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4.1 I SPECIES' AVERAGE 
BODY MASS AND 
NUMERICAL 
ABUNDANCE IN A 
COMMUNITY FOOD 
WEB: STATISTICAL 
QUESTIONS IN 
ESTIMATING THE 
RELATIONSHIP 
Joel E. Cohen and Stephen R. Carpenter 

The quantitative patterns and mechanisms of the relationship between 
body mass and abundance have been examined in many ecological set- 
tings (Colinvaux, 1978; Damuth, 1981; Peters, 1983; Griffiths, 1992; 
Brown, 1995a, p. 94; Griffiths, 1998; Blackburn and Gaston, 1999; Leaper 
and Raffaelli, 1999; Kerr and Dickie, 2001; Russo et al., 2003). 

The purpose of this chapter is to examine in detail some of the 
statistical foundations of estimating the quantitative relationship 
between average body mass and abundance. The empirical example 
analyzed here is the pelagic food web (hereafter, simply "web) of 
Tuesday Lake, Michigan (Carpenter and Kitchell, 1933a). The data, 

t 

provided by Stephen R. Carpenter, are given in fullcby Jonsson et al. 
(2005). 1 
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Blackburn and Gaston (1999, p. 182) referred to the study of Damuth 
(1981) as "the single most influential study of the interspecific abun- 
dance-body size relationship." Blackburn and Gaston plotted Damuth's 
467 data points on 307 species of mammalian terrestrial primary con- 
sumers in a graph in which the ordinate (vertical axis) was log N (log,, 
number of individuals per km2) and the abscissa (horizontal axis) was 
log M (log,, body mass, not further specified as to average, adult, or max- 
imal). According to Blackburn and Gaston, the ordinary least squares 
regression of the linear model 

gave an estimated slope of P, = -0.75. Other data yielded other estimates 
of the slope (Peters, 1983; Peters and Wassenberg, 1983; Peters and 
Raelson, 1984; Griffiths, 1992; Cyr et al., 1997a; Cyr et al., 1997b; Griffiths, 
1998; Leaper and Raffaelli, 1999). (Throughout the appendices of Peters 
(1983), the columns headed "Independent variable" should be headed 
"Dependent variable.") 

Enquist et al. (1998, p. 1641, Cohen et al. (2003, p. 1784), and most 
plant ecologists plotted log M on the ordinate and log N on the abscissa. 
Many approximated the data by ordinary least squares regression of the 
linear model 

If all data fell exactly on a straight line, then both equations would be 
exact descriptions, the slope coefficients would be related by P, = 1 lp,, 
and the choice between Eqn. 1 and Eqn. 2 would not matter. But 
p, = 1 lp, need not hold when there is random variation in the relation 
between body mass and abundance. It is not clear initially whether Eqn. 
1 or Eqn. 2 is a more useful description of patterns in a community of 
plant and animal species with different modes of growth, some determi- 
nate and some indeterminate. 

The results show that the two regressions may appear contradictory 
unless careful attention is paid to how well the data satisfy the assump- 
tions of each linear regression model. Most of the assumptions underly- 
ing ordinary least squares regression of the linear model Eqn. 1 cannot 
be rejected by the Tuesday Lake data. An important limitation of this 
conclusion is that the assumption of negligible error variance in the 
measurement of log M cannot be tested with the available data. Most of 
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the assumptions underlying Eqn. 2 can be rejected by the Tuesday Lake 
data. This information is sufficient to guide the choice of a linear regres- 
sion model. However, the direction of causation cannot be determined 
on statistical grounds from static observational data. 

MATERIALS AND METHODS 

Data 
Tuesday Lake is a mildly acidic lake in Michigan (8g032' W, 46"13' N) 
(Carpenter and Kitchell, 1993a) with surface area 0.9 ha. The fish popu- 
lations were not exploited and the drainage basin was not developed. 
Data collected in 1984 and again in 1986 consisted of a list of species, 
and for each species, its predator species and its prey species (for the 
body sizes and life stages present in the lake in each year), its average 
body mass M (kg fresh weight per individual), and its numerical abun- 
dance N (individualslm3 in the non-littoral epilimnion, where the 
trophic interactions take place). In 1985, the three planktivorous fish 
species were removed and replaced by a single piscivorous fish species. 
In 1984, the 56 biological species consisted of 31 phytoplankton 
species, 22 zooplankton species, and 3 fish species. In 1986, the 57 
species consisted of 35 phytoplankton species, 21 zooplankton species, 
and one fish species. Jonsson et al. (2005) gave details of sampling 
methods, the raw data, and significant limitations of the data, including 
the delicate estimation of the density of zooplankton species. Our 
analyses used biological species rather than trophic species. Two or 
more biological species are "lumped" into a single trophic species if the 
two or more biological species have an identical set of consumer 
species and an identical set of resource species. There were 27 trophic 
species in 1984 and 26 trophic species in 1986 (Jonsson et al., 2005). 
Cohen et al. (2003) and Reuman and Cohen (2004a, 2004b) analyzed 
other aspects of the data. 

Definitions 
The biomass B (kglm3) of a species is its average body mass M times its 
numerical abundance N. Log throughout means log,,. 

The rank(M) of a species equals 1 if that species has the largest value 
of M, equals 2 if that species has the second largest value of M, and so on; 
the rank is the order from largest to smallest average body mass. In 1984, 
the 56 body massks were described by 55 unique values; in 1986, the 
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57 body masses were described by 55 unique values. The species with 
tied body masses retained the ordering of the listing of species in the 
data appendices of Jonsson et al. (2005). Rank(N) is similarly defined by 
rank ordering the species from largest to smallest 'values of N and by 
retaining the ordering of Jonsson et al. (2005) in case of ties. The rank 
(with values 1, 2, 3, ... ) increases as the numerical value of the variable 
decreases. 

Theory 
In the absence of measurement error or random fluctuation, numerical 
abundance N depends allometrically on average body mass M if and 
only if biomass B depends allometrically on M. For if b > 0 is the expo- 
nent in an allometric relation N oc M - ~ ,  then B = MNoc M 1  - ' and con- 
versely. Thus the study of the relation between the numerical abundance 
and the body mass of biological species is related to the study of the bio- 
mass spectrum, as has been widely recognized (Platt and Denman, 1977, 
1978), but if the biomass spectrum uses size classes rather than biologi- 
cal species as the unit of analysis, then the relation depends on the num- 
ber of biological species within each size class. Likewise, N depends 
allometrically on M if and only if M depends allometrically on N, for 
N cx M - ~  if and only if M oc N-'Ib, so biomass B also depends allometri- 
cally on numerical abundance N according to B = MN cx N'-'". 

The two cases of special interest are b = 314 and b = 1. If b = 314 (as 
Damuth, 1981 suggested), then N oc M - ~ ~ ~  SO B = MN cx MIM, and the 
biomass of a species increases with average body mass. If b = 1, then 
N oc M-I and B is the same for every species, regardless of M or of N or 
of rank(M) or of rank(N). In this case, c = MN implies that log N = log c - 
log M and log M = log c - log N, that is, all species should fall on a line 
with slope -1 in the plane with coordinates log M and log N, regardless 
of which coordinate is the abscissa and which is the ordinate. 

Methods 
Computations were done using the statistics toolbox and other func- 
tions of Matlab, version 6.5.0.180913a (http://www.mathworks.com/, 
Release 13). Linear regressions were done using 'regress.' All regressions 
used all species, whether they were connected to the main web or iso- 
lated (i.e., not connected to most other species). 

Five principal assumptions must be satisfied to justify the probability 
values and confidence intervals generated by ordinary least squares lin- 
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ear regression analysis of the model y=a+bx+e. In a sample of size n, for 
any data point (xi, y,), with i = 1, . . ., n, the residual ri is defined as the dif- 
ference in the vertical direction ri = yi - (a+bx,) between the observed 
ordinate yi and the predicted ordinate yPredti = a+bxi (pred = predicted) 
given by the linear model, where a and b are the least-squares estimates 
of the regression coefficients. The five assumptions are linearity of 
the average (conditional expectation) of y as a function of x, normality of 
the residuals E (with unknown variance), homoscedasticity (i.e., the vari- 
ance of the residuals is independent of x), serial independence of the 
residuals with increasing x, and no error in the value of x. A diagnostic 
Matlab function 'regressiontest' was written to assess the validity of the 
first four of these assumptions for any pair x, y of data vectors of equal 
length. 

This function evaluated linearity in two ways, by classical hypothesis 
testing and by using the Akaike information criterion. The classic test 
of nonlinearity was performed by fitting a quadratic equation 
y=a+bz+cz2+&, where z=x-mean(x) was a centered translation of x used 
to reduce the collinearity between x and x2. The null hypothesis of lin- 
earity was rejected if the confidence interval for the parameter c did not 
include 0. 

To use the Akaike information criterion, the corrected Akaike infor- 
mation criterion AIC, (Burnham and Anderson, 2002, pp. 63, 66) was 
computed once for the residuals from the linear model and then again 
separately for the residuals from the quadratic model, using in each case 
the formula: 

For the linear model, K=3. For the quadratic model, K=4. Intuitively 
speaking, Eqn. 3 says that, in its application to ordinary least squares 
regression, AIC, is a rescaling of the mean squared residual, and the 
smaller AIC, the better the model fits. Then 

A = 1 AIC, (linear model) - AIC, (quadratic model) I (4) 

, was computed to compare the goodness of fit of the linear and quad- 
ratic models for the same set of (x, y) data. Although statistical signif- 
icance could not be assigned to any value of A, a value of 10 or more 
is interpreted to mean that the model with the higher AIC, is essen- 
tially without empirical support (Burnham and Anderson, 2002, e.g., 
p. 226). 
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Whether the residuals from the regression line were approximately 
normal with unknown variance was examined in three ways. First, for 
visual inspection, the Matlab function 'qqplot(x)' plotted the quantiles of 
the residuals ri as a function of the quantiles of the normal distribution. 
The more nearly the residuals were normally distributed, the more 
nearly the quantile-quantile plot approximated a straight line. Second 
and third, the Matlab functions 'jbtest' performed the Jarque-Bera test 
and 'lillietest' performed the Lilliefors test of normality with unknown 
mean and variance. Neither test was impressively sensitive to deviations 
from normality. For example, at the 0.01 level of significance, 'lillietest' 
failed to reject normality as a model for the first 358 natural numbers 
1,2, . . . ,358, but did reject normality as a model for the first 359 natural 
numbers. Similarly, at the 0.01 level of significance, 'jbtest' failed to 
reject normality as a model for the first 147 natural numbers but did 
reject normality as a model for the first 148 natural numbers. For sam- 
ples as small as the 56 species in 1984 or the 57 species in 1986, these 
tests would not easily detect minor deviations from normality. 

If the residuals were homoscedastic, there should be no trend in the 
residuals, or in the absolute value of the residuals, as a function of either 
the independent variable x or of the predicted value of the dependent 
variable y,,,. Homoscedasticity was tested by fitting linear and quad- 
ratic regressions of ri against y,,,,,. Homoscedasticity was further tested 
by fitting linear and quadratic regressions of the absolute value of the 
residuals 1 ri 1 against Y,,,,~. The null hypothesis of homoscedasticity was 
rejected if any of the confidence intervals (from either the linear or the 
quadratic models) of the coefficients of the linear or quadratic terms did 
not include 0. 

The independence of successive residuals was tested by sorting the 
residuals in the order determined by increasing yp,, and then compar- 
ing computed values of the Durbin-Watson statistic for the residuals 
against tabulated critical values (Stuart and Ord, 1991, p. 1077 for the 
formula, pp. 1245-1246 for critical values). The computation of the 
Durbin-Watson statistic was programmed from scratch. Each numerical 
result was identical to that obtained from the publicly available Matlab 
function dwatson.m, accessed from http://econpapers.hhs.se/ 
software/bocbocode/t850802.htm on January 15,2004. 

Testing the assumption of no error in x would require replicate meas- 
urements of M and N for all species. Unfortunately such data are not 
available for Tuesday Lake. See the discussion and conclusion subsec- 
tion on Errors in measurement. 

4.1 I Results 

I RESULTS 

Regression Coefficients of Allometric Relations 
Scatter plots of log N as a function of log M in 1984 (Figure 1A) and 1986 
(Figure 1B) suggested that a linear relation is plausible. When log N was 
regressed as a linear function of log M (following Damuth, 1981) sepa- 
rately in 1984 and 1986, the point estimates of the slope coefficient were 
-0.83 and -0.74 (Table 1). The 99% confidence intervals for the slopes 
included -0.75 and excluded -1. Scatter plots of log B as a function of log 
M in 1984 (Figure 2A) and 1986 (Figure 2B) suggested no very clear, but 
perhaps an increasing, relation. When log B was regressed as a linear 
function of log M separately in 1984 and 1986, the point estimates of the 
slope coefficient were 0.17 and 0.26. Since log B = log M+ log N, it follows 
mathematically, and is observed numerically, that P, + 1 = p, and that P, 
+ 1 = v,, using the notation of Table 1. Both 99% confidence intervals for 
the slopes included 0.25 and excluded 0. The regression coefficients of 
log B as a linear function of log rank(M) were significantly negative 

I -5 $ -5 - 
-1 5 -1 0 -5 0 -15 -1 0 -5 0 

log,, body mass (kg) log,, body mass (kg) 

log,, abundance (ind./m3) log,, abundance (ind./m3) 

FIGURE 1 ( Numerical abundance of species as a function of average body mass in 
Tuesday Lake, Michigan, in 1984 (A) and 1986 (B) and average body mass as a func- 
tion of numerical abundance in 1984 (C) and 1986 (D). 
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Table 1: Slope coefficients of linear regressions between log numerical 
abundance log N and log average body mass log M of all species in 
Tuesday Lake in 1984 (56 species) and 1986 (57 species), and 
regressions of log biomass log B as a function of log M, log N, 
log rank(lll), and log rank(A9. The 99% confidence intervals for the 
slopes are in parentheses. The putative p value is the nominal 
statistical significance with which the data reject the null hypothesis 
that the slope is zero. 

slope point estimate 
param- (99% confidence putative 

x Y year eter interval) r2 P 

log M log N 1984 P, -0.8271 (-0.96, -0.70) 0.84 <0.001 
log N log M 1984 P, -1.0178 (-1.18, -0.86) 0.84 <0.001 
10gM 10gN 1986 P, -0.7397 (-0.89, -0.59) 0.75 <0.001 
10gN log M 1986 P, -1.0149 (-1.23, -0.80) 0.75 <0.001 

log M log B 1984 p, 0.1729 (0.04, 0.30) 0.19 <0.001 
log N 10gB 1984 V, -0.0178 (-0.18, 0.14) 0.002 0.77 
logM log B 1986 p, 0.2603 (0.11, 0.41) 0.27 <0.001 
log N 10gB 1986 V, -0.0149 (-0.23, 0.20) 0.001 0.85 

log rank log B 1984 p, -1.0762 (-1.89, -0.26) 0.19 <0.001 
(M) 
log rank logB 1984 v, -0.2750 (-1.17, 0.62) 0.01 0.42 
(N) 
log rank logB 1986 p, -1.4506 (-2.31, -0.59) 0.27 <0.001 
(M) 
log rank log B 1986 v, -0.5807 (-1.57, 0.40) 0.04 0.12 
(N) 

(p < 0.001). These statistical results are all consistent with N oc M - ~ ' ~  and 
inconsistent with N oc M- I .  

When the independent variable is changed from average body mass to 
numerical abundance, scatter plots of log M as a function of log N in 
1984 (Figure 1C) and 1986 (Figure 1D) likewise suggested that a linear 
relation is plausible. However, when log M was regressed as a linear 
function of log Nseparately in 1984 and 1986, the point estimates of the 
slope coefficient were -1.02 and -1.01 (Table 1). The 99% confidence 
intervals for the slopes excluded -1.33 = 11k0.75) and included -1. 
Scatter plots of log B as a function of log N in 1984 (Figure 2C) and 1986 
(Figure 2D) suggested no clear, but perhaps a decreasing, relation. When 
log B was regressed as a linear function of log N separately in 1984 
and 1986, the point estimates of the slope coefficient were -0.02 and 
-0.01. Both 99% confidence intervals for the slopes included 0 and 

4.1 ( Results 

1984 

log,, body mass (kg) log,o body mass (kg) 

log,, abundance (ind./m3) log,, abundance (ind.Im3) 

FIGURE 2 ( Biomass of species as a function of average body mass in Tuesday Lake, 
Michigan, in 1984 (A) and 1986 (B) and biomass as a function of numerical abun- 
dance in 1984 (C) and 1986 (D). 

excluded -1 I4 and -1 13. The regression coefficients of log B as a linear 
function of log rank(A9 were not significantly different from 0 (p > 0.12). 
These statistical results are all consistent with N oc M - '  and inconsistent 
with N rn M - ~ "  

The 99% confidence interval (-1.18, -0.86).for P,, the 1984 slope of 
Eqn. 2, implies a confidence interval (1 1-0.86, 11-1.18) = (-1.16, -0.85) for 
the slope coefficient in a linear equation of the form of Eqn. 1 (though not 
for the least squares fit of Eqn. I) ,  and this interval intersects the 99% con- 
fidence interval (-0.96, -0.70) for P,, the slope coefficient in Eqn. 1, in the 
range (-0.96, -0.85), which is incompatible with Damuth's estimate of 
slope of -314 and with constant biomass across species (slope -1). 
Similarly, for 1986, the 99% confidence interval (-1.23, -0.80) for the 1986 
slope of Eqn. 2 implies a confidence interval (11-0.80, 11-1.23) = (-1.25, 
-0.81) which intersects the 99% confidence interval (-0.89, -0.59) for the 
slope coefficient in Eqn. 1 in the range (-0.89, -0.81), which is incom- 
patible with Damuth's estimate of slope of -314 and with constant bio- 
mass :i::ross species (slope-1). If one hopes that the slope coefficients are 
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log M =  (-11.29, -10.46) + (-1.07, -0.62)~ + (+0.02, +0.15)z2, (5) 

Because log B = log M + log N, it is expected mathematically (and 
observed numerically here) that the confidence intervals (and point 
parameter estimates) of the coefficients of the quadratic terms in Eqn. 5 
and Eqn. 6 are identical, and that the confidence intervals (and point 
parameter estimates) of the coefficients of the linear terms in Eqn. 5 and 
Eqn. 6 differ by exactly 1. It is of more biological interest to compare the 
interval (-1.07, -0.62) of the linear coefficient in Eqn. 5 with the interval 
(-1.23, -0.80) of the linear coefficient of the corresponding linear model 
in Table 1, line 4: while both intervals include a slope estimate of -1, the 
latter interval excludes both -213 and -314 while the former interval 
(which incorporates the influence of the quadratic term) includes both 
-213 and -314. Similarly, the interval (-0.07, +0.38) of the linear coefficient 
in Eqn. 6 includes both 113 and 114, while the interval (-0.23, -0.20) of 
the linear coefficient of the corresponding linear model in Table 1, line 8, 
excludes both 113 and 114. 

The residuals of the regressions of log M and log B as linear functions 
of log N had significant quadratic dependence on the predicted value of 
the linear regression, and therefore on log N (Table 2, column 8). In 1984 
and 1986, linear regressions of log B on log rank(l\r) had absolute residu- 
als that had a statistically significant linear dependence (column 9), and 
in 1986 a significant quadratic dependence (column lo), on the pre- 
dicted value of the linear regression, and therefore on log rank(l\r). All 
6 regressions in which the independent variable (x) was log N or log 
rank(l\r) displayed statistically significant deviations from the assump- 
tions of linear regression, whereas none of the 6 regressions in which the 
independent variable (x) was log M or log rank(h@ displayed any statis- 
tically significant deviation. 

Artificial Example 
The following artificial example emphasizes that the linear regression of 
y on x may satisfy the underlying assumptions while the linear regres- 
sion of x on y may not. Suppose the random variable X took the values 
1,2,3,  or 4 each with probability 114, and suppose the random variable 
Y took the values 1 + 10X + E, where each realization of E was an inde- 
pendent normal random variable with mean 0 and variance 1. By con- 
struction, (X, Y) satisfied perfectly the assumptions of the linear 
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regression model: normality, linearity, homoscedasticity, independence, 
and exact knowledge of X. Figure 3A illustrates the distribution of (X, Y) 
with 100 values of E, and therefore 100 values of Y, for each value of X. 
The quantile-quantile plot (see Figure 3B), the distribution of the 
(signed) residuals (see Figure 3C), and the distribution of the absolute 
residuals (see Figure 3D), as well as all of the quantitative statistics, were 
compatible with the assumptions of linear regression. 

When X and Y were exchanged, the graph of the function (Figure 4A) 
approximated a step function. While the marginal distribution of the 
residuals was very nearly normal (see Figure 4B), neither the residuals 
nor the absolute residuals were serially independent for increasing val- 
ues of the linear prediction (see Figure 4 C,D). The Durbin-Watson sta- 
tistic easily detected these departures from serial independence. 

Data & linear regression Quantile-quantile plot 
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FIGURE 3 1 A, Artificial data (X, Y) that satisfy the assumptions of the linear regres- 
sion model regarding normality, linearity, homoscedasticity, independence and no 
error variance in x (see text for details). B, Quantile-quantile plot. C, Residuals as a 
function of the linear prediction. D, Absolute residuals as a function of the linear 
prediction. 
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Data & linear regression Quantile-quantile plot 
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FIGURE 4 1 A, The same artificial data as in Figure 3 but with axes exchanged: (Y, X) 
data do not satisfy linearity, homoscedasticity or independence. B, Quantile-quantile 
plot. C, Residuals as a function of the linear prediction. D, Absolute residuals as a 
function of the linear prediction. 

DISCUSSION AND CONCLUSIONS 

Principle Findings 
As many have pointed out before, studies of the connection between 
body size and numerical abundance should carefully investigate whether 
the probability statements associated with linear regression are justified 
by the properties of the data being analyzed (Strathmann, 1990; 
Blackburn and Gaston, 1997, 1998, 1999; Russo et al., 2003; and refer- 
ences they cite). The present study may be the first to examine carefully 
both choices of independent variable, body size and numerical abun- 
dance, for a single set of data. These data include essentially all plant and 
animal species in a single pelagic community with a known food web. In 
linear regressions of the Tuesday Lake data, it is more defensible to use 
log M or log rank(kf) as an independent variable and log Nor log B as the 
dependent variable than it is to use log Nor  log rank(N as an indepen- 
dent variable and log M or log B as the dependent variable. On the other 

4.1 1 Discussion and Conclusions 151 

hand, using log N as the independent variable seems to be more sensitive 
at picking up a nonlinear relationship, if that nonlinearity is real. The 
generality of these conclusions for other webs remains to be determined. 

Ecological Significance 
Choosing an appropriate statistical model matters ecologically. For 
example, in Table 1, in the models where the underlying statistical 
assumptions were not rejected by the data, the 99% confidence intervals 
for the allometric exponent p, did not include -1, but rather lay above 
-1. Equivalently, the 99% confidence intervals for the allometric expo- 
nent p1 lay above 0. That is, in Tuesday Lake in 1984 and 1986, the bigger 
the average individual body mass of a biological species, the larger the 
biomass of that species, on the average. 

The important conclusion that the biomass of biological species in 
Tuesday Lake increased with the average individual body mass of bio- 
logical species was not evident in Table 1 when the independent variable 
was log N. However, in these cases the confidence intervals of the slopes 
were statistically unjustified. If unjustified models were to be used, an 
important conclusion about the upward trend of biomass with increas- 
ing average individual body mass of biological species in the Tuesday 
Lake pelagic food web would be lost. 

Variation Among Studies 
Among the many studies of the relation between numerical abundance 
and body size, Leaper and Raffaelli (1999, their Table 2) tabulated 3 1 esti- 
mates of the exponent b in the relation N cc M - ~ ,  in addition to two esti- 
mates of their own for the Ythan estuary. Kerr and Dickie (2001) reviewed 
many studies of biomass spectra, which are related through the fre- 
quency distribution of species according to body size. These studies dif- 
fer in numerous significant respects, including: the units of observation, 
the universe of units of observation, the measurement of body size, and 
the choice of independent variable (body size or abundance). We con- 
sider each of these four differences in turn. 

First, the units of observation have been diverse. Examples include: 
functional groups, such as detritus, phytoplankton, and macroalgae 
(Leaper and Raffaelli, 1999, p.192); taxonomic groups resolved as nearly 
as possible to biological species (Leaper and Raffaelli, 1999, p. 192, and 
the present study); size classes without regard to taxonomic identifica- 
tion (Jennings and Mackinson, 2003); and narrowly defined size classes 
within a mixture of species and broad taxonomic units, for example, 
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heterotrophic bacteria, Prochlorococcus, Synechococcus, and ultra- and 
nano-plankton (Rinaldo et al., 2002). Regressions of numerical abun- 
dance against body size using taxonomic units of observation are neces- 
sarily affected by the distribution of body size within the taxonomic 
units and may be biased by failure to sample some life history stages 
adequately. 

Such regressions may differ from regressions of numerical abundance 
against body size using size classes as the units of observation. Leaper 
and Raffaelli (1999) showed that improving the taxonomic resolution 
among organisms of small body size substantially decreased the esti- 
mate of b in theythan estuary from 1.03 to 0.63, and observed that it was 
difficult to compare studies with differing degrees of taxonomic resolu- 
tion. Russo et al. (2003) compared estimates of b obtained by using indi- 
vidual biological species, ecological guilds (frugivore-omnivore, 
granivore, insectivore, raptor), and groupings based on phylogenetic 
relatedness. 

Second, the units of observation have been selected from different 
universes. Leaper and Raffaelli (1999, p. 192) usefully classify studies 
as direct observations of a local community; compilations of commu- 
nity data; global compilations; and compilations of data on one broad 
taxon, such as birds or terrestrial herbivorous mammals. Russo et al. 
(2003) analyzed direct observations of sympatric assemblages of trop- 
ical birds in three local rain forest habitats. The Tuesday Lake data 
were direct observations of phytoplankton, zooplankton, and fishes, 
excluding microbes and benthic and littoral organisms (Jonsson et al., 
2005). 

Third, how body size is measured has two aspects: how is the size of a 
single individual measured, and how is a composite indicator of size for 
the units of observation derived from the measurements for individuals? 
The size of a single individual may be measured by wet weight (this 
study), volume (Rinaldo et al., 2002), dry weight (Leaper and Raffaelli, 
1999), length (converted to mass by an allometric relation between 
length and mass, a conversion that introduces additional error), or as a 
vector of weights of each component chemical element (e.g., by carbon 
and phosphorus content, Sterner and Elser, 2002). The composite indi- 
cator of size may be the average (this study, Enquist et al., 1998, p. 164), 
the "mean adult body-size" (Leaper and Raffaelli, 1999), or the maxi- 
mum body size. Only the average body size has the convenient property 
that the species' biomass is the product of the numerical abundance 
times the average body mass. On the other hand, the average body size 
depends on the body size distribution within the unit of observation. 
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The other indicators of population body size, such as adult or maximum 
size, may not be well defined for species of indeterminate growth. 

Fourth, which variable (body size or abundance) is viewed as inde- 
pendent may depend on the observer and the unit of observation. As 
previously noted, most plant ecologists have plotted log M on the ordi- 
nate and log N on the abscissa. Damuth (19811, Blackburn and Gaston 
(1999), Leaper and Raffaelli (1999) and most animal ecologists have 
reversed the assignment of variables to axes. If there were no errors of 
measurement in log M and log N and no stochastic variations from an 
exact allometric relation between M and N, the choice would be imma- 
terial. In the presence of deviations from an allometric relation and error 
variance in measurements, the choice could substantially affect the esti- 
mated coefficients of the allometric relation. 

Errors in Measurement 
Given replicate measurements of M and N for all species, an explicit allo- 
metric model that allows for measurement errors in both variables M 
and N is: 

where u, o ,  and E are independent, normally distributed errors with mean 
zero, p is the true but unobservable log M and q is the true but u n 0 b s e ~ -  
able log N. One could estimate the regression coefficients P and the vari- 
ances of u, o, and E using Error-in-Variables regression (Clutton-Brock, 
1967; Reilly and Patino-Leal, 1981). The estimates of the P? will be sensi- 
tive to the variances var(u) and var(o). Alternative statistical models such 
as the general structural relation, reduced major axis regression and ordi- 
nary least squares, and further references, are discussed by Griffiths 
(1992, 1998) and Russo et al. (2003, p. 272), among others. 

For pelagic ecosystems, measurements of M tend to have lower obser- 
vational error than measurements of N. For subsets of communities sim- 
ilar to Tuesday Lake, S.R.C. has estimated the measurement error in M 
and N using replicates and found the error variance in N to be larger 
than the error variance in M, frequently by as much as two orders of 
magnitude. This difference in error variance results in part from the 
sampling design, which could allocate replicates to increase the preci- 
sion of either M or N. For patchy or mobile species, it can be laborious to 
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increase the precision of N by sampling more intensively. Estimating N 
requires handling many individual organisms. With only the limited , 
extra effort of measuring each individual's M, it is possible to build up a 
large number of replicates to increase the precision of measurement of 
M. Thus attempts to improve the precision of measurement of N may 
yield even further improvements in the precision of measurement of M. 

It is tempting to speculate that the difference between animal and 
plant ecologists in which variable they choose as independent and plot 
on the abscissa may result from differences in the difficulty of measur- 
ing M versus N for different types of organisms. Trees (and most terres- 
trial plants) stand still to be counted but it is often not easy to estimate 
their mass. For example, considerable error may be involved in estimat- 
ing tree mass from trunk diameter. On the other hand, the numerical 
abundance of animals is often difficult to measure precisely but meas- 
urements of body mass may be relatively easy to replicate, especially for 
species with determinate growth. Where the direction of causality is not 
obvious, perhaps animal and plant ecologists are both inclined to put 
the more precise measurement on the abscissa. 

Causality 
A linear regression model is not informative about causality because the 
direction and quantitative form of causation cannot be determined on 
statistical grounds from static observational data. The statistically defen- 
sible regression model in Eqn. 1 suggests but does not prove that the 
average individual body mass of a species determined the species' 
numerical abundance in Tuesday Lake in 1984 and 1986. 

Damuth (1981) suggested that M determines N for energetic reasons. 
If M is fured for each unit of observation (e.g., species, other taxonomic 
unit, or size class); and if the energy required to support each individual 
is &; and if the energy available to support each unit of observation is 
a constant E; then the number N of individuals that can be supported by 
the available energy in each unit of observation is El(aMb) (i.e., N cc M-b). 
The fixed amount of energy and the scaling of metabolic rate with body 
mass establish a relationship between M and Nand could equally well 
argue for M as a function of N. Damuth's crucial assumption, for the 
present discussion, is to regard M as fured and N as variable. This and 
other mechanisms are reviewed in greater detail by Blackburn and 
Gaston (1999). 

An alternative causal scheme is that the abundance of a species is fixed 
by underlying birth and death rates, and that the average body size adjusts 
up or down according to the number of individuals who make a living 
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from a fixed supply of food or light or other essential input. Causation 
could run from numerical abundance to body mass in a nonlinear rela- 
tion with a nonstandard error structure. Such an alternative causal model 
is not the simplest model, given our data, but it is also not logically impos- 
sible when species interact in a community web, as in Tuesday Lake. 

The assumption that M is fured for each unit of observation can be 
attacked at the level of the individual, at the level of the population, and 
at the level of the community. 

At the level of the individual, density-dependent body growth is well 
known in plants, animals and other organisms. A large number of 
seedlings or young-of-year may, when resources are limited, result in 
reduced growth for most or all individuals. The mechanistic basis of the 
determination of individual body size is little understood (Hafen and 
Stocker, 2003). a 

At the level of the population (excluding those units of observation 
defined by size alone, such as a size class, for which size is necessarily 
fured or bounded), a familiar feature of the demography of age-struc- 
tured populations is that rgpidly growing populations have a higher 
proportion of individuals in young age classes and a lower proportion of 
individuals in old age classes than stationary or declining age-structured 
populations with exactly the same life table (that is, holding the life table 
constant and varying only the intrinsic rate of natural increase or 
Malthusian parameter usually denoted by r, not to be confused with the 
residual r). In such a case, if body mass increases with age, then a more 
rapidly growing population (with a younger age structure) will have 
smaller average body mass than a stationary or declining population, 
even if the life tables, fertility schedules, and age-specific growth sched- 
ules are identical in the populations being compared. Roff (1986, p. 317) 
argued that "although an increase in body size increases fecundity and 
tends to increase [the Malthusian parameter] r, the concomitant 
increase in development time decreases r"; the observed distribution of 
body sizes in a population results from the balance between these coun- 
tervailing selective forces and has, in some instances, been demon- 
strated to be under genetic control. 

Changes in the size distribution within a population influence, not 
only the average body size, but also the average energy consumption per 
unit of mass if younger, faster-growing individuals have higher respira- 
tion rates per unit of mass than older, slower-growing individuals, as indi- 
cated by Riisgird (1998). If the average energy consumption per unit of 
mass influences a species' numerical abundance (as in the energetic 
model of Damuth), then population age-structure or size-structure influ- 
ences both M and Nand may affect the estimated allometric exponent b. 
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At the level of the community, trophic, competitive and mutualistic 
interactions may affect the average body size of a population. For exam- 
ple, predators (including human harvesters) may preferentially remove 
vulnerable small individuals or large trophy individuals. In Tuesday 
Lake, all but a handful of species were linked by the food web and were 
therefore subject to influence by resource species or consumer species. 
Even the half dozen isolated species were subject to competition (for 
light or nutrients, for example) that could affect average body size. 

Some ecologists view a species' average body mass as determined on 
an evolutionary time scale and its numerical abundance as responding 
on an ecological time scale. However, a fuller view suggests that a 
species' average body mass is determined on at least three time scales: 
ontogenetic (by the way an individual's genes guide its development in 
interaction with its proximate environment), ecological (by how individ- 
uals interact with other individuals of the same and different species and 
with the abiotic environment), and evolutionary (by how individuals' 
selective advantages, resulting from their ontogeny and ecological inter- 
actions, contribute to the heritable characteristics of the next genera- 
tion). The balance among ontogenetic, ecological, and evolutionary 
influences on a species' average body mass varies among species and, 
for a given species, according to the biotic and abiotic surroundings of 
the species. 

Body size (individually and on the average) and numerical abundance 
interact dynamically, on multiple time scales, within and between 
species or other units of observation, and through biotic interaction 
with the abiotic environment. The Tuesday Lake data demonstrate, once 
again, that statistical care is required in assessing even the simblest pat- 
tern generated by this dynamic process. 
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