
Some Relationships Between 
Music and Mathematics 

I NTUITIVE AWARENESS of a rela­
tionship between music and 
mathematics existed as early as 

Pythagoras. 
Pythagoras made an attempt to 

investigate and determine this rela­
tionship through acoustics. By vary­
ing the vibrating length of the string 
on a monochord, he discovered that 
the ratios of the lengths of strings 
whose vibrations produce consonant 
musical intervals may be expressed 
by small integers. But he departed 
from physical description when he 
attributed the quality called con­
sonance to the presence of simple 
number ratios.1 

Now it appears that the theory 
that consonance is solely related to 
simple integer ratios is not entirely 
correct. Slightly mistuned con­
sonances remain consonant though 
their ratios become very complex. 2 

Further, the concept of consonance 
seems to have evolved. For instance, 
in the parallel organum of the ninth 
and tenth centuries, the duplum ac­
companies the tenor in the lower 
fifth or fourth, note against note. 
By the thirteenth century, an Eng­
lish form of two-part polyphony 
called gymel was sung almost en­
tirely in parallel thirds.3 The major 
and minor third were not considered 
consonances by the Pythagoreans. 
In addition, the fourth was not con­
sidered admissible in the first spe­
cies counterpoint of the sixteenth 
century between the bottom two 
voices of three-part counterpoint. 

The real Pythagorean contribu­
tion lies in the intuition which 
grouped music with mathematics. 
The Pythagoreans founded the 
quadrivium, the fourfold way to 
knowledge. They divided mathe-

'Norman Cazden, "Musical Intervals 
and Simple Number Ratios,'' Journal of Re­
search in Music Education, 7(2) :197, Fall 
1959. 

'Joseph Peterson, "A Functional View 
of Consonance," Psychological Review, 32:17, 
1925. 

'Willi Ape!, "Gymel." Harvard Dic­
tionary of Music (Harvard U. Press, Cam­
bridge, 1953) p. 315. 
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matical science into two parts : one, 
"how many" ; the other, "how 
much." They divided each of these 
parts into two. "They said that dis­
crete quantity or the 'how many' is 
either absolute or relative, and that 
continued quantity or the 'how 
much' is either stable or in motion. 
Hence they laid down that arith­
metic contemplates that discrete 
quantity which subsists by itself, 
but music that which is related to 
another ; and geometry considers 
continued quantity so far as it is 
immovable, but that astronomy con­
templates continued quantity so far 
as it is of a self-motive nature." 4 

This quadrivium became part of 
the secular curriculum taught in the 
medieval scholae, the church schools 
founded by Charlemagne in the 
eighth century. Mathematics re­
mained grouped with music until the 
Renaissance, when a division which 
now appears temporary was im­
posed by extraneous circumstances. 5 

Supported and attacked by mathe­
maticians and musicians, the intui­
tion of a kinship between music and 
mathematics has persisted to today. 
Stravinsky speaks of "the higher 
mathematics of music." 6 Most of us 
can think of some acquaintance 
whose interests include music and 
mathematics; if not, we may be re­
minded of the Oak Ridge research 
laboratories' symphony orchestra, 
composed of mathematicians and 
nuclear physicists. We may have 
wondered about the kinship of music 
and mathematics that gives them a 
common appeal. 

LET us LOOK at three aspects of 
mathematics and music and examine 
their claimed affinity. 

First, consider the media of music 
and mathematics. 

'George J. Allman, "Pythagoras," Encyclo­
pedia Britannica, 11th edition, 1911, 22 :700. 

5Henry Margenau, The Nature of Physi­
cal Reality (McGraw-Hill, New York, 1950), 
p. 16-17: "Science vs. Humanities." 

'Igor Stravinsky, Poetics of Music (Vin­
tage Books, New York, 1956) p. 47. 

The acoustician tells us that the 
medium of music is sound which has 
been highly refined and organized, 
sound which has been abstracted 
from the chaos of general sound. 
\Vhen seen on an oscilloscope, a 
musical tone approximates a sine 
wave. It has a definite frequency of 
vibration and a sustained overtone 
structure. Seen on an oscilloscope, 
a noise presents a jagged, irregular 
picture. "Beyond certain elementary 
facts of acoustics modern music 
shows no direct connection with 
nature independently of art; indeed, 
it is already art that determines the 
selection of these elementary acous­
tic facts . . . The ordinary non­
artistic experience of sound has so 
little in common with music that 
musical realism is, with rare though 
popular exceptions, generally re­
garded as an eccentricity." 7 

Similarly, mathematics deals in 
the abstract and the organized. We 
can easily see one hand, one piece 
of paper, one table, but the concept 
of the number one is abstracted 
from all individual cases and is not 
represented by any of them. In fact, 
mathematically, the concept "one" is 
defined completely in terms of 
marks on paper and operations on 
those marks; we assign these marks 
a familiar and convenient intuitive 
meaning in order to make it easier 
to manipulate them. More abstract 
are the "literal" numbers of algebra, 
which refer to the set of numbers 
having certain required properties. 
The theory of sets is abstracted 
from these and many similar specific 
cases; at the height of abstraction 
and at the base of mathematics is 
symbolic or formal logic. 

Bertrand Russell has defined 
mathematics as the science in which 
we never know what we are talking 
about. "Since, then, mathematics is 
an entirely free activity, uncondi­
tioned by the external world, it is 

'D. F. Tovey, "Music," Encyclopedia 
Britannica, 11th edition, 1911, 19:72. 
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more just to call it an art than a 
science. It is as independent as 
music of the external world; and 
although, unlike musi.c, it can be 
used to illuminate natural phe'­
nomena, it is just as 'subjective,' 
just as much a product of the free 
creative imagination."S 

THE PERSISTENT BELIEF that 
music and mathematics are related 
because they both deal in relation­
ships among small whole numbers 
is unfortunately wrong. If it were 
right, all music beyond simple triads 
in just intonation and all mathe­
matics beyond fifth-grade arithmetic 
would have to be ignored. 

Rather, music and mathematics 
are similar because they are systems 
of symbols that do not point to any­
thing ; the sounds in the air and the 
marks on paper refer only to them­
selves, their antecedents, and their 
successors. Basically, all mathe­
matics, once conceived, can be and 
has been reduced to rules for 
manipulating marks on paper.9 Sim­
ilarly, "music consists of successions 
and forms of sound, and these alone 
constitute the subject . . . music 
speaks not only by means of sounds, 
it speaks nothing but sound." 10 The 
media of music and mathematics are 
similar because they are both sys­
tems of ~ymbols referring only to 
themselves. 

Second, consider the creative 
processes in music and mathematics. 
Hiller and Isaacson recognize five 
basic principles of composition. 
"The first principle is that the for­
mation of a piece of music is an 
ordering process in which specified 
musical elements are selected and 
arranged from an infinite variety of 
possibilities, i.e., from chaos."11 

Stravinsky also speaks, but in more 
intuitive terms, of "the need we feel 
to bring order out of chaos, to extri­
cate the straight line of our operation 
from the tangle of possibilities and 
the indecision of vague thoughts. 

"John W. N. Sullivan, "Mathematics as 
an Art," World of Mathematics, ed. J. R. 
Newman (Simon and Schuster, New York, 
1956) 3 :2015-2021. 

"N. Bourbaki, Elements de Math­
ematique, Les Structures Fondamentales de 
l'Analyse, Livre I: Theorie des Ensembles, 
Chapitre I: Description de la mathematique 
formelle (Hermann, Paris, 1954). 

10Eduard Hanslick, The Beautiful in 
Music, trans. G. Cohen (Liberal Arts Press, 
New York, 1957) p. 119. 

uL. A. Hiller, Jr. and L. M. Isaacson, 
Experimenttsl Music (McGraw-Hill, New 
York, 1959) p. 16. 
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••• " 12 The second principle is that 
'"the degree of imposed order is it­
self a significant variable. The third 
principle is that the two most im­
portant dimensions of music upon 
which a greater or lesser degree of 
order can be imposed are pitch and 
time ... the fourth principle is that 
memory, as well as instantaneous 
perception, is required in the under­
standing of musical structure." The 
fifth principle is· that tonality "be 
considered the result of establishing 
pitch order in terms of memory 
recall" ; that is, that tonality results 
from comparing each note or har­
mony with a tonic through memory. 

What is mathematical creation? 
"To create consists precisely in not 
making useless combinations and in 
making those which are useful and 
which are only a small minority. In­
vention is discernment, choice. . . . 
The sterile combinations do not even 
present themselves to the mind of 
the inventor."13 (It is interesting to 
note that Stravinsky insisted he was 
an "inventor" of music, not a com­
poser.) 

Thus new ideas in mathematics 
and music are arrived at similarly, 
that is, by selection from a multi­
tude of possibilities. What deter­
mines which possibilities are selected 
is a most significant similarity be­
tween mathematics and music. 

The mathematician is as much 
concerned with beauty as the musi­
cian. The literature of mathematics 
is sprinkled with aesthetic terms ; 
the mathematician is more con­
cerned with finding an elegant 
method and with the beauty of his 
insights than with applications of 
the results. Herman Weyl, who 
"alone could stand comparison with 
the last great universal mathema­
ticians of the nineteenth century, 
Hilbert and Poincare said, "My 
work always tried to unite the true 
with the beautiful; but when I had 
to choose one or the other, I usually 
chose the beautiful."14 The mathe­
matician finds that the beautiful 
usually leads to the true. He con­
stantly searches for the most elegant 
proof, that is, the shortest logical 
line between given hyr>othesis and 

12Stravinsky, op. cit., p. 6. 
18Henri Poincare, "Mathematical Crea­

tion " The Creative Process, ed. Brewster 
Ghi~elin (New American Library, New 
York, 1955) p. 35-36. 

"Freeman J. Dvson, obituary of Hermann 
Weyl, Nature, March 10, 1956, quoted in 
"Commentary on Hermann Weyl,' World 
of Mathematics, 3 :1831. 
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desired conclusion. In his search for 
new hypotheses his intuition for the 
most b.!autiful guides him. Exam­
ples are the fundamental theorems 
of the integral and differential cal­
culus, which unite in a breath-taking 
way some widely divergent and 
apparently unrelated mathematical 
operations. 

The beauty of mathematics can be 
"cold and austere, like that of sculp­
ture, without appeal to any part of 
our weaker nature, sublimely pure, 
and capable of a stern perfection as 
only the greatest art can show."15 

It can be warm and exciting, espe­
cially when it releases tension built 
up in searching for it. A concise, 
well-proportioned proof can stimu­
late the same response as a Bach 
fugue; a daring insight and leap 
forward can simulate a soaring 
Tchaikowsky theme. Both mathe­
maticians and musicians will recog­
nize that this verbalization is only 
a gross approximation ; that beauty 
must be experienced to be under­
stood. 

CREATION in mathematics and 
music only begins with new ideas. 
Once achieved they are exploited 
logically. 

By using his craft, the composer 
consciou~y exploits the logical pos­
sibilities of the sounds he has set in 
order.16 These techniques of de­
velopment can be acquired in an 
elementary way from classes in 
theory and "composition," but their 
manner of application distinguishes 
the great composer from the talented 
youth who can improvise at the 
piano. It has been said that a com­
position lives in its development. 
Yet the composer cannot develop 
possibilities randomly or endlessly, 
like a machine grinding out per­
mutations. He must know how "to 
proceed by elimination ... know 
how to discard."17 

The composer must be consistent 
in his development. Schoenberg 
"adopted the musical system that 
suited his needs, and within this sys­
tem, he is perfectly consistent with 
himself, perfectly coherent. One 
cannot dismiss music that he dislikes 
by labeling it cacophony."18 

11Bertrand Russell, The Study of Mathe­
matics. 

'"Sidney and Henry Cowell, "The Schil­
linger Case-Charting the Musical Range," 
Modern Music, 23(3) :226, Summer 1946. 

"Stravinsky, op, cit., p. 70. 
'"Ibid., p. 15. 
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Similarly, in mathematics, "we 
can start from any set of axioms we 
please, provided they are consistent 
with themselves and one another, 
and work out the logical conse­
quences of them."19 Indeed, "mathe­
matics is the science of the logically 
possible."20 Just as logical, consist­
ent chromaticism is as valid as the 
diatonic scale of Pythagorean "nat­
ural law," so non-Euclidean geom­
etries are as valid as the logical 
"necessities" of Euclid. 

THIRD, consider a piece of music 
and a mathematical demonstration. 

A note or a chord in a melody 
or a harmonic progression acquires 
significance because it is related 
through time and memory to pre­
vious notes or chords. Isolated notes 
or chords have little significance; 
transposing a melody does not alter 
its musical import. The intervals 
between successive elements of a 
composition are important. "Inter­
vals are the stuff of the composer's 
universe."21 . "Music is based on 
temporal succession and requires 
alertness of memory. Consequently 
music is a chronologie art ... "22 

Similarly, "a mathematical dem­
onstration is not a simple juxtaposi­
tion of syllogisms, it is syllogisms 
placed in a certain order, and the 
order in which these elements are 
placed is much more important than 
the elements themselves."23 The 
geometry of Euclid's Elements is 
not just a collection of facts, but a 
logical system. Each proposition 
follows from the preceding axioms, 
definitions, postulates and theorems. 
Euclid's main achievement was the 
disposition of the propositions; their 
logical system was the main merit 
of the Elements.24 Like the third 
principle of musical composition, 
the two significant variables in 
mathematics are statements of logi­
cal implication and time. The ar­
rangement of the statements in time 
is important. 

THUS the kinship between mathe­
matics and music has at least three 
aspects: ( 1) Both deal in similarly 

'"Sullivan, op. cit. 
20Philippe LeCorbeiller, "Crystals and the 

Future of Physics," World of Mathematics, 
2:876. 

"'Ross Lee Finney, composer-in-residence 
at Univ. of Michigan, lecture at National 
Music Camp, Interlochen, Michigan, summer 
1959. 

22Stravinsky, op. cit., p. 29. 
"'Poincare, op. cit., p. 35. 
24G. P6lva, How to Solve It (Doubleday 

and Co., Garden City, N.Y., 1957, second 
edition), p. 217. 
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abstract media unrelated to or re­
stricted by physical data. ( 2) The 
processes of creation are similar; 
that is, in both the most beautiful 
combination is selected from an in­
finitude of possibilities and its logi­
cal potentials are developed consist­
ently. (3) The end products of 
mathematics and music depend for 
their meaning upon the successive 
relationships of their elements and 
upon the order imposed by the crea­
tor. 

Perhaps the easiest way to be­
come certain of the kinship between 
mathematics and music is to experi­
ence the joys of creation in both. 
Marston Morse wrote, "Most con­
vincing to me of the spiritual rela­
tions between mathematics and 
music, is my own very personal ex­
perience. Composing a little in an 
amateurish way, I get exactly the 
same elevation from a prelude that 
has come to me at the piano, as I 
do from the new idea that has come 
to me in mathematics." 25 

"'Marston Morse, "Mathematics and the 
Arts," Bulletin of the Atomic Scientists, 
15(2) :55-69, February 1959. 
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