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SUBADDITIVITY, GENERALIZED PRODUCTS OF RANDOM MATRICES 
AND OPERATIONS RESEARCH* 

JOEL E. COHENt 

Abstract. An elementary theorem on subadditive sequences provides the key to a far-reaching theory 
of subadditive processes. One important instance of this theory is the limit theory for products of stationary 
random matrices. This paper shows that the subadditive inequality that governs the log of the 
norm of ordinary matrix products also governs other functions of several generalized matrix products. 
These generalized matrix products are used to calculate minimal cost transportation routes, schedules in 
manufacturing and minimal and maximal probabilities of multistage processes. The application of sub­
additive ergodic theory to generalized products of stationary random matrices yields new information about 
the limiting behavior of generalized products. Exact calculations of the asymptotic behavior are possible in 
some examples. 
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1. Introduction. This paper traces a path from an elementary theorem of analysis 
to some problems of operations research, by way of some generalizations of matrix 
multiplication. Almost all the pieces of the path are elementary and well known. But 
different pieces are known to different people. The connection among the pieces 
seems new. 

As we trace this path, known theorems will be labeled by capital letters (e.g., 
Theorem A) and new theorems by numbers (e.g., Theorem 1). We assume familiarity 
with basic linear algebra (e.g., Lancaster and Tismenetsky ( 1985)) and basic probability 
theory (e.g., Breiman (1968)), and we minimize measure-theoretic aspects not essential 
to grasping the meaning of statements. 

For the reader who is already familiar with subadditive ergodic theory and 
products of random matrices, a reasonable place to continue reading would be §4. 

2. Subadditivity and the subadditive ergodic theorem. P6lya and Szego (1976, 
p. 23, Ex. 1.3.98, p. 198) give the basic theorem of subadditivity. 

THEOREM A. Let Ia,, az, a3, · · ·l be a sequence of real numbers such that 

(1) m,n= 1,2,3, .. ·. 

Then the sequence lanfn, n = 1, 2, 3, · · ·l either converges to its lower bound 
'Yianl = infniO;l anfn or diverges properly to -00, 

To appreciate Theorem A, suppose that the assumption (1) of subadditivity were 
replaced by the hypothesis of additivity: am+n = am + an, for m, n = 1, 2, · · ·. By 
immediate induction, an = na, or anfn = a, for all n. In an additive sequence, the nth 
term an is exactly proportional to n. Theorem A asserts that under the subadditive 
bound (1) on the growth of the sequence, if anfn does not fall to -oo, then, as in 
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the additive case, an/n has a finite limit and the sequence lanl is asymptotically 
proportional to n. 

Proof of Theorem A (Polya and Szego (1976)). Let 'Y = infn;;;;Jan/n. If 'Y = -oo, 
there is nothing to prove. If 'Y > -oo, pick any c > 0 and find a fixed m such that 
am/m < 'Y + c. Define ao = 0. Since any integer n can be written n = qm + r with ran 
integer such that 0 ~ r ~ m - 1, subadditivity implies 

an=aqm+r~am+ 0 0 0 (qtimes)+am+ar=qam+ar. 

Hence 

'Y ~ an/n ~ (qam + ar)/n = qam/n + ar/n 

= (am/m)(qm/n) + ar/n< ('Y + c)(qm/n) + ar/n. 

Now let n j oo. Then qmjn---') 1, ar/n---') 0. Since c > 0 was arbitrary, an/n---') 'Y· 0 
Kingman (1968) (see also (1973), (1976)) developed a far-reaching probabilistic 

application of this theorem. Let T (think of time) be the set of nonnegative integers. 
Let x be a family lxst Is, t E T, s < tl of random variables Xst which may be thought of 
as describing certain random events that occur after time s up to and including 
timet. 

A subadditive process is defined as a family x such that 

(S1) Xsu~Xst+Xtu foralls<t<u, s,t,uET; 

(S2) All joint distributions of the shifted family x' = lxs +i,t+ds, t E T, s < t l are 
the same as those ofx = lxstls, t E T, s < tl; 

(S3) The expectation g1 = E(x01) exists and satisfies g1 ~ -ct, for some finite con­
stant c and every t ~ 1. 

The stationarity condition (S2) implies that, for any s < t, E(Xst) = E(xs+J,t+J), i.e., 
E(Xs1) depends only on t- s. Hence E(Xs1) = E(xo,1-s) = gt-s· Averaging (S1) gives 

s<t<u, 

or 

m,n~ 1. 

Since (S3) gives gtft ~ -c, for all t E T, Theorem A implies lim1toog1/t exists and equals 
the finite number 

'Y = 'Y(x) = infgtft. 
t~l 

This is a major part, but not all, of Kingman's subadditive ergodic theorem. 
THEOREM B. If x is a subadditive process, then with probability one there exists 

a limiting finite-valued random variable 

~=limxotft 
tfoo 

which has a finite expectation, and 

E(~) =')'(X). 

The additional point that we have not proved in Kingman's theorem is that x0tft 
converges to a finite but possibly random limit ~ in almost every sample path of the 
process, not merely on the average. The finite average EW of the limits of xat!t equals 
the limit 'Y(x) of the averages gt/t. 
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In many applications of the subadditive ergodic theorem, it can be proved that 
the limiting random variable is degenerate, i.e., takes only a single value with 
probability one. This value must be 'Y(x), so in this case, 

limxot!t='Y(x) almost surely. 
tjoo 

3. Products of random matrices. The subadditive ergodic theorem has remark­
able implications for products of random matrices. 

Let d be a fixed positive integer, 1 < d < oo. (Everything that follows is true, but 
trivial, ford= 1 as well.) Let cdxd, !Rdxd, IR~xd and IR~~d be the sets of d x d matrices 
over, respectively, the complex numbers, the real numbers, the nonnegative reals and 
the positive reals. 

A matrix norm IIA II is a real-valued function of matrices A E cdxd such that 

(M1) IIAII ~ 0 and IIAII = 0 if and only if A= 0; 

(M2) ForanycEC, llcAII =lei· IIAII; 

(M3) IIA + Bll ;;;a IIA II + liB II for A, BE cdxd; 

(M4) IIABII ;;;a IIAII 0 IIBII for A, BE cdxd. 

The crude resemblance between the triangle inequality (M3) and subadditivity 
(1) suggests an obvious application of the subadditive ergodic theorem. Theorem 1 
illustrates the use of the subadditive ergodic theorem under very easy circumstances. 

THEOREM 1. Let IAtltET be a stationary sequence of random matrices from cdxd 

and let 

s,tET, s<t. 

If EIIAdl < oo, then 

lim IISotll/t= ~ 
tjoo 

exists with probability one, is finite, and has an expectation E(~) that satisfies 

E(~) =lim EIIISotlll/t= 'Y+IAtl· 
tjoo 

If, in addition, the random matrices IAtl are independently and identically distributed 
(i.i.d.), then 

~ = 'Y +I At l with probability one. 

Proof Let Xst = IISstll. Is lxstl = x a subadditive process? (Sl) For s < t < u, 
S, t, U E T, Xsu = IISsull = II Sst+ Stull ;;;a (by M3) II Sst II + II Stull = Xst + Xtu. (S2) Since 
IA 1j is stationary, x' and x have the same joint distributions. (S3) E(xot) = 
EIISotll ;;;a E(tiiAIII) = tEIIA1II < oo. Hence E(xot) = gt exists. Moreover gt ~ 0 by (M1). 
Thus lxs1l is a subadditive process. The subadditive ergodic theorem then applies. 

If IA 1j are i.i.d., then the only a-field of events defined in terms ofx and invariant 
under the shift x- x' is the trivial a-field, so ~ = 'Y+ IAtl almost surely. 0 

A much more important instance of the subadditive ergodic theorem follows 
from the trivial observation that (M4) implies log IIABII ;;;a log IIAII +log IIBII. First 
consider the simplest possible application of this inequality. 

Fix A E cdxd and let Xst =log IIA{-SII' s < t, s, t E T. The family X of degen­
erate random variables lxstl constitutes a subadditive process with a degenerate 
limit random variable ~ = lim1too t- 1 log IIA1II, which equals almost surely 
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'Yixl = inft•n r 1 log IIAtll =log in£~1 IIAtiii/t =log p(A), where p(A) is known as the 
spectral radius of A. The spectral radius is the maximum of the moduli of the 
eigenvalues of A and measures how fast, on the average, IIAtll grows asymptotically 
with each additional power of A. 

In 1960, even before there was any general subadditive ergodic theory, Fursten­
berg and Kesten discovered a very important generalization of the spectral radius of 
one matrix. They discovered that products of random matrices generated by a 
stationary process also have, under reasonable conditions, an asymptotic growth rate. 
This growth rate corresponds exactly to the logarithm of the spectral radius when all 
the random matrices degenerate to a single matrix. 

THEOREM C. Let 11·11 be a nonnegative real-valued function of matrices that 
satisfies (M4). Let IAtltET be a stationary sequence of random matrices from cdxd and 
let 

s,tET, s<t. 

IfEimax (0, log IIAIII )I< oo, then 

limr1log IIPotll =~ 
tjoo 

exists with probability one, -oo ;;;;; ~ < oo, and has an expectation E(~) that satisfies 

-oo;;;;; EW = limr1 E(log II Pot II)= 'Y+·x IAtl < 00 • 
tjoo 

IfiAtl are i.i.d., then~= 'Y+·x IAtl almost surely. 
Let Xst = log II Pst 11. Then x = lxst Is, t E T, s < t l satisfies (S 1) and (S2) but not 

(S3); hence there is no guarantee that EW > -oo. 
Furstenberg and Kesten ( 1960) and Kingman ( 1973, pp. 891-892) also considered 

the special case when all elements of every matrix are positive, or when there exists 
N E T such that every Ps,s+N has all elements positive. 

THEOREM D. Let IAtltET be a stationary sequence of random matrices from 
IR~~d. Define Pst as in Theorem C. If -oo < Ellog (At)ul < oo, for all t E T, 1 ;;;;; i, j;;;;; d, 
then 

lim r 1log (Pot)i;= ~ 
tjoo 

exists with probability one, is independent of i and j, and has a finite mean 

E(O =lim rl Ellog (Pot)lll = 'Y+·X IAtl· 
tjoo 

If IAtl are i.i.d., then ~ = 'Y +·x IAtl almost surely. 
Kingman's proof ( 1973, pp. 891-892) of Theorem D generalizes easily to variants 

of ordinary matrix multiplication. A proof that is essentially Kingman's in the context 
of generalized matrix multiplication is given below. 

Theorem D is a beautiful generalization of the Perron-Frobenius Theorem on 
positive matrices. Let A E IR~~d. Then At corresponds to Pot for random matrix 
products. The Perron-Frobenius Theorem asserts that limti"' r 1 log (At);1 exists, is 
independent of i,j, and equals log p(A). 

The key quantity in Theorems C and Dis 'Y = 'Y+·xiAtj, the asymptotic growth 
rate. If 'Y > 0, then asymptotically II Pot II grows exponentially with t; if -oo < 'Y < 0, 
II Pot II declines exponentially with t. The first information about the sign of 'Y appeared 
in work of Furstenberg (1963). A decade later, Kingman (1973, p. 897) wrote, in 
introducing a list of open problems: "Pride of place among the unsolved problems of 
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subadditive ergodic theory must go to the calculation of the constant 'Y (which in the 
presence of a zero-one law is the same as the limit 0. In none of the applications 
described here is there an obvious mechanism for obtaining an exact numerical value, 
and indeed this usually seems to be a problem of some depth." 

It is reasonable to expect the computation of 'Y to be at least as difficult as the 
computation of the spectral radius p(A) of a fixed matrix A. In general, p(A) can only 
be calculated numerically, but for some special cases of A, simple formulas are 
possible. For example, if A E IR~~d and the sum of the elements in every row is the 
same and equal to c > 0, then p(A) = c. 

For products of random matrices, one simple case has been analyzed (Cohen and 
Newman (1984)). Let IA1j be i.i.d. matrices from [Rdxd in which all d 2 elements of 
each A1 are i.i.d. normal random variables with mean 0 and variance 1. Then, in the 
sense of Theorem C, almost surely 

~=en log 2 + (!)w(d/2) 

where 'lt is the digamma function. 
In summary of this section, a limit theory describes the growth of subadditive 

functions of products of random matrices. These functions may pertain to overall 
matrix size (like the log of the matrix norm), as in Theorem C, to individual matrix 
elements, as in Theorem D, or to subtler aspects of matrix structure (like the log of 
the coefficient ofergodicity or convergence norm (Kingman (1976, p. 197)) or the log 
ofBirkhoff's contraction coefficient (Hajnal (1976))). Sometimes the limiting growth 
rate can be computed explicitly. 

Since the pioneering papers of Bellman (1954) and Furstenberg and Kesten 
( 1960), the theory of products of random matrices has developed enormously. The 
theory has found applications in number theory, ergodic theory, statistics, computer 
science, statistical physics, quantum mechanics, ecology and demography. A recent 
expository collection (Cohen, Kesten and Newman (1986)) samples recent theory and 
applications. Bougerol and Lacroix ( 1985) give a coherent account of the theory of 
products of random nonsingular matrices. I now turn to an apparently new application 
of subadditive ergodic theory to generalized products of random matrices. 

4. Generalized matrix multiplication. Numerous generalizations of matrix mul­
tiplication have been discovered, independently, to be of mathematical and practical 
interest. Without making any attempt at a history, we will present and interpret 
several of these generalizations. Recent monographs devoted entirely to generaliza­
tions of matrix multiplication include those of Cuninghame-Green ( 1979), Hammer 
and Rudeanu (1968) and Kim (1982). 

Let F denote the set of numbers (e.g., C, IR++, IO, 1 j, etc.) that appear as elements 
of the set of matrices being considered. Let f and g be functions from F X F into F. 
For simplicity, assume f to be associative. 

Define f· g to be the function from pdxd' X pd'xd" into pdxd" given, for 
(a;J) =A E pdxd'' (bJk) =BE pd'xd", by 

(Af · gB);k =(ail gbtk)f(ai2gb2k)J. · · f(azd' gbd'k), 

i=1, ... ,d, k= 1, ... ,d". 

In this notation, ordinary matrix multiplication is written A + · x B. The notation 
f · g is used in the contemporary programming language APL (International Business 
Machines (1983)). This generalized matrix multiplication appeared as an element of 
APL at least as early as 1962 (Iverson (1962, pp. 23-25)). Boolean special cases of 
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generalized matrix multiplication were studied at least a decade before that (Lunc 
(1950), (1952); Cetlin (1952)). 

To assure that!· g-multiplication is associative, i.e., that 

(AJ. gB)f. gC=AJ. g(Bf. gC) 

for any matrices over F for which the operations are defined, it suffices to assume 
that both f and g are associative (not only f, as assumed in defining f · g), f is 
commutative, and g distributes over f, i.e., 

(afb)gc= (agc)f(bgc) for all a, b, c, EF. 

For the remainder of this paper, we suppose that f and g are limited to four 
possible binary functions, +, x, L, and r. Here + is ordinary addition over F, x is 
ordinary multiplication over F, and L (the notation called "floor" in APL) and r (the 
notation called "ceiling" in APL) represent, respectively, min and max. L and r are 
defined only over IR or over subsets of IR, not over C. I will denote by 0 the set 
I+, x, L, rj. (In APL, the set of possible binary functions in generalized matrix 
multiplication is much larger than 0. For the concrete applications of interest here, 
0 suffices.) 

Four possibilities for f and four possibilities for g define 16 possibilities for f · g. 
Not all ofthesef. g-multiplications are associative. We will now try to show why five 
ofthese generalized matrix multiplications are of interest by giving concrete interpre­
tations of them (Moisil (1960); Cuninghame-Green (1979)). In these examples, 
f · g-multiplication is associative. 

Ace Distributors serves d sites (stores and factories), with labels i, j or 
k = 1, 2, ... , d. On day 1, the cost of sending a truck from site i to site j is ail. On 
day 2, the cost of sending a truck (not necessarily the same truck) from site j to site k 
is bik· Since certain trips may be heavily subsidized, e.g., by the government, there is 
no reason to exclude the possibility that a cost ail or b1k may be negative. With 
A= (aiJ), B = (b1k), the minimum cost of sending a sequence of trucks from site ito 
site k, starting on day 1 and ending on day 2, is (AL · + B);k, so A L · + B is the 
matrix of minimum costs of two-stage trips. The minimum cost of a t-stage trip from 
site i to site k is (A 1 L • + ... L • + At);k if At is the cost matrix for stage t. The matrix 
of average (per stage) minimum costs for t-stage trips is t- 1 (At L • + · · · L • +At). 
Similarly, the matrix of average (per stage) maximum costs for t-stage trips is r 1 

(A 1r · + · · · r · +At). 
Different trucks have different capacities. If (At)ii is the maximum weight Ace can 

ship from site i to site j on day t E T, then the maximum weight Ace can ship from 
site i via site j to site k starting on day 1 and ending on day 2 is (A 1 );1 L (A2)Jk. Hence 
the maximum weight Ace can ship from site i to site k via any intermediate site, 
starting on day 1 and ending on day 2, is the previous amount maximized over j, or 
(A 1r · LA2);k· Thus Atr · L · · · r · LA1 is the matrix of shipping capacity over 
t-stage trips and t- 1(Atr . L ... r . L At) is the matrix of average (per stage) capacity 
in t-stage trips. A negative capacity ail could be interpreted as a guaranteed loss of 
goods in transit from ito j. When restricted to matrices with Boolean elements IO, 1j, 
r . L is identical to Boolean multiplication of Boolean matrices. 

Ace's trucks occasionally break down. If (At)u is the probability that the shipment 
from site i to site j on day t can be completed successfully, and if shipments 
succeed or fail independently on different days, then the probability of a successful 
shipment from site i via site j to site k starting on day 1 and ending on day 2 is 
(At)u(A2)Jk· Therefore the maximum probability of success of a shipment from site i 
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to site k via any intermediate site, starting on day 1 and ending on day 2, is 
(A1r · x A2h and the minimum probability of success is (A1L · x A2);k. Thus 
A 1 r. x · · · r · x At is the matrix of maximum probabilities of successful shipment 
over t-stage trips and [(A1 r · x · · · r · x At)ikp!t is the geometric mean maximum 
probability of successful shipment over t-stage trips from site i to site k. x distributes 
over r on IR+ but not on IR; hence, as the context implies, At are limited to IR~xd. 

Ace distributes for Best Manufacturing. Best uses d machines. Each machine has 
a cycle, an operation that lasts for a variable period of time. After machine j begins 
its (t -1 )st cycle, it must wait for some or all of the machines, including itself, to op­
erate (in parallel) before it can begin its tth cycle. Let y(t) be the vector in which the 
jth element y1(t) is the time when the jth machine begins its tth cycle, j = 1, · · · , d, 
t e T. Let (At)ii be the duration of operation of machine i when operating between the 
start of cycle t - 1 and the start of cycle t of machine j. Thus (At)u is the duration of 
machine i's operation during its (t- 1)st cycle. Let (At)ii = -oo if machine i need 
not operate between cycles of machine j. Then y;(t) is the maximum over j 
of (At)ii + yJ(t- 1) (letting -oo +a= -oo for any real number a), and y(t) = 
Atr · + y(t - 1 ). By induction, y(t) =At r · + · · · r · + A1 r · + y(O). Then the aver­
age interval between cycles of each machine is given by the vector (y(t)- y(O))/t. 

These little stories demonstrate the practical interest of various generalizations of 
matrix multiplication. There are many other applications, for example, to computing 
the distance matrix of a graph and the shortest path matrix in a general network. It is 
an amusing exercise to pick any of the remaining multiplications f. g with J, g e 0, 
and attempt to interpret it concretely. 

5. Subadditive ergodic theory of generalized matrix products. When f. g­
multiplication (J, g e 0 = {r, L, +, x l ) is associative for d x d matrices with elements 
from F!;;; IR, define 

P~/=As+d·gAs+d·g· · ·f·gAt-d·gAt, s,te T, s<t. 

When the context specifies/· g, we abbreviate P~/ to Pst· (Thus, in Theorems C and 
D, Pst = r:;·x.) 

For any matrix A e Cdxd, A = (aiJ), define 

Note that la11l ~ IIAII1· 

IIA ll1 =max L I a iii· 
i j 

The next theorem is a variation on the theme of Theorem D, and its proof is 
Kingman's (1973, pp. 891-892) proof of Theorem D except for minor modifications. 

THEOREM 2. Let {Atlter be a stationary sequence of random matrices from IR~~d. 
If -oo < E{log (At)iJl < oo for all t e T, 1 ~ i, j ~ d, then 

lim t-1 log (Poix)iJ=~ 
tioo 

exists with probability one, is independent of i and j, and has a finite mean 

E(O=lim r 1E{log (Poix)lll ='Yr-x{Atl· 
qoo 

If{Atl are i.i.d., then~= 'Yr-x{Atl almost surely. 
Proof For the balance of this proof, fix f · g = r · x. This multiplication is 

associative on IR~~d. Hence, for s < t < u, s, t, u E T, Psu = Pstr · X Ptu and 

(Psu)u = maxJ(Pst)IJ(Ptu)JI5;;;; (Pst)ll(Ptu)ll. 
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Then 

Xst =-log (Ps,)tt, s,tET, s<t 

satisfies (S 1 ). Because IA,j is stationary, (S2) also holds. 
It remains to establish (S3). Since 

g,_s= E(Xst)= -Eilog (Ps,)td ~ -E{J+
1
log (Av)ll}= -(t-s)Eilog (At)l!j <+oo, 

g, exists. We show now that Ellog IIAdl d < oo, then that gtft ~ -Eilog IIAdl d > -oo. 
Now 

Ellog IIAdl d =E{ m~x log f(At)u} 

~E{max log (d[At]u)}=log d+ E{max log [At] 1j}<oo. 
1,] 1,) 

Hence 

t 

~ L Ellog IIAv II d = t Ellog II Au II d < oo 
u=l 

and 

g,jt~-Eilog IIAvlld>-oo. 

This proves (S3), so that Theorem B (Theorem 1 of Kingman (1973)) applies and 
gives the claimed result for i = j = 1. 

As for the other elements of Ps,, it is easy to see that, precisely as for ordinary 
matrix multiplication, 

whence, almost surely, 

lim inf C 1 log (P0 ,);; ~lim inf C 1 log (A 1 )t~ +~+lim inf t- 1 log (A,)lj. 
tjoo tjoo tjoo 

Obviously the first term on the right of the inequality vanishes. We claim the 
last term vanishes also. To see this, observe that by stationarity (S2), 
Elt- 1 log (A,)t;l = Elt- 1 log (At)t;l- 0 as t j oo, t E T. Now for any e > 0, 

00 

L P(-t-1 log (A,)t1 >e)= L P(-e-1 log (At)tj>l) 
t~l t~l 

~ El-e- 1 log (At)ul < 00 

since Ellog (At)ljl > -oo. The identical argument also gives, for any e > 0, 

L P(+C 1 log(A1) 11 >e)<oo 
t~l 

since Ellog (At)t;l < +oo. The Borel-Cantelli lemma (see, e.g., Breiman (1968, p. 41)) 
then implies 

lim t- 1 log (A,)u= 0 with probability one. 
tjoo 
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Thus 

Similarly, 

shows that 

By stationarity, 

lim inf r 1 log (Po,)zj ~ ~ almost surely. 
tfoo 

lim sup r 1 log (PI,t+l)zj~ ~ 
qoo 

almost surely. 

lim sup t- 1 log (P0,);1 ~ ~ almost surely, 
qoo 

which together with ( *) implies that the almost sure limit does not depend on i, j. 
The proof of convergence in mean follows the same lines. 0 

77 

Applied to the example of Ace Distributors, Theorem 2 implies that over a large 
number of days, the geometric mean maximum probability of successful shipment 
approaches a limiting value (under the assumed conditions), and this limiting value 
is the same for all pairs i, j of sites. 

THEOREM 3. Let IA,j,ET be a stationary sequence of random matrices from IR~~d. 
If -oo < Ellog (A,)ul < oo for all t E T, I ~ i, j ~ d, then 

lim r 1 log (Poix);1 = ~ 
tfoo 

exists with probability one, is independent of i and}, and has a finite mean 

E(~) =lim t- 1 Ellog (Poi x)Ill = 'YL· X IAtl. 
tfoo 

If IA,j are i.i.d., then ~ = 'YL· x IA,j almost surely. 
Proof. Let 

Then 

Xsu~Xst+Xtu, s<t<u, s,t,uET, 

I 

g,= E(xo,)~ L Ellog (Au)ld =tEilog (A1)1d <oo, 
v=I 

and 

g1 =E(Xo1)~ E{log u~l ~~n (Au)zj} 

= ± E{min log (Au);;}= tE{min log (AI)ii}; 
~I W W 

hence 

gtft~E{min log (A 1)ii}>-oo. 
1,} 
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These observations and the assumed stationarity of IAtl establish (S1)-(S3) and hence 
the applicability of Theorem B (the subadditive ergodic theorem) to Xst. 

For the other elements of P'o/, use the inequalities 

(P'oi x)i; ~ (Atb (PI:/~-t)tt(At)lj, 

(P'o:/~-z)tt ~(At )t;(P~:/~-t )u(At+z)Jt, 

and argue as in the proof of Theorem 2. 0 
THEOREM 4. Let IAt ltET be a stationary sequence of random matrices from ~dxd. 

If -oo < EI(At);1 l < oo for all t E T, 1 ~ i, j ~ d, then 

lim rt(P'O/)u=~ 
tjoo 

exists with probability one, is independent of i and j, and has a finite mean 

E(~) =lim t-tEI(P'Oi+)lll = 'Yr-+ IAtl· 
tjoo 

IfiAtl are i.i.d., then~= 'Yr-+IAtl almost surely. 
Proof (r ·+)-multiplication is associative in ~dxd. For s < t < u, s, t, u E T, 

(P~~+)ll E;;; (P~i+)ll + (P~~+)tt· 

Then 

satisfies (S 1 ). Because IAt l is stationary, (S2) also holds. Moreover, 
t 

gt=Eixotl ~ L EI-(Av)!ll =(-t)EI(At)td <oo, 
v=t 

so gt exists, and 

-gt= EI(P'Oi+)lll ~ Ettt ~.~x (Av)zJ} = tE{ ~.~x (At);1} 

so 

gJ t E;;; - E{max (At )I}}> -oo. 
1,} 

This proves (S1)-(S3) and the claimed result fori= j = 1 using Theorem B. 
For the other matrix elements, use the inequalities 

(P'Oi+)iJE;;;(At);t +(PI;;:+:_tr · +At)ljE;;;(At);t +(PI;;:+:.t)ll +(At)th 

(P'O./dtt E;;; (At )li+ (PI,/1-t );1 + (At+z)1t, 

and argue as in the proof of Theorem 2. 0 
Applied to the example of Best Manufacturing, the assumptions of Theorem 4 

require that the operation of each of the d machines be involved in the cycle of each 
machine, since no element of At, t E T, may be fixed at -oo. Indeed, it is intuitively 
clear that two sets of noninteracting machines (represented by operating-time matrices 
At of block-diagonal form, with elements equal to -oo outside of the block-diagonal 
submatrices) could cycle at different rates. Theorem 4 says that, in a set of d fully 
interacting machines, the average duration of a cycle will approach a limit and this 
limit will be the same for all machines. 
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THEOREM 5. Let IAt ltET be a stationary sequence of random matrices from [Rdxd. 

If -oo < EI(At)l] l < oo for all t E T, 1 ~ i, j ~ d, then 

lim t- 1(P~/ );1 = ~ 
qoo 

exists with probability one, is independent of i and j, and has a finite mean 

E(n =lim t-1 EI(Poi+)lll = 'YL·+ IAtl· 
tjoo 

IfiAtl are i.i.d., then~= 'YL·+IAtl almost surely. 
Proof (L . +)-multiplication is associative in [Rdxd. For s < t < u, s, t, u E T, 

(P~~+)II ~(P~i+)II +(P~~+)II· 

Then 

satisfies (Sl) and (S2). Moreover gt = Elxotl ~ tEI(AI)lll < oo exists and 

gt ~ ± E{min (Au )IJ} = tE{min (A 1 );1} 
v~I l,J l,J 

so 

gJt~E{min (AI)u}>-oo. 
l,j 

This proves (S 1 )-(S3) and, with the help of Theorem B, the claimed result for i = j = 1. 
For the other matrix elements, use the inequalities 

(P~/);j~(AI)il +(P~;;~I)ll +(At)Ij, 

(P~;t:z)II ~(AI )u+ (P~:t:I)u+ (At+2)ji, 

and argue as in the proof of Theorem 2. D 
Applied to the transport costs of Ace Distributors, Theorem 5 says that the 

average (per stage) cost of a minimal-cost t-stage trip from site i to site j approaches a 
limit as t gets large, and this limiting minimal cost per stage is independent of the 
pair (i, j) of sites. 

COROLLARY 6. Under the hypotheses of Theorems 2 and 3, 'YL-xiA1l ~ 'Yr-xiAtl· 
Under the hypotheses a/Theorems 4 and 5, 'YL·+IAtl ~ 'Yr·+IAtl· Under the hypotheses 
of Theorems 2-5, exp ['YL.x1Atl1 ~ 'YL·+IAtl and exp ['Yr-xiAtlJ ~ 'Yr-+IAtl· 

Proof For every sample path of IAtl, P~/ ~ P~/, where g takes the value X or 
+;hence the first two inequalities. Similarly, for every sample path of IA1 l (on IR~~d), 
(P~/):/ ~ t- 1 (P~/);h where ftakes the value Lor r, by the inequality of geometric 
and arithmetic means; hence the second two inequalities. D 

The last remaining generalized multiplication among the examples in §4 is 
(r · L)-multiplication. Subadditive inequalities for individual matrix elements 
like those that begin the proofs of Theorems 4 and 5 are not possible for (r . L)­
multiplication. For example, if 

H=[~ ~J I=[~ ~J 
then (Hr · LH)ll = 1 > H11 + Hll = 0 but (lr · LI)ll = 1 <Ill+ Ill= 2. 
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Define, for A E !Rdxd, 

Then 

For 

and similarly 

r(A)=max a;1 , 
l,j 

L(A)= :Lau. 
i,j 

r(Ar · LB)~ [r(A)]L[r(B)]. 

~ail rai2r · · · ra;d= maxa;j~r(A) 
j 

(A r · LB);k~maxbjk~r(B); 
j 

hence the claim r (A r · L B) ~ [r (A)] L [r (B)]. Consequently, for any sequence 
IAtltET of matrices over !Rdxd, 

r(A 1 r · LA2r · L · · · r · LA1)~r(A 1 ). 

If it is assumed that -oo < EI(At)u} < oo, for 1 ~ i, j ~ d, then (by an argument like 
that in the second half of the proof ofTheorem 2), limqoo t- 1 r (At)= 0 with probability 
one. Thus 

lim C 1 r(PoiL)~O almost surely. 
ftoo 

If AtE IR~xd for all t, with probability one, then r (P 01. L) ~ 0 almost surely, and hence 

limt- 1 r(P~;L)=O almostsurely. 
tjoo 

Now 

r(A)~L(A)~d2r(A) forAE!R~xd. 

Hence, if IAt}tETE !R~xd almost surely, then also 

lim t- 1 L (P~;L) = 0 almost surely. 
tjoo 

Applied to the example of Ace Distributors, the immediately preceding results 
mean that the maximum capacity of a !-stage trip is bounded above by the maximum 
capacity of a one-stage trip. Hence, for nonnegative capacities, the average capacity 
per stage (which is not an especially meaningful descriptive statistic) approaches zero 
with probability one, for every pair of sites. 

In summary, the generalized products P~l of stationary random matrices IA 1 ltET 
display different asymptotic behavior as t j oo, depending on the generalized matrix 
multiplication f · g and the space pdxd from which the matrices come. According to 
Theorems 2 and 3, r · X-products and L · X-products P~l over !R~~d asymptotically 
behave exponentially in t. According to Theorems 4 and 5, r . +-products and L . +­
products P~l over !Rdxd asymptotically behave linearly in t. Finally, r . L-products 
over !R~xd are absolutely bounded above and below and therefore vanish almost surely 
compared tot. 

6. Generalized spectral radius of a fixed matrix. In the case of ordinary matrix 
multiplication, Theorem D implies, as already noted, that for every matrix A E IR~~d 
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there is a spectral radius p (A) E IR++ such that, for all 1 ~ i, j ~ d, 

lim [(A 1)u] 111 =p(A). 
ttoo 
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Theorems 2-5 imply precisely analogous results in the special cases when the random 
matrices IAt l are all equal to a single fixed matrix A with probability one. However, 
unlike the spectral radius for ordinary + . X-multiplication, which can only be 
calculated exactly in a few special cases of A, the generalized spectral radii PJ. g(A) for 
those f · g-multiplications covered by Theorems 2-5 can be calculated exactly by 
simple general formulas. 

Define a cycle to be any cyclic permutation of any nonempty subset of 11, 
2, . ·. , dj. For example, if d = 3, then all the cycles are (1), (2), (3), (1, 2), (1, 3), 
(2, 3), (1, 2, 3) and (1, 3, 2). The cycle (2, 3, 1), which does not appear in this 
list, is equivalent to and represented by the cycle (1, 2, 3) in the list. Define 
the length L = L( C) of cycle C to be the number of elements in the subset of 
11, · · · , dj permuted by C. Thus L( 1, 2) = 2. Let Sd be the set of all possible cycles 
of any length L, 1 ~ L ~ d, from II, ... , dj. 

If C = (i1, i2, · · · , iL), where 1 ~ L ~ d, define a sum over C in A LeA by 

When L= 1 and C = (i), L<iJ A= a;;. Similarly, define a product over C in A Tie A by 
L 

IT A= IT a;1 ~+', 
e j=l 

Denote the t-foldf. g-product of the matrix A with itself by A{. g· Thus A~.x is 
the ordinary tth power of A. 

THEOREM 7. Let A E !R ~~d. Then, for 1 ~ i, j ~ d, 

1#'!! [(A~.x)lJ] 111 =min {(~A Y/L(e) I CESd}· 
Let A E IR dxd. Then, for 1 ~ i, j ~ d, 

l#!ll- 1(A~.+)u=max{(~A) I L(C) I CESd}. 

1#'!! t- 1(A~.+)u=min {(~A) I L(C) I CESd }. 

For example, let d = 3 and 

A=[-;: =i~ -!~]. 
-31 34 49 

The possible cycles C and averaged sums over cycles in A are given in Table 1. 
Thus limqoo C 1(A~.+);1 =54 and lim1t"" C1(A~.+)u = -66.5. 

Proof of Theorem 7. Denote the four limits on the left of the equations in 
Theorem 7 by Pr-x(A), PL-x(A), Pr-+(A) and PL·+(A), respectively. We will first establish 
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Cycle C 

(I) 
(2) 
(3) 
(I, 2) 
(1, 3) 
(2, 3) 
(1, 2, 3) 
(1, 3, 2) 

JOEL E. COHEN 

TABLE I 

Averaged sum (LcA)/L(C) 

54 
-19 

49 
(-77- 56)/2 = -66.5 

(13- 31)/2 = -9 
(34- 46)/2 = -6 

(-77- 46- 31)/3 = -51.33 ... 
(13 + 34- 56)/3 = -3 

the claimed formula for the last of these, PL·+(A). (To avoid confusion, note that 
when A1 =A almost surely for all tET, /'f.x{Atl=log PJ.x(A), f=r, L, +;but 
'YJ.+fAtl = PJ.+(A),f= r, L.) 

Fix any i and j, 1 ~ i, j ~ d, and pick any t that is large compared to d. 
Then there exists at least one sequence i = )0, )~o J2, ... , )1 = j such that 1 ~)h ~ d, 
h = 0, · · ·, t and 

t 

(A~.+)u= 2: a;h-IJh· 
h=1 

Call such a sequence {jh l a minimal sequence and the sum on the right in the last 
equation a minimal sum. Each minimal sequence may be partitioned into an initial, 
a middle, and a final sequence as follows. The initial sequence contains i=)o and all 
succeeding elements of the minimal sequence up to but not including the first 
repetition of a previous element of the minimal sequence. The final sequence contains 
j=)t and all preceding elements of the minimal sequence back to but not including 
the first repetition of an element that occurs later in the minimal sequence. The 
middle sequence contains all remaining elements of the minimal sequence. The initial 
and final sequences each contain at most d elements. Thus 

t- 1 (A~.+)ij=C 1 L +t- 1 L +C1 L 
initial middle final 

and as t j oo the initial and final sums on the right approach zero. 
The middle sequence may be written as a disjoint sequence of cycles, except 

possibly for a finite number of elements. Since each cycle has length at most d, the 
number of such cycles goes to oo as t j oo. Suppose that, as t j oo, the middle sequence 
contained, infinitely often, a cycle C' E Sd such that 

(~A) I L(C')>min {(~A) I L(C) I CESd}· 
By bringing together all the elements of the minimal sequence belonging to any 
repetition of the cycle C', then replacing them by elements belonging to infinitely 
many repetitions of any cycle C" such that 

(**) 

(plus at most a finite number of other elements), we could strictly lower t- 1 Lmictct1e 

for large enough t. Hence the minimal sequence containing C' infinitely often 
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was not really minimal, contrary to assumption. Therefore, in the limit as t j oo, 

the only cycles that can occur infinitely often in the middle sequence of a mini­
mal sequence are those like C" that satisfy ( ** ). This establishes that PL· +(A) = 
min I(LcA)/L(C) I CE Sdl· 

The proofs of the other three formulas in Theorem 7 replace either minimization 
by maximization or addition by multiplication and arithmetic mean by geometric 
mean, but are otherwise identical. 0 

Clearly, PJ.x(A) > 0, A E IR~~d, but PI+(A) may have any sign, AEIRdxd, forf= r, 
/=L. 

This proof explains the perhaps puzzling result that for very long trips (large t), 
the average (per stage) cost in a minimal-cost trip for Ace's trucks from any site ito 
any site j is independent of i and j. The reason i and j have no influence is that the 
truck goes from i to a minimal-cost cycle and stays on one or another minimal-cost 
cycle (with at most a finite number of excursions for coffee) until shortly before t, 
when the truck leaves a minimal-cost cycle and travels to j. For large enough t, the 
costs of the initial segment from i to some minimal-cost cycle and the final segment 
from some minimal-cost cycle to j contribute negligibly to the average cost per stage. 

Cuninghame-Green (1979, pp. 200-201) showed that, for A E IRdxd, there exists 
a unique 'A E IR and at least one x E [Rdxl such that Ar . +x ='A+ x (addition on the 
right being elementwise); his 'A is identical to our Pr-+(A) as given by Theorem 7. 
Shortly after Cuninghame-Green originally published this result, and apparently 
independently, Vorob'ev (1963) produced a similar result for the generalized 
products r . X and L · x. Thus the generalized spectral radius Pr-+(A) is also a 
generalized eigenvalue 'A; similar results hold for the other generalized spectral radii 
considered here. 

7. Exact formulas for the limiting growth rate. Theorems 2-5 establish the 
existence of limiting growth rates 'YJ-giAtl, for f · g = r · x, L . x, r. +, and L . +, 
respectively, under various assumptions about IAt j. Here, for each of these generalized 
products/· g, we give an example of IAtl for which 'YJ-giA1l is easily computed exactly 
and has a simple formula. To prepare for these formulas, we introduce some notation 
and a known almost sure limit law from the theory of extreme values. 

Let N(p,, u2) denote a normally distributed random variable with mean J.t and 
variance u2• For any two random variables X and Y, let X- Y mean that X and Y 
have the same distribution. Let X1, X2, . · · denote a sequence of i.i.d random variables 
with Xn- N(O, 1), n = 1, 2, · · · , and let 

Zn=max IX~,··· ,Xnl, 

Yn=min IX1, · · · ,Xnl· 

By the symmetry of the normal distribution, - Yn - Zn. 
THEOREM E (e.g., Galambos (1978, p. 228)). 

P{lim Zn/(2 log n) 112 = 1} = 1. 
ntoo 

THEOREM 8. Let IAt ltET be a sequence of i.i.d. matrices from IRdxd in which the 
elements (A 1)u of each matrix are also i.i.d. and (A 1);1 - N(p,, u 2). Then,for 1 ~ i,j ~ d, 
with probability one, 

'Yr·+ IAt l =lim C 1(P'Oi+)IJ = J.t + u(2log d) 112 , 
ttoo 
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Proof Because (r · +)-multiplication is associative, 

(P~/);j=max tt
1 
a1h_,jh I jo= i,jt= j, 1 ;:;i,.jh~d,h= 1, ... ,t-1 }. 

where ajh-llh is an element of Ah. There are d1- 1 sums in the set on the right, and 
(P'Oi+);1 is the maximum of these. Since (Ah);1 - N(JL, u2), 

hence 

I 

t-l L ajh-dh-N(JL,CT2/t) 
h~I 

t-I(P~/)ij- JL + ( ujtii2)Zdt-l· 

Let n = n(t) = dt-I. Then t = 1 + (log n )/(log d). Hence 

C1(P~; +)ij- JL + uZn/[ 1 +(log n )/(log d)] 112. 

As t j oo, n j oo, and Theorem E gives the formula claimed. 
The proof for (L · +)-multiplication uses - Yn- Zn. D 
Theorem 8 tells Best Manufacturing (if the durations of operation of each of d 

machines may be supposed to be independently and identically normally distributed 
with mean JL and variance u2) that over a long period the average interval between 
cycles of each machine is JL + u(2log d) 112. Compared to a manufacturing process 
with no variability ( u = 0) but the same average duration JL of machine operation, the 
average intercycle interval is increased by u(2 log d) 112. This penalty rises very slowly 
with increasing d (for example, increasing d from 20 to 40 increases the penalty from 
2.4u to 2. 7 u approximately) but rises in direct proportion to u. Thus, in an effort to 
improve (i.e., reduce) the average intercycle interval, reducing u by half will be much 
more beneficial than reducing d by half, and similarly for any other proportional 
reduction. This conclusion was not obvious prior to analysis. 

Similarly, Theorem 8 tells Ace Distributors (if the cost of a trip is i.i.d. N(JL, u2)) 

that over a long period the average minimal cost per stage is JL - u(2 log d) 112, a 
savings of u(2log d) 112 over the average minimal cost per stage in the absence of 
variability in costs ( u = 0). Here the variability u and not the number d of sites is the 
major factor in Ace's savings. 

THEOREM 9. Let {AtltET be a sequence ofi.i.d. matrices from IR1~d in which the 
elements (At);1 of each matrix are also U.d. and log (At);1 - N(JL, u2), i.e., the elements 
of(At),j are lognormally distributed. Then,for 1 ~ i, j ~ d, with probability one, 

'Yr-x {Atl =lim t-1 log (P~/);j= JL + u(2log d) 112 , 
ttoo 

Proof Apply Theorem 8 to {BtltET where (Bt)ij =log (At)l}, t E T, 1 ~ i, 
j~d. D 

8. Open problems. How far can we relax the assumptions of Theorems 8 and 9 
while retaining the conclusions? Any assumptions about i.i.d. (At),1 will do provided 
that the distribution of t-1 L~~~ a1h-11h converges to the distribution of N(JL, u2/t) fast 
enough to justify the conclusion of the extreme value theorem, Theorem E. It should 
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be possible to weaken the assumption that (A, )ij are i.i.d. The problem is to make the 
details precise. 

For ordinary matrix multiplication, e.g., Theorems C and D, the limit ~ is known 
as the leading Lyapunov exponent. Just as a single d x d matrix has a spectrum of d 
eigenvalues (possibly repeated), so an ordinary product of stationary random matrices 
has a spectrum of d Lyapunov exponents (Oseledec ( 1968); the theorem is stated and 
proved in a more readable way in Cohen, Kesten and Newman (1986)). Moreover, 
there is an intimate and surprising connection between the spectrum of Lyapunov 
exponents of ordinary products of certain i.i.d. matrices {A,j and the eigenvalues of 
the single random matrix (A f A1 ) 112 (Newman (1986)). To what extent do these results 
generalize to thef. g-products considered in Theorems 2-5, or to other!· g-products? 

Is there a taxonomy off· g-products that could make the discovery and proof of 
subadditive ergodic theorems such as Theorems C, D and 2-5 more efficient? It would 
be natural to begin withf, gE 0 and then extend to other binary operations!, g. 

Finally, from the applied point of view, what generalized matrix products besides 
those studied here are important in science and management? How can the tools and 
results developed illuminate additional applied problems? 
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ERRATUM: 
SUBADDITIVITY, GENERALIZED PRODUCTS OF RANDOM 

MATRICES AND OPERATIONS RESEARCH" 

JOEL E. COHENt 

Amir Dembo of Stanford University and Yuval Peres of Yale University have 
pointed out to me an error in the proof of Theorem 8 (p. 83) and of Theorem 9 
(p. 84), which depends on Theorem 8 [1). Specifically, in the first paragraph of page 
84, I assumed that for different trajectories jo,jl, ... ,ji, the normal random variables 
E~=l aih-dh are independent. In fact, only for disjoint trajectories are these sums 
independent. In unpublished calculations, Dembo has further established that the 
four formulas for 'Y given in Theorems 8 and 9 are incorrect at least for d = 2. He 
also showed that the ratio between each formula given for 'Y and the corresponding 
true value converges to 1 as d-+ oo. Thus the formulas given provide good estimates 
for large d. The correct formulas for 'Y for any or all finite d are still unknown. 
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