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ALTERNATE DERIVATIONS OF A SPECIES-ABUNDANCE
RELATION

JoeL E. CoHEN
Society of Fellows, Harvard University, Cambridge, Massachusetts 02138

Exactly the same numerical predictions of the average relative abun-
dance of species that follow from MacArthur’s (1957) “broken stick”
model also follow from a “balls and boxes” model (Cohen, 1966) with a
different set of assumptions. This paper presents a third model, the “ex-
ponential” model, leading to the same numerical predictions. The assump-
tions of this third model are nearly opposite to those of MacArthur’s. The
numerical data which have been taken to confirm the broken-stick model
in fact confirm all three models equally. Hence, this paper describes some
experimental and field obervations which could discriminate among the
available models.

THE BROKEN-STICK MODEL

Considering a community of populations of n different species within
some taxon, the broken-stick model assumes that some critical (abun-
dance-limiting) factor in the environment is fixed in quantity at, say, s
units (per unit time, if the critical factor is a rate). Let n — 1 points
uniformly distributed between zero and s divide the critical factor into
n intervals. The “order statistics” of interval size are the interval lengths
rearranged in order of increasing size. The model predicts that the ranked
average abundances of the species will be proportional to the expected
values of the order statistics of interval size.

The biological interpretation of this model has been to assume that
species partition the available, fixed supply of the critical factor: the
species divide it into mutually disjoint, exhaustive subsets. If the model
is to have any usefulness, the critical factor must be some measurable
dimension of species’ niches. Energy input to the community is currently
favored to be the critical factor. Further explication of the biology of the
model appears in MacArthur (1960), Slobodkin (1961), and King (1964).
Criticisms that the model seems to predict accurately only in certain nar-
rowly defined circumstances yielding certain kinds of data are evaluated
in Cohen (1966) and are quite relevant also to the exponential model to
be presented.

Reviewing the numerous empirical studies of species’ abundance stimu-
lated by MacArthur’s broken-stick model, King (1964) concluded:
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There is, in the author’s opinion, an adequate body of data to permit the state-
ment that the fit of at least some natural associations to the model is not fortuitous.
This is not evidence that the basic stipulation of nonoverlapping and contiguous niches
is correct since the former is obviously not true, at least not true in the strictest sense.
There may, however, be some critical area, such as food utilization, in which very
little overlap is permitted in a stable system. If this is true the limits of such permis-
sible overlap have yet to be defined. Perhaps the studies which will contribute most
to the evaluation of the model are studies of natural history and population dynamics
of the tested groups. Without these data it is impossible to accept or reject the bi-
ological assumptions on which the MacArthur model is based.

THE BALLS AND BOXES MODEL

If n species are considered, the balls and boxes model likens the en-
vironment to a target of n boxes. Each box is a “subniche.” The set of all
boxes occupied by balls of a species at the end of the game is that species’
“niche.” For example, a waterhole during a certain season, a grove of fruit
trees, or insects of a certain size might constitute subniches in a game being
played by one group of species. Further explication of the biology of the
model is offered in Cohen (1966, chap. iii).

The n species distribute balls into the boxes until each species’ “niche”
contains a number of subniches different from the number of subniches
in the niche of each other species. That is, one species throws balls until
it has at least one ball in all n boxes; another throws until it has at least
one in any n — 1 distinct boxes; and so on down to the least abundant
species, which throws just one ball, which must land in some one box. The
balls and boxes model predicts that the ranked average abundances of the
species will be proportional to the ranked expected values of the numbers
of balls thrown by each species.

The biological interpretation of this model, in simplified form, has been
that the principle of competitive exclusion is satisfied by letting species’
niches overlap as long as there is at least one subniche they do not have
in common. It is entirely possible that all the subniches of one species may
be among the subniches of a second species, as long as the second has at
least one subniche which the first does not. Hence this model requires a con-
siderably weaker form of exclusion than does the broken-stick model, but it
leads to the same predictions of ranked average abundances.

THE EXPONENTIAL MODEL
Suppose n quantities (random variables) Xj, . .. X, are independently
and identically distributed with the cumulative distribution function
PriX;<z}=1—¢"A>0, >0, 4=1,2--,n (1)
The X, are said to be exponentially distributed with scale parameter A and
location parameter zero. Defining
R,=X,/(X1++Xn)y 7:=1y21"'yn1 (2)

and ranking the n values R; in increasing size gives the n order statistics
Ry, ..., R@. The expected value of the i¢th order statistic is



SPECIES ABUNDANCE CURVES 167

BRe) =" X~ i+ D7 @)

exactly as in the broken-stick model and the balls and boxes model. The
result (3) is proved in the Appendix.

The exponential model proposes that, at least under the circumstances in
whieh the numerical predictions (3) are confirmed, the abundances of the
species considered behave like independently, identically, exponentially dis-
tributed random variables. Hence, the average relative abundances are
given by (3). The exponential model imposes no restrictions whatsoever on
the degree of overlap or similarity between any or all dimensions of any
species’ “niche.” The model refers only to observable abundances and not
to niches at all.

The exponential model is convincing only if there is some good reason to
suppose that the species’ abundances might be exponentially distributed.
Feller (1966, chap. i) presents a slightly less than infinite number of ways
in which the exponential distribution arises mathematically. Biological in-
terpretations can be attached to many of these. For instance (Feller, 1966,
p. 1), suppose the addition of one animal to a species’ population has proba-
bility 1 — p of occurring and probability p of not occurring; suppose that
this probability is independent of the existing size of the population. (I do
not claim that this is true in general, only that it may be under the cir-
cumstances where [3] holds.) If population growth, viewed as a sequence
of Bernoulli trials, is supposed to continue until the first animal fails to
be added to the population (until the first failure of a Bernoulli trial),
population size will be geometrically distributed. For large population
sizes and appropriate values of p, the geometric distribution approaches
an exponential one.

In general, when species are studied without reference to community
structure, abundances seem to be nearly log normally distributed rather
than exponentially distributed (Preston, 1948; Whittaker, 1965), so the
mode of population growth just proposed certainly does not always hold.
Whether the populations of the special communities for which (3) has
been confirmed may be considered to grow by the mode just described
or by some other mode leading to the exponential distribution is an open
question.

IMPLICATIONS

Now that three distinct models predict the same set of ranked average
relative abundances for a community of » species, one major point of
King’s conclusion becomes more important: “The fit of at least some
natural associations to the [broken stick] model . . . is not evidence that
the basic stipulation of nonoverlapping and contiguous niches is correct”
(1964, p. 726). But experimental and field observations could be made in
order to discriminate among the three models. Here are some suggestions.

Suppose energy input to the community has been selected as the critical,
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abundance-determining factor. Equivalently, suppose we wish to test
whether energy input is a ecritical, abundance-determining dimension of
species’ niches and whether species partition energy according to the
broken-stick model. We set up a terrarium or aquarium containing a
stable community of n (perhaps only two or three) species in some taxon,
and we make as sure as possible that the energy inputs to the community
are as constant as possible over time. Thus food inputs, heat flows, and
light exposure are either kept constant or kept at a fixed level per, say, a
24-hr period. The abundances of the species are observed on each of a
set of dates over some long period of time (long relative to the time in
which fluctuations in population size occur).

Among the possible measures of abundance are number of animals,
biomass, and respiration calories. Naturally any measure which requires
destruction of the animals makes it impossible to observe the same com-
munity at a later date.

The abundances on each date of observation are then ranked from
smallest to largest and divided by the sum of the abundances on that date.
This procedure yields the relative abundance on each date. At the end of
the experiment, all the smallest relative abundances are averaged to-
gether to give the average smallest relative abundance; all the next-to-
smallest abundances are averaged together, and so on up to the largest
abundances. The resulting n average values are to be compared with the
predictions of equation (3).

If (3) is confirmed, we then face the problem of discriminating among
the broken-stick, balls and boxes, and exponential models; to this problem
we turn in a moment.

If the observed distribution is flatter than would be predicted by (3),
that is, if the largest average value observed is not as large as the largest
average value predicted and if the smallest average value observed is
larger than the smallest average value predicted, then we must consider
the possibility of a threshold effect—a minimum population size required
for each species to survive.

A least squares formula for estimating the threshold from the observed
values, assuming the broken-stick model, is given in Cohen (1966, chap. ii)
along with a formula for predicting the ranked average abundances ac-
cording to the broken-stick model when this threshold is taken into ac-
count. Kendall and Stuart (1961, p. 97) give the computationally simpler,
best linear (minimum variance, maximum likelihood) estimator of the
threshold (location parameter) for the exponential distribution. (In the
47 cases for which data are presented in the Appendix to Cohen [1966], the
numerical values of the threshold given by the least squares estimator and
by the best linear estimator are quite close.) Predicted relative abundances
in the exponential case are calculated from (2) above, where now the X;
need not have a location parameter equal to zero. If the predicted relative
abundances, adjusted for threshold, correspond well to the observed values,
then we may proceed to try to distinguish among the three models.
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If, even after this adjustment for threshold, the predictions seem far
from the observations, then all three models must be considered not rele-
vant to the experimental situation. Insofar as the experimental situation
can be taken as a paradigm of the distribution of abundances in certain
parts of nature, the three models must then be considered not relevant to
those parts of nature.

Now suppose our predictions, with or without threshold, are confirmed
approximately. In order to separate the broken-stick from the other two
models, we consider the total abundances on each date of observation.
The broken-stick model predicts that the total abundances will be constant
(within errors of counting or of measurement) from one date of observation
to the next, since the abundance-limiting factor, energy input, has been
held constant. The exponential model predicts that the sum of the n species’
abundances will not be constant but will have a T' distribution (or Pearson
Type III distribution), that is (Feller, 1966, p. 10), will have density
function

)\()\x)n—le—)\z
m—-1!"

where A is again the scale parameter of the individual exponential func-
tions. The balls and boxes model predicts that the sum of the abundances
will be distributed as the sum of independent geometric variables with n
different means; the moments of this distribution can be derived from the
product of the probability generating functions of the individual geometric
variables.

But the main thing to look at is whether the total abundances are con-
stant. If not, set aside the broken-stick model, or at least the belief that
energy input is the critical factor in it. If so, the broken-stick model is
strikingly confirmed.

To discriminate the balls and boxes model from the exponential model,
rather than trying to determine the detailed distribution of the summed
abundances, it would probably be more useful to examine the detailed
natural history of the species and to decide whether their “niches,” how-
ever defined operationally, were totally unconstrained in relation to each
other (exponential model) or could reasonably be described as consisting
of component “subniches,” the number of which differed between any two
gpecies (balls and boxes models).

Field observations which might discriminate the broken-stick from
the exponential model have been suggested by Robert H. MacArthur (per-
sonal communication, July 19, 1967). He suggests visiting an island on
which, in the taxon being considered, half the mainland species are missing.
The broken-stick model assumes that abundances are limited only by the
critical factor, which would be presumed to be the same on island and
mainland; hence the total number of individuals (per unit area) would
be predicted to be the same on island and mainland. The exponential
model, as proposed above, assumes that the location and scale parameters
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are constant over time and across species, for a community with a given
set of species; the model applies only to a fixed set of species and hence is
consistent with either greater or lesser total abundances when the set of
species is changed. On the additional, stronger assumption that the loca-
tion and scale parameters would be constant even if the species com-
position of the community were changed, the exponential model would
predict, all else being equal, half as many total individuals in the taxon
(per unit area) on the island as on the mainland.

Generalizing MacArthur’s idea, we could compare any two areas such
that, within the taxon studied, the species in one area would be a strict sub-
set of the species in the other area and all other factors which might affect
abundance would be equal. The total abundances per unit area could then
be compared as before.

One drawback of this approach is that it may be difficult to show con-
vineingly that any two distinet areas with different numbers of species are
ecologically similar enough, particularly in their supply of the critical fac-
tor, to constitute a “controlled experiment.” It is thus not too surprising
that a field study which attempted to carry out MacArthur’s proposal did
not succeed in differentiating decisively between the broken-stick and ex-
ponential models.

Crowell (1961, 1962) compared resident land-bird populations on Ber-
muda and those in similar habitats on the North American mainland. Only
a few of the species found on the mainland are found in Bermuda. Crowell
does not give the relative abundances of all land-bird species on Bermuda,
so0 it is not possible to test the predictions (3). Hence it is not possible to
decide whether his other findings are relevant to a comparative test of the
three models considered here.

But, on the assumption that his other results are relevant, Crowell’s
nicely substantiated finding of “considerable overlap” in species’ methods
and loci of feeding favors the exponential or balls and boxes models.

Crowell (1961) also found that the 10 common resident land birds of
Bermuda “achieve total populations at least as great as those of all species
on comparable continental communities. . . . Absence of competition in
Bermuda has allowed the few species present to attain far greater densities
than they do in North America.” If the energy available to the birds were
exactly the same in both places, the broken-stick model would predict the
same total (all species) populations in both places, not greater popula-
tions on Bermuda. So, according to this model, differences in energy sup-
ply must be assumed. The exponential model plus the strong assumption of
constant parameters would predict that the species found in comparable
North American and Bermuda communities would have the same absolute
average abundances, respectively, in both, a prediction contradicted by
Crowell’s findings. But a possible difference in available energy, and the
presence in Bermuda of species absent from the mainland, makes the
ceteris partbus assumption implausible.

The strong assumption of constant parameters for the exponential dis-
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tribution, regardless of the composition of the community, does not seem
especially compelling to me, even in a comparison of two environments
identical except for the species present. The assumption is not especially
attractive because the presence or absence of one species alters the situa-
tion of the others, even if “all else” is equal. I would prefer to see a critical
comparison of the three models based on long-term field studies of a num-
ber of communities in each of which the species composition was constant
over time and for each of which the energy input from year to year, say,
was constant. Observations like those suggested above for an experimental
community could then be made and analyzed.

Most likely, convincing conclusions can be drawn only from a com-
bination of field and experimental tests.

CONCLUSION

Besides the three models just reviewed, it is probable that still others,
with other biological interpretations, would lead to the same predictions
of average relative species’ abundances (3), and it is certain that a vast
variety of models would lead to predictions approximating (3). Hence,
confirmation of (3) alone does not confirm the assumptions of one model
leading to (3) against the assumptions of another.

The moral is hardly novel: Once a set of assumptions (a model) has
been found which accounts for certain observed data, it is necessary to ask
what other explanations are available, to determine how these other ex-
planations differ in their observable implications, and to search for data
which could discriminate among the explanations. Means of discriminating
among the broken-stick, balls and boxes, and exponential models have
been suggested.

The arguments and conclusions of this paper apply with at least equal
strength to the testing of these models in economics (Cohen, 1966).
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APPENDIX
Proor or EquaTioN (3)

Let S = X, + ...+ X, and R, be the ith order statistic of the n values R;
defined in (2) above. Then, since the X, have independent I' distributions and
since R, is a scale-free function of the X,, the R, are independent of S (Kendall
and Stuart, 1958, p. 368, citing Pitman, 1937, Cambridge Phil. Soc. Proc. 33:212).
Hence E(R,)E(S) = E(RwS) = E(Xw). Bub

1< . -1
E(X ) =XZ.;(""‘J+1)

and E(S) = n/A (Sarhan and Greenberg, 1962, p. 343); (3) follows immediately.

An even shorter proof follows from the fact that R, has the same distribution
as the ¢th interval, from left to right, of a unit line randomly divided as in
the broken-stick model (Feller, 1966, p. 75). Since the distributions are identical,
the expected values of the order statistics must be also, hence (3).
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