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When the entries in a contingency table arise from clust~red sam· 
piing, the chi-squared statistic conventionally calculated to test simple 
and complex hypotheses about the parameters of the table may 
not have the distribution of a x2 variate. Assuming a model for posi· 
tively associated clustering, this article finds the distribution of the 
conventional chi-squared statistic and shows how to correct it to an 
asymptotically x 2 variate. A numerical example from the epidemiology 
of mental illness is given. 

1. INTRODUCTION 

Clustered sampling is frequent in both experimental 
science and sample surveys o~ populations. 

In a large demographic sample survey which motivates 
the present analysis, households were selected in clusters 
of size six. In each household, the survey recorded the· 
survival or failure to survive to one year of children born 
at least a year earlier, along with social, economic, and 
biological characteristics of the ·family. To study the 
interaction of these other characteristics with infant 
mortality, it is necessary to allow for a possible depen­
dence in infant mortality experienced by members of the 
same sibship. There may also be dependence in infant 
mortality among households within a cluster. A sub­
stantial correlation in infant mortality within sibships 
has been demonstrated [1, pp. 87, 93] for the same 
population in a different survey. 

A general strategy for analyzing clustered or matched 
samples from contingency tables1 is first to test the 
clusters for independence among membeFs. Cochran 
[8] develops methods for assaying whether the variation 
Within a cluster d!ffers from the expected binomial 
variation (see, also [6, Ch. 8]). If there is no evidence 
against independence, the clustering may be ignored. 

If clustering seems a priori likely or is apparent from 
the data, methods developed by Cochran [9] and Bennett 
[3, 4] and reviewed in an epidemiological context by 
Pike and Morrow [13] permit a correct analysis. 

Here, performance of the conventional chi-squared 
test under clustering is compared to that for indepen­
dence. The conventional statistic may be replaced by one 
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which has asymptotically a X2 distribution; this is useful 
both as a computational shortcut and for studying the 
effect of neglecting clustering. 

2. THE MODEL 

Suppose each individual in the sample falls into one of 
r ~ 2 cells. The sample design consists of N independent 
clusters each of 2 individuals. Each cluster has a first 
and a second individual. Clusters of size K will be con­
sidered and the present results greatly extended by 
Altham [2]. 

When observations on each individual in the cluster 
are discretely categorized, the frequency counts Xi; of 
the number of clusters in which the first individual falls 
in cell i and the second falls in cell j (i, j = 1, ... , r) 
may be arrayed in a two-way r X r contingency table. 

Such clustered sampling may arise [6, p. 281] when 
each sampled individual is classified twice by the same 
criteria, either because observations are repeated in time 
(in panel studies) or because of some intrinsic symmetry 
of the individual (right eye color versus left) or when the 
sample consists of couples of individuals each of whom 
are subject to the same categorization. The couples may 
be.paired by some preexisting relationship (husbands and 
wives, mothers and daughters, sibs) or by experim~;Jntally 
imposed case-control matching on some nuisance vari­
ables. In these cases, there is a n~tural way of identifying, 
within each cluster, which observation or individual is 
first (the earlier observation in the panel study, the right 
eye, the wife) and which second. 

Clustered sampling also arises when there is no natural 
ordering, e.g., in clusters of households or adjacent 
counties. In such cases, ordering within a cluster IS 

assigned by randomization. · 
The r X r table just described has a margin Xi+ of 

row sums and a margin X+; of column sums. These two 
margins can be rewritten into another 2 X r table in 
which the first row gives Xi+ and the second row gives 
X+i, i = 1, ... , r. The row sums of this new table are 
each necessarily equal to N. The column sums Y i of this . 
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new table give the distribution of individuals among the 
r categories, irrespective of order within the cluster. 

In the following model of clustering, the categorization 
of an individual as first or second is assumed not to enter 
the hypotheses regarding the r proportions Y;/(2N). 

For example, Tsuang [14, p. 288] determined the 
birth order (elder or younger), sex, and diagnosis of each 
individual hospitalized for mental disorder in pairs of 
siblings. In testing the hypothesis that sex and diagnosis 
are independent, he wanted to regard birth order as 
irrelevant. But the possibility of clustering within sib­
ships must be considered (and Tsuang did so in a reason­
able, but ad hoc, way). His data are reanalyzed in Section 
6. Another example of data and hypotheses with the 
same formal structure is [12]. 

In these examples, the hypotheses tested concern 
marginal tables with entries Yi obtained by collapsing 
contingency tables (of dimension one higher than the 
margin) across the dimension which specifies the ordering 
in the cluster. For example, in [14], let r be the number 
of cells in the array Sex X Diagnosis; then the 2 X r 
table Birth Order X (Sex X Diagnosis) would be col­
lapsed across Birth Order to test a (compound) hy­
pothesis regarding the Yi, namely, that Sex and Diagnosis 
are independent. Section 5 sets out this model more 
explicitly. 

When each observation is independent of all others, 
i.e., in the absence of clustering, Bishop [5] has deter­
mined the conditions under which collapsing a con­
tingency table across a dimension will preserve in­
variant the relations of interest between the remaining 
dimensions. 

When clustering is not excluded by the sample design, 
we proceed as follows. Let Xii be the number of clusters 
in which the first individual falls in cell i and the second 
falls in cell j; i, j = 1, ... , r. Define 

Pi+ and P+;'by analogy to (2.1). Then, 

Pi+ = P +i = Pi , i = 1, ... , r (2.4) 

The model (2.3) may be interpreted as follows. Pi is 
the (marginal) probability that the first individual falls 
in cell i. Then the conditional probability that the second 
individual falls in the same cell i, given that the first is 
in cell i, is a linear interpolation between one and Pi· 
vVhen the weight a is one, the second member of a cluster 
is slave to the first. Then the sample really contains only 
N independent observations on the Pi· When the weight 
a is zero, the second member is independent of the first. 
Then the sample contains 2N independent observations 
on the p;. When a is greater than zero, the increased 
probability that the second member will fall in the same 
cell as the first is removed in constant proportions from 
the probabilities of the remaining cells. 

If (2.3) is rewritten asP;; = ap/!ii + (1 - a)p;p;, then 
Pi; is seen to be the mixture of PiOii and p;p; with mixing 
probabilities a and 1 - a, respectively. Altham has 
pointed out privately that (2.3) may be viewed as a 
specially symmetric mover-stayer model for social 
mobility tables. 

This model of clustering allows only for positive 
association or independence between members of a 
cluster, as is the case for many demographic, social and 
economic characteristics. The possibility of negative 
association is not modeled here. 

3. TESTING A SIMPLE HYPOTHESIS 

The conventional chi-squared statistic calculated to 
test the goodness of fit of the Yi to a multinomial model 
of r cells with probabilities Pi > 0, i = 1, ... , r, is 

X 2 = L (Y;- 2Npi) 2/(2Np;) . (3.1) 
i=l 

Then, 

Let "' mean "has the same distribution in large samples 
(N -+co)." Then when a = 0, X 2 "' X2,_1 where the 

(2.1) subscript shows the degrees of freedom (df). When 
a = 1, X 2/2 "' X2,_1, since the ob(!!erved sample size (2N) 
is twice the number (N) of independent observations. We 

(2.2) now show that, generally, under the model of Section 2, 

To formalize the notion that there is independence 
between clusters, suppose that the set of random vari­
ables {X ii} is jointly distributed in a multinomial distri­
bution with parameters Nand {Pi;} where Li,i Pi;= 1. 
To formalize a notion of clustering, meaning positive 
association within clusters, suppose there are r constants 
Pi > 0, i = 1, ... , r, Li Pi = 1 and a constant a, 
0 ~ a ~ 1, such that 

W2 = X 2/(1 +a) "'X2,_1 , 0 ~ a~ 1 . (3.2) 

Distributions of this form have arisen previously [7, 11]. 
To prove (3.2), recall that, according to the multi­

nomial model for xi.h 

E(Xi;) = NPi; , 

Cov (Xi;, Xkt) = N(Pi;Oiko;t- P;;Pkl) , 
i, j, k, .e = 1, ... , r (3.3) 

· Combining (2.1) and (2.4) with (3.3) gives 
i, J = 1, ... , r . (2.3) 

Here, oi; = 1 if i = j, oi; = 0 if i ,t. j. As would be ex­
pected if the·ordering of individuals in a cluster is irrele­
vant to the analysis, Pi; = P;i. Thus, (2.3) is a special 
case of the model of symmetry in [6, p. 282]. Define 

E(Yi) = 2Npi , i = 1, ... , r (3.4) 

Let Zi be a random variable which counts the number of 
individuals in cell i in a given cluster. Since each Yi is 
the sum of N independent, identically distributed copies 
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of Z;, which has the marginal distribution 

Z; = 2 with probability P;; , 

= 1 with probability L P;i + L Pki = 2(p; - P;;), 
_#i k¢i 

= 0 otherwise , 

the variance of Y; is N times the variance of Z;, and for 
i ~ j, Cov (Y,;, Yi) = N Cov (Z;, Zi), where Z; and Zi 
are jointly distributed random variables referring to the 
same cluster. Hence, 

Var (Y;) = (1 + a)2Np;(1 - p;) , i = 1, ... , r , (3.5a) 

and fori ~ j, i, j = 1, ... , r, 

Cov (Y;, Yi) = N[E(Z;Zj) - 4p;pj] 

= N Pr[Z; = 1 and Zi = 1]- 4Np;pj 

= N(P;j + Pj;) - 4Np;pj 

=- (1 + a)2Np;pJ . (3.5b) 

Hence, the covariance matrix L = (L;i) of I Y;} is just 
(1 + a) S where S = (S;j) is the covariance matrix 
of the cell counts in a simple random sample of size 
2N from a multinomial distribution on (pi}. Hence, 
L-1 = S-1/(1 +a). Then following exactly Wilks' Theo­
rem 9.3.2 [15, p. 261] on the asymptotic distribution of 
quadratic forms and its application in Theorem 9.3.2a 
to the multinomial distribution, (1 + a)-1 factors out to 
give (3.2). 

4. ESTIMATION AND TESTING OF COMPLEX 
HYPOTHESES 

Crude estimates of parameters are first obtained by 
assuming that random variables are near their expected 
values. We then obtain maximum likelihood estimates. 

From (3.4), an obvious estimator of p; is 

p;* = Y;/(2N), i = 1, ... ,r, (4.1) 

with variance obtainable from (3.5a). This estimator is 
unbiased and converges in probability to p;. 

Two estimators a 1* and a2* of a follow from (2.3) by 
considering the case i = j and replacing P;; by X;;/N, 
p; by p;*. If one sums over i and then solves for a, one 
obtains 

If one first solves (2.3), i = j, for a and then averages 
the r estimates obtained, one finds 

a2* = r- 1 L (X;;jN - p;*2)/(p;*(1 - p;*)) (4.3) 
i=l 

Asymptotic variances of these estimators may be derived 
by the usual truncated Taylor series approximation, but 
they are not attractive. Appropriate weighting of the 
terms averaged in (4.3) might improve its variance. 

The estimators a1* and a2* depend only on (X;;} and 
I Y;}. The same should remain true of the maximum 
likelihood estimators because the model (2.3) is a linear 
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combination of a model (when a = 1) for which the 
diagonal frequencies I X;;} are sufficient and a model 
(when a = 0) for which the margins I Y;} are sufficient. 
Equations ( 4.4) and ( 4.5) confirm the sufficiency of I X;;} 
and I Y;} . The full array I X ii} is required only to test 
fit to the model (2.3). 

As the observations are assumed to be intrinsically dis­
crete, and not the result of grouping some quantitative 
variable, the maximum likelihood and modified minimum 
X2 methods [10, p. 426] coincide. Then using (2.3) and 

1 "'r-1 • Pr = - L.i=l Pi m 

L = N! II (PijXii/X;j!) ' 
'i,j=l 

the maximum likelihood equations 

a ln L 
--=0 

a a 

reduce to 

alnL 
-- = 0 , i = 1, ... , r- 1 , 

ap; 

(4.4) 

(4.5) 

L X;;(1 - p;)/[a/(1 -a) + p;] = N - L X;; (4.6) 
i=l 

and 

p; = [Y;- Xii/(1 + (a-1 - 1)p;)]/ 

[2N- L Xii/(1 + (a- 1 - 1)pi)J (4.7) 
i=l 

The maximum likelihood estimator a of a is the larger 
of 0 and the solution of (4.6). ~t is easily checked that 
( 4.6) and ( 4. 7) are consistent with results known to be 
trw~ in the limiting cases a = 0 and a = 1. 

If a is in (0, 1) and if (pi} are assumed known, the 
variance of a may be estimated by replacing a by a in 

= N-1(L p;(1 - p;) 2 /(a+ (1 - a)p;) 
i=l 

+ (1 - E p;2)/(1 - a))-1 • (4.8) 
i=1 

When a solution (a, fli, ... , p,) to ( 4.6) and ( 4. 7) 
exists, a suggested procedure for finding it is to start 
with a<0> = a1* or a2*, p;<0 l = p;*. With k = 0, 

1. find a(k+l) by numerical solution of (4.6), using p;<kJ for p;; 
2. find p;<k+t) from (4.7) using a<k+t) for a; 

3. increment k by 1 and go to step 1. Stop when the solutions 
quasiconverge. 

With the r linearly independent parameter estimates 
a and p;, the adequacy of the model of Section 2 may be 
tested with the statistic 

T 

L (Xij- NF;j) 2/(NF;j) "'X2r 2-r-1, (4.9) 
i,i=l 

where F;1 = p;(ao;J + (1 - a)pj). WlJ_en some of the r2 

cells must be pooled to obtain expedted frequencies of 
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reasonable size, the term r2 in the expression for df must 
be reduced appropriately. 

5. TESTING COMPLEX HYPOTHESES USING THE Y, 

In the demographic survey which provoked the de­
velopment of these methods, only the values of I Yi} are 
routinely available. It is desired to use these values to 
test hypotheses concernif!g the I pi}. We consider the 
case where the I Yi} are entries in a two-way contingency 

. table with R rows and C columns, R, C ;::: 2. We wish to 
test for independence of rows and columns. 

Suppose that p; and Y; have been reindexed as Puv and 
Yu., u = 1, ... , R, v = 1, ... , C, r = RC. Within the 
model of Section 2, we wish to test tpe null hypothesis 
that there exist constants g" > 0, u = 1, ... , R, h. > 0, 
v = 1, ... , C such that L: Yu = L: h. = 1 and Puv = guh •. 
The row and column margins of the table of Yu. are 

\ 

C R 

Yu+ = L Yuv 1 Y+v = L Yuv . (5.1) 
•=1 u=1 

The test statistic conventionally calculated is 

R C 

(X') 2 = L: L: (Yu.- Yu+Y+v/(2N)) 2/ 

U=l V==l 

We shall show that, under the model of Section 2 and the 
preceding null hypothesis, 

(W') 2 = (X') 2/(1 +a) "'X2 (R-1)(C-1) , (5.3) 

whether a is based on the same sample as that on which 
the Yuv are based or a is based on any other large sample 
from a population \vith the same value of a. 

From (3.4) and (3.5) we have, under the null hypothesis 

E(Yuv) = 2Nguhv 1 

Cov (Yu., Yw.) = (1 + a)2N(guhvouwo •• - guh.gwhz) , (5.4) 

u, w = 1, ... , R, v, z = 1, ... , C 
Then, 

E(Yu+) = 2Ngu , u = 1, ... , R , 

E(Y+.) = 2Nh. , v = 1, ... , C 
(5.5) 

Define 

gu* = Yu+/(2N), u = 1, ... ,R, 

h.*= Y+v/(2N) , v = 1, ... , C 
(5.6) 

Then, gu * is an unbiased estimator of Yu that converges 
in probability to gu, and similarly for h.*. Altogether 
these constitute R + C - 2 linearly independent esti­
mators. The distribution of the sequence (indexed on N) 
of random variables { Y "" - 2N Yu *h.*} approaches a dis-

tribution of rank 

RC- 1 - (R + C- 2) = (R- 1)(C- 1) 

whose covariance matrix is given by the limit as N ~ oo of 

(1 + a)2N(gu*h.*ouwo •• - gu*h.*gw*h.*) (5.7) 

The combination of the previously used theorems on 
quadratic forms and multinomial covariance matrices 
[15, pp. 261-2] with theorems on the limiting distribution 
of sums of squares from singular distributions [10, pp . 
298-300, 313-14] permits the conclusion 

(X') 2/(1 +a) "'X2(R-1lW_:_1l • (5.8) 

Since a converges in probability to a, the ratio (1 + a)/ 
(1 + a) converges in probability to 1; hence, by another 
convergence theorem [10, p. 254], the product, which is 
(W') 2, of (1 + a)/(1 +a) and the left side of (5.8) has 
a distribution which converges to X2 <R-1) (C-1). As Cramer 
points out, this convergence holds whether or not a is 
independent of the Y uv· 

In practice, a special analysis which recognizes the 
clustering in the design is necessary to obtain an estimate 
a. Then the correction factor (1 + a)-1 can be applied 
to the values of (X') 2• 

The argument leading from (5.7) to (5.8) is heuristic 
rather than rigorous, but it suggests that in complete 
multidimensional contingency tables, more elaborate 
hierarchicalloglinear hypotheses regarding the (variously 
subscripted) parameters p; can similarly be tested using 
the Y; and marginal configurations of the Y; to calculate 
a chi-squared statistic. An asymptotically X2 variable 
should be obtained by multiplying the chi-squared 
statistic by the correction factor (1 + a)-1• 

When clusters are of size K 2:: 2, and a chi-squared 
statistic X 2 analogous to (3.0 or (5.2) is calculated 
without regard to the clustering, the null hypothesis 
regarding the p; may be accepted or rejected. If it is 
accepted, i.e., if the value of X 2 is not large enough to 
be significant, then recognition of clustering with positive 
association would not alter the "conclusion. If the null 
hypothesis is rejected and if X 2/K is also significantly 
large, then recognition of clustering with positive as­
sociation would again not alter the conclusion, since the 
worst situation is that all K members of a cluster always 
fall in a single cell. If X 2 is significantly large but X 2 / K 
is not, a more detailed study of the dependencies within 
a cluster is required to estimate an "effective" sample size. 

When clusters are of unequal size within a single 
sample, as in surveys of individuals in households or 
sibships, the preceding qualitative analysis applies if K 
is now interpreted as the size of the largest cluster which 
occurs in the sample. The crude bounds established by 
such analysis of extreme cases leave much to be desired. 

6. NUMERICAL EXAMPLE 

The methods in the preceding sections were designed 
for data formally similar to those in the following 
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e~ample. However, I was unaware of the existence of the 
particular data analyzed here when I developed the 
methods. The satisfactory fit of the model of clustering· 
(2.3) to these data gives hope that the same model may 
apply usefully to other data. 

In this example, r = 4 = 2 X 2. It is desired to test a 
complex hypothesis (independence) using the marginal 
frequencies Y; arranged in a 2 X 2 table. 

Table 1 gives the r X r distribution by sex and diag­
nosis (schizophrenic versus not schizophrenic) of pairs 
of siblings, both hospitalized, according to rank in age 
(elder versus younger). These data, labeled "Ob.," are 
the X;j. Here, each of the two subscripts is, in fact, an 
ordered couple (Diagnosis, Sex). It is desired to test 
whether there is interaction between diagnosis and sex. 

1. Diagnosis and Sex of Hospitalized Sibling Pairs 

Younger sibling 
Elder Item 

sibling SM SF NM NF 

SM Ob. 13 5 1 3 
ln. 6.51 4.85 2.27 7.87 
Cl. 10.48 3.38 1.61 5.28 

SF Ob. 4 6 1 1 
ln. 4.85 3.61 1.69 5.86 
Cl. 3.38 7.67 1.29 4.21 

NM Ob. 1 1 2 4 
ln. 2.27 1.69 0.79 2.75 
Cl. 1.61 1.29 2.99 2.01 

NF Ob. .3 8 3 15 
ln. 7.87 5.86 2.75 9.52 
Cl. 5.28 4.21 2.01 14.33 

NOTE: S ~Schizophrenia, N ~Not schizophrenia, M ~ Male, F ~ Female, Ob. ~ Observed 
numbers of pairs, ln. ~ Expected given independence, CL ~ Expected given clustering. 

Source: Tsuang 113]. 

2. Estimates of Parameters Assuming 
Independence and Clustering 

Parameter Independence Clustering 

a 0 0.3006 
PsM 0.3028 0.2923 
PsF 0.2254 0.2330 
PNM 0.1056 0.1112 
PNF 0.3662 0.3636 
X2 (4.9) 26.631 13.109 
df 12 11 
p 0.001 < p < 0.01 0.2 < p < 0.3 

First, it is necessary to check whether there is inde­
pendence within clusters. The values "In." under the 
observations give the numbers of each cluster expected 
assuming that elder and younger siblings are identicaJly 
and independently distributed. Expected values are 
calculated from (2.3) and (4.1), fixing a = 0. Indepen­
dence within clusters is rejected at the one-percent level. 

Next, since the full data are available in this situation, 
it is necessary to check whether the model of clustering 
describes the data (Table 2). Four iterations of the 
numerical procedure proposed in Section 4, starting with 

669 

a 1* = 0.3079, gave parameter estimates that quasi­
converged to 10-4• Within each of these iterations, the 
N ewton-Raphson method never required more than two 
iterations to solve ( 4.6) for a. The model of clustering 
describes the data well. 

A lower bound on the variance of a is obtained by 
treating {p;} in (4.8) as if they were known in advance 
to be { p;} (instead of themselves being estimated from 
the data). The lower bound on the standard deviation 
of a thus obtained is 0.0818, which substantially exceeds 
the difference 0.0073 between a1* ltnd a =0.3006. Thus, 
a1* may be viewed as a good first guess in this example. 

The conventional 2 X 2 table which would be formed 
from YsM, YsF, YNM, YNF is shown in the tabulation, 

Diagnosis 

s 
N 

Sex 

M F 

43 
15 

32 
52 

where (X') 2 = 17.885, (W;) 2 = 13.751, df = 1, P>0.001, 
and the abbreviations and data are given in Table 1. 
The conventional test statistic (X')2 from (5.2) to test 
for independence between sex and diagnosis is significant 
at the 0.1 percent level. The corrected test statistic 
(W') 2 from (5.3) remains significant at the 0.1 percent 
level. 

Hence, in this case, there is strong evidence of positive 
association within clusters. But adjusting the measure of 
association between sex and diagnosis to allow for this 
clustering does not eliminate its statistical significance. 

[Received September 197 4. Revised April 197 5.] 
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