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When the diets of different organisms ov.rlap in natural communities, the
possibility arises that the different consumers may compete for food (Grant 1986)
or may interact mutualistically (Kawanabe 1986, 1987). Competitive or mutual-
istic interactions over food may influence the evolution of the competing or
cooperating consumers. Hence, overlaps in the diets of different organisms are of
both ecological and evolutionary interest.

The diets of organisms, and the relations among the diets of different kinds of
organisms, vary greatly from one ecological community to another. The minimum
number of variables required to describe or represent the overlaps among con-
sumers’ diets has been called the dimension of trophic-niche space (Cohen 1978).
A priori, the dimension of trophic-niche space would be expected to vary among
communities. If, in a particular community, this dimension were one, then inter-
vals of some single variable, perhaps food size, would be necessary and sufficient
to describe when the diet of one species overlaps that of another. If the dimension
were greater than one, then intervals of no single variable, such as food size alone,
would suffice to describe when the diets of consumers overlap. That is, if the
dimension exceeded one, then it would be necessary to consider at least two
variables, perhaps food size and time of day, to account for or describe the
presence or absence of overlaps in the diets of different organisms. The dimension
of trophic-niche space is one measure of the complexity of the dietary relations
among consumers in a given community.

This paper reports new theoretical and empirical information about the overlaps
among the diets of organisms in natural communities. On the basis of mathemat-
ical calculations, computer simulations, and new analyses of 113 community food
webs, we show that, in nature and in theory, the larger the number of trophic
species in a web, the larger the probability that the dimension of a community’s
trophic-niche space exceeds one. Equivalently, the larger the number of species in
a web, the smaller the probability that it is an interval web.
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In addition to intervality (formally defined below), the overlaps among the diets
or among the consumers of organisms in natural communities may possess an-
other property (also defined below) called triangulation (Sugihara 1982). Again on
the basis of mathematical calculations, computer simulations, and new analyses of
113 community food webs, we show that the larger the number of trophic species
in a web, the smaller the probability that either the overlap graph or the resource
graph of the web is triangulated. The mathematical calculations and computer
simulations use a stochastic model of community food webs called the cascade
model (Cohen and Newman 1985).

The remainder of this introduction gives further details on the background of
this work. The terms used in this paper are defined, including community food
web, trophic species, trophic link, consumer or niche overlap graph, resource or
common-enemy graph, interval graph, interval web, link-species scaling law, and
triangulated web. None of these terms is new; readers familiar with theoretical
developments in food webs over the last decade could jump directly to the section
on intervality. There, the data and theory on the frequency of intervality are
described and compared. The description of theoretical results is meant to be
intelligible to those who are willing to deal with quantitative concepts but are not
interested in the details of proofs, which are provided in the Appendix. The
following section compares the observed and predicted frequency of webs with
triangulated overlap graphs and triangulated resource graphs. The final section
summarizes the results and relates them to previous work. In the Appendix, we
analyze mathematically the cascade model’s implications for overlap and resource
graphs.

Background

The ecological niche of a species has been defined as “‘a region of hyperspace,
every point of which corresponds to a set of values of the variables permitting the
organism to exist”” (Hutchinson 1965, p. 32). In Hutchinson’s usage, and here,
dimension refers to the minimum number of variables needed to describe the
niche and should not be confused with the physical dimension (e.g., flat, or two-
dimensional, vs. solid, or three-dimensional) of a habitat (Silvert 1984, pp. 158~
161; Briand and Cohen 1987). Hutchinson’s definition raises several questions.
What is the minimum number of variables required to describe the factors that
influence species in a community? Is the dimension the same or different in differ-
ent communities?

Food webs offer information about the number of trophic dimensions in the
niches of species in a community (Cohen 1977, 1978). If two species eat a common
food species, then their niches must overlap along the trophic dimensions; other-
wise, the two consumers would not have access to the same food. If the dietary
overlaps among consumers in a community can be described by the overlaps
among intervals of a single variable, the web of the community is said to be an
interval web and to have the property of intervality. If intervals of more than one
variable are required to describe the dietary overlaps among consumers in a
community, the web is said to be a non-interval web.

In the first collection of webs assembled to investigate the trophic dimension of
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ecological niches, 22 or 23 of 30 webs were found to be interval (Cohen 1977). The
exact number (22 or 23) depended on how the data in the web were edited. The
observed numbers of interval webs exceeded markedly the numbers of interval
webs predicted by seven simple models of food webs (Cohen 1978; Cohen et al.
1979). These findings provoked further analyses of the available data (see, e.g.,
MacDonald 1979; Critchlow and Stearns 1982; Pimm 1982; Sugihara 1982; Yodzis
1982, 1984). We discuss these analyses later.

Two recent changes now make it opportune to reexamine the question of inter-
vality. First, more data are available. Second, a better food-web model is avail-
able, and can be analyzed.

As for data, the number of webs from the original study (Cohen 1977) is small.
Sugihara analyzed Briand’s collection of 40 webs (including 13 of those assembled
in Cohen 1978) and reached conclusions consistent with those of the first study
(Cohen 1977). Briand has now assembled and edited 113 community food webs
(published in full in Cohen et al. 1990) and has kindly informed us which of these
113 webs show intervality. Other aspects of these webs have been analyzed
elsewhere (Cohen et al. 1986; Briand and Cohen 1987).

The earlier models considered (Cohen 1977, 1978) were constructed ad hoc to
match the mean number of dietary overlaps. Some of those models also matched
the variance of the number of dietary overlaps. Recently, a better food-web
model, the cascade model, has been discovered. The term ‘‘cascade’’ used here
refers to a specific formal model (proposed in Cohen and Newman 1985) described
below; it should not be confused with other uses of the term, for example, by
Carpenter et al. (1985). The cascade model describes qualitatively and quantita-
tively the numbers of top, intermediate, and basal trophic species and the num-
bers of basal-intermediate, basal-top, intermediate-intermediate, and interme-
diate-top trophic links, when all food webs are considered together (Cohen and
Newman 1985) or individually (Cohen et al. 1985). The cascade model also
describes the numbers of food chains of each length (Cohen et al. 1986) and
explains Hutchinson’s (1959) observation that food chains are typically much
shorter than the number of species in a web (Newman and Cohen 1986). It is
natural to ask (as in Cohen and Newman 1985, p. 460; Cohen ¢t al. 1986, p. 350)
whether the cascade model can account for the observed frequencies of interval-
ity and triangulation. (For further background on food webs, see Pimm 1982;
DeAngelis et al. 1983; MacDonald 1983.)

Terminology

A food web is a guide to who eats whom in a community. More formally, a food
web is a set of kinds of organisms and a relation that shows which kinds of
organisms, if any, each kind of organism in the set eats. A community food web is
a food web obtained by picking, within a habitat or set of habitats, a set of kinds of
organisms on the basis of taxonomy, size, location, or other criteria, without prior
regard to the eating relations amorig the organisms (Cohen 1978, pp. 20-21).
Hereafter, ‘“web’’ means ‘‘community food web.”’

Unless otherwise specified, a ‘‘species’ here means a trophic species, that is, a
class of organisms that consume the same kinds of organisms and are consumed
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by the same kinds of organisms (Sugihara 1982, p. 19; Briand and Cohen 1984). A
trophic species may result from lumping together kinds of organisms that were
identified as separate by a reporting ecologist but were recorded as having the
same sets of prey and the same sets of consumers. A trophic species bears no
necessary relationship to a biological species. Yodzis (1982, p. 568) introduced the
term ‘‘trophic species,”” but the exact sense in which it is used here is that of
Sugihara’s (1982) ‘‘trophic equivalence’” or Briand and Cohen’s (1984) ‘‘trophic
species.”” A predator or consumer is a species that eats at least one species in the
web. A prey is a species that is eaten by at least one species in the web.

By a link, we mean any reported feeding or trophic relation between two species
in a web. Observers use various criteria to decide how much feeding justifies the.
reporting of a link and how much failure to observe feeding justifies reporting the
absence of a link (Cohen and Briand 1984).

A web may be represented in two equivalent ways: by a directed graph (or
digraph) (Harary 1961; Gallopin 1972) or by a predation matrix. A good drawing of
the digraph of a web is easier to comprehend visually, but a predation matrix is
less prone to error and facilitates the communication of quantitative information
about the web.

In the representation of a web by a digraph, the vertices of the digraph corre-
spond to the set of species in the web. We sometimes use the words ‘‘species’
and ‘‘vertex’’ interchangeably. There is an arrow, directed edge, arc, or link from
vertex i to vertex j in the digraph if and only if species j feeds on species i, that is,
if food flows from species i to species j. Though often present in nature, cannibal-
ism (i.e., a link from a vertex to itself) was systematically excluded from our data
because of the uneven quality of the reporting of cannibalism (Cohen and New-
man 1985). Sometimes we use ““web”’ to mean a digraph that represents a web.

To describe the representation of a web by a predation matrix, let S denote the
total number of species (vertices) and L the total number of links. The predation
matrix A of a web (or of any digraph) is an § x § matrix in which the-element a;; in
row i and column j equals one if species i is eaten by species j and equals zero
if species i is not eaten by species j. The matrix A has L nonzero elements and
S? — L elements equal to zero.

Instead of using an entry of one to show that j eats i, some ecologists record an
estimate of the quantity of i that j eats in row i and column j of a predation matrix.
Here, we always assume that nonzero matrix elements equal one.

The dietary overlaps of the consumers in a web are described by an overlap
graph, short for ‘‘trophic-niche overlap graph,”” which is constructed as follows
(Cohen 1977). Given the web W (whether W is represented as a digraph or a preda-
tion matrix), the vertices of the overlap graph G(W) are the same as those of W,
that is, one vertex for each species in the community. In G(W), there is an
undirected edge between distinct vertices i and j (representing an overlap be-
tween the diets of species i and species j) if and only if there exists some third
vertex k such that, in W, i eats k and j eats k. Thus, two vertices are joined by an
edge in G(W) if there are arrows in W from & to i and from & to j, for at least one &,
or if at least one row of A has elements equal to one in both column i and column,/.
The overlap graph of a web was originally called the competition graph (Cohen
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1968), a name still used by graph theorists, and has also been called the consumer
graph (MacDonald 1983, p. 32).

The resource graph, in the terminology of Sugihara (1982), describes which
prey share a common predator. The vertices of the resource graph H(W) are the
same as those of the web W. In H(W), there is an undirected edge between distinct
vertices i and j if and only if there exists some third vertex & such that, in W, & eats
i and k eats j. Thus, two vertices are joined by an edge in H(W) if there are arrows
in W from i to k and from j to k, for at least one k, or if at least one column of A has
elements equal to one in both row i and row j.

The resource graph of a web W is the dual of the overlap graph of W, in the
sense that the resource graph equals the overlap graph of the web W* obtained
from W by reversing the direction of every link in W; that is, H(W) = G(W*). The
resource graph was simultaneously and independently invented by Sugihara
(1982) and by Lundgren and Maybee (1985, in a paper prepared for a 1982
conference), who called it the ‘‘common enemy’’ graph. Independently, and
before either.of these graph-theoretic constructions, Holt (1977) introduced the
notion that two species are in ‘‘apparent competition”’ if there is a consumer that
preys on both of them and if a change in the abundance of one species induces a
numerical response in the other. The resource graph presents necessary but not
sufficient conditions for the relation of apparent competition in a community.

Many other graphs can be constructed from a web (Sugihara 1982; Roberts, in
press; C. Cable, K. Jones, J. Lundgren, and S. Seager, MS). We discuss primarily
the overlap graph and, to a lesser extent, the resource graph.

A graph (with undirected edges) is said to be an interval graph whenever, for
each vertex of the graph, there exists an open interval of the real line such that
there is an edge between any two vertices if and only if the two corresponding
intervals intersect, that is, overlap. In an interval graph, it is possible to find an
interval of the real line corresponding to each vertex of the graph, and the
connections among the vertices are exactly represented by the overlaps among
the intervals of the line.

A web W is said to be interval if its overlap graph G(W) is an interval graph
(Cohen 1977, 1978). In an interval web, the dimension of trophic-niche space
could be one, because the range of variation in the diet of each consumer could be
identified with an interval of the real line (e.g., the range of sizes of food eaten by a
consumer), and overlaps among diets of consumers in the web would correspond
to overlaps of the intervals on the real line. Lumping trophically equivalent kinds
of organisms into trophic species has no effect on whether a web is interval: an
unlumped web is interval if and only if the corresponding lumped web is interval.

The link-species scaling law is the name given (in Cohen and Briand 1984) to the
empirical observation that in a scatterplot of species and links, with one data point
for each web and species on the abscissa, the points are reasonably well described
by a straight line passing through the origin and having a slope of nearly 2. Thus,
independent of the scale (or number of species) of a web, the ratio of links to
species is about 2. This observation, originally based on 62 webs, was subse-
quently confirmed (Cohen et al. 1986) with the 113 webs used here.

Substantively equivalent but superficially different forms of the link-species
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scaling law were discovered at least twice before it was named (Cohen and Briand
1984). First, MacDonald (1979, p. 586) showed that the ratio of links to species
(using the species as originally reported, not using trophic species) was 1.88 =
0.27 (sample mean = fractional root-mean-square deviation) for 30 webs (as-
sembled in Cohen 1978) and that community webs and sink webs did not have
significantly different ratios (for the definition of a sink web, see Cohen 1978;
MacDonald 1979). Second, Rejmanek and Stary (1979) plotted L/[S(S — 1)12], a
quantity they called the connectance, as a function of § for plant-insect-parasitoid
webs, one data point for each web. They found that the points fell around a
hyperbolic curve of the form 4/S. This is equivalent (as pointed out in Cohen and
Briand 1984), when (S — 1)/S approximates one, to L = 2S. This hyperbolic form
of the link-species scaling law has been confirmed by Pimm (1982) and Auerbach
(1984).

INTERVALITY

Data

The sources and principal characteristics of the 113 webs analyzed here have
been presented already (Cohen et al. 1986; Briand and Cohen 1987). These webs
come from 89 distinct published studies and 2 unpublished studies. They cover
most of the world’s biomes. There are 55 continental (23 terrestrial and 32
aquatic), 45 coastal, and 13 oceanic webs, ranging from arctic to antarctic regions.
Only webs partially defined, presented too sketchily, or based on information
explicitly drawn from different locations were excluded from this collection. The
webs were not screened by rejection of outliers or by any other statistical proce-
dure based on the data. Only obvious biological errors were amended in editing
the data.

A few minor corrections of previously published numbers of species and links
are required. The original numbers of species and links for web number 37 (from
Cohen et al. 1986) were corrected in a later paper (Briand and Cohen 1987); the
corrected values are used here. In webs numbered 6, 7, 24, 45, 51, 65, and 93, the
possibility of lumping two consumers into a single trophic species was overlooked
(Briand and Cohen 1987). Hence, the correct number of trophic species for these
webs is one less than the number originally given, and the correct number of
trophic links is, respectively, 2, 3, 2, 3, 3, 5, and 7 fewer than published (Briand
and Cohen 1987). In calculating these values of species and links in the webs taken
from Cohen (1978), matrix elements reported as — 1 are replaced by 1 and matrix
elements reported as —2 are replaced by 0.

According to F. Briand (pers. comm.), all but 16 of the 113 webs have interval
overlap graphs. The non-interval webs have serial numbers 3, 6, 18, 20, 22, 26, 27,
33, 39, 41, 60, 67, 98, 99, 100, and 106. We have not repeated his calculation.

The proportion of all webs that are interval webs is 97/113 = 0.86. This
proportion is higher than the proportion of interval webs among the community
webs in the original collection (Cohen-1977), namely, 9/14 = 0.64 or 8/14 = 0.57,
depending on the version of the webs used. Using the 40 webs collected by Briand
(1983) (which included 13 of the community webs in Cohen 1978), Sugihara (1982,
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TABLE 1

OBSERVED RELATIVE FREQUENCY OF INTERVAL OVERLAP GRAPHS AND OF TRIANGULATED OVERLAP AND
RESOURCE GraPHS IN 113 COMMUNITY FOOD WEBS AS A FUNCTION OF THE NUMBER OF SPECIES

FRACTION OF GRAPHS

FRACTION OF THAT ARE TRIANGULATED
No. oF No. oF WEBs THAT
SPECIES WEBS ARE INTERVAL Overlap Resource

SPECIES DIVIDED INTO FOUR INTERVALS OF NEARLY EQUAL LENGTH

3-14 56 1 1 1
15-24 40 0.775 0.975 0.875
25-34 15 0.667 0.800 0.800
35-48 2 0 0 0.500

SPECIES DIVIDED INTO FOUR INTERVALS OF NEARLY EQUAL FREQUENCY

3-11 28 1 1 1
11-14 28 1 1 I
15-21 28 0.857 1 0.929
22-48 29 0.586 0.793 0.759

Note.—Presence or absence of intervality was computed by F. Briand. We computed the presence
or absence of triangulation in the overlap and resource graphs from predation matrices furnished by
Briand.

chap. 4) identified 73 connected components with more than one species and
found that only 10 of these 73 had overlap graphs that were not interval. The
proportion of interval webs in Sugihara’s collection of components is 63/73 =
0.86. The 40 webs of Briand (1983) are among the 113 webs analyzed here, and a
web is interval if and only if its components are interval; thus, Sugihara’s propor-
tion of intervality and the proportion just found here are not independent. How-
ever, excluding the first 40 webs of Briand’s collection (those in Briand 1983 and
Sugihara 1982), only 7 of the remaining 73 (113 — 40) complete webs (not
components, as in Sugihara 1982) failed to be interval. The proportion of interval-
ity among these 73 webs, namely, 66/73 = 0.90, is independent of the proportion
of intervality among the 73 components studied by Sugihara (1982). Thus, in this
collection of 113 webs, the proportion of webs that are interval is as high as, or
higher than, the proportion of interval webs observed previously.

Because of the large number of webs now available, it is possible to examine
how the proportion of intervality co-varies with other characteristics of webs. The
most fundamental characteristic, which is examined here, is the number § of
species. All webs with S of 16 or fewer are interval. Of the five webs with the
largest numbers of species (ranging from 32 to 48 species), none is interval. When
the observed range in the variation of S, from 3 to 48, is divided into four nearly
equal intervals, the fraction of interval webs declines steadily from one among
webs with 3 to 14 species to zero among webs with 35 to 48 species (table 1).
However, there are only two webs with 35 to 48 species. When the frequency
distribution of .S is divided by quartiles, so that each group contains, as nearly as
possible, one-quarter of all the webs, the fraction of interval webs again declines
steadily from one among webs with 3 to 11 species to 0.59 among webs with 22 to
48 species. In summary, the fraction of webs that are interval is strongly associ-
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ated with the number of species in the webs, declining from one for small webs
toward zero for large webs.

Though quantitative documentation of this finding seems to be new, hints of it
appeared earlier. For example, webs that incorporate multiple habitats were
found to be much less likely to be interval than webs from single habitats (Cohen
1978, p. 40); multiple-habitat webs also tend to have more species. More explic-
itly, MacDonald remarked that ‘‘[t]he non-interval community webs . . . are the
webs with the largest’ numbers of species (1979, p. 586). In neither case (Cohen
1978; MacDonald 1979) did the authors analyze the relation between species
number and intervality any further, empirically or theoretically.

Our empirical finding that intervality is less frequent among larger webs is
consistent with data presented by Sugihara (1982, pp. 73-74, table 4.1). The
numbers of consumers in- his 73 components of overlap graphs range from 2 to 34
species. According to our tabulation of his data, of the 52 component webs with 2
to 10 species, 50 are interval (96%); of the 14 component webs with 11 to 14
species, 12 are interval (86%); and of the 7 component webs with 15 to 34 species,
1 is interval (149).

Theory

This section describes the cascade model and its predictions regarding the
probability that a web is interval.

The cascade model assumes that species in a community are ordered in a
cascade, or hierarchy, such that any species can consume only those species
below it in the ordering and can be consumed only by those species above it.
Operationally, if there are § species in the web, the cascade model assumes a
labeling of the species from 1 to S in such a way that whenever a species labeled i
is eaten by a species labeled j, then i is smaller than j. This assumption excludes
the possibility of trophic cycles, for example, cases in which i eats j and j eats i.
Moreover, the cascade model assumes that for any two species i and j with
smaller than j, the probability that j actually eats i is p, and whether j eats i is
statistically independent of all other eating relations in the web. The positive
probability p is independent of the particular pair of species i and j. When webs
with different total numbers of species, S, are compared, the cascade model
assumes that p depends inversely on S according to p = ¢/S, where c is a positive
constant independent of S.

In summary, the cascade model assumes (1) ordering, the prior existence of a
labeling or cascade of species that limits the possible feeding relations; (2) equi-
probability, a constant probability of a link between any two species for which a
link is possible; (3) independence between the existence of a link for any given
pair of species and the existence of a link for any other pair of species; and (4)
reciprocal scaling, the probability that a link between any pair of species for which
a link is possible depends on the number of species in the web, S, according to ¢/S.

Under these assumptions, the probability of a link, p, is just the expected
or average value of the connectance defined by Rejmanek and Stary (1979): p =
E{L/[S(S — 1)/2]}.

We calculated explicit formulas for the probability P that a web W is interval—
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that is, the probability that the overlap graph G(W) of W is an interval graph—for
extremely small § and extremely large S (Appendix, theorem 5). The probability
P that a web is interval depends on, and should not be confused with, the
probability p of a link between any two species i, j with i < j in the web.

IfS =3,4,or5, thenP =1.If § = 6orS = 7, alower bound on P is the
difference between 1 and a sum of high powers of p (the link probability) times
high powers of 1 — p (see the Appendix). Because the product of high powers of p
times high powers of 1 — p must be small, one expects (and numerical results
below confirm) this lower bound on P to be very close to one. Thus, for low values
of S, the probability P that a web is interval is one or close to one.

At the other extreme, the larger S gets, the closer P gets to exp(—\) where A =
0.0025[2L/(S — DI’S (see the Appendix, theorem 5). According to the cascade
model, the expected number of links in a web is pS(S — 1)/2 = ¢(§ — 1)/2; thus,
the average of 2L/(S — 1) is just ¢. The best current estimate of ¢, based on
aggregate data for all webs, is approximately 4. If we replace 2L/(S — 1) by 4 in
the expression for A, we obtain approximately A = 660S. Thus, for average webs
according to the cascade model, P is expected to decline exponentially fast with
increasing .S, and the coefficient of § in the exponent is large, in excess of 660.
Hence, for large S, the cascade model predicts a frequency of intervality near
Zero.

These are the principal results of the Appendix about the probability that a web
is interval. In addition, the Appendix establishes other important structural prop-
erties predicted by the cascade model for the overlap graphs of large webs. The
cascade model predicts that the overlap graph should contain a complete subgraph
on n vertices, for any finite n, with probability one as § becomes large. The
cascade model predicts that the overlap graph should contain an induced tree on n
vertices, for any finite #, with probability one as S becomes large. The probability
that the overlap graph is a unit-interval graph approaches zero as S becomes large.

The section on triangulation reports simulations that establish an upper bound
on the probability that a web is interval when S is 10, 20, 30, 40, and 50 species.
These simulations establish that the probability of intervality predicted by the
cascade model is essentially zero by the time § is as large as 40.

Because of the duality between the overlap graph and the resource graph, with a
corresponding duality in the probability distribution of edges according to the
cascade model (see the Appendix), all the preceding analytic and numerical
results in this section remain valid if “‘overlap graph’’ is replaced by ‘‘resource
graph.”

Confronting Data and Theory

This section compares the data on intervality with the cascade model’s quan-
titative predictions about the probability that a web is interval.

To do so, it is necessary first to estimate either of the parameters p = ¢/Sorc =
pS of the cascade model. The parameters may be estimated in two ways: using
data on all webs simultaneously (Cohen and Newman 1985; Cohen et al. 1986) and
using data from each web separately (Cohen et al. 1985, 1986).

Using data on all webs simultaneously, ¢ is twice the estimated slope of a
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Fic. 1.—Reciprocal of the link probability or reciprocal of connectance as a function of the

number of species in 113 community food webs. If § is the number of trophic species and L is
the number of trophic links in a web, the ordinate is S(§ — 1)/(2L) and the abscissa is §. I,
The web is interval; 2, the web is not interval. Solid line, The plot of §/4 as a function of §.

straight line through the origin fitted to the data points (S, L), where L is the
number of links in a web with .§ species. In the 113 webs analyzed here, that slope
is 1.99 + 0.07 (standard error); thus, c is very nearly 4 (Cohen et al. 1986, p. 335).
With this value of ¢, the cascade model makes sense only for webs with S of 4 or
more, since by definition p = 1.

Using data from a single web with § species and L links, a reasonable estimate
of p is L/{S(S — 1)/2], which is the connectance; the numerator is the observed
number of feeding relations, and the denominator is the number of possible
feeding relations given the assumption of ordering. (Estimating p by the connect-
ance L/[S(S — 1)/2] overlooks the omission of isolated species from the data. A
more complex estimate {Cohen et al. 1985, pp. 460-461] allows for the omission of
isolated species. Since the number of isolated species is small, the error intro-
duced by estimating p from connectance is also small.)

As a preliminary, we now check the cascade model’s assumption that the link
probability, p, depends on the number of species, S, according to ¢/S. This
assumption implies that if the connectance or p is estimated separately for each
web, then the points (S, 1/p) should fall around the straight line S/c = 5/4 derived
from the aggregated data. The agreement in figure 1 between the individual points
and the predicted straight line justifies further testing of the cascade model. Each
web in the figure is represented by the symbol ‘“‘1”’ (for one dimension) if the web
is interval or by the symbol ““2*" (for two or more dimensions) if the web is not
interval.

When the link probability, p, is estimated separately for each web, the cascade
model predicts a probability of intervality P = 1 for S = 3, 4, or 5, as already
mentioned, P = 0.9999 for § = 6, and P = 0.9986 for S = 7. All webs with S < 16
(the webs plotted in the left third of fig. 1) are interval. Thus, for very small
numbers of species, §, the data are consistent with the predicted probability P that
a web is interval.
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For intermediate numbers of species, the observed fraction of webs that are
interval declines as shown in table 1. An upper bound on the predicted probability
that a web is interval is given by the predicted probability that a web is trian-
gulated (see the next section). Table 2 reports estimates of the probability of
trianguiation for § = 10, 20, 30, 40, and 50, based on 100 simulations for each
value of §. The predicted probability of triangulation (table 2), and therefore the
predicted probability of intervality, appears to decline with increasing S more
rapidly than does the observed frequency of intervality. That is, there is still an
excess frequency of intervality not explained by the cascade model. But the
cascade model does predict correctly the existence and the location of a range of §
over which the probability of intervality declines smoothly from near 1 to near 0.

For very large §, the cascade model predicts asymptotically a probability of
intervality, P, lying between exp(—39) and exp(—3.2 x 10%), according to the
theory developed in the Appendix. In these calculations, the link probability, p, is
estimated separately for each web. The simulations in table 2 suggest that the
asymptotic theory becomes relevant when the number of species is between 30
and 40. Consistent with these analytic and computational predictions, the five
largest webs, with § ranging from 32 to 48, are all non-interval.

Overall, there is good qualitative agreement, and reasonable quantitative agree-
ment, between the observed frequency of interval webs and the frequency of
interval webs predicted by the cascade model. For intermediate numbers of
species, more interval webs are observed than are predicted by the simulations
of the cascade model. It remains to be determined whether this excess identifies
a deficiency of the cascade model or a deficiency of the data on trophic links or
both.

An upper bound on the fraction of webs with interval resource graphs is given
by the fraction of webs with triangulated resource graphs. The relative frequen-
cies of triangulated resource graphs are given in table 1 and are discussed in the
next section.

TRIANGULATION

A web is said to be triangulated if its overlap graph is triangulated. A graph is
triangulated if it has no induced cycles of four or more edges; that is, whenever
four or more vertices in the overlap graph make a cycle, there is an edge that cuts
across the cycle, reducing the cycle to a composition of triangles. Lekkerkerker
and Boland (1962) showed that a graph is interval if and only if it is triangulated
and it contains no asteroidal triples. Thus, the probability that a graph is trian-
gulated is an upper bound on the probability that it is interval.

Sugihara (1982) showed that the frequency of intervality in simulated webs
could largely be accounted for by requiring the overlap graphs to be triangulated.
As part of a more extensive theory that is not reviewed here, he proposed that
triangulation is a more fundamental property of webs than is intervality.

Sugihara (1982, p. 118) simulated a dynamic Lotka-Volterra model with random
interaction coefficients and allowed species to become extinct until the hypothet-
ical community was ‘‘feasible.’”” His model communities started with 15 species,
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and the final number of species ranged from 6 to 9. In 18 of 20 simulations, the final
communities had triangulated niche overlap graphs. Sugihara noted that ‘‘the high
frequency of rigidity [equivalent to triangulation] may simply be an artifact of
generating relatively small final communities,’’ that is, communities with a small
number of species. Though it was not Sugihara’s preferred interpretation of the
high frequency of triangulation, this possibility is consistent with the following
analyses of data and the cascade model.

Data

We determined the triangulation of the overlap graph and the resource graph of
each of the 113 webs in Briand’s collection by constructing these graphs from the
predation matrices (Cohen et al. 1990). The most efficient algorithms to determine
whether a graph is triangulated are LEX p and FILL of Rose et al. (1976), based on
lexicographic breadth-first search. We programmed their algorithms using a de-
scription by Booth (1975, p. 126) and verified the performance of our program in
numerous examples.

All of the webs with non-triangulated overlap graphs (numbers 6, 18, 33, 39, 60,
99, 100, and 106) are also non-interval, as is logically required by the theorem of
Lekkerkerker and Boland (1962). This consistency provides a check, albeit weak,
on our independent computations. Nine webs have non-triangulated resource
graphs (numbers.6, 18, 33, 60, 63, 67, 69, 99, and 100).

Sugihara (pers. comm.) provided proposed corrections to several of Briand’s
predation matrices. When these corrections are made, webs 6 and 18 have triangu-
lated overlap graphs. This change does not alter the general trends in the data. For
consistency, we use the predation matrices furnished by Briand.

Table 1 shows the relative frequency of triangulated overlap graphs and trian-
gulated resource graphs in 113 community food webs as a function of the number
of species. For both overlap and resource graphs, the frequency of triangulation
declines from 1 for the smallest observed webs to much smaller values for the
largest observed webs. All 4 webs of more than 32 species have non-triangulated
overlap graphs, and 2 of those 4 webs have non-triangulated resource graphs.

Theory

The predictions of the cascade model regarding triangulation are obtained by
mathematical analysis (see the Appendix) and simulation. Analytically, the proba-
bility that an overlap or resource graph is triangulated is one whenever the number
of species in the web is five or less, and is very close to one for six and for seven
species. For large numbers of species and a link probability p = 4/, the cascade
model predicts asymptotically that the probability that a resource or overlap graph
is triangulated is very near zero (Appendix, theorem 7). For intermediate numbers
of species (table 2), the simulated probability of triangulation according to the
cascade model declines rapidly with an increasing number of species, S.

Confronting Data and Theory

The cascade model’s predictions are consistent with observation for very small
numbers of species and for large numbers of species. For intermediate numbers of
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TABLE 2

SIMULATED RELATIVE FREQUENCY OF TRIANGULATED OVERLAP GRAPHS OR
RESOURCE GRAPHS PREDICTED BY THE CASCADE MODEL, ACCORDING TO 100
SIMULATIONS FOR EACH NUMBER OF SPECIES

Fraction of
Triangulated Lower 95% Upper 95%
No. of Overlap or Confidence Confidence
Species Resource Graphs Limit Limit
10 0.91 0.85 0.97
20 0.26 0.17 0.35
30 0.03 0 0.07
40 0 0 0.005
50 0 0 0.005

Note.—The 95% confidence interval incorporates the correction for
continuity, and negative lower confidence limits for 30, 40, and 50 species
were set to zero.

species, the simulated probability of triangulation appears to decline with increas-
ing numbers of species more rapidly than does the observed relative frequency of
triangulation. But the cascade model does predict correctly the existence and
location of a range of S over which the probability of triangulation declines
smoothly from near one to near zero. The difference between the observed and
simulated relative frequencies of triangulation for intermediate numbers of species
may be due to imperfections of the data or of the cascade model.

DISCUSSION AND CONCLUSIONS
Major Findings

The main accomplishments of this paper are three. First, while confirming
empirically the overall high relative frequencies of interval and triangulated over-
lap graphs found previously, we observe that the relative frequencies of interval
and triangulated webs are strongly associated with web size, as measured by the
number of species. All overlap graphs of webs with small numbers of species (16
or fewer in our data) are observed to be interval and triangulated, and no overlap
graphs of webs with large numbers of species (33 or greater in our data) are
observed to be interval or triangulated. Between these extremes, a steady down-
ward trend is observed in the fraction of interval and triangulated overlap graphs.
The pattern of triangulated resource graphs is similar. Broadly, the larger the
number of species in a community, the less likely it is that a single dimension
suffices to describe the community’s trophic-niche space, and the less likely it is
that there are no ‘‘holes’’ in the overlap graph or resource graph.

There are two ways to look at this finding. One possibility is that webs with
small numbers of species come from especially simple communities; the simplicity
gives the communities a small number of species as well as a very small number of
dimensions of trophic-niche space, namely, just one. Another possibility, which
we favor, is that most webs with small numbers of species are incomplete descrip-
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tions of real communities. When communities are described in detail, reported
webs contain larger numbers of species and are less likely to be interval and
triangulated.

This interpretation is consistent with the empirical finding of Schoener that the
‘‘separation [of species in niche space] appears generally to be multidimensional”’
(1974, p. 29), although he recognized that ‘‘the dimensions that ecologists recog-
nize are rarely independent’” (p. 32). In 81 studies of niche relations in groups of
three or more species, when the dimensions originally reported are classified into
the broad categories of food, space, and time, most niches are separated by two
dimensions (Schoener 1974). (Other studies of the dimension of ecological niches
were reviewed by Cohen [1978, pp. 97-100].) .

This interpretation leads to a concrete prediction. If webs reported in the future
are consistent with the trends in the existing data and if they are reported in
greater detail than are most present webs, they will display much lower relative
frequencies of intervality and triangulation than do the existing webs with small
numbers of species, even in the communities with webs currently reported as
interval or triangulated. As the fidelity and detail of the description of com-
munities improve and the numbers of species in reported webs increase, we
expect the relative frequencies of intervality and triangulation to decline.

Second, we calculate the predictions of the cascade model about the probabili-
ties that the overlap graph and resource graph are interval and triangulated, for
both very small and very large numbers of species. For very small webs, the
predicted probability that either graph is interval or triangulated approximates
one. For a web with a very large number of species, S, and with approximately
twice as many links as species (in accordance with the empirical link-species
scaling law), the predicted probability that either graph is interval falls as approxi-
mately exp(—6605S), that is, extremely rapidly with increasing S. The predicted
probability that either graph is triangulated also falls exponentially.

We do not know of any previous analytic (as opposed to numerical) calculations
of the probability of interval or triangulated overlap or resource graphs starting
from a model of webs. The calculations constitute nontrivial new mathematics.

Third, comparing data and theory, we show that the predictions of the cascade
model account quantitatively for the observed relative frequencies of interval and
triangulated overlap graphs and triangulated resource graphs for webs with 7 or
fewer and 33 or more species. The cascade model also predicts correctly the
existence and location of a range of numbers of species over which the relative
frequencies of interval and triangulated overlap and resource graphs decline
smoothly from near one to near zero. Our simulations of the cascade model
reveal, however, that there are more interval and triangulated overlap graphs and
more triangulated resource graphs observed than expected in webs with inter-
mediate numbers of species. This difference may be due to imperfections of the
data or of the model.

The cascade model’s successful prediction of the existence and location (though
not the exact rate) of declines in the relative frequencies of intervality and tri-
angulation with increasing numbers of species suggests that the relative com-
monness or rarity of interval and triangulated webs may be a statistical conse-
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quence of the general ecological processes posited in the hypotheses of the
cascade model, rather than a consequence of special constraints (of whatever
origin) acting directly on the dimension of trophic-niche space or the homological
structure of the overlap graph or the resource graph.

Related Prior Work

There have been several previous attempts to explain the relative frequency of
intervality. Six simple web models were simulated and found to predict fewer
interval overlap graphs than were observed (Cohen 1978). The authors of another
study (Cohen et al. 1979) calculated the probability that a random graph is interval
when the random graph is constructed with an edge probability that is the same for
every pair of vertices, that is, according to the classical model of Erdos and Rényi
(1960). That model also failed to account for the observed frequency of intervality.
(By contrast with the model of Erdés and Rényi, when the overlap graph is
derived from the cascade model, the probability of a dietary overlap between two
species, or of an edge between the corresponding vertices in the overlap graph, is
much higher for two species high in the ordering than for two species low in the
ordering.)

Critchlow and Stearns (1982) showed that the predation matrices of the real
webs analyzed in an earlier study (Cohen 1978) were divided into block sub-
matrices much more than were the simulated predation matrices generated by an
earlier model (Cohen 1978, model 5) and that, in general, the real webs had fewer
dietary overlaps (or edges in the overlap graph) than webs simulated according to
the earlier model with the same number of predators, prey, and links. Critchlow
and Stearns showed that both the deficit of block submatrices and the excess of
dietary overlaps in the simulated webs helped to explain why the earlier model
underpredicted the observed frequency of intervality.

Yodzis (1984) formulated assembly rules, based on energetic constraints, for
the hypothetical construction of an ecosystem from species that arrive sequen-
tially. These assembly rules generate model webs that describe well many struc-
tural features of 25 of the 28 webs from fluctuating environments in Briand’s
(1983) collection of 40 webs, and 3 of the 12 webs from constant environments in
Briand’s collection. In particular, when Yodzis’ model describes well most other
-structural features of a real web, it also describes well the presence or absence of
an interval overlap graph.

Yodzis reported his model’s expected intervality for the 28 webs well described
by his assembly rules (Yodzis 1984, p. 122, his table 1). For these webs, we
graphed his expected intervality as a function of the observed number of trophic
species for all the webs (graph not shown). We found Yodzis’ expected intervality
near one for the webs with the smallest number of species; a hint, amid much
scatter, of a declining trend in Yodzis’ expected intervality with an increasing
number of species; and the smallest values of Yodzis’ expected intervality for the
webs with the largest number of species. Yodzis did not remark on this associa-
tion between his expected intervality and the number of species in a web.

Yodzis’ assembly rules provide an alternative explanation for the trend we have
reported here in the frequency of intervality as a function of the number of
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species. But this explanation may be limited to webs from fluctuating environ-
ments. By contrast, the cascade model deals equally well with webs from fluctuat-
ing and constant environments. Whereas Yodzis’ assembly rules so far have been
analyzed only by computer simulation, the cascade model is tractable to explicit
analysis. In spite of (what we view as) the advantages of the cascade model, the
parallels between its predictions and those of Yodzis’ assembly rules suggest that
it would be worthwhile in the future to determine whether there are deeper con-
nections between the two models.

Sugihara (1982, p. 65) explained the high frequency of interval graphs in terms
of different assembly rules that prevent the appearance of ‘*homological holes’’ in
communities. He considered the highly frequent, but not universal, appearance of
intervality in real webs to be a consequence of a more fundamental requirement
that real webs be triangulated. The data (table 1) indicate that larger webs are less
likely to be interval and triangulated. If these trends are not an artifact of faulty
data, then the absence of homological holes in the overlap graph is not a universal
feature of food webs. An independent theory, such as the cascade model, is re-
quired to explain the frequencies of both intervality and triangulation.

The history of data and theory on the intervality and triangulation of the niche
overlap graph may be caricatured simply. Initially, the high average proportion of
interval webs came as a surprise and could not be explained by the available
models (Cohen 1977, 1978). Subsequently, various explanations were offered
for the high average proportion of intervality, including compartmentalization
(Critchlow and Stearns 1982), energetic constraints on community assembly
(Yodzis 1984), and triangularity (Sugihara 1982). Though, in retrospect, the data
then available and some of these explanations hinted at a decline in the frequency
of intervality with an increasing number of species, it seems fair to say that any
such decline remained unremarked. The data presented here provide unambigu-
ous evidence of a decline in the relative frequency of intervality and triangulation
with increasing numbers of species. These data seem to us to weaken or obliterate
the claim that trophic-niche overlap grapis and resource graphs are interval or
triangulated (always or at a constant high frequency) regardless of the number of
species in a web. The cascade model predicts accurately the existence of this
decline in intervality and triangulation. The cascade model also predicts the range
in the numbers of species where this decline occurs. However, the cascade model
predicts that the relative frequencies of intervality and triangulation will decline
more rapidly, with increasing numbers of species, than they actually do. Excess
proportions of interval and triangulated overlap and resource graphs remain to be
explained.

SUMMARY

We report new empirical and theoretical information about the dimension of
trophic-niche space and the structure of food webs, as measured by the frequency
of intervality and triangulation of overlap graphs and resource graphs in commu-
nity food webs. Briand assembled and edited 113 community food webs, and
informed us of which of those webs have interval trophic-niche overlap graphs. In



FOOD WEBS AND THE NICHE OVERLAP GRAPH 451

this collection of 113 webs, the overall proportion of webs that are interval is as
high as, or higher than, the proportion of interval webs observed previously.
However, the fraction of webs that are interval is strongly associated with the
number of species in the webs. The fraction of interval webs declines from one for
small webs (16 or fewer species) toward zero for large webs (33 or more species).
According to new mathematical and numerical calculations presented here, the
cascade model predicts, as observed, that the probability that a web is interval is
near one for webs with fewer than 10 species, declines as the number of species
increases from 10 to 30 or 40, and is very near zero for larger numbers of species.
However, in the range of 10 to 40 species, the cascade model predicts a more rapid
decline in the relative frequency of intervality than is observed.

Using the predation matrices of the same 113 webs, we determined which webs
have triangulated overlap graphs and triangulated resource graphs. The empirical,
mathematical, and computational results on the relative frequency of triangulation
parallel those on intervality.

The broad ecological interpretation of our findings is that the larger the number
of species in a community, the less likely it is that a single dimension suffices to
describe the community’s trophic-niche space and the less likely it is that there are
no ‘‘homological holes’’ in the overlap graph and resource graph. Most reported
webs with small numbers of species are incomplete descriptions of real com-
munities. If future webs have larger numbers of species and are described in
greater detail, we predict that those webs will have smaller relative frequencies of
being interval and triangulated.
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APPENDIX
MATHEMATICAL ANALYSIS

Basic Concepts

The cascade model W, assumes that the species (vertices) of a web may be labeled from
1to S, with § = 2. If i <, then j feeds on i (there is a link from i to j) with probability p, and
J does not feed on i with probability ¢ = 1 — p, independently forall 1 < i <j =< §. The
probability that species j feeds on species i is 0 if j < i. The probability p is assumed to
depend on S, such that p = p(§) > 0 as § — .

By replacing each link of W, by an undirected edge, one obtains the usual random-graph
model G,, that is, an undirected simple graph on the vertex set {1, 2, . . ., S}, in which each
edge appears with probability p, independently of all other edges. A simple graph is one
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that has neither loops nor multiple edges. The structure of G, when p changes from 0 to 1
has been studied extensively since the fundamental paper of Erd6s and Rényi (1960) (see,
e.g., Bollobds 1985). The greatest discovery of Erdos and Rényi was that many important
properties of graphs appear quite suddenly. We shall use such facts about G, here.

We shall say that almost every G, has property m if the probability that G, has = tends to
1 as § — . If we pick a function p = p(S), then, in many cases, either almost every graph
G, has property = or else almost every graph fails to have property . More precisely, for
many properties there is a threshold function p* = p*(S) such that

{0 if plp* >0,
1 if p/p* — .

lim P(G, has property m) =

S—x

As examples, here are two facts from Erdos and Rényi (1960) that we use later.

Fact 1 .2/—T1'11)e threshold function that G, contains a complete subgraph K, on n vertices is
p* = 8§~ (n— .

Fact 2.—The threshold function that G, contains a cycle on n vertices is p* = S~ ! for
any fixed n = 3.

If G is a simple graph on the vertices V = V(G) and F is another simple graph on the
vertices V(F), we say that Fis an induced subgraph of G if V(F) C V(G) and if the edges of
F contain all the possible edges from the edges of G; that is, if v;, v; € V(F) and {v;, v} isan
edge of G, then {v;, v} is an edge of F.

There are some properties of a random graph G, that suddenly appear, then hold when p
increases, and at some point suddenly disappear. For example, consider the property that
G, contains an induced cycle on a fixed number of vertices. By fact 2, such a cycle appears
with probability 1 when p = w(S)S™!, where w(S) — = (arbitrarily slowly) as § — o.
However, when p is very close to 1, then the cycle is no longer induced. Thus, in our
investigations we focus on the appearance function of a given subgraph of G,, which
describes when such a subgraph first appears as p increases. Of course, when one consid-
ers subgraphs (but not induced subgraphs) of G,, then the appearance function and the
threshold function coincide.

The concepts of threshold and appearance functions also apply to the cascade model W,
and to the overlap graph G(W,), defined as follows (Cohen 1977, 1978).

The trophic-niche overlap graph G(W,) is defined as an undirected simple graph on the
vertices of W,. Two consumers are joined by an undirected edge when there is at least one
prey that both consumers eat. That is, {v;, v} is an edge in G(W,,) if and only if there exists
some v; in W, such that both (v;, v;) and (v;, v,) are links in W,,.

Let G be a simple graph on the set of vertices V = {v|, v, ..., v,}. Gis aninterval graph
when there is a collection Iy, I, . . . , I, of open, closed, or mixed intervals of the real
line such that there is an edge between v; and v;, i # j, if and only if I; and [; overlap, that is,
I; N I; # &. Thus, G is an interval graph if and only if G is the intersection graph of some
family of intervals of the line. If each interval Iy, . . ., ., has length equal to 1, then G is
called a unit-interval graph.

Existence of Some Induced Subgraphs in G(W,)

We now establish the appearance functions of induced subgraphs of various types in a
random overlap graph G(W,). We find the appearance functions of the properties that
G(W,) contains an induced tree, an induced cycle, and an induced asteroidal 1-triangle (see
fig. Al). These subgraphs determine the intervality of G(W,) when S is large, which we
examine in the following section.

We begin with the existence of a complete subgraph in a random overlap graph G(W,,).
There are two reasons for this. First, the threshold function for having a complete subgraph
in G(W,) (which in this case is also the appearance function) is quite different from that in
the usual random-graph model G, (see fact 1). Second, all the proofs in this section rely on
the so-called ‘‘second-moment method.”’ It is easiest to present this method in the case of
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Fic. Al.—An asteroidal &-triangle with k + 5 vertices. (An asteroidal !-triangle contains
a single central triangle, each vertex of which is joined by an edge to one outlying vertex.)
(From Cohen et al. 1990, p. 190, with permission of the publisher.)
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Fig. A2.—Three web configurations that produce the complete graph K in the overlap
graph. (From Cohen et al. 1990, p. 191, with permission of the publisher.)

complete subgraphs. Thus, we present first a rather detailed proof of the threshold function
for the existence of a complete subgraph of G(W,) and then state the remaining results,
indicating only the crucial points in their proofs.

Theorem 1 (complete subgraphs).—Let n = 3 be fixed. The threshold function of the
property that G(W,) contains a complete subgraph K,, on any n vertices is S~ I=1m. that is,

[0 if[)Sl+l/n‘—>0,

lim P[G(W,) D K,] =
Sl +1/n

§— 1 if p — 0,

Proof.—Denote by X,, the number of all configurations in the cascade model W, that
produce complete subgraphs on n vertices in G(W,). As an example, figure A2 presents
three types of configurations of W), that correspond to K3 in G(W,).

The graph in figure A2a is called a three-star with root i;. Generally, a subgraph of W, on
n + 1 vertices iy, i1, iz, . . ., i,—Where | =< iy <ij <i,<...<i,=S§, suchthat (i, ip)is a
link for every k = 1, 2, . . ., n—will be called an n-star with root iy. Let Y, stand for the
number of all n-stars in W,,. Then, X,, = Y, + Z,, where Z, is the number of configurations
other than n-stars that produce a K, in the overlap graph. (If we forget about the orientation
of links, then all those configurations contain at least one cycle.) Elementary calculation
shows that

B = (§ ) = ocstph,

and

E(Zy)

I

D = DE -+ D G- D — 2 — 4

2=y <iy<iy=S 2=i<i<iy=$

!

= 0(S5°p%) + O(S%p%)
0(5%p%).
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The first sum in E(Z3) enumerates the expected number of graphs of the form shown in
figure A2b; the second sum refers to figure A2¢. Similarly, for n = 4,

S
n+1

E(Y,) = ( )p" = 08" 1pry

and it is not hard to see that in a formula for the expectation of Z,, the exponent of p is
always greater than the exponent of S (only if n = 4). Consequently, E(Z,) = O(S™p") for
some m=n + 2and kK > m.

Now, let p = p(S) be such that pS'*" — 0 as § — . Then, clearly,

EX,) = E(Y,) + E(Z,) = o(1).

(We could have proved that E(Z,) = o(1) from the threshold function for cycles in G,
because each of these configurations contains a cycle [if we ignore orientation], and from-
fact 2 we know that there are no cycles in G, when pS — 0 as § — o, which is satisfied
under our assumption on p.) Since P(X, = 1) = E(X,), it follows that, with probability
approaching 1 as § — «, the cascade model W, contains no configurations producing a
complete subgraph K, in G(W,,); that is, as .S — o,

P[GW,) DK, = PX,=1)— 0.
Now assume that pS' " — o as § — . We show that, under this assumption,
PY,z1)—1 (A1)
as § — . Since
P(Y,=1) = P[GW,) D K,],

it follows that, with probability tending to 1, a random overlap graph G(W,) contains at
least one complete subgraph K,,. For 1 = {y <i; <...<i,= S, let §; denote the indicator
random variable of the event that there is in W, an n-star i on the vertices {iy, i1, . . . , i}

with iy as the root. Then,
varY, = Z Z cov(sS;, S5,
i J

where the summations are over all n-stars specified by i and j, respectively. If the stars i
and j share exactly m links, 0 = m = n, then

cov(S, S) =PS; = 1,8 = 1) = p=m.

If m = 0 and none of i, iy, . . . , i, coincides with any of jo, ji, . . . , j., then §; and §; are
independent; thus, cov(S;, S;) = 0. Let 3, be the number of ordered pairs (i, j) such that i
and j share m links and at least one vertex. Then, for m = 1, clearly the roots iy and j,
coincide and Q,, = §%'"!~" whereas for m = 0, iy # j, and Qp = $¥"*!. Consequently,

n
vary, = > (SpPms.
m=0

Thus, from Chebyshev’s inequality,
P(Y,

0) = var(Y,)/E(Y,)?

0{ Zl (Sp)””‘S"l}
m=0

o(1),

since under the assumption on p, Sp can be expressed as Sp = w(S)S~
sequence tending to infinity as S — . Thus, we proved relation (Al).

Un where w(S) is a
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b

Fic. A3.—Two web configurations that produce the tree shown in figure A4 in the overlap
graph. (From Cohen et al. 1990, p. 193, with permission of the publisher.)

iy

FiG. A4.—Tree in the overlap graph produced by the web configurations in figure A3.
(From Cohen et al. 1990, p. 193, with permission of the publisher.)

Theorem 2 (induced trees).—Let k = 2 be fixed. The appearance function of an induced
tree on k vertices in G(W,) is § @k~ D/@k=2)

Proof. —If G(W,) contains an induced tree on vertices (consumers) iy, i, . . . , i, where
2=i <ip<...<i=J3S, then there must exist k — 1 vertices (prey species) ji, j», . . . ,
Jk—1, where j; < i) and ji_, < i, such that for every j,, (m = 1,2, ..., k — 1), there are
exactly two links from j,, to two appropriately chosen vertices from {i|, i, . . . , ix}. (See fig.

Ala.) Some of the consumers may at the same time be prey species. (See fig. A3b.) Figure
A3 presents two examples of configurations in W, that produce a tree in G(W,) as shown in
figure A4.

Each configuration of the web W, that produces an induced tree on k vertices in the
overlap graph G(W,) must have exactly 2(k — 1) links. The configurations are of two types.

In configurations of the first type, {if, iz, . . -, ik—2} N {1, /2 - - - s Jk—1} = J; therefore, none
of the vertices {ij, i3, . . . , ir—2} is a prey for two consumers from {iz, . . ., i}. In
configurations of the second type, some of the vertices i}, i3, . . . , i are at the same time

consumers and prey. In the latter case, if we ignore the orientation of links, there is always
a cycle in the configuration.
Assume that p = p(S) such that, as § — o,

pSk-DICk-D _, ¢ (A2)

Since our p is of smaller order than $~!, by fact 2 almost every G, has no cycles and,
consequently, almost every W, has no configurations of the second type. Moreover, each
configuration of the first type forms an induced tree of W, in which there is no vertex lying
below i, and different from {i, iz, . . . , ix— 1, j1,J2> - - - »Jjk—1} that is connected with exactly
two vertices from {iy, i, . . . , ix}; such a vertex would destroy the property that the tree in
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Fic. A5.—A web configuration that produces an asteroidal 1-triangle in the overlap graph.
(From Cohen et al. 1990, p. 195, with permission of the publisher.)

G(W,) is induced. Thus, if T denotes the number of configurations of the first type, then

O[ Z Gy — 1)k71p2(k—1)j|

2= <<, <G =S

E(Ty)

I

— O[S2k7 1p2(k7 l)]
= o(l).

Consequently, under assumption (A2), the overlap graph G(W,) contains no induced tree
on k vertices.

However, if the limit in assumption (A2) is infinity instead of zero, then E(7;) —
as § — . Applying the same approach as in the preceding proof, it can be shown that
P(T, = 1) > 1 as S — =, that is, with probability tending to 1, G(W,) contains an in-
duced tree on k vertices.

The next result shows that the appearance function of an induced cycle on m vertices in
G(W,) is the same as the threshold function for an m-cycle in the usual random-graph model
Gpif m = 4.

Theorem 3 (induced cycles).—Let m = 4 be fixed. The appearance function of an in-
duced m-cycle in G(W,) is S!

Proof.—Each configuration of W, producing an induced m-cycle of G(W,) must contain
exactly 2m links. As in the case of induced trees, the configurations most likely to occur are
those in which none of vertices iy, i, . . . , i,,—2 is used in W, as a prey for any two
consumers from {i5, . . ., i,,}. Therefore, the expected number of configurations of W,
giving induced m-cycles in G(W,,) is of the order of magnitude O(S*p*™). Now the same
ideas as in the proof of theorem 1 imply our result.

The asteroidal 1-triangle plays a special role in the asymptotic probability, as .S — o, that
a random overlap graph G(W,) is an interval graph.

Theorem 4 (asteroidal I-triangle).—The appearance function of an induced asteroidal 1-
triangle in G(W,) is S~'%°.

Proof.—Consider a configuration (see fig. AS) in W, that gives an asteroidal 1-triangle in
G(W,). The expected number of such configurations is O(S10 9). It is easy to check that the
expected number of all other configurations of W, that produce an asteroidal 1-triangle
subgraph of G(W,) is of an order of magnitude less than 0(5'%°). Thus, the same argument
as before applles

Intervality of G(W,
Lekkerkerker and Boland (1962) showed that a graph G is an interval graph if and only if
it contains no induced subgraph of the forms pictured in figures A1 and A6. This characteri-
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Fic. A6.—Forbidden subgraphs of an interval graph: a graph is an interval graph if and only
if it contains none of the subgraphs shown here and in figure Al. G; contains k vertices, k = 4.
G, contains k + 5 vertices, k = 1. (From Cohen et al. 1990, p. 196, with permission of the
publisher.)

G
\\\\ ///
— - -
Gy

zation of interval graphs differs from, but is consistent with, the characterization in terms
of triangulation and asteroidal triples, which is mentioned in the text.

We now describe the probability that a random overlap graph G(W,,) is an interval graph
for§ =3,4,5,6,7,and S~ . For S = 3,4, and 5, P[G(W,) is interval] = 1, since the web
W, contains no configurations that could destroy the intervality of G(W,). If W, has the
vertex set {1, 2, 3, 4, 5, 6}, then the only possible forbidden subgraph of G(W,) is an induced
4-cycle, which may appear on vertices {3, 4, 5, 6} in four different configurations of W, as
shown in figure A7.

Let X, be the number of configurations in W, on § = 6 vertices that produce an induced
4-cycle in G(W,). Then, P[G(W,) is not interval] = P(X, = 1) = E(X,). Since each configu-
ration in figure A7 contains eight arcs and must exclude five arcs, and since there are
exactly four such configurations, E(X,) = 4p%1 — p)*. Thus, P[G(W,) is interval] = 1 —
4p¥(1 — p)’, for § = 6.

When § = 7, the subgraphs of G(W,} that destroy intervality are induced 4-cycles and
induced S-cycles. There are many different configurations of W, that produce induced 4-
cycles or induced 5-cycles of G(W,,). If Y, and Y; stand for the number of configurations (of
‘W, on § = 7 vertices) that produce induced 4-cycles and induced 5-cycles, respectively,
then a lengthy enumeration of the possibilities yields, with g = 1 — p,

E(Yy) = 36p°q’(1 — p*) + 12p%¢%2 — 2qp* — p* — p")
+4p%°(6 + 6¢* + 24¢°p + 244°p* - 3qp” — p* — 2p’) (43
and
E(Ys) = 8p'%°. (Ad)

We leave the proofs of equations (A3) and (A4) to an eager reader as additional entertain-
ment. Consequently, when § = 7,

P[G(W,)is not interval] = P(Y,=1 or Ys=1)
= P(Y,=1) + P(Ys 1) — P(Ys=1 and Ys=1)
= E(Y,) + E(Y5).

f

v

A
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Fic. A7.—Four configurations of a web on six vertices that produce an induced 4—cycle in
the overlap graph. (From Cohen et al. 1990, p. 196, with permission of the publisher.)

Note that P(Y, = 1 and Y5 = 1) = 0. Thus, P[G(W,) is interval] = 1 — E(Y,) — E(Ys), where
E(Y4) and E(Y5) are given by equations (A3) and (A4), respectively.

We do not even try to estimate P{G(W,) is interval] when S = 8, since the calculation
looks hopeless. Perhaps surprisingly, the calculation becomes much easier when S is large.

Theorem 5 (interval graphs).—Let p = p(S) = 0, such that pS'%° = d. Then,

1 ifd = d(S)— 0,
lim P[G(W,)is interval] = { e™* if0 <d < o,
o 0 ifd = dS) >,
where A = 9170d%10!.
Proof.—Let
pS10/9 -0 (AS)

as § — «. By theorems 2, 3, and 4, it follows immediately that a random graph G(W,)
contains no induced subgraphs of the forms of G,, Gi, and asteroidal 1-triangles. For
example, in the case of Gy, if

pS13/12 S0 (AG)

as § — =, then by theorem 2, P[G(W,) D G4] — 0. Clearly, condition (A5) implies condition
(A6). Next, it is not hard to see that asteroidal k-triangles for k¥ = 2 and G, and G4 are
unlikely to occur when p satisfies condition (AS5). One need simply estimate the expected
numbers of configurations in W, that produce those subgraphs in G(W,) and check that,
under the assumption on p given by condition (AS5), these expected values tend to 0 as § —
=, Consequently, by the Lekkerkerker-Boland characterization of interval graphs, if p
satisfies condition (AS5), then

}im P[G(W,) is interval] = 1.

S10/9

Now assume that p — 0 as § — o, Then by theorem 4, with probability tending to 1
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j

i h a b c d

Fi16. A8.—A redrawing of the web configuration in figure AS. (From Cohen et al. 1990, p.
199, with permission of the publisher.)

as § — , arandom overlap graph G(W,) contains at least one induced asteroidal 1-triangle
that destroys the intervality of G(W,,).

Finally, let pS'”? — d, with 0 < d < «. The same argument as in the first part of our proof
shows that in‘this case the only induced subgraphs that destroy the intervality of G(W,,) are
induced asteroidal 1-triangles. Let X denote the number of such subgraphs in G(W,). We
show that

k_,—X\
lim PX = k) = 2"

L VA =0,1,2,..., (A7)

where A = 91704°/10!; that is, the distribution of X asymptotically approaches the Poisson
distribution with parameter A. Define a configuration of type C to be a configuration of the
type presented in figure A5. Let Y be the number of configurations of type C that may
appear in W, as an induced subgraph such that none of the vertices lying below {a, b, c, d,
e, f, g, h, i, }is connected with exactly two vertices from {b, d, e, g, h, j}. Then (cf. the
proof of theorem 4), the probability distribution of X is asymptotically the same as the
distribution of Y. Replace for a moment each link of W, by an undirected edge. Clearly,
the configuration in figure AS becomes an ordinary tree on 10 vertices. It is known (see,
e.g., Bollobas 1985) that if pS'%® — d, then the distribution of the number of such trees in G,
asymptotically approaches the Poisson distribution with parameter p. = d°/A, where A is
the order of the automorphism group of a tree on 10 vertices; that is, A = 10Y/10%. If we
return to the model W, then (applying the same approach asin, e.g., Bollobas 1985) it can
be shown that the number of configurations of type C also has a Poisson distribution but
with a parameter v = d°/B, where B = 10Y¢ and £ is the number of different ways of
labeling 10 given vertices of a configuration of type C. Let us redraw the graph from figure
. AS in a different but more useful form (see fig. A8).

Since there are at least three vertices lying above vertex a in W,, we must have 1 =a =
7. Furthermore, bisabovea(i.e.,a + 1 =b=<10)andcisbelow b (ie.,1=c<b — 1) but
different from a. Moreover, d is above ¢ (i.e., ¢ + 1 = d < 10) but different from a and b.
Continuing this process up to vertex j, we obtain

7 10 b—1 10 10 e—1 10 10 h=1 10
IS DI 22 2 22 X
a=1 b=a+1 c=1 d=c+1 e=a+1l f=1 g=f+1 h=a+1 i=1 J=i+l

where c #a,d ¢ {a,b},e ¢ {b,c,d},fe{a,b,c,d},g ¢{a,b,c,d,e},he {b,c,d,e,f, g}
ig¢fla, b,c,d e f gt,andj ¢ {a, b, c, d, e, f, g, h}. Each author independently wrote a
computer program in BasiC to compute £, and each independently obtained £ = 55020/3! =
9170.

The probability that a configuration of type C is an induced subgraph of W, and that none
of the vertices lying below C is connected with two vertices {b, d, e, g, h, j} tends to 1 as
S —  (since if pS'¥® — d then almost every G, has no cycle; see fact 2). Consequently, the
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e

g f a b c

Fic. A9.—A subweb that produces an induced K ; in the overlap graph. This configuration
prevents a web from having a unit-interval graph. (From Cohen et al. 1990, p. 200, with
permission of the publisher.)

distribution of the random variable Y asymptotically approaches the Poisson distribution .
with parameter A = 91704°/10! and equation (A7) is proved. Under the assumption on p,

;im P{G(W,) is interval] = éim PX =0)=¢ >

The numerical value of A in theorem 5 may be estimated for an observed web with L links
(or arcs) and S species. The maximum-likelihood estimate of p is p = L/[S(S — 1)/2] = 2L/
[S(S — D). Hence, d = pS'%° = 2LS"/(S — 1); hence, d° = [2L/(S — 1)1’S. Since 9170/10!
= 0.0025, we get A = 0.0025[2L/(S — 1)1°S, and for sufficiently large S, the probability that
the overlap graph G(W,) is interval is arbitrarily close to e .

Finally, we describe the behavior of the probability that an overlap graph G(W,,) is a unit-
interval graph. Roberts (1969) proved that a graph is unit interval if and only if it is an
interval graph and does not contain the bipartite complete graph K;; as an induced

subgraph.
Theorem 6 (unit-interval graphs).—Let p = p(S) — 0, such that pS™ = d. Then,

1 ifd =dS)—0,
lim P{G(W,) is unitinterval] = { e™* if0<d<o,
S—roo

0 ifd = d(S) — o,

where u. = 484%/7!.

Proof.—The proof follows the same lines as the proof of theorem 5. A subgraph of W,
that produces an induced K 3 in G(W,,) is of the form presented in figure A9. If pS” ¢ dfor
some d, such that 0 < d < «, then the distribution of the number of trees on seven vertices
in G, asymptotically approaches the Poisson distribution with parameter 7°¢%/7!. Similarly,
the distribution of the number of configurations of the form in figure A9 in the cascade
model W, also approaches the Poisson distribution but with parameter £d°/7!, where

7 a—1 7 a-1 7 a—1 7
M= D > D 22 2
a=4 b=1 c=b+1 d=1 e=d+1 =1 g=f+1

f
andc #a,d ¢ {b,cl,e ¢ {a,b,c},fe{b,c,d e},and g ¢ {a, b, c, d, e}. Again, using
computer programs, we obtained £ = 48.

As before, the numerical value of . in theorem 6 may be estimated for an observed web
with L links and S species. Here, d = pS™® = 2L§"/(S — 1); hence, d® = [2L/(S — 11°S.
Since 48/7! = 0.0095, we get w = 0.0095[2LAS — 1)1°S. For sufficiently large S, the
probability that the overlap graph G(W,) is a unit-interval graph is arbitrarily close to e ™*.

Triangulation of W,
We say that the cascade digraph W, is triangulated if its overlap graph G(W,) contains no
induced k-cycles for all k = 4. As in the case of the intervality of G(W,), the probability that
W, is triangulated equals one for § = 3, 4, and 5, whereas
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J 1 — 4p%g° for S =6,
L 1 — E(Yy) — E(Y5) forS =7,
where E(Y,) and E(Ys) are given by equations (A3) and (A4), respectively.

P(W, is triangulated) =

Theorem 7 (triangulated graphs).—Let p = p(S) — 0, such that pS = d. Then,

1 ifd = d(S)— 0,
lim P(W, is triangulated) = § ¢ ifo<d<l,
S—co
0 ifd=1,
where
k=1
k kf2
Z CEH > - Stk — 1, m2 27,
m=1
Aeven

and S(k, m) are Stirling’s numbers of the second kind.

Proof.—If d = d(S) — 0 as § — o, then by theorem 3, there is no induced k-cycle for all
k = 41in G(W,); thus, W, is triangulated with a probability approaching 1. Keeping in mind
the remarks made in the proof of theorem 3, we can focus on only the very special
subgraphs of W, that form induced k-cycles in G(W,). Those subgraphs (denote their
number by Z,) have 2k vertices and 2k links (appropriately joining those vertices) and, after
the orientation of links is removed, form induced (2k)-cycles in the usual random graph G,.
Assume that d is a constant, where 0 < d < 1. It is known (Bollobas 1985) that in this case
almost every random graph G, is a union of tree components and unicyclic components.
Thus, each cycle that may appear in G, is an induced cycle. Let X be the number of .-
cycles of G,. Then (Bollobds 1985, p. 79), X3, X4, . . . , X, are asymptotically independent
Poisson random variables with means \; = d'/(2/), where i = 3,4, ..., k. No cycle of odd
length contributes to forming an induced cycle of G(W,). The only cycles of even length in
W, that contribute to forming an induced k-cycle of G(W,,) are (2k)-cycles with the property
that for each vertex i its neighbors are either both smaller or both larger than /. A. Rucifiski
(MS) observed that the number of such cycles that may be formed on a given set of ver-
tices is

2k—1
ay = (—4)F Z (=D"m! SQk — 1, m)2727m, k=2,3,....
m=1
Furthermore, the same approach as used by Bollobas (1985) shows that the distribution of
the random variable
> %
k=38

keven
asymptotically approaches a Poisson distribution with parameter

- 3 (i

k=38
keven

k kI2
~ Z il Z — DS — 1 m2

k= =
keven

Thus,
lim P(W, is triangulated) = lim P(Z = 0) =
S—x

S—
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Finally, when d = 1, almost every graph G, with p = d/S — 0 contains a long induced cycle
(see, e.g., Bollobds 1985) that can form an induced cycle of G(W,,).

The Resource Graph

The resource graph H(W,) is defined as an undirected simple graph, with the same vertex
set as W, such that {v;, vi} is an edge in H(W,) if and only if there exists some v; in W, such
that both (v;, v;) and (vg, v)) are links in W,. For 1 =i < j = §, define P; to be the probability
of an edge between i and j in the overlap graph G(W,); then, P; = 1 — (1 — p?~L
Similarly, for & < 1, define Qy to be the probability of an edge between k& and [ in the
resource graph H(W,); then, Qi = 1 — (1 — p?)S~". Now define = to be the permutation
mi) =S+ 1—ifori=1,...,S Then, Pj = Qn)npforalll =i<j=S5. Therefore, the
probability of any configuration of edges is the same in G(W)) as in H(W,), after relabeling
the vertices by w. Hence, all the results in this Appendix apply equally to overlap graphs
and to resource graphs. '
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