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Power spectra reveal the influence of stochasticity
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Stochasticity alters the nonlinear dynamics of inherently cycling
populations. The power spectrum can describe and explain the
impacts of stochasticity. We fitted models to short observed time
series of flour beetle populations in the frequency domain, then
used a well fitting stochastic mechanistic model to generate
detailed predictions of population spectra. Some predicted spectral
peaks represent periodic phenomena induced or modified by
stochasticity and were experimentally confirmed. For one experi-
mental treatment, linearization theory explained that these peaks
represent overcompensatory decay of deviations from determin-
istic oscillation. In another treatment, stochasticity caused frequent
directional phase shifting around a cyclic attractor. This directional
phase shifting was not explained by linearization theory and
modified the periodicity of the system. If field systems exhibit
directional phase shifting, then changing the intensity of demo-
graphic or environmental noise while holding constant the struc-
ture of the noise can change the main frequency of population
fluctuations.
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he interactions of stochasticity with nonlinear population

dynamics are of major interest in ecology (1-3). Environ-
mental and demographic stochasticity can strongly influence
dynamics and can play a key role in the fluctuations of popula-
tions (4-12). The influence of stochasticity on deterministic
population models with a single stable equilibrium has been
analyzed using linear approximations about the equilibrium
(13-17). Bjornstad et al. (18) applied this theory to populations
of Atlantic cod and bluefin tuna. Linearization theory has also
been applied to nonequilibrium physical systems (19-21). Both
bodies of theory use the power spectrum, or simply spectrum (22,
23). However, the spectrum is sometimes not used with popu-
lation data because estimates of the spectrum based on short
time series lack resolution (9).

Our first goal is to propose and test a statistical approach to
facilitate the application of the spectrum to the inherent popu-
lation cycles and nonlinear models of Tribolium flour beetles,
which have been used for decades in laboratory studies of
population dynamics (11, 24, 25). For Tribolium castaneum,
cannibalism plays a major role in dynamics and is represented by
nonlinearities in several models (11). The approach proposed
combines qualitative biological knowledge with quantitative
information in short time series to improve the resolution of
estimates of population spectra. We produce detailed, empiri-
cally supported, model-based predictions of the spectra of beetle
populations. We map the influence of demographic stochasticity
on Tribolium dynamics by plotting changes in spectra with
gradually increasing stochasticity. This approach may have gen-
eral utility, not limited to flour beetles.

Our second goal is to show that linear approximation theory
sometimes can, and sometimes cannot, explain how stochasticity
affects inherently cycling populations. Realistic stochasticity
produced frequent unidirectional phase-shifts in population
cycling around the deterministic attractor. These phase shifts
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caused the dominant frequency of the system to shift, invalidat-
ing the predictions of linearization theory. We label this effect
“directional phase shifting.”

Nisbet ef al. (13, 14, 18) concluded that linearization theory is
likely to be an effective approximation to the effects of stochas-
ticity on deterministic population models with a single stable
equilibrium for all but very small equilibrium populations. For
inherently cycling populations, we show that linearization theory
will also fail when stochasticity causes substantial directional
phase shifting. We give guidelines for determining when shifting
may occur and what its effects will be.

Although linearization theory should be tried first in any
analysis of interactions between stochasticity and nonlinear
dynamics, diverse effects can occur when strong noise renders
linearization invalid. We demonstrate such effects and argue that
many inherently cycling population systems may be insusceptible
to linearization theory because of strong noise. In-depth explo-
ration is needed of interactions between dynamics and strong
stochasticity; we present techniques to describe and understand
these interactions.

If directional phase shifting occurs in a cycling field popula-
tion, then changes in the intensity of the environmental or
demographic stochasticity affecting that population may alter
the main frequency of its oscillations. Such changes in intensity
may occur through climate change, geographic variation, or
reduced population sizes. Modification of the periodicity of a
fluctuating exploited population may affect the exploiting in-
dustry; modification of the periodicity of a fluctuating popula-
tion of disease vectors may affect public health.

Results

Supporting Information. For further details, see Tables 1-3, Figs.
5-11, and Supporting Text sections 1 and 2, which are published
as supporting information on the PNAS web site.

Fit and Predictive Ability of the Lattice Stochastic Demographic
Larvae-Pupae-Adult (LSD-LPA) Model. The LSD-LPA model (Meth-
ods) succeeded in fitting well, with the same parameters in both
time and frequency domains, all 24 experimental replicates of
length 41 (imposed initial conditions plus observations every 2
weeks for 80 weeks). Using model parameters obtained by maxi-
mum-likelihood time-domain fitting (Supporting Text 1.1), the
frequency-domain fit of the LSD-LPA model with all 24 data
replicates was tested (Fig. 1, box 2). The six replicates of length 213
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Fig. 1. The new “spectrum enhancement method" (boxes 1-3, for the three
steps of the method) and one way of testing predictions of the method using
spectra of long observed time series (fourth box). The method uses biological
information contained in a model’s functional form to magnify the resolution
of predicted spectral estimates. Using this method, the LSD-LPA model accu-
rately magnified spectral resolution; models with incorrect functional forms
made incorrect spectral predictions (text). Detailed spectral predictions of well
tested models provide biological understanding; predictions of less well
tested models provide testable hypotheses.

were truncated to length 41 for this purpose. Fit between model and
data was good according to our new spectrum distance and shape
fit tests (Methods), and was confirmed visually (e.g., Fig. 24).

Spectral estimates from length-41 time series lacked resolu-
tion. Our new “spectrum enhancement method” allowed de-
tailed spectral analysis by carefully combining data from short
time series with a mechanistic dynamical model (Fig. 1). To
make higher-resolution predictions, we generated many time
series of length 213 using the LSD-LPA model (parameters of
Supporting Text 1.1); spectral estimates based on these time series
were model-based hypotheses of population spectra (Fig. 1, box
3). We tested the predictive ability of the model and the strategy
of this study (Fig. 1, fourth box) by comparing these hypotheses
with spectral estimates from the 6 experimental replicates of
length 213 (control and c¢,, = 0.35 replicates). Hypotheses and
data-based estimates agreed qualitatively and quantitatively. A
second spectral peak at normalized frequency (nf) 0.33 was
predicted by the model and confirmed by the length-213 exper-
imental time series for ¢,, = 0.35 (Fig. 2B); see also Supporting
Text 2.1. Models that fit well in the time and frequency domains
and that accurately represent known biological mechanisms can
be effective predictive tools via the spectrum enhancement
method.

Testing of the Spectrum Enhancement Method. As a control on the
role of biological information in model predictions, we explored
variants of the LSD-LPA model that fitted short population time
series, but intentionally made wrong assumptions of biological
mechanism. If the spectrum enhancement method is trustwor-
thy, these models should make incorrect spectral predictions.
The “constrained LSD-LPA model” had, by definition, diagonal
noise covariance matrix > (Methods); (3, 3) = 0; ¢, = 0.35; and
e = 0.96. It was otherwise the same as the (unconstrained)
LSD-LPA model, and was substantially the same as that model,
because the off-diagonal entries of = were close to zero for the
unconstrained model (Supporting Text 1.1). The further con-
straints ¢, = 0 and ¢,, = 0 were imposed separately on the
constrained LSD-LPA model. These additional constraints cor-
respond to the incorrect assumptions that cannibalism of larvae
on eggs, or adults on eggs, respectively, did not occur. We
compared the output of all three models with the ¢,, = 0.35
experimental time series.

All models fitted acceptably with length-41, truncated versions
of the three experimental replicates in the time and frequency
domains with the same parameters (Fig. 2 4, C, and E and
Supporting Text 2.2). However, only the constrained LSD-LPA
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Fig. 2. Frequency domain fits between models and observed adult popula-
tion time series of length 41 (A, C, and E) and length 213 (B, D, and F) from the
three experimental replicates with ¢, = 0.35. The heavy dashed lines are data
log spectra, identical in A, C, and E and identical in B, D, and F. Light solid lines
give the minimum, the 5th, 25th, 50th, 75th, and 95th percentiles, and the
maximum values at each frequency value of 1,000 log spectra of model-
generated time series of length 41 (A, C, and E) and length 213 (B, D, and F).
Triangles highlight the 5th and 95th percentiles. Models used were the
LSD-LPA model with parameters of Supporting Text 1.1 (A and B), the (inten-
tionally incorrect) constrained LSD-LPA model with ce; = 0 and time-domain-
optimized parameters of Supporting Text 2.2 (Cand D), and the (intentionally
incorrect) constrained LSD-LPA model with ce; = 0 and time-domain-
optimized parameters of Supporting Text 2.2 (E and F). All parameters were
optimized for length-41 data. Contrast the good fit in B with the poor fits in
D and F. Fit of the constrained LSD-LPA model with no further constraint is
similar to A and B and is shown in Supporting Text 2.2. Fits were similar when
frequency-domain optimized parameters were used (Supporting Text 2.2).
Aliasing of fundamental frequencies of population fluctuation is unlikely to
have occurred because the biology of Tribolium suggests that little fluctuation
occurs for normalized frequency (nf) >1.

model, which correctly specified biological mechanisms, accu-
rately predicted the spectra of long time series (compare the
good fit in Fig. 2B with the poor fits in Fig. 2 D and F; Supporting
Text 2.2).

Model-Predicted Spectra. We tested at higher resolution the pre-
dictive power of the LSD-LPA model and the spectrum en-
hancement method by comparing detailed predictions of model-
generated spectra with observations for the treatments c,, = 0
and 0.5. Spectra of model-generated time series of length 1024
are displayed in Fig. 3 4 and B. For each treatment, the
LSD-LPA model predicted a peak that the (deterministic) LPA
model did not predict. Both LSD-LPA model peaks are sup-
ported by data; they demonstrate the effect of stochasticity on
population spectra.

High adult-on-pupae cannibalism. For c,, = 0.5, the LSD-LPA model
predicted a main spectral peak at nf 0.66 and a secondary peak
at nf 0.33 (Fig. 34). Short LSD-LPA model-generated and
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Fig.3. Model-predicted power spectra (A and B) and experimental support
for predictions (Cand D). LSD-LPA model-predicted peaks for ¢,5 = 0.5 (A) and
Cpa = 0(B) correspond to period 6 time steps (nf 0.33) (A) and period ~7.4 time
steps (nf0.27) (B). Thinsolid linesin A and B give the minimum, 5th, 25th, 50th,
75th, and 95th percentiles, and maximum values at each frequency of 1,000
log spectra of LSD-LPA model-generated adult time series of length 1024.
Thick dashed lines give spectra of time series generated by the LPA model with
initial conditions on the model attractor. Dashed lines extend below figure
axes, but show no important features there. (C) Thin solid lines give 10
repetitions of a length-6 repeating pattern randomly chosen from 129 repe-
titions isolated from typical length-1024 output of the LSD-LPA model with
Cpa = 0.5. Centers of heavy circles are medians of all 129 repetitions. The me-
dian pattern was present in experimental data; the best repetition detected in
each of the three replicates is shown with a thick dashed line. The pattern
caused the smaller LSD-LPA model peak (at nf 0.33) in A. (D) Thin solid lines
give 10 repetitions of a length-7 repeating pattern isolated from typical
length-1024 output of the LSD-LPA model with ¢y, = 0. Centers of heavy circles
are medians of these values. The median pattern was detected in data (thick
dashed lines). The pattern caused the smaller LSD-LPA model peak (at nf
0.27) in B.

experimental time series (of length 41) revealed only the ap-
proximate location of the peak at nf 0.66. The LPA model had
a stable three-point attractor; it generated length-1024 time
series with spectra having only one peak at nf 0.66. This LPA
model peak explained the primary peak of the LSD-LPA model,
but not its secondary peak.

Experimental data supported the secondary spectral peak
predicted by the LSD-LPA model at nf 0.33 (period 6 time steps).
Using the “relative lag metric” (Supporting Text 1.4), we ex-
tracted an approximately repeating pattern of 6-time-step length
from typical length-1024 output of the model. Using the “lag
metric” (ref. 9; Supporting Text 1.4), this pattern was then
detected in all three experimental replicates with c,, = 0.5 (Fig.
3C). This repeating pattern appeared more often than would
have been expected by chance alone according to permutation
tests, <1% significance (Supporting Text 1.5). Detection of this
phenomenon in data supported the secondary LSD-LPA model-
predicted peak of Fig. 34. The secondary peak was caused by
stochasticity and intensified by lattice effects: the stochastic
demographic LPA (SD-LPA) model predicted a peak at nf 0.33
that was smaller than the peak predicted by the LSD-LPA model.
Below, we explain how stochasticity produced the peak at nf 0.33.
Zero adult-on-pupae cannibalism. For ¢, = 0, the main spectral peak
hypothesized by the LSD-LPA model occurred at nf 0.87; a
smaller peak occurred at nf 0.27 (Fig. 3B). Short model-
generated and experimental time series (length 41) revealed only
the approximate location of the peak at nf 0.87. The LPA model
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generated time series of length 1,024 with main, secondary and
tertiary spectral peaks at nf 1, 0.877, and 0.123, respectively. The
main peak of the LSD-LPA model appeared (wrongly, it turns
out) to be related to the secondary peak of the LPA model.
However, the secondary peak of the LSD-LPA model could not
be explained using the LPA model. Nor could the LPA model
explain the absence of LSD-LPA model peaks at nf 1 and 0.123.
The peak at nf 0.27 (period 7.41 time steps) was a valid prediction
of the LSD-LPA model for ¢,, = 0, according to experimental
data. Using the lag metrics (Supporting Text 1.4) and permuta-
tion tests, an approximately repeating pattern of 7-time-step
length was extracted from typical length-1024 output of the
LSD-LPA model, was detected in two of the three experimental
replicates with ¢,, = 0 (Fig. 3D), and was shown to be statistically
significant (Supporting Text 1.5). Detection of this phenomenon
in data supported the secondary model-predicted peak of
Fig. 3B.

The spectrum predicted by the LSD-LPA model was very
similar to that predicted by the SD-LPA model: lattice effects did
not change the spectrum. Only stochasticity could have caused
the differences between the spectra predicted by the LPA and
LSD-LPA models. The next section explains how stochasticity
rearranged the peaks of the deterministic LPA model to produce
the stochastic model peaks.

Deterministic and Stochastic Model Peaks. Stochasticity and lattice
effects caused the differences between the spectral peaks pre-
dicted by the LPA model and by the LSD-LPA model, but the
bulk of the differences was caused by stochasticity because the
spectra predicted by the LSD-LPA and SD-LPA models were
very similar. Lattice effects on the spectrum were minimal for
¢pa = 0 and 0.5. To understand differences between LPA- and
SD-LPA-model-predicted spectra for c¢,, = 0 and 0.5, we
mapped how spectral peaks and valleys changed as a function of
gradually increasing stochasticity, keeping the form of the sto-
chasticity constant while varying only its magnitude. Some
spectral peaks disappeared with increasing stochasticity; others
changed location in complex patterns (Fig. 4).

High adult-on-pupae cannibalism. For c,, = 0.5, the SD-LPA model-
predicted peak at nf 0.33 was stochastically induced: increasing
stochasticity gradually increased the power of population oscil-
lations at nf 0.33 (Fig. 44); without stochasticity, no peak
occurred at that frequency (Fig. 34, dashed line). The growth of
the peak at nf 0.33 with increasing stochasticity (Fig. 44) has a
biological interpretation. The LPA model has a stable 3-cycle
attractor for c,, = 0.5; it oscillates among larvae-dominated,
pupae-dominated, and adult-dominated life-stage distributions.
Stochastic model population fluctuations are similar, but larvae-
dominated stage distributions are often alternately heavily and
moderately larvae-dominated. Pupae- and adult-dominated dis-
tributions alternate in the same way, producing period-6 oscil-
lation overall. With growing stochasticity, the difference be-
tween heavily and moderately larvae-dominated (or heavily and
moderately pupae- or adult-dominated) distributions grows
larger.

Zero adult-on-pupae cannibalism. For c,, = 0, the SD-LPA model-
predicted peaks at nf 0.27 and 0.87 were stochastically shifted
(Fig. 4B). The movements of peaks in Fig. 4B have biological
interpretations. With ¢,, = 0 and after transients, the LPA model
oscillates on alternate time steps between pupae-dominated
life-stage distributions (many pupae, few adults, and larvae) and
bimodal distributions (many adults and larvae, few pupae). The
model has an invariant-loop attractor consisting of two small and
widely separated circles, ¢; and ¢, between which it oscillates
(Supporting Text 2.4). This oscillation of two-time-step period
produces the spectral peak of Fig. 4B at nf 1 for little demo-
graphic stochasticity (low = factors; see Methods). This peak
moves when sufficient stochasticity prevents pupae-dominated

Reuman et al.
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Fig.4. Spectral peaks and valleys with increasing intensity of stochasticity in
the SD-LPA model for the adult life-stage with cps = 0.5 (A) and ¢pa = 0 (B).
Vertical axes show frequencies of local maxima (filled circles) and minima
(open circles) of log spectra. Color shows the heights (Ht.) of local maxima and
minima. Horizontal axis shows intensity of stochasticity (scalar multiple of
noise covariance matrix; see Methods). Under very low stochasticity (left),
spectra were those of the deterministic model. Vertical black lines show
experimental stochasticity (= factor 1). For these parameter values and =
factor 1, LSD-LPA, and SD-LPA model spectral predictions were very similar:
lattice effects were small. Stochasticity explains the locations of peaks for the
LSD-LPA model (Fig. 3 A and B) by explaining the locations of peaks for
the SD-LPA model. The smaller peak in Fig. 3A was induced by stochasticity.
The smaller peak of Fig. 3B (nf = 0.27) was the nf = 0.123 peak of the LPA
model, shifted by stochasticity (and not further shifted by lattice effects). The
main peak of Fig. 3B (nf = 0.87) did not come from the deterministic model
peak at nf = 0.877, as was expected before this analysis, but was the nf = 1
deterministic model peak, shifted by stochasticity (and not further changed by
lattice effects). The deterministic model peak at nf = 0.877 was eliminated by
stochasticity. Supporting Text 2.3 shows other life stages. No statistical con-
fidence intervals are given for the locations or heights of peaks and valleys
because the variability in these quantities is expected to be small (Supporting
Text 1.6 has details of how plots were produced) and no probabilistic conclu-
sions were drawn.

distributions from leading unerringly to bimodal distributions,
and vice versa. Peak motion from nf 1 to nf 0.87 corresponds to
a change in the average number of time steps between pupae-
dominated distributions from 2/1 = 2 for low X factors to
2/0.87 = 2.30 for experimental levels of stochasticity.

The population state occupied by the LPA model on alternate
time steps orbits gradually around c;. For time steps not spent
on ¢y, the state orbits around c,. The result is modulation of the
magnitude of the nf 1 population oscillations: the model oscil-
lates between heavily pupae-dominated and heavily bimodal
distributions; it then oscillates between moderately pupae-
dominated and moderately bimodal distributions, and repeats
(Supporting Text 2.4). The frequency of modulation of popula-
tion variability is nf 0.123. The peak in Fig. 4B at this frequency
for low X factors depicts the modulation. Motion of this peak
from nf 0.123 to nf 0.27 with increasing stochasticity (2 factor)
corresponds to a change in the period of the modulation from
2/0.123 = 16.26 time steps to 2/0.27 = 7.41 time steps.

Reuman et al.

Patterns of change in spectral peaks other than those observed
for ¢,, = 0 and 0.5 occurred with increasing stochasticity for
other c,, values (Supporting Text 2.3). The numerical methods of
this study allow the model-hypothesized role of stochasticity in
establishing the dominant population fluctuations of the beetle
system to be explicitly mapped. Developing analytical methods
to undergird these numerical methods remains a challenge for
the future.

Explanation of Spectral Changes with Stochasticity. Linecarization
theory explains interactions between sufficiently weak stochas-
ticity and nonlinear deterministic dynamics with a finite attractor
(Supporting Text 1.7). The growth of the peak at nf 0.33 for ¢p,
= 0.5 can be explained by using linearization theory, as can other
aspects of Fig. 44. In contrast, linearization theory cannot
explain the peak motion in Fig. 4B.

High adult-on-pupae cannibalism. The LPA model, now denoted
(Le+1, Prv1,Aev1) = 8(Ls, Py, A;), was put on the square-root scale:
Xi+1 = (lt+l,Pr+l, at+l) = (Lt+17 Pt+1,At+1)1/2 :f(lz,pt, at) = g(ltZ’
pi, a?)V2. Perturbations due to stochasticity were approximately
normally distributed on this scale (Supporting Text 1.1). The
model x,+1 = f(x,) has stable attractor 4 = (aj, a,, a3) for ¢,, =
0.5. The susceptibility matrices, S1 = Ja,Ja,Ja;, S2 = Ja, Ja,, Jay, and
83 = Ja, Ja, Ja, (Where Jy is the Jacobian of f at x) for this model
all have eigenvalues —0.77, 0.65, and 0. The dominant eigenvalue
is negative, so theory predicts a component of overcompensatory
decay of perturbations from the stable attractor of the square-
root-scale model, and a corresponding spectral peak in the adult
life stage at nf 1/3 = 0.33 (half the frequency of the deterministic
system). The eigenvalue 0.65 is also large, so a component of
undercompensatory decay of perturbations from the attractor
will also occur, producing a spectral peak at nf 0 for the
square-root-scale model. Theory predicts that these peaks will
increase in size and prominence with stochasticity increasing
from zero. Taking the square root of populations does not affect
locations and relative heights of spectral peaks, so theory
explains the peaks at nf 0.33 and 0 for the SD-LPA model (Figs.
34 and 4A4).

The theoretical mechanism producing the nf 0.33 peak was

supported by experimental data on the perturbations of real
population vectors from points in the LPA model attractor. Let
v; denote the eigenvector of S; with eigenvalue —0.77. If the
mechanism of overcompensatory decay is correct, then when a
square-root-scale population vector x, deviates slightly from a;
with a component in the direction of v;, the vector x,4+3 should
deviate from a; with a component in the direction of —v;. The
latter deviation should, on average, be smaller than the former.
These patterns held for data (Supporting Text 2.5).
Zero adult-on-pupae-cannibalism. Linearization theory does not im-
mediately apply for ¢,, = 0 because the square-root-scale LPA
model with ¢,, = 0 has a nonfinite attractor. However, the
components of the attractor, c1”? and ¢}, can substitute for a
stable two-point attractor. Making this approximation, we ap-
plied linearization theory to the c,, = 0 treatment (Supporting
Text 2.5). Linearization theory predicts, correctly for weak noise,
that locations of spectral peaks will not change with increasing
stochasticity. The (deterministic) LPA model peaks at 0.123,
0.887 and 1 were not greatly affected by weak demographic
stochasticity (log 2 factors less than about —2.5). The prediction
is incorrect for stronger noise: peaks shifted unexpectedly for
larger X factors (Fig. 4B). How can peak motion for higher =
factors be explained?

The LPA model with ¢,, = 0 had an unstable equilibrium, e,
about midway between c¢; and c,. Spectral peaks began to move
when stochasticity was strong enough to move population vectors
occasionally at least as far from ¢; and c; as e (Supporting Text
2.5). Linearization theory failed when this occurred because
linearization at points in the attractor does not capture the
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dynamical behavior of the LPA model at points farther from the
attractor than e. For weak stochasticity, the SD-LPA model
initialized with a population vector near ¢; will produce in one
time step a vector nearer ¢; (j # i) than ¢;. Stronger stochasticity
will cause the model to occasionally produce a vector closer to
¢;, shifting the phase of the nf 1 oscillation of the system (26). The
relative frequency of phase shifting, as a function of the X factor,
becomes appreciably greater than 0 for the same range of =
factors at which stochasticity becomes strong enough to move
populations further from the attractor than e, and peak motion
begins (Supporting Text 2.5).

For experimental levels of stochasticity (i.e., = factor 1), a
phase shift occurs on ~12.5% of time steps (Supporting Text 2.5).
Whereas the deterministic system switches from ¢; to ¢, or vice
versa 100 times in 100 time steps, the stochastic system switches
from a neighborhood of ¢ to a neighborhood of ¢, about 100 —
12.5 =~ 87 times in 100 time steps. This finding corresponds to a
~12.5% reduction in the primary frequency of the deterministic
system, explaining the main peak at nf 0.87 ~ 1 — 0.125 for the
stochastic models and for experimental time series. The per-
centages of times that each experimental time series phase
shifted were 22.5%, 10.0%, and 15.0%; these percentages agreed
approximately with those of the simulation (Supporting Text 2.5),
but had more scatter because experimental time series had only
40 transitions from one census to the next. Stochastically induced
failures to switch at each time step between a pupae-dominated
age distribution and a bimodal age distribution caused peak
motion in Fig. 4B.

Comparison of High and Zero Adult-on-Pupae Cannibalism. In con-
trast to the ¢, = 0 case, phase shifting did not affect the locations
of spectral peaks for c,, = 0.5 (Fig. 44). In typical length-1024
output of the SD-LPA model, phase shifting occurred about as
frequently (on 11.1% of time steps) for ¢,, = 0.5 as for ¢,, = 0.
However, for ¢, = 0.5, two opposite types of phase shifting along
the 3-cycle attractor occurred, canceling each other: backward
and forward shifting with respect to time evolution of the
deterministic system. If the deterministic system moves in one
time step from a; to a,, then a forward (backward) phase shift
of the stochastic system is movement of the population vector in
one time step from a neighborhood of a; to a neighborhood of
as (a;). A backward phase shift is a failure to advance to a
neighborhood of a, (backward compared with the deterministic
model). Forward (backward) shifts occurred on ~8.7% (2.4%)
of time steps for ¢, = 0.5. Forward shifts that can be paired with
backward shifts at another time do not affect the frequency of
oscillation of the system. Forward shifts not cancelled by back-
ward shifts at another time contribute to increasing the fre-
quency of the system; these occurred rarely (on only 6.3% =
8.7 — 2.4% of time steps) for ¢,, = 0.5, not enough to have a
noticeable effect. In contrast, for ¢,, = 0, phase shifting on the
approximate 2-cycle comprised of ¢; and ¢, occurred in only one
direction; forward and backward shifts on a 2-cycle are the same.
Phase shifts could not cancel each other, explaining why peak
locations changed for ¢,, = 0 but not for ¢,, = 0.5, and why
linearization theory applied for c,, = 0.5 but not ¢,, = 0.

We call phase shifts that occur predominantly in one direction
around an attractor “directional phase shifts.” “Phase dissipa-
tion” refers to phase shifts that occur approximately equally in
both directions around an attractor. Phase dissipation blunts
spectral peaks without changing their location. All phase shifts
are directional on a 2-cycle.

Discussion

Linearization theory, which describes the decay of small devia-
tions from a deterministic attractor, predicts that only the
magnitudes (not the frequencies) of stochastically induced phe-
nomena change as the magnitude of stochasticity changes. It
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explains the influence of stochasticity on dynamics for one
experimental treatment of this study but fails for another
treatment. Ecologically realistic levels of stochasticity can move
populations too far from a deterministic attractor for linear
approximations rooted at points in the attractor to be valid (27),
and can cause directional phase shifting that changes the dom-
inant periodicity of a system. Theory accounting for directional
phase shifts and dynamics far from an attractor is needed.

The Tribolium laboratory system is very controlled, but sto-
chasticity (primarily demographic; ref. 24) was still too great for
linearization to apply in one case we considered. The intensity
of demographic stochasticity relative to population density is
proportional to the inverse square root of population size (14, 25,
28). Demographic stochasticity affecting a field system could be
stronger or weaker than the stochasticity affecting the Tribolium
system according to whether the field system has smaller or
larger populations. Both demographic and environmental sto-
chasticity affect field systems. If total stochasticity affecting a
field system is comparable to or less than the stochasticity
affecting the Tribolium system, linearization theory may apply.

Whether linearization theory explains the effects of stochas-
ticity on a particular nonlinear model also depends on the details
of deterministic dynamics (18). If a deterministic model’s at-
tractor is close to, for example, unstable equilibria, other attrac-
tors, or zero-population boundaries, then low levels of stochas-
ticity may suffice to invalidate predictions of linearization
theory. If points of a finite attractor are close together, low levels
of stochasticity may cause frequent phase shifting, which may be
directional. Phase shifting can also occur for quasiperiodic and
chaotic dynamics. Linearization theory will be relatively less
useful for weakly stable deterministic models (such as the ¢, =
0 treatment here) for which perturbations from the attractor
decay slowly.

Our numerical spectral techniques for examining the biolog-
ical effects of strong stochasticity (Figs. 1 and 4) may apply to
ecological and other systems, and may generalize to continuous-
time models, models with a spatial component, and wavelet
analysis. How often the spectrum enhancement method gives
correct spectral predictions when using a realistic model and how
often it gives incorrect spectral predictions when using an
unrealistic model remain to be determined.

The strategy of Fig. 1 should be used only with a mechanistic
model. A mechanistic model that fits well in the spectral and time
domains can be used for detailed spectral analysis even when
long experimental time series are lacking (Fig. 1). The additional
detail in spectral estimates from long model-generated time
series reflects biological hypotheses encoded in the functional
form of the model. Detailed estimates are testable hypotheses for
population spectra based on all available observations and
mechanistic theory (deterministic and stochastic).

Methods

Experiments. We set adult mortality rate (um,) at 0.96, and
manipulated effective adult-on-pupae cannibalism (c,,) to ob-
tain values c,, = 0, 0.05, 0.10, 0.25, 0.35, 0.50, and 1.00 in seven
treatments of three replicates each (29). A control treatment was
not manipulated. The larval, pupal, and adult stages were
counted (eggs were discarded) every two weeks (one time step)
for 80 weeks, giving trivariate time series of length 41 (the initial
condition plus 40 time steps). The treatment with ¢,, = 0.35 and
the controls were continued for 424 weeks, giving six time series
of length 213 (24).

Models. The lattice stochastic demographic LSD-LPA model, a
discrete-time discrete-state nonlinear stochastic model, can be
constructed in three steps: (i) start with the LPA model, a
deterministic model; (if) include stochasticity (SD-LPA); and
(iii) constrain populations to integer values (LSD-LPA).
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The LPA model is L;+1 = bA, exp(—(ca/V)L, — (cealV)A)),
Py = (1 - Ml)Lt, A1 = (1 - I-La)Az + P, eXp(_(cpa/V)At)a
where L, P, and A, are the numbers of larvae, pupae, and
adults at week 2¢; b is fecundity per adult per unit time; w;, w,
are mortality rates per unit time per larva and per adult; ¢, is
the probability that a single larvae encounters and eats a single
egg during a small time interval, At (24); c., and c,, are similar
coefficients for rates of cannibalism per adult on eggs and on
pupae, respectively; V/ is habitat volume in units equal to the
volume of 20 g of flour. The initial stage vector (Lo, Po, Ao) =
(250, 5, 100) was used for all experiments and simulations of
this study.

The SD-LPA model adds square root scale trivariate normally
distributed noise (demographic stochasticity) with covariance
matrix 2 after each time step of the LPA model. The LSD-LPA
model rounds populations to the nearest integer after each time
step of the SD-LPA model. “Lattice” here refers not to a spatial
lattice but to the requirement that population counts be integers.
For the SD-LPA and LSD-LPA models, stochasticity is modified
in intensity by multiplying each entry of X by a single positive “X
factor.” Experimentally, demographic stochasticity relative to
population density can be decreased by increasing beetle habitat
size (25). The LSD-LPA model is considered the most realistic
model of this study. Model parameter values and equations are
given in Supporting Text 1.1.

Figures show spectra of adult time series only; spectra of other
life-stages are different in detail but had peaks of the same
relative heights in the same locations. Frequency-domain fit P
values take account of all life stages.

Statistical Tests. We used new simulation-based statistical tests to
see whether nonlinear stochastic models with fixed parameters
could generate time series with spectral estimates similar to
those of data time series. Two tests give approximate P values to
describe the quality of the frequency-domain fit between model
and data (see Supporting Text 1.2; see also refs. 22, 30, and 31).
The “spectrum distance fit test” measures the sum, across all
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frequencies, of the squared distances between the mean of log
spectra of many model-generated time series and the log spec-
trum of an experimental time series (this is the squared “L,
distance”). The test indicates a good fit if the data log spectrum
is closer to the mean model log spectrum under the L, distance
than a large enough percentage of model log spectra. The
“spectrum shape fit test” measures the correlation between the
mean model log spectrum and the log spectrum of an experi-
mental time series. A good fit occurs if the data log spectrum has
shape closer to that of the mean model spectrum than a large
enough number of model log spectra. Another technique, similar
to techniques applied previously (32-34), provides a visual
comparison between spectral estimates from data and distribu-
tions of spectral estimates from model-generated time series.
These tests reject (or fail to reject) biological hypotheses ex-
pressed as stochastic dynamical models.

These spectral fit tests do not use linear approximation. They
make no assumptions on the functional form of the spectrum.
They have no a priori relationship to traditional time-domain
fitting methods (5, 29). A good time-domain fit does not
necessarily imply a good frequency domain fit, or vice versa
(Supporting Text 1.3; ref. 30).

The fit of a population model should be verified in both
domains where feasible (7, 33, 34). A substantially inappropriate
model will fail to fit short population time series, for all
parameter values, in the frequency and the time domains. A
moderately inappropriate model functional form may fit accept-
ably in both domains, but with different parameter values
(examples in Supporting Text 1.3). Such a functional form must
be rejected (30). A good model should fit well in both domains
with the same parameters.

We thank B. Setterberg, C. Wiggins, M. Mwangi, H. zu Dohna, M.
Magnasco, E. Emberly, R. Siddharthan, A. King, T. Benton, J. Green-
man, O. Bjgrnstad, M. Choisy, B. Grenfell, P. Rohani, E. G. D. Cohen,
and H. Wearing for help and comments. J.E.C. thanks W. T. Golden for
hospitality and P. K. Rogerson for assistance. This work was supported
by U.S. National Science Foundation Grants DEB 9981552 and DMS
0443803.

19. Geisel T, Heldstab J, Thomas H (1984) Z Phys B 55:165-178.

20. Wiesenfeld K (1985) J Stat Phys 38:1071-1097.

21. Omberg L, Dolan K, Neiman A, Moss F (2000) Phys Rev E 61:4848-4853.

22. Platt T, Denman KL (1975) Annu Rev Ecol Syst 6:189-210.

23. Brillinger D (2001) Time Series: Data Analysis and Theory (Soc Indust Appl
Math, Philadelphia).

24. Cushing JM, Costantino RE, Dennis B, Desharnais RA, Henson SM (2003)
Chaos in Ecology: Experimental Non-linear Dynamics (Academic, New York).

25. Desharnais RA, Costantino RF, Cushing JM, Henson SM, Dennis B, King AA
(2006) Ecol Lett 9:537-547.

26. Henson SM, Cushing JM, Costantino RF, Dennis B, Desharnais RA (1998)
Proc R Soc London B 265:2229-2234.

27. Keeling MJ, Rohani P, Grenfell BT (2001) Physica D 148:317-335.

28. May RM (1973) Stability and Complexity in Model Ecosystems (Princeton Univ
Press, Princeton).

29. Dennis B, Desharnais RA, Cushing JM, Henson SM, Costantino RF (2001)
Ecol Monog 71:277-303.

30. Tsay RS (1992) Appl Stat 41:1-15.

31. Kendall BE, Briggs CJ, Murdoch WM, Turchin P, Ellner SP, McCauley E,
Nisbet RM, Wood SN (1999) Ecology 80:1789-1805.

32. Cohen JE (1995) Nature 378:610-612.

33. Stenseth NC, Bjgrnstad ON, Saitoh T (1996) Proc R Soc London B 263:1117-
1126.

34. Grenfell BT, Bjgrnstad ON, Finkenstadt BF (2002) Ecol Monogr 72:185-202.

PNAS | December5,2006 | vol. 103 | no.49 | 18865

APPLIED
MATHEMATICS

POPULATION

BIOLOGY



