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ABSTRACT 

Motivated by models from stochastic population biology and statistical mechanics, 
we prove new inequalities of the form ( *) <p( eAe 8 ) ;« <p( eA+B), where A and Bare 
n X n complex matrices, 1 < n < oo, and <p is a real-valued continuous function of the 
eigenvalues of its matrix argument. For example, if A is essentially nonnegative, B is 
diagonal real, and <p is the spectral radius, then ( *) holds; if in addition A is 
irreducible and B has at least two different diagonal elements, then the inequality ( *) 
is strict. The proof uses Kingman's theorem on the log-convexity of the spectral radius, 
Lie's product formula, and perturbation theory. We conclude with conjectures. 

1. INTRODUCTION 

Let A and B be n X n matrices over the field of complex numbers, where 
n is a fixed integer, 1 < n < oo. Let cp(A) be a real-valued continuous function 
of the eigenvalues of A. If cp( A) is finite when all elements of A are finite, cp 
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will be called a spectral function. For example, <p( A) might be the spectral 
radius of A, which is the maximum of the magnitudes of the eigenvalues of A. 
Whenever log <p is considered, we shall always assume, without a further 
explicit statement, that <p > 0. To emphasize that <p( A) depends only on the 
eigenvalues of A, we assume that any spectral function <p satisfies 

In this paper, we give conditions on A, B, and cp that imply 

(1) 

Our main new results are given in Theorems I to 7 below. We also state some 
conjectures. 

Before proceeding to the mathematics, we review the scientific reasons for 
interest in (I). Under distinct conditions on A, B, and cp, the inequality (I) 
arises in statistical mechanics and population biology. Products of matrix 
exponentials under other special assumptions arise also in quantum mechanics 
[32]. 

In statistical mechanics, Golden [I2] proved that if A and Bare Hermitian 
and nonnegative definite and cp =trace, then (I) holds. Independently, 
Thompson [26] proved (I) if A and B are Hermitian and cp =trace, without 
any requirement that A and B be nonnegative definite. Golden [I2] observed 
that (I) can be used to obtain lower bounds for the Helmholtz free-energy 
function by appropriate partitioning of the Hamiltonian. Thompson [26] 
showed that (I) improves a convexity property that has been used to obtain 
an upper bound for the partition function of an antiferromagnetic chain. 

Thompson [27, p. 476] proved (1) for Hermitian matrices A and B and for 
any continuous real-valued matrix function cp(X) satisfying 

cp(XY) = cp(YX) for Y positive definite (2) 

and 

s=I,2, ... , (3) 

where X* is the conjugate transpose of the matrix X. All spectral functions 
satisfy (2). Thompson [27, pp. 477-478] observed that many spectral func-
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tions satisfy (3). For example [30], if the eigenvalues a 1, a 2 , ... ,an of an 
arbitrary n X n complex matrix are ordered so that la 1 1 ;;;..la2 1;;;.. ···;..ian I' 
then, for k = 1, ... , n, the function 

k 

<Jlk(A) = ~ Ia; I (4) 
i=l 

satisfies (3) for every real positives. A special case is r(A) = cp/A). 
In Section 2, we obtain inequalities analogous to (1) for arbitrary complex 

matrices A and Band spectral functions <p that satisfy (3). We apply our first 
main result, Theorem 1, to several special cases, including that of reversible 
Markov chains. 

The main results of Section 3 are motivated by a problem in population 
dynamics. Suppose a homogeneous continuous-time population of size z( t ), 
t ;;;.. 0, grows according to 

dz 
dt =s(t)z(t), z(O) = 1, (5) 

where s( t) is the piecewise constant sample path of a continuous-time 
homogeneous Markov chain, with n X n intensity matrix Q, taking values in 
the set { s 1, ... , s n} of n real numbers s;. The random process z( t) is an 
example of a multiplicative functional [2, p. 98] or a random evolution [13]. If 
r is the spectral radius, S = diag ( s 1, ... , s n ), and E ;( z( t)) is the expectation of 
z(t) given that s(O) = s;, then [5] 

lim C 1logmaxE;( z( t )) =log r( eQ+s). 
t- 00 i 

(6) 

This random evolution z( t) in continuous time can be approximated by a 
random evolution y( t) in discrete time. Suppose the instantaneous growth 
rate s( t) governed by the continuous-time chain is observed at t = 0, 1, 2, .... 
The sequence of states occupied would be described by a discrete-time 
Markov chain with one-step transition probability matrix P = eQ. It would be 
plausible to suppose that if the discrete process were in state i at some 
integral time t, then 

y(t + 1) = es•y(t ), t = 0, 1, .... {7) 
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Denote the expectation of this discrete approximation y( t) given that s(O) = s; 

by E;(Y(t)), t = 0, 1, .... Then [6] 

lim t- 1logmaxE;{y{t)) =logr(eQe 5
). {8) 

t-oo i 

This formula was derived by Cohen [6] as a special case of a formula for 
the large-time expectation of a Markovian product of random matrices. It can 
also be derived as a special case of a formula of LeBras [19, p. 441]. When Q 
is irreducible, E;(z(t)) and E;(y(t)) are independent of i and max; can be 
dropped from (6) and (8). 

In numerical examples [6, p. 249], the long-run rate of growth of the 
average population E( y( t)) in the discrete approximation is greater than or 
equal to the long-run rate of growth of the average population E( z( t)) in the 
continuous-time model. To rationalize this observation, we prove in Theorem 
2 of Section 3 that (1) holds when A is an essentially nonnegative matrix (as Q 
is), B is a diagonal real matrix (as Sis), and cp = r. 

In population genetics [3] the stability of equilibria! gene frequencies in 
organisms that migrate among multiple niches depends on r(PD), where Pis 
a nonnegative row-stochastic n X n matrix and D is an n X n diagonal 
nonnegative matrix. For those special cases where PD takes the form eQes, (1) 
gives a lower bound on r(PD). 

In Section 4, we observe that sufficient conditions for (1) are that, for any 
positive integer m, cp(Am) = [ cp(A)]m and 

F{ t) =log cp( eAteBt) is convex, tE[O,oo). {9) 

We then show that (9) holds if A and Bare Hermitian and cp is the product or 
sum of the k largest eigenvalues, k = 1, ... , n; or if A is the intensity matrix of 
a reversible Markov chain, B is diagonal real, and cp is the product or sum of 
the k largest eigenvalues, k = 1, ... , n. 

Finally, in Section 5, we state conjectures and open problems. 

2. INEQUALITIES FOR COMPLEX MATRICES 

THEOREM 1. If A and Bare n X n complex matrices and cp is a spectral 
function that satisfies (3), then 

cp( e<A+A*)/2e<B+B*)/2) :;;.jcp( eA+B) j. (10) 
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Proof. For any complex n X n matrix M, let sp(M), the spectrum of M, 
be the set of n eigenvalues of M, each repeated according to its multiplicity. 
Since 

sp(AB) = sp(BA) (11) 

[18, p. 104, Exercise 12], (2) is guaranteed. Let X= AB. Then X*= B* A* 
and XX*= ABB* A*. Substituting into (3) gives 

(12) 

Settings= 2k-l for a positive integer k and using (11) on the left in (12) gives 

(13) 

By first taking the absolute value of the left member of (13) and 
then applying (3) and then (11), we have cp([BB*A*A] 2 k-l) 

~ lcp[([BB*A*AP) 2 •~
2

]1 ~ cp([BB*A*A(BB*A*A)*] 2 •~ 2 ) 
cp([BB*A*AA*ABB*]2k-2) = cp([(A*A)2(BB*)2 ] 2k-2). Combining this in­
equality with (13) gives 

(14) 

Repeated application of the steps from (13) to (14), applied to the left 
member of (14), yields 

(15) 

Now replace A by exp(2-kA) and B by exp(2-kB) in (15). Since M = eA 
implies M* = eA*, 
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For any complex n X n matrices A and B, 

lim (eAfseB!s)' = eA+B. (17) 
s ~ 00 

[We discuss below the provenance of (17).] Let k--> oo in (16). Now the limit 
of products is the product of limits and q; is continuous. Thus (16) and (17) 
imply (10). • 

This proof is very similar to Thompson's [27, Lemma 6, p. 476]. 
Reed and Simon [22, p. 295] and Davies [7, p. 90] attribute (17) to Lie but 

give no exact source. Butler and Friedman [4, (12), p. 289] state (17) without 
proof and with no explicit restrictions on A and B. Marvin H. Friedman 
(conversation, 30 September 1980) said he and Butler came upon (17) by 
themselves. They were told by Ed Salpeter, Cornell University, that it had 
been published previously, though Salpeter gave them no source. Golden [11, 
(2.14), p. 1284] states (17) independently and proves it by a method that 
assumes complex square A and B without further restrictions. Equation (17) is 
generalized by Trotter [29], who does not mention Lie, or Butler and 
Friedman [4], or Golden [11]. Equation (17), in the matrix case, is attributed 
to Trotter [29] by Bellman [1, p. 181], Thompson [27, p. 476], and many 
others. Since, for matrices, (17) probably dates back at least to Lie, the risk of 
doing a historical injustice could probably be reduced by referring to (17), in 
matrix applications, as the exponential product formula or Lie's product 
formula. 

CoROLLARY 1 (Thompson [27, p. 476]). If A and B are n X n Hermitian 
matrices and q; is a spectral function that satisfies (3), then (1) holds. 

Proof. If A is Hermitian, A= (A+ A*)/2, so (10) implies (1). • 

CoROLLARY 2. If A and Bare n X n complex matrices, A is skew-Hermi­
tian, and q; is a spectral function that satisfies (3), then 

(18) 

If, in addition, B is Hermitian, 

(19) 



EIGENVALUE INEQUALITIES 61 

Proof. If A is skew-Hermitian, then A*=- A, so (A*+ A)/2 = 0. Then 

u~(~. • 

CoROLLARY 3. Under the assumptions of Theorem 1, 

Proof. Since (A+ A*)/2 is symmetric for any A, Corollary 1 justifies 
replacing A by (A+ A*)/2 and B by (B + B*)/2 in (1), giving the left-hand 
inequality in (20). Now if B = 0 in (10), we have, for any complex A, 

Replacing A in (21) by A+ B gives the right-hand inequality in (20). • 

If A is a complex n X n matrix that is normal, i.e. AA * = A* A, then (21) is 
a direct consequence of (3). For with X= eAI 2

, s = 1, (3) becomes 
cp(eAI 2eA* 12 ) ;;;.lcp( eA )I and AA* =A* A implies that eAI 2eA* 12 = e(A+A*)/ 2• 

Let A be an n X n real matrix. Define A to be essentially nonnegative if 
a;;;;;. 0 for all i =I= i· Define A to be quasisymmetric if there exist real n X n 
matrices Hand D, H symmetric, D diagonal and nonsingular, such that 

(22) 

In the theory of n-state homogeneous continuous-time Markoff chains, an 
intensity matrix Q = ( qii) is defined to be an n X n essentially nonnegative 
matrix such that 

n 

~ q;;=O, i=1, ... ,n. (23) 
i=l 

An intensity matrix Q is defined to be reversible if there exist n positive 
numbers 7T;. i = 1, ... , n, such that 

i, i= 1, ... ,n. (24) 
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LEMMA 1. Let Q be an n X n intensity matrix. Then Q is reversible if 
and only if Q is quasisymmetric. 

Proof. Let Q be reversible. The following proof that Q is quasisymmetric 
is due to Whittle [31]. If P=diag('1T;), with all '1T;>O, then (PQ);;=7T;q;;• 
while [(PQlL; = '1T;qw Thus (24) is equivalent to 

(25) 

If M = PQ, (25) says M is symmetric. Therefore p- 112MP- 112 =His also 
symmetric. But Q = p- 112HP+ 112

, so Q is quasisymmetric. 
Now suppose Q = D- 1 HD, H symmetric, D diagonal nonsingular. For 

i,i=1, ... ,n, q;;=d-; 1h;;d;=[h;;/(d;d;)]df, Thus Q=CS, where Cis a 
symmetric matrix with elements C;; = h;;/(d;d;) and S is diagonal with 
diagonal elements S; = d; > 0. So c = QS- 1 = cr = s- 1QT implies SQ = QTS 
or s;q;; = s;q;;. which is reversibility. • 

CoROLLARY 4. If A is a quasisymmetric matrix or a reversible intensity 
matrix, B is a diagonal real matrix, and cp is a spectral function that satisfies 
(3), then (1) holds. 

Proof. If A is reversible intensity matrix, A is also quasisymmetric. 
Therefore A= D- 1HD for some real Hand D, H symmetric, D diagonal and 
nonsingular. But B = D- 1 BD, since diagonal matrices commute. So eA = 
D- 1eHD and e 8 =D- 1e 8 D. Thus cp(eAe 8 )=cp(D- 1eHe 8D)=cp(eHeB)~ 
cp(eH+B) (by Corollary 1) = cp(D- 1eH+BD) = cp(ev-J(H+B)D) = cp(eA+B). • 

CoROLLARY 5. Let A be an n X n complex matrix with spectrum sp( A) 
= {A. 1(A), ... ,A.n(A)} labeled so that 

(26) 

Then 

(27) 

This result is attributed to Hirsch by Marshall and Olkin [20, p. 238]. 

Proof. In (21), take cp=r, the spectral radius. Since (A+A*)/2 is 
Hermitian, its spectrum is real. Hence r(e<A+A*ll2)=expA.1[(A+A)j2]. 
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Also r(eA) = maxi=l, .. ,nlexp i\;( A )I= exp[Re i\ 1(A)]. Since r(e<A+A*l/ 2
);;;. 

r( eA) by (21), taking logarithms of both sides yields (27). • 

For any matrix A, write A;;;. 0 and say A is nonnegative if every element 
of A is real and nonnegative; write A > 0 and say A is positive if A ;;;. 0 and no 
element of A is 0. 

Define an n X n matrix A to be irreducible if, for each i, i = 1, ... , n, there 
is a positive integer k such that ( Ak)i; =I= 0. 

CoRoLLARY 6. If A is an n X n matrix and A;;;. 0, then 

(
A+ A*) r 

2 
;;;. r( A). (28) 

Suppose, in addition, that A is irreducible. Then equality holds in (28) if and 
only if, for some n-vector u > 0 such that uTu = 1, 

Au= r(A)u (29) 

and 

(30) 

Proof. By the Perron-Frobenius theorem [18, 25], r(A) = Re i\ 1(A). Then 
(28) follows from (27). Now suppose A is irreducible. If (29) and (30) hold, 
then (A+ AT)u = 2r(A)u, sou is a positive eigenvector of the nonnegative 
irreducible matrix A+ AT. Thus r(A +AT)= 2r(A), and equality holds in 
(28). Conversely, assume (29) and equality in (28). Now r( A+ A*)= 
max{xT(A + A*)x: x is a real n-vector and xTx = 1} and the maximum is 
attained at the n-vector v such that (A+ A*)v = r(A + A*)v [18, pp. 109-
110]. But for u given by (29), uT( A+ A *)u = ur( Au)+ ( uTAT)u = 2r( A )uTu 
= r(A +A*), so u = v. Therefore (A+ AT)u =Au+ ATu = r(A)u + Aru = 
2r(A)u, which implies (30). • 

3. INEQUALITIES FOR ESSENTIALLY NONNEGATIVE MATRICES 

The major results of this section depend on a simple but powerful result of 
Kingman [16]. Define a function f( t) to be log-convex for tin some interval if 
and only if f( t) > 0 and log f( t) is convex for t in the interval. Kingman's 
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theorem is this: If A( t) is an n X n nonnegative matrix function of a 
parameter t on some interval such that r( A( t )) > 0 on the interval and, for 
i, i = 1, ... , n, either a;;(t) vanishes or a;;( t) is log-convex on the interval, then 
log r( A( t )) is a convex function of t on the interval. 

Define an n X n matrix B = (b;;) to be real diagonal, and write B = 
diag(b1, ... , bn) if h;; = 0 when i * i and b;; = b; with all b; real. 

Define an n X n matrix B to be a scalar matrix if there is a (real or 
complex) scalar b such that B = bi, where I is then X n identity matrix. 

THEOREM 2. If A is an n X n essentially nonnegative matrix, B is an 
n X n real diagonal matrix, and cp = r, the spectral radius, then (1) holds. The 
inequality (1) is strict if A is also irreducible and B is also not a scalar matrix. 

The proof depends on Lemmas 2 to 5. For two complex vectors u and v, 
we denote ( u, v) = ~7= 1u;v; and II u II = ( u, u )112

. For any n X n complex 
matrix A, define II All= [r(A*A)F12

• 

LEMMA 2. Let A;;;;, 0 be an irreducible n X n matrix. Then there exists an 
n X n real diagonal matrix S = diag(s1, ... ,sn) with s; > 0, i = 1, ... ,n, and an 
n-vector w > 0 such that A 1 = SAS- 1 satisfies 

A 1w = r{A)w, A~w = r(A)w. (31) 

Proof. Since A is irreducible, a theorem of Frobenius [10, vol. 2, p. 53] 
implies that there exist n-vectors u and v such that 

Au=r(A)u, 
(32) 

u>O, v>O, 

For i = 1, ... , n, let s; = ( v; ju;)112
• Since s; > 0, SAS- 1

;;;;, 0 is irreducible. 
Again by Frobenius' s theorem, there exists an n-vector w > 0 such that 
SAS- 1w = r(SAS- 1)w = r(A)w. In fact, with w = Su = s- 1v, both parts of 
(31) hold because of (32). 

To see that II A1 11 = r(A 1), multiply A 1w = r(A)w on the left by A~ and 
use (31) to get A~A 1w = r 2(A)w = r 2(A 1 )w. • 

LEMMA 3. In Lemma 2, assume further that AT A is irreducible and 
r( A) = 1. (In case r( A) * 1, replace A by A/ r( A).) Then, for any real 
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n-vector x, II A 1x II = II x II if and only if A 1x = x = cw for some real scalar c, 
where w satisfies (31). 

Proof. lf ATA is irreducible, then so is A~A 1 , which is symmetric and has 
II A 1 ll = 1. But II A 1x II= II x II if and only if (A~A 1 x, x) = (A 1x, A 1x) = (x, x), 
which is true if and only if A~ A 1 x = x. The lemma follows because all 
eigenvectors of A~ A 1 corresponding to eigenvalue 1 must be of the form cw 
for scalar c. • 

LEMMA 4. Let A be a nonnegative n X n matrix, C a real diagonal n X n 
matrix. Then r( Ae tc Ae- tC) ;;:;;. r( A )2 for all real numbers t. The inequality is 
strict, except fort= 0, if both A2 and ATA are irreducible and Cis not a scalar 
matrix. 

Proof. It suffices to prove the strict inequality; the general case then 
follows by continuity. 

The elements of A(t) = Ae1cAe-tc are log-convex in tor identically 0 for 
all t. According to Kingman's theorem, it follows that r(A(t)) is convex in t. 
Since A( t) is irreducible with A2 (because e "'tc are positive diagonal), r( A( t )) 
is a simple eigenvalue of A( t ). Since A( t) is analytic in t, it follows that 
r(A(t)) is analytic in t. To prove the strict inequality, therefore, it suffices to 
show that 

[
dr(A(t))] =O 

dt t=O 
(33) 

and, in addition, that r(A( t )) is not constant in t. 
A perturbation theorem of Kato [15, Equation II-(2.36), p. 81] gives 

[ dr(A(t )) ] = ( [ dA(t)] u, v) = ((ACA- A2C)u, v) = 0, 
dt t=O dt t=O 

where u and v are respectively the eigenvectors of A and AT for the principal 
eigenvalue r( A), normalized by ( u, v) = 1. Note that ( ACAu, v) = 
r(A)2(Cu, v) = (A2Cu, v ). 

It remains to show that r(A(t)) is not constant. We may assume, without 
loss of generality, that r( A) = 1. Suppose that r( A( t)) = r( A 1( t)) were con­
stant, where A 1(t) = A 1e

1cA 1e-tc = SA(t )S- 1 with Sand A 1 as in Lemma 2. 
Then r(A 1(t))=r(A 1 ) 2 =1 for all real t. Since r(A 1(t)) is an eigenvalue of 
A 1( t ), which is analytic in t, it follows from perturbation theory that A 1( it) 
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also has an eigenvalue 1 for all real t. Let u 1 = u 1( t) be an associated 
eigenvector normalized to norm 1: 

(34) 

Set u2 = e-itCu1, u3 = A1u2 , u4 = e; 1cu3 , so that (34) gives u 1 = A 1u4 ; here 
all the uk depend on t. Since IIA1 11 = lle±itCII =1, we have 

(35) 

Hence we must have equality everywhere. In particular II u3 ll = II A 1 u 2 11 = 
II u2 ll. By Lemma 3 this implies that u3 = A1u2 = u2 = c2(t )w. Similarly, we 
have II u 1 ll = II A1u4 ll =II u4 ll, which implies u 1 = A 1u4 = u4 = c1(t )w. [Here 
c1(t), c2(t) are nonzero scalars.] It follows that c/t)w = e; 1cez(t)w, which is 
obviously impossible if C is not a scalar matrix. • 

If, in Lemma 4, one replaces the assumption that A2 and ATA are 
irreducible by the stronger assumption that A > 0, it is easier to show r( A( t)) 
is not a constant. Assume A> 0 and Cis not a scalar matrix. Then e 1cAe-tc 
has at least one element larger than ae ct, where a > 0, c > 0, say in row i and 
column f. Hence [A(t)];;;;.,aect. Therefore r(A(t));;.,aec1

• So r(A(t)) cannot 
be a constant for - oo < t < oo. 

LEMMA 5. If A and B are n X n rwnnegative real matrices and B is 
diagonal, then 

(36) 

~The positive root is always intended.) If, in addition, A2 and ATA are 
irreducible and B is rwt a scalar matrix and B is nonsingular, then the 
inequality in (36) is strict. 

Proof. It is sufficient to prove (36) assuming that B is nonsingular 
diagonal. For if B is singular, i.e. some h; = 0, we can choose a sequence { Bd 
of nonsingular diagonal matrices Bk such that Bk-... B, ask-... oo, and (36) will 
then hold by the continuity of r. So if B is nonsingular diagonal, then 
r(A2B2 ) = r(AB 2A) = r([ AB] B[AB]B- 1

);;;;., [ r(AB)p; the inequality follows 
from Lemma 4, with B = ec, t = 1, and AB here replacing A in Lemma 4. 

Strict inequality in (36) follows similarly from the conditions that assure 
the strict inequality in Lemma 4. • 
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Define an n X n matrix A to be primitive if A ;;;. 0 and there is a positive 
integer k such that Ak > 0. A primitive matrix is irreducible, but not neces­
sarily conversely. 

If A is primitive but not positive, then strict inequality in (36) need not 
hold. For example, let 0 <a < 1, b > 0, and 

ab 
(1- a )b 

0 

1- a l 
a ' 
0 

Then A3 > 0, while r(AB) = r(A2B2
) = 1. 

A slight modification of this example shows that Remark 3.2 of Friedland 
and Karlin [9, p. 471] is false. Take a= i, b = 1 in A and B above, and define 
D = diag( d, 1, d- 1 

), 0 < d < 1. Being doubly stochastic, A has left and right 
eigenvectors (-Lt. -n and (1, 1, 1l corresponding to r(A) = 1. Moreover 
r(AD) = 1, since 

Thus r(DA) = r(AD) = 1 = d 113 1113d- 113 , which is equality in Equation 
(1.8) of Friedland and Karlin [9] even though D is not a scalar matrix, 
contrary to their Remark 3.2. The conclusions of Remark 3.2 are true if the 
n X n matrix M ;;;. 0 there is assumed to be irreducible and to have positive 
diagonal. The proof follows that of Theorem 3.2 in [9, p. 471]. 

Under the assumptions of Lemma 5, it need not be true that r(A3B3
);;. 

[r(A2 B2 )] 312. For example, if 

A=(~ ~), B=(~ ~), 

Proof of Theorem 2. Assume that A is irreducible and B is not a scalar 
matrix. Then eA > 0. By Lemma 5, replacing B there by e8 here, for 
k = 0,1,2, ... , 

(37) 
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For any n X n matrix M;;;. 0, r(Mk) = [r(M)]k. Comparing the left side of 
(37) fork= 0 with the limit of the right side of (37) in the limit ask---> oo, and 
using (17), gives r(eAe 8 ) > r(eA+B). 

If B is a scalar matrix, then r(eAe 8 ) = r(eA+B). If A is reducible, then 
r(eAe 8

);;;. r(eA+B) follows from (36) as does (37). • 

S. R. S. Varadhan (personal communication, 6 May 1981) pointed out that 
if Q is an n X n intensity matrix and S is an n X n real diagonal matrix, then 

(38) 

follows from Lemma 3.1 of Donsker and Varadhan [8, p. 33]. Here is his 
argument. Let p = ( p 1, ••• , Pn) be an arbitrary probability distribution on the 
integers 1, ... , n, so that P;;;;. 0, p 1 + · · · + Pn = 1. Then (6) and (8) above 
combine, respectively, with Equations (1.16) and (1.9) of Donsker and 
Varadhan [8, pp. 6, 4] to yield 

log r( eQ+S) = s~p [ i ~1 S;P;- I(p)], 

log r( eQe
5

) = s~p [; t S;P;- 11(P)] · 

(39) 

(40) 

The functions J(p) and J1(p) need not be defined here explicitly. But, for 
every p, according to their Lemma 3.1, 

(41) 

(Take h = 1 in their notation.) Then (38) follows immediately from using the 
inequality ( 41) in (39) and ( 40). 

We now show that Theorem 2 sharpens a special case of Theorem 3.1 of 
Friedland and Karlin [9, p. 462]. 

LEMMA 6. Let A be an essentially nonnegative n X n matrix with 
eigenvalues {A;}~ ordered by (26), so that ;\ 1 = r(A). Suppose there exist 
n-vectors u and v such that (32) holds. Then for any n X n real diagonal 
matrix D = diag( d 1 , ... , d n ), if 81 is the necessarily real eigenvalue of A + D 
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with largest real part, 

n 

(31;:;;,~1+ ~ U;V;d;. 
i =l 

Proof. If A= (a;1) and e> 0, define A( e) by 

i,i=l, ... ,n. 

So if a is a sufficiently large positive scalar, 

A(e)+al >0 for all e> 0, 

[A(e)+al]u=(A.1 +e+a)u, 

[AT (e) + al] v = (A. 1 + e + a) v. 

69 

(42) 

Corollary 3.1 of Friedland and Karlin [9, p. 471] implies that, for any n-vector 
x=(x;)>O, 

Now choose a large enough so that, for any e> 0, 

A(e)+al+D>O. 

Then by the Perron-Frobenius theorem, there exists an n-vector y > 0 such 
that 

(A( e)+ al + D] y = [ 81( e)+ a] y 

where 81(e) is the (necessarily real) eigenvalue of A( e)+ D with largest real 
part. Consequently 
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but also 

~ U;V;{[A(e)+al+D]y}; = ~ U;V;[A(e)y]; +a+ ~ U;V;d; 

; = 1 Y; ; = 1 Y; ; = 1 

Hence 

n 

;:a.A. 1 +e+a+ ~ U;V;d;. 

i=1 

n 

81(e);:a.A. 1 +e+ ~ U;V;d;. 

i=1 

As e ~ 0, 8ie) ~ 81, and we get (42). • 
CoROLLARY 7. Let A be an essentially rwnnegative n X n matrix such 

that there exist n-vectors u and v that satisfy (32). Then for any n X n real 
diagonal matrix D 

n 
r(eAeD) ;a. r(eA+D) ;a. r(eA) II ed,u,v,, (43) 

i=1 

Proof. The left inequality in (43) follows from Theorem 2. Defining 
(again) 81 as the eigenvalue of A+ D with largest real part, and using Lemma 
6, 

n 
r(eA+D)=elli;:a.e>-I+};u,v,d,=r(eA) II ed,u,v,, 

i=1 

Equation (1.8') of Friedland and Karlin implies only that 

n 
r(eAeD);:a.r(eA) II ed,u,v,, 

i=1 

• 

We now present another line of argument leading to the weak inequality 
asserted in Theorem 2. 

LEMMA 7. For a positive integer k, let A 1, ... , A k be n X n nonnegative 
commuting matrices, i.e. A;A; = A;A;. and call their product C = A 1A 2 

· · ·Ak. Let b1, ... ,bk be nonnegative scalars, and call their sum b=~~= 1 h;. 
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Let D 1, •.• ,Dk ben X n diagonal matrices. Then 

k b 
log r( A 1eb,D, · · · AkebkDk) ,;;;; ~ b log r( CebD,). 

i=l 

In particular, if all D; = D, then 

(44) 

Proof. Kingman's [16] theorem implies that logr(A 1ev,, · ·Akevk) is a 
convex function of the kn diagonal elements of D1, ••• ,Dk. Thus, for fixed 
diagonal matrices D;. i = 1, ... , k, define 

By Kingman's theorem g is a convex function of (b 1, ... ,bk), whether or not 
h;;:;., 0. Now suppose h;;:;., 0, i = 1, ... , k. Let e; be the k-tuple with every 
element equal to 0 except the ith and with the ith element equal to 1, for 
i = 1, ... ,k. Then clearly 

By the convexity of g, 

~ b ( bD ) = ____!_log r A · · ·A e ·A · · ·A b 1 ! t+l k 

b b 
= ~ b' log r( Ce v,). • 

THEOREM 3. Let A be an essentially nonnegative n X n matrix, and B be 
a diagonal real nXn matrix. Let a;;;.O, b;;;.,O, i=1, ... ,k, and a=~;a;. 



72 JOEL E. COHEN ET AL. 

{45) 

Proof. Set Ai = ea,A, i = 1, ... ,k, in Lemma 7, so that c = eaA. • 

CoROLLARY 8. If A is an essentially nonnegative n X n matrix and B is 
an n X n diagonal real matrix, then 

Proof. With ai =hi = 1jk in (45), Theorem 3 implies that 
r[(eAikeBik/].;;; r(eAe 8 ). Let k--> oo and apply (17). • 

Recall that Theorem 2 and Corollary 8 imply 

lim t- 1logmaxEi{ z( t )) .;;;; lim t-liogmaxEi{ y( t) ), 
t---+ 00 i t -OJ> 00 i 

where z( t) is a continuous-time random evolution and y( t) is its discrete-time 
approximation, as defined in Section l. We now show that, provided that the 
initial state of the random evolutions is distributed according to the equi­
librium distribution of the governing Markov chain, we have E(z(t )) .;;;; E(y(t )) 
for t = 0, 1,2, ... , and we give sufficient conditions for strict inequality. As 
before, these inequalities for random evolutions follow from more general 
inequalities for essentially nonnegative matrices. 

We say that a real-valued function f is strictly log-convex iff> 0 and log f 
is strictly convex. 

LEM~·A 7A. For d 1 ;;;.0, ... ,dm;;;.O, 'i.;d;>O, and real t,c1, ••• ,cm, let 
f( t) = '2:./'= 1 die tc,_ Then log f( t) is convex in t and is not strictly convex in t if 
and only if there exists c such that, whenever di > 0, we have c1 =c. 

Proof. log f is convex if and only if f" f- ( f')2
;;;. 0, which follows from 

the Cauchy-Buniakowsky-Schwarz inequality. Necessary and sufficient condi­
tions for the CBS inequality to be an equality are, in this application, just that 
ci = c whenever d i > 0. • 

LEMMA 7B. Let A be an essentially nonnegative n X n matrix and B be a 
diagonal real n X n matrix. Let x and y be nonnegative n-vectors. Then for 
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k;;;;, l and a 1 ;;;;, 0, ... , ak;;;;, 0, ak+ 1 ;;;;, 0, and real b1, ... , bk, define the real-val­
ued function 

If there exists (b 1, ... ,bk) at which h>O, then h>O for all (b 1, ... ,bk). 
Provided h > 0, 

g =logh 

is convex in (b 1, ... ,bk). If, in addition, A is irreducible, B is not a scalar 
matrix, x>O, y>O, and a 2 •• ·ak>O (interpreta 2 • ··ak=l ifk=l), then 
h > 0 and g is strictly convex in (b 1, ... , bk). 

Proof. Since the diagonal elements of eb• 8 , i=l, ... ,k, are all positive, 
regardless of bi' if some (b 1, ... ,bd makes h(b1, ... ,bk) positive, no other 
(b 1, ... ,bk) could make h(b1, ... ,bk)=O. 

Now assume A is irreducible, B is not a scalar matrix, x > 0, y > 0, and 
a 2 · · • ak > 0. Then xTea 1A > 0 for all a 1 ;;;;, 0, and e 0

k+ 1Ay > 0 for all ak+ 1 ;;;;, 0, 
and ea;A > 0 fori= 2, ... ,k. Soh> 0. 

To show g =log his strictly convex in (b1, ... , bk), it suffices to show that, 
for every W; and X;, i=l, ... ,k, such that L;lw;l 7"'0, if 

then g is a strictly convex function of the real variable t. Let 

nk 

h(w 1t+x 1 , ... ,wkt+xk)=h(t)= ~ d;ec;t, 
i=l 

where d; and ci, i = l, ... , nk, are functions of x, y, A, B, ai' wi' and xi, and all 
d; > 0. We must show that for no real c do we have ci = c, i = l, ... , nk. 

Suppose B = diag( b 11 , ... , bn n) and b 11 * b22 • Then we can order the 
coefficients C; so that c1 = b11 I7= 1wi and c2 = b22I7= 1w;. [To see this for c1, 

consider the summand x1(ea 1A) 11(eb18
) 11 · · · (eaH 1A) 11 y 1.] So if I7= 1w; 7"' 0, 

then c 1 * c2 . By Lemma 7 A, h( t) is strictly log-convex. 
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If }:7= 1w; = 0, then since }:; I W; I* 0, we may assume that w 1 * 0, say, 
where l is fixed and 1 .;:; l .;:; k. Now h( t) contains the summand 

which leads to a coefficient, say c3 , such that 

Another term of h( t) similarly leads to a coefficient, say c4 , where 

Thus c3 * c4 • Again Lemma 7 A shows that h( t) is strictly log-convex. 
The log-convexity of g = log h holds by continuity if the assumptions that 

imply strict log-convexity are dropped. • 

THEOREM 3A. Let A and B be real n X n matrices, A essentially non­
negative and B diagonal. Let A= r( eA ); then A> 0. Let u;;;. 0 and v;;;. 0 be 
n-vectors such that vTeA = AVT and eAu =Au. Then, for t = 0, 1,2, . .. and 
k = 1,2, ... , 

and 

If, in addition, t ;;;.1, A is irreducible, and B is not a scalar matrix, then both 
inequalities are strict. 

Proof. Assume A irreducible and B not scalar. Then u > 0 and v > 0, and 
both u and v are unique to within scalars. (If A is not irreducible, none of 
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these facts need hold.) 
Define, for t ;;;. 1, 

75 

By Lemma 7B, g is strictly convex, and therefore so is h. Let a: and f3 be 
(2k )-tuples defined by 

a:= (0, 1jk,O, 1jk, ... ,0, 1jk ), 

f3 = (1jk,O, 1jk,O, ... , 1jk ,0). 

Then 

h (a) = h ( f3) = VT [ e A Ike B I k] kt U, 

while 

Because h is strictly convex, 

h( a:+ f3) < h(a:)+ h(f3) 
2 2 , 

which is the first inequality to be proved. Hence 

is a strictly decreasing function of k = 1,2, .... Again (17) gives, as k-> oo, 

The weak inequalities when A is reducible or B is a scalar matrix or t = 0 
follow by continuity. • 
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CoROLLARY 8A. Let z( t ), t ;;;. 0, be the continuous-time random evolu­
tion governed by (5), with n X n intensity matrix Q. Let w be an equilibrium 
vector of Q, i.e. wTQ = 0, w;;;. 0, and ~?=I'"i = 1. Assume P[ s(O) = s;] = 'TT;, 

i = 1, ... , n. Let E,(z(t)) be the expectation of z at t conditional on these 
initial conditions. Similarly, let E,( y( t )) be the expectation at t = 0, 1, 2, ... of 
the discrete approximation y with the same initial conditions. Then 

E,(z(t)),;;;;E,(y(t)), t=0,1,2, .... 

If t ;;;.1, Q is irreducible, and S = diag (s;) is not a scalar matrix, then the 
inequality is strict. 

Proof. From [13] and Cohen [5, p. 346], it is immediate that for t;;;. 0, 
E,(z(t))=wTe<Q+S)tJ, where I is ann-vector with all elements equal to 1. 
Direct calculation along the lines shown in [19] gives, for t = 
0, 1,2, ... ,E,(y(t )) = wT(e9eS)11. The desired inequalities, weak and strict, 
follow from the corresponding cases of Theorem 3A. • 

We conclude this section with one more application of Kingman's [16] 
theorem. 

LEMMA 7C. Let A and D;. i = 1, ... , k, be n X n matrices, A nonnegative 
and not nilpotent, D; all diagonal real. Let D = (D1 + · · · + Dk)jk. Then 

Proof. Let o be the permutation of the numbers 1, ... , k defined by 
o( i) = i + 1 for i = 1, ... , k -1, and o( k) = 1. Define 

Then, by (11), for i=0,1,2, ... , f(D1, ... ,Dk)=f(D"'(l)•'"'D"'(kl). As re­
marked earlier, Kingman's theorem implies that f is convex in its arguments. 
Hence 

LEMMA 7D. Let A and D;, i = 1, ... , k be n X n matrices, A essentially 
nonnegative, D; all diagonal real. Let D = D 1 + · · · + Dk, a; be nonnegative 
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scalars, i = 1, ... ,k, and a= ~;a;. Then 

Proof. By continuity, it suffices to prove the desired inequality when 
a 1 , ••• ,ak are rational numbers. Suppose a;= m;/ N, i = 1, ... , k, and let m be 
any positive integer. Let C = eAJ(NmJ. Then 

Now, applying Lemma 7C with C here replacing A there, and with M = k + 
m(m 1 + · · · + mk) (hereM is an integer), we have 

Let m ..... oo. Then M ..... oo and 

so r([eA/(Nm)eDIM]M) ..... r(eaA+D). Since C= eA/(Nm), cmm; = eAm;/N, which 

is independent of m, so the other side of the inequality does not change as 
m--->oo. • 

THEOREM 4 (The mixing inequality). Let A be an essentially nonnegative 
n X n matrix and B a diagonal real n X n matrix. For k ;;;;.1, a;;;;;. 0, h;;;;;. 0, 
i=1, ... ,k, a=~;ap b=~;bp 

Proof. The left inequality follows from Lemma 70 with D; = h;B, j = 
1, ... , k. The right inequality restates Theorem 3. • 



78 JOEL E. COHEN ET AL. 

4. LOG-CONVEXITY OF SPECTRAL FUNCTIONS 

A spectral function cp is defined to be homogeneous if, for any n X n 
complex matrix A and any positive integer m, cp( Am)= [ cp( A)] m. Since 
j.\;( Am )j = j.\;(A )jm, II~= 1 j.\;(A )j is a homogeneous spectral function 
for k = 1, ... , n. 

THEOREM 5. If A and B are n X n complex matrices and cp is a 
homogeneous spectral function, then (9) implies (1), and strict convexity in 
(9) implies strict inequality in (1 ). 

The proof depends on Lemmas 8 and 9. 

LEMMA 8. The real-valued function f( t ), t > 0, is convex (respectively, 
strictly convex) in t if and only if tf(1 It), t > 0, is a convex (respectively, 
strictly convex) function oft. 

This lemma generalizes and provides a converse to Exercise 7 of [28, p. 
77]. 

Proof. Suppose f( t ), t > 0, is a convex function of t. Then for 0 <a< 1, 
x >0, y>O, and z =ax +(1- a)y, 

Hence, multiplying both sides of ( 46) by z > 0, 

axf(11x) + (1- a )yf(11 y);;;. zf(11z ), 

and so h( t) = tf( 1 It), t > 0, is a convex function of t. If f is strictly convex, 
the inequality is strict and so h is strictly convex. The converse statements 
follow since th( 1 It) = f( t ). • 

LEMMA 9. Let f: (0, oo]---> [- oo, + oo] satisfy 

lim f(t)=f(oo)<oo, (47) 
t ~ 00 

where f( oo) may be finite in magnitude or equal to - oo. Let 0,;; t 1 < t2 < oo. 
Iff is convex, then f(t1 );;;. f(t2 ). Iff is strictly convex, then f(t 1 ) > f(t2 ). In 
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both cases f( oo) = inf 1 ;.of(t ). These assertions renwin true iflim
1 

_ xf(t) is 
replaced by lim m _ 00 f( m) for integral m. 

Proof. Assume f is convex and 0 ~ t 1 < t2 < t < oo. Then 

Letting t ___. oo, we deduce that f( t2 ) ~ f( t 1 ). Thus f( t) is a nonincreasing 
f1mction fort in [0, oo), and by (47) fort in [0, oo]. 

Suppose now that 0 ~ t 1 < t2 < t < oo as before, and f( t 1 ) = f( t2 ). Since f 
is convex,f(t);;;;. f(t2 ), but sincefis nonincreasing,f(t)~f(t2 ). Thusf(t)= 
f( t2 ), and so f is constant for all t;;;;. t2 • Thus if f is strictly convex, then 
f(t1) > f(t2). • 

Proof of Theorem 5. Since F( t) =log <p( eA 1e 81
) is convex on [0, oo ), 

Lemma 8 implies tF(1jt)=log[<p(eAfteBft)]l is convex; and if F(t) is 
strictly convex, then so is tF(1/t). But if tF(1/t) is convex, so is 
exp[tF(1/t)] = [<p(eAfteBft)]l = f(t); and if tF(1/t) is strictly convex, so 
is f( t ). (Since F( t) is twice differentiable, prove this by taking second 
derivatives of exp[ tF(l / t )].) When all elements of A and B are finite, 
<p(eA+B) is finite. Since <pis homogeneous,f(t)=<p[(eAfteBftrJ for integral 
t. By (17) and the continuity of <p, 

<p(eA+B) = lim <p[(eAfreB!tr], 
t-xo 

(48) 

where t moves along the integers on the right. 
By Lemma 9, with t 1 = 1, t2 = oo, (1) follows, with strict inequality when 

f( t) is strictly convex. • 

Theorem 5 makes it desirable to find log-convex homogeneous spectral 
functions <p in order to prove inequalities like (1). Theorem 6 establishes a 
large class of log-convex spectral functions, some of which are homogeneous. 
Define tt to be a commutative set of n X n matrices if and only if, for all A 1, 

A2 in a, A 1A 2 = A 2 A 1• Define a set a of n X n matrices to be convex if and 
only if, for 0 ~a~ 1 and A 1, A 2 in cf, aA 1 +(1- a)A 2 is in ct. 

THEOREM 6. Let cf and 071 be two commutative convex sets of Hermitian 
n X n matrices. With the ordering of eigenvalues given in (26), for k = 
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l,2, ... ,n, 

k k 

log II ;\(eAe 8 ) and log ~ ;\(eAe 8 ) 
i=l i=l 

are convex functions of A in a and B in 'ffi jointly. 

Proof. In view of the continuity of the functions involved, it suffices to 
prove, for A1 , A 2 in a and B1, B2 in 'j"?J, that 

and similarly with~ replaced by II. Let X= e<A,+Az)l2e<B,+Bz)/ 2 , xi= eA,B,, 

Yi = eA;I2e 8,12, f = 1,2. Then 

k 

~ ;\(X)= ~;\;(Y1Y:t).;;; ~ a;(Y1Y;) 
i=l 

.;;; ~a;( Y1 )a;(Y2) 

.;;; [ ~ 0;2(Yl) r/2[ ~ 0;2(Y2) r/2 

= ( ~ A;(Y{Yl) r
12

( ~ ;\i(Y:tY2) r12 

= ( ~ A;(Xl) r/2( ~A;( X2) r/2, 

where the first inequality is due to Weyl [30] (see Theorem 9.E.l.a in [20, p. 
232]), the second inequality is due to Horn (14] (see Theorems 5.A.2.b and 
9.H.l in [20, pp. 117, 246]), and the third is the Cauchy-Schwarz inequality 
(see e.g. Theorem 16.D.l.e in (20, p. 459]). This proves the theorem for~. 

Similarly, 

k 

II A;(X) = IIA;(Y1Y2*).;;; II ai(Y1Y2*) 
i=l 

.;;; II a;(Y1 )a;(Y;) 

= [II A;( XI) r12
[ II A;(X2) r12

, 

where the first inequality is due to Weyl (30] (see Theorem 9.E.l in [20, p. 



EIGENVALUE INEQUALITIES 81 

231]) and the second inequality is due to Hom [14] (again see Theorem 9.H.l. 
in [20, p. 246]). • 

CoROLLARY 9. Let A and B be n X n Hermitian matrices, with the 
ordering of eigenvalues given in (26). Then, fork= 1, 2, ... , n, 

k 

fk(t, T) =log IT ;\(eAteBT), 
i c= 1 

k 

gk(t,T)=Iog L •\(eA'eBr) 
i=l 

(49) 

(50) 

are convex functions of the finite real pair ( t, T ). For k = n, fk( t, T) is linear 
in ( t, T ). The eigenvalues on the right in ( 49) and (50) are positive. 

Proof. For any fixed Hermitian n X n matrix A, If = {At: t is real} is a 
commutative convex set of Hermitian n X n matrices. Apply Theorem 6. To 
prove linearity for k = n note thatfn(t, T) = logdet(eA 1e 8 r) = logdet(eA 1

) + 
logdet(e 8 r) = tTr(A)+ TTr(B) by Jacobi's identity. Finally to prove positiv­
ity of the eigenvalues, for i=1, ... ,n,.\;(eA1e8 r)=.\;(eA 112e 8 reA 1

/
2 )= 

.\;([e 8 rl 2eA 112 ]*[e 8 rl 2eAt1 2 ]);;.0. If any one of these eigenvalues were 0, 
then we would have 0 = det(eA 1e 8 r) = det(eA1)det(e 8 r) = exp[tTr(A)+ 
TTr(B)] > 0, a contradiction. • 

Log-convex functions of one parameter are obtained by setting t = T in 
( 49) and (50). The functions exp fk( T, t ), being homogeneous and log-convex, 
satisfy the assumptions of Theorem 5. 

We now draw some further consequences of Corollary 9. 

LEMMA 10. Let g: [0, oo) ___, (- oo, oo) be a convex function such that 
g(O) = 0. Then for t > 0, g( t) It is a nondecreasing function oft. 

Proof. Let 0 < t 1 < t2 • Then (t11t2 )g(t2 ) = (tdt2 )g(i2 ) + (1-
t 1 I t2 )g(O);;;;. g(( t 1 I t2 )t2 + (1- t 1 I t2 )0) = g( t 1 ). • 

CoROLLARY 10. Let A and B be Hermitian n X n matrices. Then for 
t > 0 and k = 1, ... ,n, [fk(t, t)FI 1 and [gk(t, t}FI 1 defined by (49) and (50) 
are increasing functions of t. In particular r( eA 1e81 

)
11 1 is an increasing 

function of t > 0. 
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LEMMA 11. Let A and B be n X n complex matrices and f( t) = 
log r(eA1eB1

)
111

, t > 0. Order eigenvalues by (26). Then the following limits 
exist and 

f(O) = limf(t) = Re A1(A +B). 
uo 

(51) 

(52) 

If A and B are Hermitian, the inequality in (52) holds if and only if the 
eigenspaces U and V corresponding respectively to A1(A) and A1(B), 

are mutually orthogonal. 

U = { x: Ax = A 1 (A) x} , 

V = { x: Bx = A 1 (B) x} , 

Proof. The exponential product formula (17) implies that 

f(O) =log r(eA+B) =log eReA,(A+B) = Re A1(A +B). 

This proves (51). 
For any matrix norm 11-11, it is well known (e.g. [15]) that r(C) = 

limm ~ oc II em 11 1/m for any n X n matrix c. Hence, taking t---> 00, r(eA1e 81 ) 11t 
,;;::; II eAteBt 111/t ,;;::; II eAt 111/t II eBt 111/t ---> r( eA )r( eB) = eRe A,(A)+Re A,(BJ. Thus 

limsup1 ~ oof(t),;;::; Re[A 1(A) + A1(B)]. 
To see that lim 1 ~ 00 f(t) exists, recall [10] that 

d(,..,,A)-1 tkz.k(A) 
CAt= ~ e~-'tt ~ ~~ ' 

1-';Esp•(A) k=O ' 

(53) 

and similarly for e 81
, where sp*(A) is the set of distinct eigenvalues of A, 

d(J-L 1, A) is the multiplicity of J-L; in the minimal polynomial of A, and Z1k(A) 
is the kth component of A on J-L;· So 

when J-L =AlA), v = A1(B) in the ordering (26), K = d(J-L, A)-l + d(v, A)­
I ;;;;. 0, and lim 1 ~ 00 C( t) = C =I= 0. Thus 

lim r( eAteBt )e-Re(,..+v)tt-K = r( C);;;;. 0, 
t~oc 
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lim f(t)e-Re(JL+v)= lim r 111(C)=Oor1, 
t---"oo t-oo 

so lim 1 ~ 00 f( t) exists. This establishes (52). 
If A and B are Hermitian, let 

Again decomposing into components by (53) 

eAteBt = ~ e[I\;(A)+I\I(B)Jt( xtyi )X;Yt. 
i,i 

83 

(54) 

The term with coefficient e[I\,(A)H,(B)]t will appear on the right in (54) if and 
only if xryl =I= 0, i.e. if and only if u and v are not mutually orthogonal. • 

CoROLLARY 11. Let A and B be Hermitian n X n matrices and f(t) = 
logr(eA1e81

)
111

, t>O. Then ordering eigenvalues by (26), f(O)=i\lA+B) 
,;;;; f(1) =log r(eAe 8

),;;;; f( oo),;;;; i\lA) + i\ 1(B). 

Tha~ f( t) is nondecreasing parametrizes the classical inequality for Hermi­
tian A and B: 

As another application of Corollary 10, we give a different proof of a 
special case of Corollary 1, by means of a lemma of independent interest. 

LEMMA 12. Let A and B be Hermitian n X n matrices, and 0,;;;; a;,;;;; a' 
for i=1, ... ,k a positive integer, where a' and a; are real scalars. Let 
a= ~7= 1a;. Then 

(55) 
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Proof Using the submultiplicative property of norms at the first inequal­
ity and Corollary 10 at the second, we have 

k 
= II [ r( e2a,.1e2a,B)l/(2a,)J a, 

i=l 

k ,;::: II [ ( 2a'A 2a'B)l/(2a')] a,_ ( 2a'A 2a'B)a/(2a') __, r e e -r e e , 
i=l 

• 
CoROLLARY 12. For positive integral k, and Hermitian n X n matrices A 

and B, 

CoROLLARY 13. If A and B are n X n Hermitian matrices, then 
logTr( eA1e81

) is convex in the real variable t. 

Corollary 13 is a special case of Corollary 9. Gert Roepstorff (personal 
communications) found several independent proofs of Corollary 13. We give 
two of his proofs. 

First alternate proof of Corollary 13. For any n X n Hermitian matrix H 
and any n-vector v, g(t)=(v,eH1v) is log-convex in t. To see this, com­
pute (d 2jdt 2 )log g(t) = [g"g- (g')2 ]/g 2 = [(v, H 2eH 1v)(v, eH 1v)­
(v,HeH1v)2 ]/g 2

• Define u=eH112v. Since H=H*, we may write 
g 2(d 2jdt2 )log g(t) = (Hu, Hu )( u, u) -( u, Hu )2

:;;. 0 by Schwarz's inequality. 
Thus g( t) is log-convex. 

Now let the eigenvalues (not the diagonal elements) of the Hermitian 
matrix B be h;, and let Bvi =hi vi, i = 1,, .. ,n. Then 

n 

Tr(eAteBt) = ~ ( V;, e<A+bJ)tvi). 
i=l 

(56) 
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Each summand has the form of g( t) and is therefore log-convex. The sum of 
log-convex functions oft is log-convex in t [16], so (56) is log-convex in t. • 

Secorul alternate proof of Corollary 13. Let a be any real number. Using 
(56) and the assumption that A = A*, we compute 

n 

= 2: ( ui' u;);;;;;. 0, 
i=l 

where U; =[A+ (b; + a)l]e[A+(b,+a)I]tl2v;. Thus for every real a, 

ea 1Tr(eAteB 1
) is convex in t. A theorem of Montel [21, pp. 32-33] shows that 

this implies logTr(eAteB 1
) is convex in t. • 

From the argument to prove Corollary 4, it is evident that Corollaries 9 
and 13 hold when A is a reversible intensity matrix and B is a real diagonal 
matrix. In particular, under these assumptions, logTr(eAteB 1

) is convex in t. 
This fact also follows immediately from the observations that log-convex 
functions are closed under addition and multiplication [16) and that log(eA1

);; 

is convex, j = 1, ... , n. Kingman [17, pp. 1-2] established that the diagonal 
elements of the transition-probability matrix of a reversible Markoff chain are 
log-convex without the restriction that n must be finite. 

The argument of Corollary 4 can also be used in a converse sense to 
establish this proposition: If G and H are n X n Hermitian matrices, there 
exist n X n matrices A and B, A Hermitian and B diagonal real, such that, for 
any pair ( t, T) of real variables, 

Consequently, if cp is a spectral function, any property proved about cp( eAteBT) 
when A is Hermitian or quasi-Hermitian and B is diagonal real or complex is 
also true about cp(ecteHT) when G and Hare Hermitian. 

To prove the proposition, let B be a diagonal real n X n matrix with 
B=diag(A 1(H), ... ,An(H)). There exists an nXn complex matrix U such 
that UU* =I and H = UBU*. Thus, using (ll), 

where A= U*GU and A= A*. • 



86 JOEL E. COHEN ET AL. 

CoROLLARY 14. 

(a) Let A be a 2X2 essentially nonnegative matrix, B a 2X2 real 
diagonal matrix, and cp = r, the spectral radius. Then (9) holds. 

(b) If, in addition, A is irreducible and B is not a scalar matrix, the 
convexity in (9) is strict. 

Proof. It entails no loss of generality to assume r(A) = Tr(A +B)= 0, 
since real scalar matrices may be added to A and to B without affecting the 
convexity of F(t) =log r(eA1e81

). 

If either A is reducible or B is a scalar matrix, then an elementary 
calculation shows that F( t) is directly proportional to t. 

Now suppose A is irreducible, i.e., a 12 > 0, a 21 > 0. Let D = 
diag(1,(a 2Ifai2 )I1 2 ). Then D-IAD is symmetric, i.e., A is quasisymmetric. 
Corollary 9 applies to F(t) =log r(ev-'ADte 81 ), proving part (a). 

To prove strict convexity in (9) when A is irreducible and B is not a scalar 
matrix requires, at present, an explicit calculation, which is long but elemen­
tary. The result is 

where PI= a 22 l(a 11 + a 22 ) > 0 and p2 = a 11 1(a11 + a 22 ) > 0. By Lemma 14, 
proved below, F 11 

;;;. 0 on ( - oo, oo) and F 11 > 0 if and only if t =I= 0. Thus strict 
convexity in (9) is proved. • 

To complete the proof of Corollary 14, we need two lemmas. 

LEMMA 13. Iff maps a real interval into (1, oo ), and f" exists on the 
interval, then arccosh f is convex if and only if f(f 11

)- (f')2 ;;;. f" If on the 
interval, and arccosh f is strictly convex if and only if the inequality is strict. 
(Always take the positive value of arccosh f.) 

Proof. If g = arccosh f, then g 11 = { f[ f- 1 I fl f" - f(f') 2 }/ ( P -
1)312

• Since f>1, we have g 11 ;;;.0 if and only if (f-11f)f"-(f')2 ;;;.0 or 
f(f11

)- (f')2 
;;;. f" I f. Also g 11 > 0 if and only if the latter inequalities are 

strict. • 

LEMMA 14. If g(t) = arccosh[pi cosh( sit)+ p2 cosh(s2t )], where PI• p2 

;;;.o, p1 +p2 =1, si,s2 are real and tE(-oo,+oo), then g 11 ;;;.0. Moreover, 
t =I= 0, PI> 0, p2 > 0, and si =I= s2 if and only if g 11 > 0. 
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Proof. Let f( t) = p 1 cosh( s 1 t) + p2 cosh( s 2 t ). Then g = arccosh f. Since 
cosh( t) = cosh(- t ), it suffices to consider t ;:;:;. 0. By Lemma 13, it suffices to 
show ff"- ( f')2 

-;;;;. f" If under the assumptions in the first sentence of 
Lemma 14, with strict inequality if and only if the assumptions of the second 
sentence hold. 

Now f(O) = 1 and f'(O) = 0. Let h1 = ff"- (f')2 and h2 = f" I f. Then 
h1(0) = f"(O) = h2(0). Now h~ = ff"' + f'f"- 2f'f" = ff"'- f'f", while h~ = 
(ff"'- f'f")IP = hVP- Since P ;;;.I, h~,;;;;; h~ for all t. From h1(0) = h2(0), 
it is immediate that h1 ;:;:;. h2 for all t. This establishes g";:;:;. 0. 

Under the additional assumptions t > 0, PI> 0, p2 > 0, and si =I= s2 , it 
follows that f> 1, soh~< h~ and hence h2 <hi, so g" > 0. 

Conversely, if t = 0, then hlO) = h2(0) implies g" = 0. If p 1 = 0, then 
g(t)=s2 t, so g"=O; similarly if p2 =0. If s1 =s2 , again g(t)=s2 t and 
g" = 0. So the additional conditions are necessary and sufficient for g" > 0. • 

Lemma 14 has an immediate generalization. Let P;;:;:;. 0, s; real, i = 1, ... , n, 
and ~;P; = 1. If g(t) = arccosh[~;P;Cosh(s;t )] and t E (- oo, + oo ), then g";:;:;. 
0. Moreover, t =I= 0, P; > 0, pi> 0, and s; =I= si for some i =I= i if and only if 
g" > 0. The proof is identical to that of Lemma 14. 

If the assumption in Corollary 14 that B is diagonal be weakened to allow 
B to be symmetric, then F( t) =log r( eA 1e81

) need no longer be convex in t. 
For example, if 

( 
-1 

A= 1000 
0.001) 
-1 , B= ( ~ 

then r(A) = 0, Tr(A +B)= 0, and F(l) = 7.23, F(3) = 11.52, F(5) = 15.52. 
Consequently i [ F(l) + F(5)] = 11.38 < 11.52, so F is not convex. 

If fP = trace, while A is essentially nonnegative and B is real diagonal, then 
(9) is not true for all 3 X 3 matrices. 

To conclude this section, we describe conditions under which log r( eA1e8
T ), 

where A and B are Hermitian n X n matrices, is a linear function of the pair 
( t, T) of real numbers. For the rest of this section, we write f( t, T) = 
logr(eA1e8 T) and r(t,-r)=r(eA1e8 T). 

THEOREM 7. Let A and B ben X n Hermitian matrices. Let z be a real 
number such that 0,;;;;; z,;;;;; 1, and let (t1, -r1 ) and (t2 , -r2 ) be two pairs of real 
numbers such that ( t 1, -r1 ) =I= ( t2 , -r2 ). Then 

f(t 1 + z(t2 - t 1 ), T1 + z( T2 - T1 )) = f(t 1 , T1 )+ z[f(t2 , T2 )- f(t 1 , T1 )] 

for all z (57) 
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if and only if at least one of the following three conditions holds: 

(I) 

(II) 

or (III) there exists a vector x and real scalars a and b such that 

Ax = ax and Bx = bx. 

When (60) holds, 

The proof of Theorem 7 depends on the following lemma. 

(58) 

(59) 

(60) 

LEMMA 15. Let P and Q be n X n complex matrices, x a complex 
n-vector, A a real scalar. If 

then 

PQx =Ax, 

O<A= IIPQII = IIPIHQII, 

llxll = 1, 

Q*P*x =Ax, 

P*P(Qx)= IIPII 2Qx, 

Q*Qx = IIQII 2x. 

(62) 

(63) 

(64) 

(65) 

(66) 

(67) 

Proof. By (64), A2 =(Ax,Ax), and by (62), (Ax,Ax)=(PQx,PQx); 
hence 

A2 = (PQx, PQx) (68) 

=(P*PQx,Qx) (69) 

.;;; IIP*PII(Qx,Qx) {70) 

.;;; IIPII 2(Q*Qx, x) (71) 

.;;; IIPII 2 IIQII 2
• (72) 
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But by (63), 

(73) 

so all inequalities in (68) to (72) are equalities. By (69), "A2 = ( Q* P* PQx, x ), 
and by (63) 'A2 =II PQII 2 = r(Q*P*PQ). Thus (Q*P*PQx, x) = r(Q*P*PQ). 
By the stationary property of the Rayleigh quotient, r(Q*P*PQ)x = "A2x = 
(Q*P*PQx, x). Hence "A2x = Q*P*PQx = Q*P*("Ax), or "Ax= Q*P*x, which 
is (65). The equality between (69) and (70) implies (66), by the same 
argument. The equality between (71) and (72) implies (67), again by the same 
argument. • 

Proof of Theorem 7. Since eAteBr = e-Br/2[ e+BrJ2eAte+BrJ2je+Br/2 and 
the matrix in brackets is Hermitian, all the eigenvalues of eAteBr are positive. 
Also, being similar to a Hermitian matrix, eAteBr is simple [18, p. 76). 

Suppose (57) holds. The geometric multiplicity (the number of linearly 
independent eigenvectors) of r( t, T) is an integer. Hence there is a point 
( t0 , To) and a real 8 > 0 such that the neighborhood 

(74) 

intersects the line segment 

(75) 

and the geometric multiplicity of r(t, T) is fixed at some value, say v, in N8 • 

By sliding (t1, T1 ) and (t2 , T2 ) along the line segment (75) until they fall within 
N8 , we shall arrange for r(t, T) to have a fixed geometric multiplicity on the 
entire (contracted) segment (75). 

Now let P = exp(BTd2)exp(Atd2) and Q = exp(Atd2)exp(BTi/2). 
Then 

r([t1 + t2 )/2, [ T1 + T2 )/2) = r(PQ) 

,;;;;; IIPQII.;;; IIPIHQII =r112(t1,T1 )r11 2(t2 ,T2 ). 

(76) 

With z = ~, (57) implies that the inequalities in (76) are equalities. Hence we 
may apply Lemma 15. Let x 1, ••• , x. be the v linearly independent eigenvec­
tors of PQ, as defined before (76), corresponding to r(PQ). If we note that 
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II Q 11
2 = r(Q*Q), (67) implies 

i = 1, .. . ,P. (77) 

Similarly, (66) implies 

i = 1, ... ,P. (78) 

Because r(t1,r1 ) has a fixed multiplicity P, x1, ••• ,x. are all of the 
eigenvectors up to scalar multiples of Q*Q corresponding to r(t1, r1 ) = II Q 11

2
. 

So (78) and 

i = 1, ... ,1', (79) 

hold whenever (t2 , r2 ) is replaced by a point (t3 , r3 ) such that 

( t3 ' T3 ) = (I - z ) ( t 1' T 1 ) + z ( t2 ' T2 ) ' (80) 

But (80) and (57) imply that 

(81) 

where r(t1, r1) = ea and r(t2, r2) = ea+/3. With (t2, r2) replaced by (t3, r3), 
(79) becomes 

i=l, ... ,P (82) 

and (78) becomes 

i=l, ... ,P. (83) 

In (82), let z = 2y and multiply on the left by e8 Td 2: 

i=I, ... ,r, o,;;;;y,;;;;t. (84) 
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Multiply (83) on the left by e-A[t1 +z(t 2 - 11ll/2 to get 

i=l, ... ,v. {85) 

Since all quantities in (84) are analytic functions of y, ea+yf3 is an eigenvalue 
of 

with geometric multiplicity v except possibly at a finite number of values of y, 
because we have assumed that v is the geometric multiplicity of the eigen­
value ea+yf3 in the neighborhood of y = 0. But (84) asserts that the subspace 
U spanned by the vectors e 87Ii 2xi, i = 1, ... , v, is the eigenspace of M 
corresponding to ea+y/3. Note that U does not depend on y. Therefore (85) 
implies 

{86) 

Because (t1, T1 ) =I= (t2 , T2 ), it entails no loss of generality to assume t1 =I= t2 , 

since if t1 = t2 we can exchange A and Band argue similarly. So with t1 =I= t2 , 

(86) implies 

AU \:U. {87) 

As U is spanned by all the eigenvectors of M corresponding to ea+yf3 we have, 
using (86), 

Hence 

BUc;;;,U 

unless T1 = T2 - T1 = 0, which is just (59). Assuming otherwise, we consider 
the action of M in the subspace U. Within U, 

So exp{- B[ T1 + y( T2 - T1 )] +(a+ y/3)1} is the inverse of exp{A[t1 + y(t2 -

t 1 ) ] } , within the subspace U. Since this is true for all y such that 0 ,.;;; y ,.;;; ! , A 
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and B must have the following properties in their action within U: 

Recall that t2 =I= t 1• If T2 =I= T1, then any eigenvector of Bin U is an eigenvector 
of A. If T2 = T1, then any vector in U is an eigenvector of A. Thus all 
eigenvectors of B in U are eigenvectors of A. 

Thus, assuming (57), if (58) and (59) are both false, then (60) holds and 
( 61) follows. 

Conversely, (58) or (59) imply (57) immediately. If (60) holds, eA 1e8rx = 
eAtebTX = eat+brX, SO (57) holds. • 

5. CONJECTURES AND OPEN PROBLEMS 

We conclude with some conjectures, open problems, and speculations. 
Conjecture 1 arose from a search for a proof of Theorem 2 that used 

Theorem 5. 

CoNJECTURE 1. Let A be an n X n essentially nonnegative matrix, B an 
nXn real diagonal matrix. Then F(t)=logr(eA1e81 ) is convex in the real 
variable t. If, in addition, A is irreducible and B is not a scalar matrix, then 
F( t) is strictly convex in t. 

Corollary 14 is the 2 X 2 case of this conjecture. Theorem 6 includes the 
analogous result (without specifying the conditions of strict convexity) for 
Hermitian matrices A and B. If Conjecture 1 were true, then Theorem 5 
would provide another path to the conclusions of Theorem 2. 

The parallel between Theorem 6' s assertion about fl t, t) and Conjecture 
1, and the parallel between Corollary 1 for Hermitian matrices and Theorem 
2 for nonnegative matrices, may be viewed as further instances of what 
Schneider [24, pp. 209-210] calls the Taussky unification problem. This 
problem, due to Taussky, is to find unified treatments of similar theorems for 
positive matrices and positive definite symmetric matrices. Informally, it 
appears to us that if A ;;;;. 0 is an n X n matrix, r( A) often has properties that 
would be expected if A were Hermitian, while the rest of sp( A) need not 
behave like the spectrum of a Hermitian matrix. 

cohen
Sticky Note
False. LIEB, E. H. (1990). On the spectral radius of the product of matrix exponentials. Linear Algebra Appl. 141 271-273. 
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The next conjecture would provide sufficient conditions for strict inequal­
ity in Theorem 3. 

CoNJECTURE 2. Let A1, ... ,Ak be nonnegative irreducible n X n matrices 
with positive diagonal elements, for some positive integer k. Let D 1, .•• , Dk be 
real diagonal n X n matrices with zero trace. Then 

is a strictly convex function of ( D 1, ... , Dk ). 

Conjecture 3 generalizes Lemma 12. 

CoNJECTURE 3. Let A and B be n X n Hermitian matrices and a; ~ 0, 
b; ~ 0, i = 1, ... ,n. Let a= ~iai' b = ~;b;. Then 

(88) 

(89) 

Lemma 12 verifies (88) in case b; = ca;, i = 1, ... ,k, for some nonnegative 
scalar c, since B in Lemma 12 could then be replaced by cB. Similarly, (89) 
holds when b;=ca;, i=1, ... ,k, and a'=max;a;,-;;:;a/2. For b;=ca; plus 
r(X) ,-;;:;II X II for any n X n matrix X implies 

Lemma 12 gives II eatAeat(cB), .. ea•Aea,(cB) II,-;;:; r(e2a'Ae2a'cB)af(2a'). Then a' 
,-;;:;a /2 plus Corollary 10 implies r(e 2a'Ae2a'cBti<2a') ,-;;:; r(eaAeacB) = 
r(eaAeb 8 ) as asserted in (89). 

Finally there may be a probabilistic proof of Theorem 2 when A is an 
intensity matrix. (Both our proof and Varadhan's are analytical.) Interpret 
log r(eAe 8 ) and log r(eA+B) as the asymptotic growth rates of random 
evolutions in discrete and continuous time, respectively. The discrete-time 
random evolution can change states only at integer times. In the continuous­
time process, the duration of a single visit to any one state is exponentially 
distributed. A majorization argument [20] applied to the sample paths of the 
discrete-time and continuous-time processes might yield the desired inequal­
ity. 

cohen
Sticky Note
False as it stands, but true with the additional conditions in Theorem 7 of O'Cinneide, Colm  2000  Markov additive processes and Perron-Frobenius eigenvalue inequalities.  Annals of Probability 28(3):1230-1258, July.  Stable URL: http://www.jstor.org/stable/2652986
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A remark of Wilde [33) provides courage to attack these conjectures and 
problems: "Even things that are true can be proved." 
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