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Summary 

Some methods of statistical analysis of data on DNA fingerprinting suffer serious weaknesses. Unlinked 
Mendelizing loci that are at linkage equilibrium in subpopulations may be statistically associated, not 
statistically independent, in the population as a whole if there is heterogeneity in gene frequencies between 
subpopulations. In the populations where DNA fingerprinting is used for forensic applications, the as­
sumption that DNA fragments occur statistically independently for different probes, different loci, or differ­
ent fragment size classes lacks supporting data so far; there is some contrary evidence. Statistical associa­
tion of alleles may cause estimates based on the assumption of statistical independence to understate the 
true matching probabilities by many orders of magnitude. The assumptions that DNA fragments occur in­
dependently and with constant frequency within a size class appear to be contradicted by the available 
data on the mean and variance of the number of fragments per person. The mistaken use of the geometric 
mean instead of the arithmetic mean to compute the probability that every DNA fragment of a randomly 
chosen person is present among the DNA fragments of a specimen may substantially understate the proba­
bility of a match between blots, even if other assumptions involved in the calculations are taken as correct. 
The conclusion is that some astronomically small probabilities of matching by chance, which have been 
claimed in forensic applications of DNA fingerprinting, presently lack substantial empirical and theoretical 
support. 

Introduction 

Minisatellites are regions of the genome in which a DNA 
sequence is repeated tandemly for a variable number 
of times. Minisatellites are dispersed in the genomes 
of humans and other mammals. A subset of the repeated 
DNA sequences contains a short, shared "core" sequence 
(Jeffreys et al. 1985a). Different subsets of minisatel­
lites share different core sequences. Minisatellites that 
contain a given core sequence can be detected by a hy­
bridization probe that consists of the core sequence 
repeated in tandem. 
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When human DNA is digested by a restriction t'n­
zyme and hybridized with a specific core probe, the 
resulting fragments can be distributed according to size 
by a Southern blot. This procedure reveals the sizes of 
fragments that contain a specific core. The pattern of 
fragment sizes is highly variable or polymorphic from 
one individual to another (except for identical twins) 
but is apparently highly stable or conserved both from 
one tissue to another and over time within a given in­
dividual (Jeffreys et al. 1985a ). The combination of vari­
ability among individuals and stability within an in­
dividual suggests that the patterns of fragment sizes 
revealed by specific probes might serve as useful in­
dividual identifiers, or "DNA fingerprints" (Jeffreys et 
al. 1985b). 

In forensic practice, the patterns of DNA fragment 
sizes are usually determined by one of two distinct proce­
dures. One procedure, common in the United States, 
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uses several single-locus probes serially. The other pro­
cedure, common in the United Kingdom, uses a single 
probe that detects alleles at multiple loci. 

In forensic applications of DNA fingerprints, a spec­
imen's pattern of DNA fragment sizes is compared with 
a collection of such patterns from some set of people. 
A measure of similarity between any two such patterns 
is defined. Then a probability of observing, by chance 
alone, a given level of similarity is computed. If the spec­
imen's pattern has a priori a very low chance of being 
similar to the pattern of a randomly chosen person, 
and if, nevertheless, the specimen's pattern is observed 
to be very similar to the pattern of some particular per­
son, then it is concluded that the individual whose pat­
tern matches that of the specimen is the source of the 
specimen, with high probability. 

The scope of the present paper is limited to statisti­
cal problems in the analysis of data on matches between 
DNA fragments of various sizes for the purpose of iden­
tifying an individual by means of a specimen. Some 
published procedures appear to lack adequate empiri­
cal or theoretical support. The following sections ad­
dress problems raised by (1) heterogeneity in popula­
tions, ( 2) calculating the probability that a given match 
between two fingerprints would arise at random, and 
( 3) calculating the average power of a fingerprint. As 
the present paper is intended to be constructive as well 
as critical, some procedures, experiments, and analy­
ses are suggested which could provide a firmer founda­
tion for the use of DNA fingerprinting for forensic 
identification. 

The present paper does not deal with uncertainties 
and ambiguities in the underlying biochemical proce­
dures and data, such as the problems of collecting un­
contaminated specimens at the scene of a crime, degra­
dation of materials prior to analysis, use of internal 
controls and mixture experiments in electrophoretic 
gels, the necessity for "blind" judgments and probabilis­
tic assessment of a match between bands in different 
lanes of a gel or on different gels, and others (e.g., see 
Lander 1989; Lewin 1989; Sensabaugh and Witkowski 
1989). The present paper does not deal with questions 
of laboratory protocol, such as the chain of custody 
of samples and quality assurance (Sensabaugh and Wit­
kowski 1989). Although recent journalistic accounts 
suggest that routine laboratory error rates for this kind 
of test may be as high as 1%-5% (according to a ref­
eree), procedures for reducing these error rates are in 
principle well understood and could be applied in sen­
sitive cases. The present paper does not deal with legal 
questions, such as the admissibility or presentation of 
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DNA fingerprinting data in court or pretrial hearings 
and the determination of a quantitative threshold for 
a probability that is "beyond a reasonable doubt" (e.g., 
see Tribe 1971; Fienberg and Schervish 1986). The pres­
ent paper does not deal in detail with the use of DNA 
fingerprinting to establish genetic relationships among 
people-e.g., in paternity testing-although it will be 
apparent that many of the problems discussed below 
arise also in paternity testing. In genealogical applica­
tions, a high spontaneous mutation rate to minisatel­
lites of different lengths has been noted (Jeffreys et al. 
1988). 

Population Heterogeneity and Statistical 
Dependence of Alleles 

The methods that have been used to infer probabili­
ties of identification by using DNA fingerprinting ap­
pear to overlook population heterogeneity in gene fre­
quencies. A simplified example will show that such 
heterogeneity may render invalid a key assumption made 
in applications of DNA fingerprinting. This example 
contains no new genetics or statistics, but the issues 
it raises have not received adequate attention. These 
issues apply equally to fingerprinting procedures based 
on single-locus probes and to those based on multi­
locus probes. 

Consider a large human population (e.g., Britain) 
in which one probe detects allelic variation in restriction­
fragment length at one autosomal locus and in which 
another probe detects allelic variation in restriction­
fragment length at another autosomal locus. Suppose 
there are just two alleles at each locus. Call the alleles 
at the first locus A and a, and call the alleles at the 
second locus Band b. No dominance between alleles 
is implied: A, a, B, and beach are assumed to correspond 
to well-defined distinct bands, so that the genotype of 
an individual (at these two loci) can be unequivocally 
determined from inspection of a gel. Suppose also that 
the two loci are located either on different autosomes 
or far enough apart on the same autosome so that the 
recombination fraction between loci is 112. Suppose 
also that inheritance at each locus is strictly Mendelian. 
So far this is a textbook model of two loci with two 
alleles (e.g., see Crow and Kimura 1970). 

Now suppose that Britain contains two subpopula­
tions. Call the two subpopulations F and G. Suppose 
that within each subpopulation the two loci are in link­
age equilibrium and that there is random mating and 
no selection with respect to both loci. Let p(A,F) de­
note the gene frequency of allele A in subpopulation 
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F. More generally, let p(i, H) denote the gene frequency 
of allele i in subpopulation H, where i = A, a, B, b 
and H = E, F. Thus p(A, F) + p(a, F) = 1, P(B, F) 
+ p(b, F) = 1, and similarly with F replaced by G. 

Under the preceding assumptions, within each sub­
population each band (allele) is statistically indepen­
dent: the genotype frequencies within a subpopulation 
are simply the products of the appropriate gene frequen­
cies within that subpopulation. For example, if .f{AABb, 
F) denotes the relative frequency of the AA homozygote 
at the first locus and of the Bb heterozygote at the sec­
ond locus in subpopulation F, then.f{AABb, F) = p(A, 
F)lp(B, F)p(b, F). 

If the gene frequencies are different in the two sub­
populations, it is not in general true that each band 
(allele) is statistically independent in the population as 
a whole. On the contrary, in the population, different 
bands may be positively or negatively associated, de­
pending on the proportions of people in the different 
subpopulations and on the differences of the allele fre­
quencies at each locus. Statisticians have known for a 
long time (Yule 1903) that attributes (allele frequen­
cies, in this case) may be positively or negatively as­
sociated in a population as a result of pooling the fre­
quency of the attributes in subpopulations in which 
the attributes are independent. This phenomenon, still 
of active interest (Good and Mittal1987), appears to 
have been overlooked in forensic applications of DNA 
fingerprinting. 

A numerical example, using completely arbitrary 
figures, illustrates the phenomenon. Suppose the frac­
tions of the whole population that belong to subpopu­
lations F and G are given by n(F) = .9 and n(G) = 
.1. Suppose that p(A, F) = .3, p(A, G) = .6, p(B, F) 
= .4, and p(B, G) = .8. The overall relative frequency 
of the A allele in the population is p(A) = p(A, F)n(F) 
+ p(A, G)n(G) = .33, whence p(a) = 1 - p(A) = 
.67 is the overall relative frequency of the a allele. Simi­
larly, p(B) = .44 and p(b) = 1 - p(B) = .56. The 
actual relative frequency of the AABB genotype in the 
population is.f{AABB) = p(A, F)2p(B, f)ln(F) + p(A, 
G)lp(B, G)2n(G) = .036. However, if the relative fre­
quency of the AABB genotype in the population is cal­
culated assuming independence between alleles (bands), 
the estimate is j""(AABB) = p(A)2p(B)2 = .021. 

To make the example slightly more realistic, assume 
that, within each subpopulation, the alleles At, Az, 
... , Ato have the same allele frequency as A (so that 
at, az, ... , ato have the same allele frequency as a) 
and that the alleles Bt, Bz, . . . , Bto have the same 
allele frequency as B (so that bt, bz, ... , bto have 
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the same allele frequency as b) and that the different 
alleles are statistically independent. The actual relative 
frequency of the homozygous genotype AtAtAzAz ... 
AtoAtoBtBtBzBz ... BtoBto in the whole population 
is [p(A, F)2p(B, F)2]1°n(F) + [p(A, G)2p(B, G)2]1° n(G) 
= 4.2 x 10-s. However, if the relative frequency of 
the genotype in the population is calculated assuming 
independence between alleles (bands), the estimated rel­
ative frequency of the homozygous genotype AtAtAzAz 
... AtoAtoBtBtBzBz ... BtoBto is [p(A)2p(B)2JIO = 
1.7 x t0- 17• Now suppose a forensic specimen is de­
termined to have the homozygous genotype AtAtAzAz 
... AtoAtoBtBtBzBz ... BtoBto by DNA fingerprint­
ing, and suppose a suspect individual is identified whose 
genotype exactly matches that of the specimen. In this 
case, the estimated probability of a match, when inde­
pendence of alleles is assumed, is lower than the true 
probability of a match when one allows for the hetero­
geneity of subpopulations, by a factor of more than 
10-9• The estimated probability, being lower than the 
true probability, exaggerates the significance of a match 
and unnecessarily incriminates the suspect. The numer­
ical values in this example were chosen in advance for 
simplicity, rather than being selected to illustrate a worst 
case. 

This hypothetical example resembles reality in that 
there is likely to be significant genetic heterogeneity in 
real populations. The allele frequencies of genes of med­
ical interest differ from one human subpopulation to 
another. Minisatellite regions and other RFLPs that 
serve as markers of disease-related genes (Gusella et 
al. 1983; Jeffreys et al. 1986) are likely to share that 
heterogeneity. The DNA probes used for forensic iden­
tification detect alleles that have heterogeneous allele 
frequencies: Lander (1989, p. 504), using Wahlund's 
formula, found excess homozygosity (relative to Hardy­
Weinberg equilibrium) at loci identified by DNA probes 
in the Hispanic population used as the reference popu­
lation in a murder trial, demonstrating "the presence 
of genetically distinct subgroups within the Hispanic 
sample." 

The hypothetical example given above differs from 
reality in that neither the assumption of just two sub­
populations nor the particular allele frequencies and 
subpopulation frequencies assumed are likely to be 
realistic. The actual effect of subpopulation heteroge­
neity could be larger or smaller than that in this example. 

The example demonstrates three points. First, the 
population used to obtain estimates of allele frequen­
cies is crucial for subsequent applications of match prob­
abilities to individual cases. Future studies should care-
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fully define a reference population (what statisticians 
call a sampling universe) which is to be studied, and 
they should make explicit the procedure (such as sys­
tematic sampling or random sampling) that is used to 
sample from this population. Options and procedures 
for proper sampling have been clearly described else­
where (e.g., see Snedecor and Cochran 1980, chap. 21). 

There are good practical and scientific reasons for 
giving serious attention to sampling. In practice, if a 
study that attempts to derive matching probabilities for 
DNA fingerprinting is based on an ill-specified sample, 
the resulting probabilities can be challenged in court 
on the grounds that the study sample is not the sample 
most appropriate to the accused individual. If the propo­
nents of DNA fingerprinting wish to claim that the prob­
abilities of matching at random are astronomically low 
for virtually all populations, they are obliged to dem­
onstrate the claim for at least several well-defined popu­
lations. Scientifically, DNA fingerprinting provides a 
means of assessing the genetic heterogeneity of popu­
lations. Studies of well-defined samples offer an oppor­
tunity to compare the genetic variability of different 
populations and could be of potential interest to stu­
dents of human evolution (Lander 1989, p. 504). 

Second, alleles (bands) may be significantly statisti­
cally associated in a population if there is heterogene­
ity between subpopulations in the allele frequencies, 
even though the loci involved may be strictly Mendelian, 
unlinked, and at linkage equilibrium within each sub­
population. Wherever subpopulations are heteroge­
neous, true random samples of populations are required 
to measure directly whether any statistical association 
of minisatellite alleles results from pooling across sub­
populations. 

Third, the statistical association of alleles, though 
undetectable either in terms of chromosomal mecha­
nisms or within homogeneous subpopulations, may in­
duce significant errors in estimates of match probabili­
ties if the estimates ignore the statistical association. 

Among statisticians, the gratuitous assumption of in­
dependence is well known as a source of superficially 
persuasive arguments for the existence of miracles (Kru­
skal1988), which correspond in the present situation 
to extravagantly small alleged probabilities of obtain­
ing a match at random. 

Calculating the Probability of a Match at 
Random 

Given a match between the DNA fingerprint of a spec­
imen and the DNA fingerprint of an individual, how 
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can one calculate the probability that this match could 
have arisen at random? An obvious possibility is to rec­
ord the complete genetic pattern (not broken into dis­
crete bands) of each individual in a population survey 
and then count how many complete patterns match that 
of the specimen. If S individuals are surveyed, this ap­
proach cannot yield a probability of match lower than 
liS (given that one individual's pattern matches the spec­
imen's pattern). To obtain, by this approach, the ex­
tremely low probabilities of a match quoted in many 
forensic applications of DNA fingerprinting would re­
quire surveying more people than are alive. Since this 
would be difficult, the quoted low probabilities are ob­
tained from calculations based on simplifying assump­
tions about the occurrence of bands in different regions 
of Southern blots. The results of the calculations may 
be in error if the assumptions are not justified. 

Among the major assumptions sometimes made are 
the following: 

1. The probability of a match for a given probe and 
fragment size class has been estimated by random 
sampling of a well-defined, genetically homogeneous 
reference population. 

2. Matching of DNA fragments identified with one 
probe or at one genetic locus is independent of match­
ing fragments identified with any other probe or at 
any other genetically unlinked locus. 

3. For a given probe, the fragments identified may be 
categorized into size classes, and matching of DNA 
fragments in one size class is independent of match­
ing in any other size class. 

4. Within a size class of DNA fragments identified by 
a given probe, the probability of a match is constant 
for all fragments in the size class, and matching is 
independent for any two different fragments within 
the class, and there is no variability in the number 
of fragments per specimen or per person in the size 
class. 

There is considerable evidence against these assump­
tions in some applications of DNA fingerprinting. 

Regarding the first assumption, Jeffreys et al. (1985b) 
report data based on "a random sample of 20 unrelated 
British caucasians" who were, in fact, "20 volunteer 
white students from our university [University of Lei­
cester]" (A. J. Jeffreys, personal communication, Au­
gust 28, 1988). Similarly, Gill et al. (1987) analyze, 
among other materials, whole blood samples from 41 
individuals of unspecified origin and characteristics. 
Such subjects do not represent a genuine random sam­
ple, in the technical sense (Snedecor and Cochran 1980, 
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chap. 21), of the entire "British caucasian" population. 
Such a sample requires a list or sampling frame from 
which a sample is randomly selected. The special popu­
lation from which the subjects were drawn should be 
remembered before using the data for inferences about 
any other population. 

Blood taken from each individual in the sample of 
Jeffreys et al. (1985b) was digested with a restriction 
enzyme and Southern blot hybridized with minisatel­
lite probes 33.6 and 33.15. "Each DNA fingerprint (in­
dividual A) was compared with the pattern in the adja­
cent gel track (individual B), and the number of bands 
in A which were dearly absent from B, plus those which 
had a co-migrating counterpart of roughly similar au­
toradiographic intensity in B, were scored. The data 
shown are averages for all pairwise comparisons" (Jef­
freys et al. 1985b, p. 76). 

Table 1 reproduces table 1 of Jeffreys et al. (1985 b). 
The data are based on approximately 15 resolved frag­
ments (or bands) in the 4-20-kb size range. Jeffreys et 
al. (1985b, p. 76 fn.) describe the procedure used to 
compute probability estimates, as follows: "Probabil­
ity estimates: the mean probability that all fragments 
detected by probe 33.15 in individual A are also pres­
ent in B is 0.082.9 x 0.205·1 x 0.276·7 = 3 x 10-11 :• 
In their text, they observe that "the probability that the 
fingerprints of A and B are identical, that is, that all 
fragments less than 4 kb also match and that B does 
not possess any additional4-20-kb fragments, is there­
fore < <3 x 10 - 11 . Similarly, the probability that A 
and B have identical fingerprints for both probes 33.15 
and 33.6 is<< 5 x lQ-19." 

Retracing their steps, I confirm their arithmetic, ex­
cept that the product of the separate probabilities for 
thetwoprobesshouldbe5.0 x 10-21,not5 x lQ-19 

Table I 
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(a simple arithmetic error [A. J. Jeffreys, personal com­
munication, August 28, 1988], which, however, is con­
servative, since 5 x 10-19 > 5.0 x 10-21). 

At the last step, when the probabilities for the differ­
ent probes are multiplied, Jeffreys et al. (1985b) im­
plicitly assume that matching (more precisely, the in­
clusion of Xs bands among B's) for probe 33.15 is 
independent of matching for probe 33.6. This is the 
second assumption listed above. Jeffreys (personal com­
munication, August 28, 1988) considers this assump­
tion of independence to be supported by a subsequent 
study of a large sibship of 11 English individuals. Jeffreys 
et al. (1986, pp. 15-18) found that "none of the poly­
morphic DNA fragments scored using probe 33.15 were 
present in the set of fragments detected by 33.6; any 
such fragment that hybridized to both probes would 
have been detected as bands of equal size that were trans­
mitted from the same parent to the same children (i.e., 
'linked'). These two probes therefore hybridize to es­
sentially completely different subsets of human mini­
satellites. In addition, no bands detected by probe 33.6 
were allelic to, or linked with, any fragments hybridiz­
ing to 33.15:' However, as explained in the previous 
section, even if alleles segregate independently within 
a family, as the example of Jeffreys et al. (1986) sug­
gests, the same alleles are not necessarily statistically 
independent in a population. To the best of my know­
ledge, Jeffreys et al. (1985b, 1986, and elsewhere; Wong 
et al. 1987) offer no direct statistical data, based on 
random samples, that different probes or loci match 
independently in a population. 

As another example of the unexamined assumption 
that different loci are independent in a population, Col­
laborative Research Inc. (1989) advertised 11 DNA 
probes for identification and parentage testing. The ad-

Similarities of DNA Fingerprints Between Random Pairs of Individuals 

Probe, and DNA Fragment Size 
(in kb) 

33.6: 
10-20 ................. . 
6-10 ................. . 
4-6 .................. . 

33.15: 
10-20 
6-10 ................. . 
4-6 .................. . 

No. of Fragments/ 
Individual 

Mean± SD 

2.8 ± 1.0 
5.1 ± 1.3 
5.9 ± 1.6 

2.9 ± 1.0 
5.1 ± 1.1 
6.7 ± 1.2 

SOURCE.-Jeffreys et al. (1985b, p. 76). 

Probability x That 
Fragment in A Is 

Present in B 

.11 

.18 

.28 

.08 

.20 

.27 

Maximum Mean 
Allelic Frequency I 

Homozygosity 

.06 

.09 

.14 

.04 

.10 

.14 
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vertisement listed a "probability of identity" for each 
probe, followed by a "probability of identity" for "all 
loci combined" of 4. 96 x 10- 15• According to Stan­
ley D. Rose, Director of DNA Products and Services 
for Collaborative Research Inc. (personal communica­
tion, July 18, 1989 ), two of the probes recognize differ­
ent polymorphisms at the same locus; one of these 
probes was excluded in calculating the probability of 
identity for all loci combined. After that exclusion, ac­
cording to Rose, "the cumulative average probability 
of identity is based on the assumption that all loci seg­
regate independently:• Rose notes that, "although these 
probes provide an extremely powerful tool for identifica­
tion of individuals, it should be pointed out that we 
(collectively speaking) know relatively little about the 
characteristics of DNA polymorphisms in large popu­
lations, or how the frequency distributions of specific 
alleles may differ in sub-populations:' 

At the penultimate step of their calculation, when 
the match probabilities for different size classes of frag­
ments (identified by a single probe) are being multi­
plied, Jeffreys et al. (1985 b) implicitly assume that there 
is no statistical association between any two minisatel­
lite regions in different size classes, so that matching 
in one size class of fragments is statistically indepen­
dent of matching in any other size class. This is the 
third assumption listed above. 

Later evidence argues against the assumption of 
statistical independence among fragments. One dog 
family displayed dear associations {positive and nega­
tive) among fragments of different lengths generated 
by DNA fingerprinting (Jeffreys and Morton 1987, pp. 
8, 11). A large sibship of English humans displayed sev­
eral allelic pairs of both paternal and maternal frag­
ments identified by both probes; there was a linked pair 
of fragments in this and another pedigree (Jeffreys et 
al. 1986, p. 15). Moreover, alleles at the same locus 
span different categories of fragment length: "large 
differences in minisatellite allele lengths must exist, aris­
ing presumably by unequal exchange in these tandem 
repetitive regions; several allelic pairs identified ... do 
indeed show substantial length differences" (Jeffreys et 
al. 1986, p. 18). These examples of statistical associa­
tion (allelism or linkage) of fragments in different length 
categories within families could be amplified at the 
population level, as mentioned above, by heterogeneity 
among subpopulations. 

At the first step of their calculation, in computing 
the match probability for DNA fragments within each 
size class (identified by a single probe), Jeffreys et al. 
(1985b) implicitly make three major approximations 
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(as in the fourth assumption listed above): (1) that the 
probability (denoted by x in table 1) that a fragment 
in A is also present in B is the same for all fragments 
in the size class, (2) that different fragments within a 
size class match or fail to match independently, and 
(3) that there is no variability in the number of frag­
ments, either per specimen or per person, in the size 
class. Under these assumptions, it is correct to com­
pute the probability of a match as Jeffreys et al. (1985 b) 
have done: if x is the probability that a fragment in 
A is present in B, and if n is the {putatively constant) 
number of fragments per person in the size class, then 
the probability that all the fragments in A in the given 
size class are also present in B is precisely xn. 

In the remainder of this section, I examine the first 
two approximations: constancy of match probabilities 
within a size class and independence of matching. The 
third approximation, constancy in the number of frag­
ments in the size class per specimen or per person, will 
be examined in the following section, because it relates 
to the major issue of calculating the average power of 
a match. 

The assumption that the match probabilities are con­
stant within a size class seems implausible, given the 
data in table 1, because the fragment match probability 
rises as the DNA fragment size falls, for both probes. 
It seems unlikely that the match probabilities change 
abruptly by discrete steps, precisely at the boundaries 
of the arbitrarily selected fragment-size classes. More 
likely, the match probabilities rise smoothly with fall­
ing fragment size. However, using a fixed average x is 
a conservative approximation, in that it overstates the 
probability of a match (as may easily be shown by con­
structing a numerical example). Reanalysis of the raw 
data on which table 1 is based, by using finer size cate­
gories, or analysis of more extensive other data, could 
show whether the match probabilities are indeed con­
stant within the given size classes. 

Gillet al. (1987, table 2) also assume a constant prob­
ability of matching for fragments of different sizes in 
their analysis of the frequency distribution of the num­
ber of matches between individuals. They use two mea­
sures of matching: inclusion of the bands of individual 
A among those of individual B (like Jeffreys et al. 
[1985 b]) and identity between the bands of individuals 
A and B (equivalent to inclusion in both directions). 
They use the binomial distribution to compute the prob­
ability of each possible number of matches under each 
definition of matching, and they find a reasonable agree­
ment with the observed frequency distribution of num­
ber of matches. This calculation assumes explicitly that 
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the probability of any one band matching is .22, even 
though their own table 1 shows that x varies from .07 
for the 10-20-kb fragments to .26 for the 4-6-kb frag­
ments. The agreement between the expected and ob­
served frequency distribution of number of matches is 
an insensitive test of the hypotheses underlying the 
binomial distribution, because the expected and ob­
served counts are small; only two of 12 observed cells 
have more than 10 counts, and six observed cells have 
zero counts. Given the heterogeneity in x demonstrated 
in both table 1 of Gillet al. (1987) and table 1 of Jeffreys 
et al. (1985b), the binomial distribution is not the ex­
pected distribution of the number of matching bands, 
under either measure of matching used by Gill et al. 
(1987). 

Returning to the data of Jeffreys et al. (1985b), we 
find that the assumption that the match probabilities 
are constant within a size class is not consistent with 
their data in table 1 under the assumption of indepen­
dence between fragments. To test the combined ~ssump­
tions of constant fragment match probabilities within 
a size class and independence between fragments, ob­
serve that, since different individuals are assumed to 
be unrelated and therefore independent, the presence 
of a fragment of a particular size in A has no effect 
on the presence of a fragment of that size in B, so x 
(as defined by Jeffreys et al. [1985b] and above) equals 
the probability that a fragment in the size class will be 
present. From the assumed independence of different 
fragments, it follows that the number of fragments pres­
ent per individual should be binomially distributed in 
a population of unrelated individuals with a probabil­
ity x of having a fragment present in the size class. (Of 
course, for any particular individual, the presence of 
a fragment is determined by whether the individual in­
herited the corresponding region from his or her par­
ents.) If N is the (unknown) total number of alleles or 
distinguishable bands or fragments in the size class, then 
the average or mean number of observed fragments per 
individual in the size class must be Nx and the variance 
(the square of SD) must be Nx(1-x); these formulas 
are well-known properties of the binomial distribution 
(e.g., see Snedecor and Cochran 1980, chap. 7). There­
fore the variance Nx(1-x) divided by the mean Nx 
should approximate 1 - x. 

When (a} the sample variance (obtained by squaring 
the SD given in table 1) is divided by the sample mean 
for each size class of fragment measured by probe 33.15 
in table 1 and (b) the quotient is subtracted from 1, 
the resulting estimates of x differ substantially from the 
reported values of x. From largest to smallest fragments, 
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the estimates of x derived from the binomial distribu­
tion are .66, .76, and .79; the corresponding reported 
values are .08, .20, and .27. The discrepancies are simi­
lar for the data from probe 33.6. Using an estimate 
of N that is not available to me, A. J. Jeffreys (personal 
communication, August 28, 1988) computed the 
binomially expected SD [Nx(1-x)]'lz for probe 33.15 
as 1.6, 2.0, and 2.2, compared with the reported SDs 
of 1.0, 1.1, and 1.2 from largest to smallest fragments, 
and similarly for probe 33.6; the binomially predicted 
SDs according to Jeffreys were larger, by approximately 
30%-80%, than those reported in all cases in table 
1. I conclude that the combined assumptions that xis 
constant and that fragments are independent are not 
compatible with the reported data. 

This conclusion does not determine whether it is the 
constancy of x or the independence of fragments (or 
both) that must be modified. Nonconstancy of x within 
a size class could explain at least part of the reduction 
in the reported variance, compared with the predicted 
variance. Nonindependence of fragments might have 
orthodox biological origins; for example, "a locus with 
many alleles ranging exclusively from 6-10 kb (such 
loci do exist) will show a low band sharing but will 
always show 2 bands of 6-10 kb (i.e., S.D. for this locus 
in 6-10 kb range = 0!)" (A. J. Jeffreys, personal com­
munication, August 28, 1988). 

Without appropriate data, no amount of statistical 
theory can say whether different fragments are statisti­
cally independent or are statistically associated in a 
population. In principle, log-linear models for mul­
tidimensional contingency tables (e.g., see Haberman 
1974; Bishop et al. 1975; Fienberg 1980) could be used 
to analyze blot data in order to determine appropriate 
models for the possible independence or dependence 
of DNA fragments. For a given probe and a given class 
of fragment sizes, suppose that N fragments can be dis­
tinguished and matched reliably. Each individual's blot 
may be coded by a vector (or list) of NO's or l's; thus 
individual8s blot may be summarized as A = (at, a2, 
... , aN), where ai = 0 if fragment j is absent from 
Xs blot and where ai = 1 if fragment j is present in 
Xs blot; j = 1, 2, ... , N. The blots of a sample of 
M individuals may be represented by M such vectors, 
each containing N O's or l's. The frequencies of each 
possible combination of bands may be organized into 
a contingency table with N dimensions. Each dimen­
sion corresponds to one size of fragment, and each 
dimension is divided into two cells (fragment absent 
or fragment present). The frequencies can be analyzed 
for consistency with the assumption of independence 
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between fragments. If independence fails, the family 
of log-linear models provides a hierarchy of alternative 
descriptions of the data. 

The number 2N of cells in the contingency table be­
comes enormous for realistic numbers of fragments N 
ranging from 20 to 60. Hence alternative approaches 
are required, such as methods for the analysis of large 
sparse contingency tables (e.g., see Koehler 1986) or 
of contingency tables with incompletely classified data 
(e.g., see Chen and Fienberg 1976), tests for pairwise 
independence (e.g., see Haber 1986), and methods of 
reducing the dimension of the table (e.g., see Bishop 
et al. 1975). 

A stepwise approach to the problem of independence 
of fragments seems reasonable for practical purposes. 
Depending on the available data, one could begin with 
tests of pairwise independence for all fragments or of 
complete independence among small numbers of frag­
ments and then extend to complete independence of 
larger numbers of fragments if the data permit. 

Calculating the Average Power of a Match 

To estimate the average power of a match, Jeffreys 
et al. (1985b) assume implicitly that every person has 
the same number of fragments in the given size class. 
This is false (obviously) because the SDs of n are posi­
tive. The level of variability appears to be lower in cats 
and dogs than in humans (Jeffreys and Morton 1987, 
p. 6). I now analyze how ignoring the variability in the 
number of fragments affects the calculated average pow­
er of a match, under the temporary assumptions of (a) 
constant matching probability within a size class and 
(b) independent matching. 

The conclusion of the following analysis is that the 
procedure used by Jeffreys et al. (1985 b) underestimates 
the true probability of a match between a randomly 
chosen person and a given specimen or a given gel, be­
cause their procedure uses the geometric mean instead 
of the arithmetic mean. This is a straightforward math­
ematical error. 

Consider a fixed probe and a fixed size class of frag­
ments identified by that probe. Let In denote the frac­
tion or proportion of all individuals who have exactly 
n DNA fragments; n = 0, 1, 2, ... , N. (The finite 
resolution of Southern blots imposes an upper bound 
Non the number of possible fragments that can be dis­
tinguished within any size class.) Then lo + It + /2 + 
. . . + /N = 1. The average number of fragments, aver­
aging over all individuals in the population, is Olo + 
1/t + 2/2 + 3/J + ... + NIN, which I denote by 
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E(n), as is usual. TheE in E(n) stands for "expected 
number" or "expectation" of n. 

Given a randomly chosen individual A, who may have 
varying numbers of DNA fragments, and a specimen 
B, the probability P that every fragment of A also be­
longs to B (the match probability) is a weighted average 
of the match probabilities for those individuals A with 
each different possible number of fragments. Let x be 
the probability that a fragment in any randomly cho­
sen individual A is also present in B, as before. If A 
has exactly n fragments, the probability of a match is 
then xn. This match probability must be weighted by 
the fraction In of the population that has exactly n frag­
ments. Thus the probability P of a match in the popu­
lation is P = fox0 + ftx1 + /2x2 + /Jx3 + . . . + 
INxN. Using the same notation Jeffreys et al. (1985b) 
calculate the quantity Q = xOfox1bx26x3/J .•• xNfN = 
xE(n). The inequality of arithmetic and geometric 
means guarantees that Q < Pas long as there is at least 
some variation in the number of fragments per person, 
i.e., so long as there is no n with In = 1. (If there is 
an n with In = 1, then Q = P.) 

To get a quantitative idea of the effect of incorrectly 
using the geometric mean Q instead of the arithmetic 
mean P, I invented several artificial frequency distribu­
tions lo, /t, ... ,/N to match the means and SDs given 
in table 1 for probe 33.15. These invented data are 
presented in table 2, along with their means, SDs, and 
other statistics. For example, to simulate the distribu­
tion of fragment numbers in the size class from 10 to 
20 kb, suppose that among every 40 people there were 
exactly one with n = 0 fragments, one with n = 1 
fragment, 11 with n = 2 fragments, 15 with n = 3 
fragments, 11 with n = 4 fragments, and one with n 
= 5 fragments. Thus lo = 1140, It = 1140, /2 = 
11/40, etc. The mean number of fragments would be 
E(n) = 2.929 and the SD of the number of fragments 
would be 1.0, which are dose to the observed mean 
and SD (table 1). Taking x = .08 from table 1, I find 
Q = .082.929 = 6.1 x 10-4 and P = .029. A second 
set of artificial data (table 2), with E(n) = 2.925 and 
SD 0.9710, gives Q as before and P = .0061. The differ­
ence between P and Q is at least an order of magnitude, 
for these two sets of artificial data. 

Using the second of these two sets of artificial data 
(in order to give a low rather than high estimate of the 
difference between P and Q) for the 10-20-kb class and 
using other sets of artificial data for the 6-10-kb and 
4-6-kb size ranges (table 2), together with the assump­
tions of independence already mentioned, gives an over­
all match probability, for probe 33.15, of 1 x 10- 7, 
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Table 2 

Artificial Frequency Distribution of the Number of DNA Fragments/Individual, Chosen to 
Match the Mean and SD Reported for the Corresponding Size Classes in Table I, 
for Probe 33.1 5 

10-20-kb 
No. OF fRAGMENTS Sample 

0 ......................... 
••• 0. 0 0 0 0 ••• 0 0. 0 •• 0 •••••• 1 

2 ......................... 11 
3 ......................... 15 
4 •••••••••••••••••••••••• 0 11 
5 ••••••••• 0 •••••• 0 •••••••• 1 
6 ........... ••••••••••••• 0 0 
7 • 0. 0 ••••••• 0. 0 •• 0 0 0 0. 0 0 •• 0 
8 ......................... 0 
9 • • • • • • • • • • • • • • • • • • • • • 0 ... 0 
10 •• 0 0 •• 0 •••••• 0 0. 0 ••••••• 0 
11 .......... . . . . . . . . . . . . . . 0 
12 . . . . . . . . . . . . . . . . . . . . . ... 0 

Total . . . . . . ........... . . . 40 
Mean no. of fragments . . . . .. 2.9 
SD of no. of fragments ...... 1.0 

which is substantially larger than the estimate of 3 x 
to- 11 given by Jeffreys et al. (1985b). 

The reported "probability that the same pattern will 
occur in a randomly chosen individual;' in tables 1 and 
3 of Gill et al. (1987), has the same problems as Q in 
the work of Jeffreys et al. (1985b). 

In response to these hypothetical calculations, A. J. 
Jeffreys (personal communication, August 28, 1988) 
computed P by using the original data of Jeffreys et al. 
(1985b). Assuming independence between probes, he 
obtains (table 3) an overall match probability of 8.4 
x 10- 17, approximately four orders of magnitude 
larger than the original estimate of 5.4 x to- 21 

(though still a very small probability). Jeffreys correctly 
observed that Pis heavily influenced by the proportions 

Table 3 

1 

No. OF INDIVIDUALS 

10-20-kb 6-10-kb 4-6-kb 
Sample 2 Sample Sample 

0 0 0 
2 

12 0 0 
15 1 1 

9 4 
2 23 2 
0 10 45 
0 1 35 
0 1 20 
0 0 
0 0 0 
0 0 1 
0 0 1 

40 41 108 
2.9 5.1 6.7 
1.0 1.1 1.2 

fo and /t of individuals with no or only one fragment 
or band. 

Miscalculation of the match probability by using the 
geometric mean rather than the arithmetic mean can 
make a substantial difference-in this case, four orders 
of magnitude. However, this criticism applies only when 
the geometric mean is used to summarize the effective­
ness of DNA fingerprinting for a randomly chosen per­
son, as Jeffreys (personal communication, August 28, 
1988) has pointed out. When a specific person is the 
subject of matching, the number of fragments is fixed, 
not a random variable, and then the same answer is 
obtained by either the geometric or the arithmetic mean. 
However, it seems doubtful that, in forensic applica­
tions, a specific person should be considered as the only 

Geometric Mean Probability (Q) and Arithmetic Mean Probability (I') of a Match When Using 
the Original Data of Jeffreys et al. (198Sb), According to Calculations of A. J. Jeffreys 

Probe 

33.6 ............................. . 
33.15 ............................ . 

Both probes jointly, when independence 
between them is assumed .......... . 

p 

6 X 10- 9 

1.4 X 10- 8 

8.4 X 10- 17 

SouRCE.-A.]. Jeffreys (personal communication, August 28, 1988). 

Q 

1.8 X 10- 10 

3 X 10- 11 

5.4 X 10-Zt 
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possible candidate for matching. If a given suspect is 
exonerated because his DNA fingerprint does not match 
that of a specimen, the police will not, in general, sim­
ply stop looking for the criminal but will seek another 
person; when th-ey do seek another suspect, the num­
ber of fragments in the person being compared to the 
specimen is indeed a random variable, and the arith­
metic mean, not the geometric mean, is appropriate. 

Conclusion 

Scientific data and statistical analyses play increas­
ing roles in the courtroom (DeGroot et al. 1986; Black 
1988; Marx 1988). Increasingly, judges are requiring 
that the details of the evidence and the analysis be ex­
plicit and well founded (Black 1988). It is the responsi­
bility of scientists and statisticians to provide measure­
ments, analyses, and conclusions that justify lawyers' 
faith in "relatively simple and well-defined techniques 
like electrophoresis or polygraph lie detection" (Black 
1988, p. 1509). When such faith is not justified, it is 
scientists' responsibility to provide clear warning labels 
to the contrary. Since human lives and liberty are at 
stake in uses of DNA fingerprinting for forensic 
identification, it is important that there be little room 
for doubt about the assumptions underlying the analy­
sis and interpretation of DNA fingerprinting data, in­
cluding their statistical analysis and statistical interpre­
tation. 

The difficulty in establishing the statistical basis of 
DNA fingerprinting for forensic identification lies in 
assuring that the assumptions implicit in the calcula­
tions are justified by evidence or theory and that any 
simplifying approximations made give conservative es­
timates (i.e., overstatements) of match probabilities. 

Some methods of statistical analysis of data on DNA 
fingerprinting suffer serious weaknesses. Unlinked Men­
delizing loci that are at linkage equilibrium in subpopu­
lations may be statistically associated, not statistically 
independent, in the population as a whole if there is 
heterogeneity in gene frequencies between subpopula­
tions. In the populations where DNA fingerprinting is 
used for forensic applications, the assumption that DNA 
fragments occur statistically independently for differ­
ent probes, different loci, or different fragment size 
classes lacks supporting data so far; there is some con­
trary evidence. Statistical association of alleles may 
cause estimates based on the assumption of statistical 
independence to understate the true matching proba­
bilities by many orders of magnitude. The assumptions 
that DNA fragments occur independently and with con­
stant frequency within a size class appear to be con-
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tradicted by the available data on the mean and vari­
ance of the number of fragments per person. The 
mistaken use of the geometric mean instead of the arith­
metic mean to compute the probability that every DNA 
fragment of a randomly chosen person is present among 
the DNA fragments of a specimen may substantially 
understate the probability of a match between blots, 
even if other assumptions involved in the calculations 
are taken as correct. The conclusion is that some astro­
nomically small probabilities of matching by chance, 
which have been claimed in forensic applications of 
DNA fingerprinting, presently lack substantial empiri­
cal and theoretical support. 

Many of the above issues apply to paternity testing 
through DNA fingerprinting as well as to forensic 
identification of unrelated individuals. Because of the 
possible relatedness of individuals in paternity testing, 
the genetic formulas are more complicated than the for­
mulas used in identifying unrelated individuals. How­
ever, most of the underlying hypotheses are the same, 
and most of the same caveats apply. 

Future experiments and analyses could provide a 
firmer foundation for DNA fingerprinting by giving 
careful attention to both sampling and possible statisti­
cal dependence among fragments. DNA fingerprinting 
can be the basis of a useful method of identifying indi­
viduals, provided that claims for it are not exaggerated. 
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