited. The 
observed numbers of interval webs exceeded markedly the numbers of interval 
webs predicted by seven simple models of food webs (Cohen 1978; Cohen et al. 
1979). These findings provoked further analyses of the available data (see, e.g., 
MacDonald 1979; Critchlow and Stearns 1982; Pimm 1982; Sugihara 1982; Yodzis 
1982, 1984). We discuss these analyses later. 

Two recent changes now make it opportune to reexamine the question of inter·· 
vality. First, more data are available. Second, a better food-web model is avail· 
able, and can be analyzed. 

As for data, the number of webs from the original study (Cohen 1977) is small. 
Sugihara analyzed Briand's collection of 40 webs (including 13 of those assembled 
in Cohen 1978) and reached conclusions consistent with those of the first study 
(Cohen 1977). Briand has now assembled and edited 113 community food webs 
(published in full in Cohen et a!. 1990) and has kindly informed us which of these 
113 webs show intervality. Other aspects of these webs have been analyzed 
elsewhere (Cohen et a!. 1986; Briand and Cohen 1987). 

The earlier models considered (Cohen 1977, 1978) were constructed ad hoc to 
match the mean number of dietary overlaps. Some of those models also matched 
the variance of the number of dietary overlaps. Recently, a better food-web 
model, the cascade model, has been discovered. The term "cascade" used here 
refers to a specific formal model (proposed in Cohen and Newman 1985) described 
below; it should not be confused with other uses of the term, for example, by 
Carpenter eta!. (1985). The cascade model describes qualitatively and quantita
tively the numbers of top, intermediate, and basal trophic species and the num
bers of basal-intermediate, basal-top, intermediate-intermediate, and interme
diate-top trophic links, when all food webs are considered together (Cohen and 
Newman 1985) or individually (Cohen et a!. 1985). The cascade model also 
describes the numbers of food chains of each length (Cohen et a!. 1986) and 
explains Hutchinson's (1959) observation that food chains are typically much 
shorter than the number of species in a web (Newman and Cohen 1986). It is 
natural to ask (as in Cohen and Newman 1985, p. 460; Cohen et a!. 1986, p. 350) 
whether the cascade model can account for the observed frequencies of interval·· 
ity and triangulation. (For further background on food webs, see Pimm 1982; 
DeAngelis et a!. 1983; MacDonald 1983.) 

Terminology 

A food web is a guide to who eats whom in a community. More formally, a food 
web is a set of kinds of organisms and a relation that shows which kinds of 
organisms, if any, each kind of organism in the set eats. A community food web is 
a food web obtained by picking, within a habitat or set of habitats, a set of kinds of 
organisms on the basis of taxonomy, size, location, or other criteria, without prior 
regard to the eating relations amortg the organisms (Cohen 1978, pp. 20-21). 
Hereafter, "web" means "community food web." 

Unless otherwise specified, a "species" here means a trophic species, that is, a 
class of organisms that consume the same kinds of organisms and are consumed 
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by the same kinds of organisms (Sugihara 1982, p. 19; Briand and Cohen 1984). A 
trophic species may result from lumping together kinds of organisms that were 
identified as separate by a reporting ecologist but were recorded as having the 
same sets of prey and the same sets of consumers. A trophic species bears no 
necessary relationship to a biological species. Yodzis (1982, p. 568) introduced the 
term "trophic species," but the exact sense in which it is used here is that of 
Sugihara's (1982) "trophic equivalence" or Briand and Cohen's (1984) "trophic 
species." A predator or consumer is a species that eats at least one species in the 
web. A prey is a species that is eaten by at least one species in the web. 

By a link, we mean any reported feeding or trophic relation between two species 
in a web. Observers use various criteria to decide how much feeding justifies the. 
reporting of a link and how much failure to observe feeding justifies reporting the 
absence of a link (Cohen and Briand 1984). 

A web may be represented in two equivalent ways: by a directed graph (or 
digraph) (Harary 1961; Gallopfn 1972) or by a predation matrix. A good drawing of 
the digraph of a web is easier to comprehend visually, but a predation matrix is 
less prone to error and facilitates the communication of quantitative information 
about the web. 

In the representation of a web by a digraph, the vertices of the digraph corre
spond to the set of species in the web. We sometimes use the words "species" 
and "vertex" interchangeably. There is an arrow, directed edge, arc, or link from 
vertex ito vertexj in the digraph if and only if speciesj feeds on species i, that is, 
if food flows from species ito speciesj. Though often present in nature, cannibal
ism (i.e., a link from a vertex to itself) was systematically excluded from our data 
because of the uneven quality of the reporting of cannibalism (Cohen and New
man 1985). Sometimes we use "web" to mean a digraph that represents a web. 

To describe the representation of a web by a predation matrix, let S denote the 
total number of species (vertices) and L the total number of links. The predation 
matrix A of a web (or of any digraph) is an S x S matrix in which the-element au in 
row i and column j equals one if species i is eaten by species j and equals zero 
if species i is not eaten by species j. The matrix A has L nonzero elements and 
S2 

- L elements equal to zero. 
Instead of using an entry of one to show thatj eats i, some ecologists record an 

estimate of the quantity of i thatj eats in row i and columnj of a predation matrix. 
Here, we always assume that nonzero matrix elements equal one. 

The dietary overlaps of the consumers in a web are described by an overlap 
graph, short for "trophic-niche overlap graph," which is constructed as follows 
(Cohen 1977). Given the web W (whether W is represented as a digraph or a preda
tion matrix), the vertices of the overlap graph G(W) are the same as those of W, 
that is, one vertex for each species in the community. In G(W), there is an 
undirected edge between distinct vertices i and j (representing an overlap be
tween the diets of species i and species j) if and only if there exists some third 
vertex k such that, in W, i eats k andj eats k. Thus, two vertices are joined by an 
edge in G(W) if there are arrows in Wfrom k to i and from k toj, for at least one k, 
or if at least one row of A has elements equal to one in both column i and columnj. 
The overlap graph of a web was originally called the competition graph (Cohen 
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1968), a name still used by graph theorists, and has also been called the consumer 
graph (MacDonald 1983, p. 32). 

The resource graph, in the terminology of Sugihara (1982), describes which 
prey share a common predator. The vertices of the resource graph H(W) are the 
same as those of the web W. In H(W), there is an undirected edge between distinct 
vertices i and} if and only if there exists some third vertex k such that, in W, keats 
i and keats}. Thus, two vertices are joined by an edge in H(W) if there are arrows 
in W from ito k and from} to k, for at least one k, or if at least one column of A has 
elements equal to one in both row i and row}. 

The resource graph of a web W is the dual of the overlap graph of W, in the 
sense that the resource graph equals the overlap graph of the web W* obtained 
from W by reversing the direction of every link in W; that is, H(W) = G(W*). The 
resource graph was simultaneously and independently invented by Sugihara 
(1982) and by Lundgren and Maybee (1985, in a paper prepared for a 1982 
conference), who called it the "common enemy" graph. Independently, and 
before either_of these graph-theoretic constructions, Holt (1977) introduced the 
notion that two species are in "apparent competition" if there is a consumer that 
preys on both of them and if a change in the abundance of one species induces a 
numerical response in the other. The resource graph presents necessary but not 
sufficient conditions for the relation of apparent competition in a community. 

Many other graphs can be constructed from a web (Sugihara 1982; Roberts, in 
press; C. Cable, K. Jones, J. Lundgren, and S. Seager, MS). We discuss primarily 
the overlap graph and, to a lesser extent, the resource graph. 

A graph (with undirected edges) is said to be an interval graph whenever, for 
each vertex of the graph, there exists an open interval of the real line such that 
there is an edge between any two vertices if and only if the two corresponding 
intervals intersect, that is, overlap. In an interval graph, it is possible to find an 
interval of the real line corresponding to each vertex of the graph, and the 
connections among the vertices are exactly represented by the overlaps among 
the intervals of the line. 

A web W is said to be interval if its overlap graph G(W) is an interval graph 
(Cohen 1977, 1978). In an interval web, the dimension of trophic-niche space 
could be one, because the range of variation in the diet of each consumer could be 
identified with an interval of the real line (e.g., the range of sizes of food eaten by a 
consumer), and overlaps among diets of consumers in the web would correspond 
to overlaps of the intervals on the real line. Lumping trophically equivalent kinds 
of organisms into trophic species has no effect on whether a web is interval: an 
unlumped web is interval if and only if the corresponding lumped web is interval. 

The link-species scaling law is the name given (in Cohen and Briand 1984) to the 
empirical observation that in a scatterplot of species and links, with one data point 
for each web and species on the abscissa, the points are reasonably well described 
by a straight line passing through the origin and having a slope of nearly 2. Thus, 
independent of the scale (or number of species) of a web, the ratio of links to 
species is about 2. This observation, originally based on 62 webs, was subse
quently confirmed (Cohen et al. 1986) with the 113 webs used here. 

Substantively equivalent but superficially different forms of the link-species 
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scaling law were discovered at least twice before it was named (Cohen and Briand 
1984). First, MacDonald (1979, p. 586) showed that the ratio of links to species 
(using the species as originally reported, not using trophic species) was 1.88 ± 
0.27 (sample mean ± fractional root-mean-square deviation) for 30 webs (as
sembled in Cohen 1978) and that community webs and sink webs did not have 
significantly different ratios (for the definition of a sink web, see Cohen 1978; 
MacDonald 1979). Second, Rejmanek and Stary (1979) plotted LI[S(S - 1)/2], a 
quantity they called the connectance, as a function of S for plant-insect-parasitoid 
webs, one data point for each web. They found that the points fell around a 
hyperbolic curve of the form 4/S. This is equivalent (as pointed out in Cohen and 
Briand 1984), when (S - 1)/S approximates one, to L = 2S. This hyperbolic form 
of the link-species scaling law has been confirmed by Pimm (1982) and Auerbach 
(1984). 

INTERV ALITY 

Data 

The sources and principal characteristics of the 113 webs analyzed here have 
been presented already (Cohen et al. 1986; Briand and Cohen 1987). These webs 
come from 89 distinct published studies and 2 unpublished studies. They cover 
most of the world's biomes. There are 55 continental (23 terrestrial and 32 
aquatic), 45 coastal, and 13 oceanic webs, ranging from arctic to antarctic regions. 
Only webs partially defined, presented too sketchily, or based on information 
explicitly drawn from different locations were excluded from this collection. The 
webs were not screened by rejection of outliers or by any other statistical proce
dure based on the data. Only obvious biological errors were amended in editing 
the data. 

A few minor corrections of previously published numbers of species and links 
are required. The original numbers of species and links for web number 37 (from 
Cohen et al. 1986) were corrected in a later paper (Briand and Cohen 1987); the 
corrected values are used here. In webs numbered 6, 7, 24, 45, 51, 65, and 93, the 
possibility oflumping two consumers into a single trophic species was overlooked 
(Briand and Cohen 1987). Hence, the correct number of trophic species for these 
webs is one less than the number originally given, and the correct number of 
trophic links is, respectively, 2, 3, 2, 3, 3, 5, and 7 fewer than published (Briand 
and Cohen 1987). In calculating these values of species and links in the webs taken 
from Cohen (1978), matrix elements reported as -1 are replaced by 1 and matrix 
elements reported as -2 are replaced by 0. 

According to F. Briand (pers. comm.), all but 16 of the 113 webs have interval 
overlap graphs. The non-interval webs have serial numbers 3, 6, 18, 20, 22, 26, 27, 
33, 39, 41, 60, 67, 98, 99, 100, and 106. We have not repeated his calculation. 

The proportion of all webs that are interval webs is 97/113 = 0.86. This 
proportion is higher than the proportion of interval webs among the community 
webs in the original collection (Cohen·1977), namely, 9/14 = 0.64 or 8/14 = 0.57, 
depending on the version of the webs used. Using the 40 webs collected by Briand 
(1983) (which included 13 of the community webs in Cohen 1978), Sugihara (1982, 
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TABLE I 

OBSERVED RELATIVE FREQUENCY OF INTERVAL OvERLAP GRAPHS AND OF TRIANGULATED OVERLAP AND 

RESOURCE GRAPHS IN I I3 COMMUNITY FOOD WEBS AS A FUNCTION OF THE NUMBER OF SPECIES 

No. oF 
SPECIES 

3-14 
15-24 
25-34 
35-48 

3-11 
11-14 
15-21 
22-48 

No. oF 
WEBS 

FRACTION OF 

WEBS THAT 

ARE INTERVAL 

FRACTION OF GRAPHS 

THAT ARE TRIANGULATED 

Overlap Resource 

SPECIES DIVIDED INTO FOUR INTERVALS OF NEARLY EQUAL LENGTH 

56 
40 
15 
2 

I 
0.775 
0.667 
0 

I 
0.975 
0.800 
0 

SPECIES DIVIDED INTO FOUR INTERVALS OF NEARLY EQUAL FREQUENCY 

28 
28 
28 
29 

I 
I 
0.857 
0.586 

I 
I 
I 
0.793 

I 
0.875 
0.800 
0.500 

0.929 
0.759 

NoTE.-Presence or absence of intervality was computed by F. Briand. We computed the presence 
or absence of triangulation in the overlap and resource graphs from predation matrices furnished by 
Briand. 

chap. 4) identified 73 connected components with more than one species and 
found that only IO of these 73 had overlap graphs that were not interval. The 
proportion of interval webs in Sugihara's collection of components is 63/73 = 

0.86. The 40 webs of Briand (1983) are among the II3 webs analyzed here, and a 
web is interval if and only if its components are interval; thus, Sugihara's propor
tion of intervality and the proportion just found here are not independent. How
ever, excluding the first 40 webs of Briand's collection (those in Briand I983 and 
Sugihara I982), only 7 of the remaining 73 (113 - 40) complete webs (not 
components, as in Sugihara I982) failed to be interval. The proportion of interval
ity among these 73 webs, namely, 66/73 = 0.90, is independent of the proportion 
of intervality among the 73 components studied by Sugihara (1982). Thus, in this 
collection of I13 webs, the proportion of webs that are interval is as high as, or 
higher than, the proportion of interval webs observed previously. 

Because of the large number of webs now available, it is possible to examine 
how the proportion of intervality co-varies with other characteristics of webs. The 
most fundamental characteristic, which is examined here, is the number S of 
species. All webs with S of I6 or fewer are interval. Of the five webs with the 
largest numbers of species (ranging from 32 to 48 species), none is interval. When 
the observed range in the variation of S, from 3 to 48, is divided into four nearly 
equal intervals, the fraction of interval webs declines steadily from one among 
webs with 3 to I4 species to zero among webs with 35 to 48 species (table 1). 
However, there are only two webs with 35 to 48 species. When the frequency 
distribution of S is divided by quartiies, so that each group contains, as nearly as 
possible, one-quarter of all the webs, the fraction of interval webs again declines 
steadily from one among webs with 3 to II species to 0.59 among webs with 22 to 
48 species. In summary, the fraction of webs that are interval is strongly associ-
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ated with the number of species in the webs, declining from one for small webs 
toward zero for large webs. 

Though quantitative documentation of this finding seems to be new, hints of it 
appeared earlier. For example, webs that incorporate multiple habitats were 
found to be much less likely to be interval than webs from single habitats (Cohen 
1978, p. 40); multiple-habitat webs also tend to have more species. More explic
itly, MacDonald remarked that "[t]he non-interval community webs ... are the 
webs with the largest" numbers of species (1979, p. 586). In neither case (Cohen 
1978; MacDonald 1979) did the authors analyze the relation between species 
number and intervality any further, empirically or theoretically. 

Our empirical finding that intervality is less frequent among larger webs is 
consistent with data presented by Sugihara (1982, pp. 73-74, table 4.1). The 
numbers of consumers in his 73 components of overlap graphs range from 2 to 34 
species. According to our tabulation of his data, of the 52 component webs with 2 
to 10 species, 50 are interval (96%); of the 14 component webs with 11 to 14 
species, 12 are interval (86%); and of the 7 component webs with 15 to 34 species, 
1 is interval (14%). 

Theory 

This section describes the cascade model and its predictions regarding the 
probability that a web is interval. 

The cascade model assumes that species in a community are ordered in a 
cascade, or hierarchy, such that any species can consume only those species 
below it in the ordering and can be consumed only by those species above it. 
Operationally, if there are S species in the web, the cascade model assumes a 
labeling of the species from 1 to S in such a way that whenever a species labeled i 
is eaten by a species labeled j, then i is smaller than j. This assumption excludes 
the possibility of trophic cycles, for example, cases in which i eats j and j eats i. 
Moreover, the cascade model assumes that for any two species i and j with i 
smaller than j, the probability that j actually eats i is p, and whether j eats i is 
statistically independent of all other eating relations in the web. The positive 
probability p is independent of the particular pair of species i and j. When webs 
with different total numbers of species, S, are compared, the cascade model 
assumes that p depends inversely on S according top = ciS, where cis a positive 
constant independent of S. 

In summary, the cascade model assumes (1) ordering, the prior existence of a 
labeling or cascade of species that limits the possible feeding relations; (2) equi
probability, a constant probability of a link between any two species for which a 
link is possible; (3) independence between the existence of a link for any given 
pair of species and the existence of a link for any other pair of species; and (4) 
reciprocal scaling, the probability that a link between any pair of species for which 
a link is possible depends on the number of species in the web, S, according to ciS. 

Under these assumptions, the probability of a link, p, is just the expected 
or average value of the connectance defined by Rejmanek and Stary (1979): p = 

E{LI[S(S - 1)/2]}. 
We calculated explicit formulas for the probability P that a web W is interval-
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that is, the probability that the overlap graph G(W) of W is an interval graph-for 
extremely small S and extremely large S (Appendix, theorem 5). The probability 
P that a web is interval depends on, and should not be confused with, the 
probability p of a link between any two species i, j with i < j in the web. 

IfS = 3,4,or5,thenP = l.IfS = 6orS = 7,alowerboundonPisthe 
difference between 1 and a sum of high powers of p (the link probability) times 
high powers of 1 - p (see the Appendix). Because the product of high powers of p 
times high powers of 1 - p must be small, one expects (and numerical results 
below confirm) this lower bound on P to be very close to one. Thus, for low values 
of S, the probability P that a web is interval is one or close to one. 

At the other extreme, the larger S gets, the closer P gets to exp(- h) where h = 
0.0025[2LI(S - 1)]9S (see the Appendix, theorem 5). According to the cascade 
model, the expected number of links in a web is pS(S - 1)/2 = c(S - 1)/2; thus, 
the average of 2LI(S - I) is just c. The best current estimate of c, based on 
aggregate data for all webs, is approximately 4. If we replace 2LI(S - I) by 4 in 
the expression for h, we obtain approximately A = 660S. Thus, for average webs 
according to the cascade model, P is expected to decline exponentially fast with 
increasing S, and the coefficient of S in the exponent is large, in excess of 660. 
Hence, for large S, the cascade model predicts a frequency of intervality near 
zero. 

These are the principal results of the Appendix about the probability that a web 
is interval. In addition, the Appendix establishes other important structural prop
erties predicted by the cascade model for the overlap graphs of large webs. The 
cascade model predicts that the overlap graph should contain a complete subgraph 
on n vertices, for any finite n, with probability one as S becomes large. The 
cascade model predicts that the overlap graph should contain an induced tree on n 
vertices, for any finite n, with probability one asS becomes large. The probability 
that the overlap graph is a unit-interval graph approaches zero asS becomes large. 

The section on triangulation reports simulations that establish an upper bound 
on the probability that a web is interval when S is 10, 20, 30, 40, and 50 species. 
These simulations establish that the probability of intervality predicted by the 
cascade model is essentially zero by the time S is as large as 40. 

Because of the duality between the overlap graph and the resource graph, with a 
c;orresponding duality in the probability distribution of edges according to the 
cascade model (see the Appendix), all the preceding analytic and numerical 
results in this section remain valid if "overlap graph" is replaced by "resource 
graph." 

Confronting Data and Theory 

This section compares the data on intervality with the cascade model's quan
titative predictions about the probability that a web is interval. 

To do so, it is necessary first to estimate either of the parameters p = ciS or c = 

pS of the cascade model. The parameters may be estimated in two ways: using 
data on all webs simultaneously (Cohen and Newman 1985; Cohen et al. 1986) and 
using data from each web separately (Cohen et al. 1985, 1986). 

Using data on all webs simultaneously, c is twice the estimated slope of a 
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FIG. I.-Reciprocal of the link probability or reciprocal of connectance as a function of the 
number of species in 113 community food webs. If S is the number of trophic species and Lis 
the number of trophic links in a web, the ordinate is S(S - I)/(2L) and the abscissa is S. I, 
The web is interval; 2, the web is not interval. Solid line, The plot of S/4 as a function of S. 

straight line through the origin fitted to the data points (S, L), where L is the 
number of links in a web with S species. In the 113 webs analyzed here, that slope 
is 1.99 ± 0.07 (standard error); thus, cis very nearly 4 (Cohen et al. 1986, p. 335). 
With this value of c, the cascade model makes sense only for webs with S of 4 or 
more, since by definition p ::; 1. 

Using data from a single web with S species and L links, a reasonable estimate 
of p is L/[S(S - 1)/2], which is the connectance; the numerator is the observed 
number of feeding relations, and the denominator is the number of possible 
feeding relations given the assumption of ordering. (Estimating p by the connect
ance L/[S(S - 1)/2] overlooks the omission of isolated species from the data. A 
more complex estimate [Cohen et al. 1985, pp. 460-461] allows for the omission of 
isolated species. Since the number of isolated species is small, the error intro
duced by estimating p from connectance is also small.) 

As a preliminary, we now check the cascade model's assumption that the link 
probability, p, depends on the number of species, S, according to ciS. This 
assumption implies that if the connectance or p is estimated separately for each 
web, then the points (S, 1/p) should fall around the straight line Sic= S/4 derived 
from the aggregated data. The agreement in figure 1 between the individual points 
and the predicted straight line justifies further testing of the cascade model. Each 
web in the figure is represented by the symbol "1" (for one dimension) if the web 
is interval or by the symbol "2" (for two or more dimensions) if the web is not 
interval. 

When the link probability, p, is estimated separately for each web, the cascade 
model predicts a probability of intervality P = 1 for S = 3, 4, or 5, as already 
mentioned, P 2: 0.9999 for S = 6, and P 2: 0.9986 for S = 7. All webs with S::; 16 
(the webs plotted in the left third of fig. 1) are interval. Thus, for very small 
numbers of species, S, the data are consistent with the predicted probability P that 
a web is interval. 
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For intermediate numbers of species, the observed fraction of webs that are 
interval declines as shown in table 1. An upper bound on the predicted probability 
that a web is interval is given by the predicted probability that a web is trian
gulated (see the next section). Table 2 reports estimates of the probability of 
triangulation for S = 10, 20, 30, 40, and 50, based on 100 simulations for each 
value of S. The predicted probability of triangulation (table 2), and therefore the 
predicted probability of intervality, appears to decline with increasing S more 
rapidly than does the observed frequency of intervality. That is, there is still an 
excess frequency of intervality not explained by the cascade model. But the 
cascade model does predict correctly the existence and the location of a range of S 
over which the probability of intervality declines smoothly from near 1 to near 0. 

For very large S, the cascade model predicts asymptotically a probability of 
intervality, P, lying between exp(- 39) and exp(- 3.2 x 108), according to the 
theory developed in the Appendix. In these calculations, the link probability, p, is 
estimated separately for each web. The simulations in table 2 suggest that the 
asymptotic theory becomes relevant when the number of species is between 30 
and 40. Consistent with these analytic and computational predictions, the five 
largest webs, with S ranging from 32 to 48, are all non-interval. 

Overall, there is good qualitative agreement, and reasonable quantitative agree
ment, between the observed frequency of interval webs and the frequency of 
interval webs predicted by the cascade model. For intermediate numbers of 
species, more interval webs are observed than are predicted by the simulations 
of the cascade model. It remains to be determined whether this excess identifies 
a deficiency of the cascade model or a deficiency of the data on trophic links or 
both. 

An upper bound on the fraction of webs with interval resource graphs is given 
by the fraction of webs with triangulated resource graphs. The relative frequen
cies of triangulated resource graphs are given in table 1 and are discussed in the 
next section. 

TRIANGULATION 

A web is said to be triangulated if its overlap graph is triangulated. A graph is 
triangulated if it has no induced cycles of four or more edges; that is, whenever 
four or more vertices in the overlap graph make a cycle, there is an edge that cuts 
across the cycle, reducing the cycle to a composition of triangles. Lekkerkerker 
and Boland (1962) showed that a graph is interval if and only if it is triangulated 
and it contains no asteroidal triples. Thus, the probability that a graph is trian
gulated is an upper bound on the probability that it is interval. 

Sugihara (1982) showed that the frequency of intervality in simulated webs 
could largely be accounted for by requiring the overlap graphs to be triangulated. 
As part of a more extensive theory that is not reviewed here, he proposed that 
triangulation is a more fundamental property of webs than is intervality. 

Sugihara (1982, p. 118) simulated a dynamic Lotka-Volterra model with random 
interaction coefficients and allowed species to become extinct until the hypothet
ical community was "feasible." His model communities started with 15 species, 
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and the final number of species ranged from 6 to 9. In 18 of20 simulations, the final 
communities had triangulated niche overlap graphs. Sugihara noted that "the high 
frequency of rigidity [equivalent to triangulation] may simply be an artifact of 
generating relatively small final communities," that is, communities with a small 
number of species. Though it was not Sugihara's preferred interpretation of the' 
high frequency of triangulation, this possibility is consistent with the following 
analyses of data and the cascade model. 

Data 

We determined the triangulation of the overlap graph and the resource graph of 
each of the 113 webs in Briand's collection by constructing these graphs from the 
predation matrices (Cohen eta!. 1990). The most efficient algorithms to determine 
whether a graph is triangulated are LEX P and FILL of Rose eta!. (1976), based on 
lexicographic breadth-first search. We programmed their algorithms using a de
scription by Booth (1975, p. 126) and verified the performance of our program in 
numerous examples. 

All of the webs with non-triangulated overlap graphs (numbers 6, 18, 33, 39, 60, 
99, 100, and 106) are also non-interval, as is logically required by the theorem of 
Lekkerkerker and Boland (1962). This consistency provides a check, albeit weak, 
on our independent computations. Nine webs have non-triangulated resource 
graphs (numbers 6, 18, 33, 60, 63, 67, 69, 99, and 100). 

Sugihara (pers. comm.) provided proposed corrections to several of Briand's 
predation matrices. When these corrections are made, webs 6 and 18 have triangu
lated overlap graphs. This change does not alter the general trends in the data. For 
consistency, we use the predation matrices furnished by Briand. 

Table 1 shows the relative frequency of triangulated overlap graphs and trian
gulated resource graphs in 113 community food webs as a function of the number 
of species. For both overlap and resource graphs, the frequency of triangulation 
declines from 1 for the smallest observed webs to much smaller yalues for the 
largest observed webs. All 4 webs of more than 32 species have non-triangulated 
overlap graphs, and 2 of those 4 webs have non-triangulated resource graphs. 

Theory 

The predictions of the cascade model regarding triangulation are obtained by 
mathematical analysis (see the Appendix) and simulation. Analytically, the proba
bility that an overlap or resource graph is triangulated is one whenever the number 
of species in the web is five or less, and is very close to one for six and for seven 
species. For large numbers of species and a link probability p = 4/S, the cascade 
model predicts asymptotically that the probability that a resource or overlap graph 
is triangulated is very near zero (Appendix, theorem 7). For intermediate numbers 
of species (table 2), the simulated probability of triangulation according to the 
cascade model declines rapidly with an increasing number of species, S. 

Confronting Data and Theory 

The cascade model's predictions are consistent with observation for very small 
numbers of species and for large numbers of species. For intermediate numbers of 



FOOD WEBS AND THE NICHE OVERLAP GRAPH 

TABLE 2 

SiMULATED RELATIVE FREQUENCY OF TRIANGULATED OVERLAP GRAPHS OR 

RESOURCE GRAPHS PREDICTED BY THE CASCADE MODEL, ACCORDING TO 100 

SIMULATIONS FOR EACH NUMBER OF SPECIES 

Fraction of 
Triangulated Lower 95% Upper 95% 

No. of Overlap or Confidence Confidence 
Species Resource Graphs Limit Limit 

10 0.91 0.85 0.97 
20 0.26 0.17 0.35 
30 0.03 0 0.07 
40 0 0 0.005 
50 0 0 0.005 

NoTE.-The 95% confidence interval incorporates the correction for 
continuity, and negative lower confidence limits for 30, 40, and 50 species 
were set to zero. 
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species, the simulated probability of triangulation appears to decline with increas
ing numbers of species more rapidly than does the observed relative frequency of 
triangulation. But the cascade model does predict correctly the existence and 
location of a range of S over which the probability of triangulation declines 
smoothly from near one to near zero. The difference between the observed and 
simulated relative frequencies of triangulation for intermediate numbers of species 
may be due to imperfections of the data or of the cascade model. 

DISCUSSION AND CONCLUSIONS 

Major Findings 

The main accomplishments of this paper are three. First, while confirming 
empirically the overall high relative frequencies of interval and triangulated over
lap graphs found previously, we observe that the relative frequencies of interval 
and triangulated webs are strongly associated with web size, as measured by the 
number of species. All overlap graphs of webs with small numbers of species (16 
or fewer in our data) are observed to be interval and triangulated, and no overlap 
graphs of webs with large numbers of species (33 or greater in our data) are 
observed to be interval or triangulated. Between these extremes, a steady down
ward trend is observed in the fraction of interval and triangulated overlap graphs. 
The pattern of triangulated resource graphs is similar. Broadly, the larger the 
number of species in a community, the less likely it is that a single dimension 
suffices to describe the community's trophic-niche space, and the less likely it is 
that there are no "holes" in the overlap graph or resource graph. 

There are two ways to look at this finding. One possibility is that webs with 
small numbers of species come from especially simple communities; the simplicity 
gives the communities a small number of species as well as a very small number of 
dimensions of trophic-niche space, namely, just one. Another possibility, which 
we favor, is that most webs with small numbers of species are incomplete descrip-
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tions of real communities. When communities are described in detail, reported 
webs contain larger numbers of species and are less likely to be interval and 
triangulated. 

This interpretation is consistent with the empirical finding of Schoener that the 
"separation [of species in niche space] appears generally to be multidimensional" 
(1974, p. 29), although he recognized that "the dimensions that ecologists recog
nize are rarely independent" (p. 32). In 81 studies of niche relations in groups of 
three or more species, when the dimensions originally reported are classified into 
the broad categories of food, space, and time, most niches are separated by two 
dimensions (Schoener 1974). (Other studies of the dimension of ecological niches 
were reviewed by Cohen [1978, pp. 97-100].) 

This interpretation leads to a concrete prediction. If webs reported in the future 
are consistent with the trends in the existing data and if they are reported in 
greater detail than are most present webs, they will display much lower relative 
frequencies of intervality and triangulation than do the existing webs with small 
numbers of species, even in the communities with webs currently reported as 
interval or triangulated. As the fidelity and detail of the description of com
munities improve and the numbers of species in reported webs increase, we 
expect the relative frequencies of intervality and triangulation to decline. 

Second, we calculate the predictions of the cascade model about the probabili
ties that the overlap graph and resource graph are interval and triangulated, for 
both very small and very large numbers of species. For very small webs, the 
predicted probability that either graph is interval or triangulated approximates 
one. For a web with a very large number of species, S, and with approximately 
twice as many links as species (in accordance with the empirical link-species 
scaling law), the predicted probability that either graph is interval falls as approxi
mately exp( -6605), that is, extremely rapidly with increasing S. The predicted 
probability that either graph is triangulated also falls exponentially. 

We do not know of any previous analytic (as opposed to numerical) calculations 
of the probability of interval or triangulated overlap or resource graphs starting 
from a model of webs. The calculations constitute nontrivial new mathematics. 

Third, comparing data and theory, we show that the predictions of the cascade 
model account quantitatively for the observed relative frequencies of interval and 
triangulated overlap graphs and triangulated resource graphs for webs with 7 or 
fewer and 33 or more species. The cascade model also predicts correctly the 
existence and location of a range of numbers of species over which the relative 
frequencies of interval and triangulated overlap and resource graphs decline 
smoothly from near one to near zero. Our simulations of the cascade model 
reveal, however, that there are more interval and triangulated overlap graphs and 
more triangulated resource graphs observed than expected in webs with inter
mediate numbers of species. This difference may be due to imperfections of the 
data or of the model. 

The cascade model's successful prediction of the existence and location (though 
not the exact rate) of declines in the relative frequencies of intervality and tri
angulation with increasing numbers of species suggests that the relative com
monness or rarity of interval and triangulated webs may be a statistical conse-



FOOD WEBS AND THE NICHE OVERLAP GRAPH 449 

quence of the general ecological processes posited in the hypotheses of the 
cascade model, rather than a consequence of special constraints (of whatever 
origin) acting directly on the dimension of trophic-niche space or the homological 
structure of the overlap graph or the resource graph. 

Related Prior Work 

There have been several previous attempts to explain the relative frequency of 
intervality. Six simple web models were simulated and found to predict fewer 
interval overlap graphs than were observed (Cohen 1978). The authors of another 
study (Cohen eta!. 1979) calculated the probability that a random graph is interval 
when the random graph is constructed with an edge probability that is the same for 
every pair of vertices, that is, according to the classical model of Erdos and Renyi 
(1960). That model also failed to account for the observed frequency ofintervality. 
(By contrast with the model of Erdos and Renyi, when the overlap graph is 
derived from the cascade model, the probability of a dietary overlap between two 
species, or of an edge between the corresponding vertices in the overlap graph, is 
much higher for two species high in the ordering than for two species low in the 
ordering.) 

Critchlow and Stearns (1982) showed that the predation matrices of the real 
webs analyzed in an earlier study (Cohen 1978) were divided into block sub
matrices much more than were the simulated predation matrices generated by an 
earlier model (Cohen 1978, model 5) and that, in general, the real webs had fewer 
dietary overlaps (or edges in the overlap graph) than webs simulated according to 
the earlier model with the same number of predators, prey, and links. Critchlow 
and Stearns showed that both the deficit of block submatrices and the excess of 
dietary overlaps in the simulated webs helped to explain why the earlier model 
underpredicted the observed frequency of intervality. 

Yodzis (1984) formulated assembly rules, based on energetic constraints, for 
the hypothetical construction of an ecosystem from species that arrive sequen
tially. These assembly rules generate model webs that describe well many struc
tural features of 25 of the 28 webs from fluctuating environments in Briand's 
(1983) collection of 40 webs, and 3 of the 12 webs from constant environments in 
Briand's collection. In particular, when Yodzis' model describes well most other 
structural features of a real web, it also describes well the presence or absence of 
an interval overlap graph. 

Y odzis reported his model's expected intervality for the 28 webs well described 
by his assembly rules (Yodzis 1984, p. 122, his table 1). For these webs, we 
graphed his expected intervality as a function of the observed number of trophic 
species for all the webs (graph not shown). We found Yodzis' expected intervality 
near one for the webs with the smallest number of species; a hint, amid much 
scatter, of a declining trend in Y odzis' expected intervality with an increasing 
number of species; and the smallest values of Y odzis' expected intervality for the 
webs with the largest number of species. Yodzis did not remark on this associa
tion between his expected intervality and the number of species in a web. 

Y odzis' assembly rules provide an alternative explanation for the trend we have 
reported here in the frequency of intervality as a function of the number of 
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species. But this explanation may be limited to webs from fluctuating environ
ments. By contrast, the cascade model deals equally well with webs from fluctuat
ing and constant environments. Whereas Yodzis' assembly rules so far have been 
analyzed only by computer simulation, the cascade model is tractable to explicit 
analysis. In spite of (what we view as) the advantages of the cascade model, the 
parallels between its predictions and those of Yodzis' assembly rules suggest that 
it would be worthwhile in the future to determine whether there are deeper con
nections between the two models. 

Sugihara (1982, p. 65) explained the high frequency of interval graphs in terms 
of different assembly rules that prevent the appearance of "homological holes" in 
communities. He considered the highly frequent, but not universal, appearance of 
intervality in real webs to be a consequence of a more fundamental requirement 
that real webs be triangulated. The data (table I) indicate that larger webs are less 
likely to be interval and triangulated. If these trends are not an artifact of faulty 
data, then the absence of homological holes in the overlap graph is not a universal 
feature of food webs. An independent theory, such as the cascade model, is re
quired to explain the frequencies of both intervality and triangulation. 

The history of data and theory on the intervality and triangulation of the niche 
overlap graph may be caricatured simply. Initially, the high average proportion of 
interval webs came as a surprise and could not be explained by the available 
models (Cohen 1977, 1978). Subsequently, various explanations were offered 
for the high average proportion of intervality, including compartmentalization 
(Critchlow and Stearns 1982), energetic constraints on community assembly 
(Yodzis 1984), and triangularity (Sugihara 1982). Though, in retrospect, the data 
then available and some of these explanations hinted at a decline in the frequency 
of intervality with an increasing number of species, it seems fair to say that any 
such decline remained unremarked. The data presented here provide unambigu
ous evidence of a decline in the relative frequency of intervality and triangulation 
with increasing numbers of species. These data seem to us to weaken or obliterate 
the claim that trophic-niche overlap grap;ls and resource graphs are interval or 
triangulated (always or at a constant high frequency) regardless of the number of 
species in a web. The cascade model predicts accurately the existence of this 
decline in intervality and triangulation. The cascade model also predicts the range 
in the numbers of species where this decline occurs. However, the cascade model 
predicts that the relative frequencies of intervality and triangulation will decline 
more rapidly, with increasing numbers of species, than they actually do. Excess 
proportions of interval and triangulated overlap and resource graphs remain to be 
explained. 

SUMMARY 

We report new empirical and theoretical information about the dimension of 
trophic-niche space and the structure of food webs, as measured by the frequency 
of intervality and triangulation of overlap graphs and resource graphs in commu
nity food webs. Briand assembled and edited I 13 community food webs, and 
informed us of which of those webs have interval trophic-niche overlap graphs. In 
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this collection of 113 webs, the overall proportion of webs that are interval is as 
high as, or higher than, the proportion of interval webs observed previously. 
However, the fraction of webs that are interval is strongly associated with the 
number of species in the webs. The fraction of interval webs declines from one for 
small webs (16 or fewer species) toward zero for large webs (33 or more species). 
According to new mathematical and numerical calculations presented here, the 
cascade model predicts, as observed, that the probability that a web is interval is 
near one for webs with fewer than 10 species, declines as the number of species 
increases from 10 to 30 or 40, and is very near zero for larger numbers of species. 
However, in the range of 10 to 40 species, the cascade model predicts a more rapid 
decline in the relative frequency of intervality than is observed. 

Using the predation matrices of the same 113 webs, we determined which webs 
have triangulated overlap graphs and triangulated resource graphs. The empirical, 
mathematical, and computational results on the relative frequency oftriangulation 
parallel those on intervality. 

The broad ecological interpretation of our findings is that the larger the number 
of species in a community, the less likely it is that a single dimension suffices to 
describe the community's trophic-niche space and the less likely it is that there are 
no "homological holes" in the overlap graph and resource graph. Most reported 
webs with small numbers of species are incomplete descriptions of real com
munities. If future webs have larger numbers of species and are described in 
greater detail, we predict that those webs will have smaller relative frequencies of 
being interval and triangulated. 
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APPENDIX 

MATHEMATICAL ANALYSIS 

Basic Concepts 

The cascade model WP assumes that the species (vertices) of a web may be labeled from 
1 to S, with S ?: 2. If i < j, thenj feeds on i (there is a link from i to j) with probability p, and 
j does not feed on i with probability q = 1 - p, independently for alii ~ i <j ~ S. The 
probability that species j feeds on species i is 0 if j ~ i. The probability p is assumed to 
depend on S, such that p = p(S)--" 0 as S--" oo. 

By replacing each link of WP by an undirected edge, one obtains the usual random-graph 
model GP, that is, an undirected simple graph on the vertex set {1, 2, ... , S}, in which each 
edge appears with probability p, independently of all other edges. A simple graph is one 
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that has neither loops nor multiple edges. The structure of Gp when p changes from 0 to 1 
has been studied extensively since the fundamental paper of Erdos and Renyi (1960) (see, 
e.g., Bollobas 1985). The greatest discovery of Erdos and Renyi was that many important 
properties of graphs appear quite suddenly. We shall use such facts about GP here. 

We shall say that almost every Gp has property 7T if the probability that Gp has 7T tends to 
1 asS-.... oo. If we pick a function p = p(S), then, in many cases, either almost every grapH 
GP has property 7T or else almost every graph fails to have property 7T. More precisely, for 
many properties there is a threshold function p* = p*(S) such that 

. { 0 if pip* ~ 0, 
hm P(Gp has property 7r) = 

S-->oo I ifp/p*-....oo. 

As examples, here are two facts from Erdos and Renyi (1960) that we use later. 

Fact 1.-The threshold function that GP contains a complete subgraph Kn on n vertices is 
p* = s-2/(n-1). 

Fact 2.-The threshold function that Gp contains a cycle on n vertices is p* = s-r for 
any fixed n ? 3. 

If G is a simple graph on the vertices V = V(G) and F is another simple graph on the 
vertices V(F), we say that F is an induced subgraph of G if V(F) C V( G) and if the edges of 
F contain all the possible edges from the edges of G; that is, if v;, vj E V(F) and { v;, vj} is an 
edge of G, then {v;, vj} is an edge of F. 

There are some properties of a random graph GP that suddenly appear, then hold whenp 
increases, and at some point suddenly disappear. For example, consider the property that 
GP contains an induced cycle on a fixed number of vertices. By fact 2, such a cycle appears 
with probability 1 when p = w(S)S- 1

, where w(S) -.... oo (arbitrarily slowly) as S -.... oo. 

However, when p is very close to 1, then the cycle is no longer induced. Thus, in our 
investigations we focus on the appearance function of a given subgraph of Gp, which 
describes when such a subgraph first appears asp increases. Of course, when one consid
ers subgraphs (but not induced subgraphs) of GP, then the appearance function and the 
threshold function coincide. 

The concepts of threshold and appearance functions also apply to the cascade model Wp 
and to the overlap graph G(Wp), defined as follows (Cohen 1977, 1978). 

The trophic-niche overlap graph G(Wp) is defined as an undirected simple graph on the 
vertices of WP. Two consumers are joined by an undirected edge when there is at least one 
prey that both consumers eat. That is, {vj, vk} is an edge in G(Wp) if and only if there exists 
some v; in WP such that both (v;, vj) and (vi> vk) are links in WP. 

Let G be a simple graph on the set of vertices V = {vr, v2, ••• , v11 }. G is an interval graph 
when there is a collection lr, ]z, ... , 111 of open, closed, or mixed intervals of the real 
line such that there is an edge between v; and Vj, i # j, if and only if I; and Ij overlap, that is, 
I; n Ij >"' 0. Thus, G is an interval graph if and only if G is the intersection graph of some 
family of intervals of the line. If each interval lr, ... , :n has length equal to 1, then G is 
called a unit-interval graph. 

Existence of Some Induced Subgraphs in G(Wp) 

We now establish the appearance functions of induced subgraphs of various types in a 
random overlap graph G(Wp). We find the appearance functions of the properties that 
G(Wp) contains an induced tree, an induced cycle, and an induced asteroidal !-triangle (see 
fig. Al). These subgraphs determine the intervality of G(Wp) when S is large, which we 
examine in the following section. 

We begin with the existence of a complete subgraph in a random overlap graph G(Wp). 
There are two reasons for this. First, the threshold function for having a complete subgraph 
in G(Wp) (which in this case is also the appearance function) is quite different from that in 
the usual random-graph model GP (see fact 1). Second, all the proofs in this section rely on 
the so-called "second-moment method." It is easiest to present this method in the case of 
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FIG. Al.-An asteroidal k-triangle with k + 5 vertices. (An asteroidal !-triangle contains 
a single central triangle, each vertex of which is joined by an edge to one outlying vertex.) 
(From Cohen et al. 1990, p. 190, with permission of the publisher.) 
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FIG. A2.-Three web configurations that produce the complete graph K, in the overlap 
graph. (From Cohen et al. 1990, p. 191, with permission of the publisher.) 
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complete subgraphs. Thus, we present first a rather detailed proof of the threshold function 
for the existence of a complete subgraph of G(Wp) and then state the remaining results, 
indicating only the crucial points in their proofs. 

Theorem 1 (complete subgraphs).-Let n ::o: 3 be fixed. The threshold function of the 
property that G(Wp) contains a complete subgraph K 11 on any n vertices is S- 1-

1111
; that is, 

. { 0 lim P[G(Wp) :l Knl = 
S->oo I 

ifpS1+11n~ 0, 

ifpS1+11n~ oo. 

Proof-Denote by X 11 the number of all configurations in the cascade model WP that 
produce complete subgraphs on n vertices in G(Wp). As an example, figure A2 presents 
three types of configurations of WP that correspond to K 3 in G(Wp). 

The graph in figure A2a is called a three-star with root i0 . Generally, a sub graph of WP on 
n + 1 vertices i0 , i~o i2 , ... , i11-where 1 s i0 < i1 < i2 < ... <ins S, such that (i0 , ik) is a 
link for every k = 1, 2, ... , n-will be called an n-star with root i0 . Let Y11 stand for the 
number of all n-stars in WP. Then, X 11 = Y11 + Z,, where Z 11 is the number of configurations 
other than n-stars that produce a K 11 in the overlap graph. (If we forget about the orientation 
of links, then all those configurations contain at least one cycle.) Elementary calculation 
shows that 

and 

O(Ssp6) + O(S6p6) 

O(S6p6). 
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The first sum in E(Z3) enumerates the expected number of graphs of the form shown in 
figure A2b; the second sum refers to figure A2c. Similarly, for n 2': 4, 

E(Y") = (n! 1)p" = O(S"+ 1p"), 

and it is not hard to see that in a formula for the expectation of Z", the exponent of p is 
always greater than the exponent of S (only if n 2: 4). Consequently, E(Zn) = O(Smp") for 
some m 2: n + 2 and k > m. 

Now, let p = p(S) be such that pS 1 + 11
" ~ 0 as S ~ oo. Then, clearly, 

E(Xn) = E(Y11 ) + E(Zn) = o(l). 

(We could have proved that E(Z11 ) = o(l) from the threshold function for cycles in GP, 
because each of these configurations contains a cycle [if we ignore orientation], and from 
fact 2 we know that there are no cycles in GP when pS ~ 0 as S ~ oo, which is satisfied 
under our assumption on p.) Since P(X11 2: 1) :s: E(X11 ), it follows that, with probability 
approaching 1 as S ~ oo, the cascade model WP contains no configurations producing a 
complete subgraph K 11 in G(Wp); that is, as S ~ oo, 

P[G(Wp) =:J K 11 ] = P(X11 2': 1) ~ 0. 

Now assume that pS 1 + 11
" ~ oo as S ~ oo. We show that, under this assumption, 

P(Y11 2: 1) ~ 1 (A1) 

as S ~ oo. Since 

P( Yn 2': 1) :s: P[G(Wp) =:J Knl, 

it follows that, with probability tending to 1, a random overlap graph G(Wp) contains at 
least one complete subgraph K 11 • For 1 :s: i0 < i1 < ... <in :s: S, let Si denote the indicator 
random variable of the event that there is in WP an n-star i on the vertices {i0 , ir. ... , in} 
with i0 as the root. Then, 

where the summations are over all n-stars specified by i and j, respectively. If the stars i 
and j share exactly m links, 0 :s: m :5 n, then · 

cov(Sb Si) :s: P(Si = 1, Si = 1) = p 2"-m. 

If m = 0 and none of i0 , i1, ... , i11 coincides with any of )0 , Jr. ... , Jn, then Si and Si are 
independent; thus, cov (Sb Si) = 0. Let Qm be the number of ordered pairs (i, j) such that i 
and j share m links and at least one vertex. Then, for m 2: 1, clearly the roots i0 and )0 
coincide and Qm :5 S2

" +I -m, whereas for m = 0, io ""'Jo and Qo :5 s2n + 
1

. Consequently, 
II 

Y < "" (Sp)z"- ms . var 11 - L 
m=O 

Thus, from Chebyshev's inequality, 

P(Yn = 0) :5 var(Y")/E(Yn)2 

a[ ,~o (Sp)-ms-rj 

= o(l), 

since under the assumption on p, Sp can be expressed as Sp = w(S)S- 11
", where w(S) is a 

sequence tending to infinity as S ~ oo. Thus, we proved relation (A1). 
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FIG. A3 .-Two web configurations that produce the tree shown in figure A4 in the overlap 
graph. (From Cohen eta!. 1990, p. 193, with permission of the publisher.) 

i4 is 

i3 

i2 

i, 

FIG. A4.-Tree in the overlap graph produced by the web configurations in figure A3. 
(From Cohen eta!. 1990, p. 193, with permission of the publisher.) 
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Theorem 2 (induced trees).-Let k 2: 2 be fixed. The appearance function of an induced 
tree on k vertices in G(Wp) is s-<2k-Il1<2k- 2>. 

Proof-If G(Wp) contains an induced tree on vertices (consumers) i 1, i2 , ••• , ik, where 
2 :s: i 1 < i2 < ... < h :s: S, then there must exist k - 1 vertices (prey species) jio h, ... , 
jk-I, where j 1 < i1 and jk- 1 < ik, such that for every jm (m = 1, 2, ... , k - 1), there are 
exactly two links fromjm to two appropriately chosen vertices from {i~o i2 , ••• , h}. (See fig. 
A3a.) Some of the consumers may at the same time be prey species. (See fig. A3b.) Figure 
A3 presents two examples of configurations in Wp that produce a tree in G(Wp) as shown in 
figure A4. 

Each configuration of the web WP that produces an induced tree on k vertices in the 
overlap graph G(Wp) must have exactly 2(k - 1) links. The configurations are of two types. 
In configurations of the first type, {i~o i2, ••. , h- 2} n {j1,h, ... ,jk_ 1} = 0; therefore, none 
of the vertices {i~o i2 , ..• , ik_ 2} is a prey for two consumers from {i2 , ..• , h}. In 
configurations of the second type, some of the vertices i 1o i2, ••. , ik _ 2 are at the same time 
consumers and prey. In the latter case, if we ignore the orientation of links, there is always 
a cycle in the configuration. 

Assume that p = p(S) such that, as S ~ oo, 

pS<2k-IJI<2k-2l ~ o. (A2) 

Since our p is of smaller order than s- 1
, by fact 2 almost every GP has no cycles and, 

consequently, almost every WP has no configurations of the second type. Moreover, each 
configuration of the first type forms an induced tree of WP in which there is no vertex lying 
below hand different from {i~o i2 , ••• , ik-Ioj~oh, ... ,jk_ 1} that is connected with exactly 
two vertices from {i1, i2, ••. , h}; such a vertex would destroy the property that the tree in 



456 THE AMERICAN NATURALIST 

b 

d 

a 

c 

FIG. AS.-A web configuration that produces an asteroidal !-triangle in the overlap graph. 
(From Cohen et al. 1990, p. 195, with permission of the publisher.) 

G(Wp) is induced. Thus, if T, denotes the number of configurations of the first type, then 

E(Td = o[z.;i,<~.<i,,}h- l)'-Ip2(k-l)] 

O[S2k- Ip2(k-l)l 

o(l). 

Consequently, under assumption (A2), the overlap graph G(Wp) contains no induced tree 
on k vertices. 

However, if the limit in assumption (A2) is infinity instead of zero, then E(Tk) ~ oo 

as S ~ oo. Applying the same approach as in the preceding proof, it can be shown that 
P(Tk ~ I) ~ I as S ~ oo; that is, with probability tending to I, G(Wp) contains an in
duced tree on k vertices. 

The next result shows that the appearance function of an induced cycle on m vertices in 
G(Wp) is the same as the threshold function for an m-cycle in the usual random-graph model 
GP if m ~ 4. 

Theorem 3 (induced cycles).-Let m ~ 4 be fixed. The appearance function of an in
duced m-cycle in G(Wp) is s- 1• 

Proof.-Each configuration of WP producing an induced m-cycle of G(Wp) must contain 
exactly 2m links. As in the case of induced trees, the configurations most likely to occur are 
those in which none of vertices il> i2 , •.• , im- 2 is used in WP as a prey for any two 
consumers from {i2, ... , im}. Therefore, the expected number of configurations of WP 
giving induced m-cycles in G(Wp) is of the order of magnitude O(S2"'p2m). Now the same 
ideas as in the proof of theorem I imply our result. 

The asteroidal !-triangle plays a special role in the asymptotic probability, asS~ oo, that 
a random overlap graph G(Wp) is an interval graph. 

Theorem 4 ( asteroidall-triangle).-The appearance function of an induced asteroidal !
triangle in G(Wp) is s- 1019

• 

Proof.-Consider a configuration (see fig. A5) in WP that gives an asteroidal !-triangle in 
G(Wp)· The expected number of such configurations is 0(S 10p9

). It is easy to check that the 
expected number of all other configurations of WP that produce an asteroidal !-triangle 
subgraph of G(Wp) is of an order of magnitude less than O(S10p9

). Thus, the same argument 
as before applies. 

lntervality of G(Wp) 

Lekkerkerker and Boland ( 1962) showed that a graph G is an interval graph if and only if 
it contains no induced subgraph of the forms pictured in figures AI and A6. This characteri-
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~ ' / ' ./ '........ .,..,,.,. ------

FIG. A6.-Forbidden subgraphs of an interval graph: a graph is an interval graph if and only 
if it contains none of the subgraphs shown here and in figure AI. G3 contains k vertices, k 2: 4. 
G4 contains k + 5 vertices, k 2: I. (From Cohen et al. 1990, p. 196, with permission of the 
publisher.) 
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zation of interval graphs differs from, but is consistent with, the characterization in terms 
of triangulation and asteroidal triples, which is mentioned in the text. 

We now describe the probability that a random overlap graph G(Wp) is an interval graph 
for S = 3, 4, 5, 6, 7, and S ~ oo. For S = 3, 4, and 5, P[G(Wp) is interval] = I, since the web 
WP contains no configurations that could destroy the intervality of G(Wp)· If WP has the 
vertex set {1, 2, 3, 4, 5, 6}, then the only possible forbidden subgraph of G(Wp) is an induced 
4-cycle, which may appear on vertices {3, 4, 5, 6} in four different configurations of WP as 
shown in figure A 7. 

Let X 4 be the number of configurations in WP on S = 6 vertices that produce an induced 
4-cycle in G(Wp). Then, P[G(Wp) is not interval] = P(X4 2: I) :s: E(X4). Since each configu
ration in figure A 7 contains eight arcs and must exclude five arcs, and since there are 
exactly four such configurations, E(X4) = 4p8(1 - p)5

• Thus, P[G(Wp) is interval] 2: I -
4p8(1 - p)5

, for S = 6. 
When S = 7, the subgraphs of G(Wp) that destroy intervality are induced 4-cycles and 

induced 5-cycles. There are many different configurations of WP that produce induced 4-
cycles or induced 5-cycles of G(Wp). If Y4 and Y5 stand for the number of configurations (of 
WP on S = 7 vertices) that produce induced 4-cycles and induced 5-cycles, respectively, 
then a lengthy enumeration of the possibilities yields, with q = I - p, 

E(Y4) = 36psq7(1 - p2) + 12psq6(2 - 2qp2 - P2 - p3) 
(A3) 

and 

(A4) 

We leave the proofs of equations (A3) and (A4) to an eager reader as additional entertain
ment. Consequently, when S = 7, 

P[G(Wp) is not interval] = P(Y4 2: I or Y5 2: I) 

P(Y4 2: I) + P(Y5 2: I) - P(Y4 2: I and Ys 2: I) 

:s: E(Y4) + E(Ys). 
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6 6 

6 

FIG. A 7.-Four configurations of a web on six vertices that produce an induced 4-cycle in 
the overlap graph. (From Cohen et al. 1990, p. 196, with permission of the publisher.) 

Note that P( Y4 2: 1 and Y5 2: 1) = 0. Thus, P[G(Wp) is interval] 2: 1 - E( Y4) - E(Y5), where 
E(Y4) and E(Y5) are given by equations (A3) and (A4), respectively. 

We do not even try to estimate P[G(Wp) is interval] when S = 8, since the calculation 
looks hopeless. Perhaps surprisingly, the calculation becomes much easier when Sis large. 

Theorem 5 (interval graphs).-Let p = p(S) ~ 0, such that pS 1019 = d. Then, 

lim P[G(Wp) is interval] = [ :-, 
S->oo 

0 

where A. = 9170d9/10!. 

Proof.-Let 

if d = d(S) ~ 0 , 

ifO<d<co, 

if d = d(S) ~ co , 

pSI0/9 ~ 0 (A5) 

as S ~ co. By theorems 2, 3, and 4, it follows immediately that a random graph G(Wp) 
contains no induced subgraphs of the forms of G~> G3 , and asteroidal !-triangles. For 
example, in the case of Gh if 

(A6) 

asS~ co, then by theorem 2, P[G(Wp) ::J Gil~ 0. Clearly, condition (A5) implies condition 
(A6). Next, it is not hard to see that asteroidal k-triangles for k 2: 2 and G2 and G4 are 
unlikely to occur when p satisfies condition (A5). One need simply estimate the expected 
numbers of configurations in WP that produce those subgraphs in G(Wp) and check that, 
under the assumption on p given by condition (A5), these expected values tend to 0 as S ~ 
co, Consequently, by the Lekkerkerker-Boland characterization of interval graphs, if p 
satisfies condition (A5), then 

lim P[G(Wp) is interval] = 1 . 
S->oo 

Now assume that pS 1019 ~ co as S ~co. Then by theorem 4, with probability tending to 1 
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FIG. A8.-A redrawing of the web configuration in figure AS. (From Cohen et al. 1990, p. 
199, with permission of the publisher.) 
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as S---'> oo, a random overlap graph G( W p) contains at least one induced asteroidal !-triangle 
that destroys the intervality of G(Wp). 

Finally, let pS1019 ---'> d, with 0 < d < oo. The same argument as in the first part of our proof 
shows that in-this case the only induced subgraphs that destroy the intervality of G(Wp) are 
induced asteroidal !-triangles. Let X denote the number of such subgraphs in G(Wp). We 
show that 

k = 0, 1' 2, ... ' (A7) 

where A. = 9170d9/10!; that is, the distribution of X asymptotically approaches the Poisson 
distribution with parameter A.. Define a configuration of type C to be a configuration of the 
type presented in figure AS. Let Y be the number of configurations of type C that may 
appear in Wp as an induced subgraph such that none of the vertices lying below {a, b, c, d, 
e,f, g, h, i,j} is connected with exactly two vertices from {b, d, e, g, h,j}. Then (cf. the 
proof of theorem 4), the probability distribution of X is asymptotically the same as the 
distribution of Y. Replace for a moment each link of WP by an undirected edge. Clearly, 
the configuration in figure A5 becomes an ordinary tree on 10 vertices. It is known (see, 
e.g., Bolio bas 1985) that if pS 1019 ---'> d, then the distribution of the number of such trees in Gp 
asymptotically approaches the Poisson distribution with parameter fl. = d9/A, where A is 
the order of the automorphism group of a tree on 10 vertices; that is, A = 10!1108 . If we 
return to the model WP, then (applying the same approach as in, e.g., Bollobas 1985) it can 
be shown that the number of configurations of type C also has a Poisson distribution but 
with a parameter 'Y = d 9/B, where B = 10!1~ and ~is the number of different ways of 
labeling 10 given vertices of a configuration of type C. Let us redraw the graph from figure 
AS in a different but more useful form (see fig. AS). 

Since there are at least three vertices lying above vertex a in WP, we must have 1 -s a -s 
7. Furthermore, b is above a (i.e., a + 1 -s b -s 10) and cis below b (i.e., 1 -s c -s b- 1) but 
different from a. Moreover, dis above c (i.e., c + 1 -s d -s 10) but different from a and b. 
Continuing this process up to vertex}, we obtain 

7 10 b-1 10 e-1 10 h-1 10 

3 !~ = I I I I I I I I 1, 
a=I b=a+I c=I e=a+l f=I h=a+I i=I j=i+ I 

where c o;6 a, d <t {a, b}, e <t {b, c, d},f <t {a, b, c, d}, g <t {a, b, c, d, e}, h<t {b, c, d, e,f, g}, 
i <t {a, b, c, d, e,f, g}, and} <t {a, b, c, d, e,f, g, h}. Each author independently wrote a 
computer program in BASIC to compute ~. and each independently obtained ~ = 55020/3! = 
9170. 

The probability that a configuration of type Cis an induced subgraph of WP and that none 
of the vertices lying below Cis connected with two vertices {b, d, e, g, h, j} tends to 1 as 
S---'> oo (since if pS 1019 ---'> d then almost every GP has no cycle; see fact 2). Consequently, the 
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• • .. r . • • g f Q b c 

FIG. A9.-A subweb that produces an induced Ku in the overlap graph. This configuration 
prevents a web from having a unit-interval graph. (From Cohen et al. 1990, p. 200, with 
permission of the publisher.) 

distribution of the random variable Y asymptotically approaches the Poisson distribution 
with parameter A = 9170d9/10! and equation (A7) is proved. Under the assumption on p, 

lim P[G(Wp) is interval] = lim P(X = 0) = e-". 
s~oo s~oo 

The numerical value of A in theorem 5 may be estimated for an observed web with L links 
(or arcs) and S species. The maximum-likelihood estimate of pis p = LI[S(S - 1)/2] = 2LI 
[S(S- 1)]. Hence, d = pS 1019 = 2LSll9 f(S- 1); hence, d 9 = [2LI(S - 1)]9S. Since 9170/10! 
== 0.0025, we get A== 0.0025(2L/(S - l)tS, and for sufficiently large S, the probability that 
the overlap graph G(Wp) is interval is arbitrarily close toe-". 

Finally, we describe the behavior of the probability that an overlap graph G(Wp) is a unit
interval graph. Roberts (1969) proved that a graph is unit interval if and only if it is an 
interval graph and does not contain the bipartite complete graph K1,3 as an induced 
subgraph. 

Theorem 6 (unit-interval graphs).-Let p = p(S) ~ 0, such that pS716 = d. Then, 

lim P[G(Wp) is unit interval] = l :-~ 
s-oo 

0 

if d = d(S) ~ 0 , 

ifO<d<oo, 

if d = d(S) ~ oo , 

where fl. = 48d6/7!. 

Proof.-The proof follows the same lines as the proof of theorem 5. A subgra~h of WP 
that produces an induced K1,3 in G(Wp) is of the form presented in figure A9. If pS7 6 ~ dfor 
some d, such that 0 < d < oo, then the distribution of the number of trees on seven vertices 
in Gp asymptotically approaches the Poisson distribution with parameter 75d6/7!. Similarly, 
the distribution of the number of configurations of the form in figure A9 in the cascade 
model WP also approaches the Poisson distribution but with parameter ~d6/7!, where 

7 a-1 7 a-l 7 a-l 7 

3 !~ = I I I I I I I 1, 
a~4 b~l c~b+l d~l e~d+l J~l g~J+l 

and c ~a, d 0!' {b, c}, e 0!' {a, b, c}, f 9!' {b, c, d, e}, and g 9!' {a, b, c, d, e}. Again, using 
computer programs, we obtained ~ = 48. 

As before, the numerical value of fl. in theorem 6 may be estimated for an observed web 
with L links and S species. Here, d = pS716 = 2LS 116/(S - 1); hence, d 6 = [2LI(S - 1)]6S. 
Since 4817! == 0.0095, we get fl. == 0.0095[2LI(S - 1)]6S. For sufficiently large S, the 
probability that the overlap graph G(Wp) is a unit-interval graph is arbitrarily close toe-~. 

Triangulation of WP 

We say that the cascade digraph WP is triangulated if its overlap graph G(Wp) contains no 
induced k-cycles for all k :::=: 4. As in the case of the intervality of G(Wp), the probability that 
WP is triangulated equals one for S = 3, 4, and 5, whereas 
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r I - 4p8c/ 
P(Wp is triangulated) ~ ~ 

l I - E(Y4) - E(Ys) 

for S = 6, 

for S = 7, 
where E( Y4) and E( Y5 ) are given by equations (A3) and (A4), respectively. 

Theorem 7 (triangulated graphs).-Let p = p(S) ~ 0, such that pS = d. Then, 

lim P(Wp is triangulated) = ( :- 1 

S-->oo 

0 

where 
k-1 

if d = d(S) ~ 0 , 

ifO<d<l, 

if d ~I, 

I (-l)"'m!S(k- l,m)2- 2 -"', 

m=l 
/.:even 

and S(k, m) are Stirling's numbers of the second kind. 
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Proof.-lf d = d(S) ~ 0 asS~ oo, then by theorem 3, there is no induced k-cycle for all 
k ~ 4 in G(Wp); thus, WP is triangulated with a probability approaching I. Keeping in mind 
the remarks niade in the proof of theorem 3, we can focus on only the very special 
subgraphs of WP that form induced k-cycles in G( Wp). Those subgraphs (denote their 
number by Zk) have 2k vertices and 2k links (appropriately joining those vertices) and, after 
the orientation of links is removed, form induced (2k)-cycles in the usual random graph GP. 
Assume that dis a constant, where 0 < d < I. It is known (Bollobas 1985) that in this case 
almost every random graph GP is a union of tree components and unicyclic components. 
Thus, each cycle that may appear in Gp is an induced cycle. Let Xk be the number of k
cycles of Gp. Then (Bollobas 1985, p. 79), X 3 , X 4 , ••• , Xk are asymptotically independent 
Poisson random variables with means A.; = d;/(2i), where i = 3, 4, ... , k. No cycle of odd 
length contributes to forming an induced cycle of G(Wp)· The only cycles of even length in 
WP that contribute to forming an induced k-cycle of G(Wp) are (2k)-cycles with the property 
that for each vertex i its neighbors are either both smaller or both larger than i. A. Rucinski 
(MS) observed that the number of such cycles that may be formed on a given set of ver
tices is 

2k-l 

azk = ( -4)k I ( -l)"'m! S(2k - I, m)2-z-m, k = 2, 3, .... 
n1= I 

Furthermore, the same approach as used by Bollobas (1985) shows that the distribution of 
the random variable 

z = I zk 
k~B 

keven 

asymptotically approaches a Poisson distribution with parameter 

Thus, 

~ = ~ ( i) akpk 

/.:even 

k-1 
"'"' dk(- 4)k/2 "'"' L L ( -ll"'m! S(k- I, m)2_ 2_"'. 

k~8 k! m~l 
/.:even 

lim P(Wp is triangulated) = lim P(Z = 0) 
s~oo s~oc 
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Finally, when d;?: 1, almost every graph Gp with p = diS~ 0 contains a long induced cycle 
(see, e.g., Bollobas 1985) that can form an induced cycle of G(Wp). 

The Resource Graph 
The resource graph H( Wp) is defined as an undirected simple graph, with the same vertex 

set as WP, such that { vj, vk} is an edge in H( Wp) if and only if there exists some v; in Wp such 
that both ( vj, v ;) and ( v k> v ;) are links in WP. For 1 ::; i < j ::; S, define P u to be the probability 
of an edge between i and j in the overlap graph G(Wp); then, Pu = 1 - (1 - p2)i-I. 

Similarly, for k < 1, define Qk1 to be the probability of an edge between k and I in the 
resource graph H(Wp); then, Qk1 = 1 - (I - p 2)5 - 1• Now define 1T to be the permutation 
1r(i) = S + 1 - i, fori = 1, ... , S. Then, Pu = Q'TT(j);rr(i) for alii ::; i <j::; S. Therefore, the 
probability of any configuration of edges is the same in G(Wp) as in H(Wp), after relabeling 
the vertices by TI. Hence, all the results in this Appendix apply equally to overlap graphs 
and to resource graphs. 
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