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ABSTRACT The relative merits of cooperation and self-
interest in an ensemble of strategic interactions can be investi-
gated by using finite random games. In finite random games,
finitely many players have finite numbers of actions and inde-
pendently and identically distributed (iid) random payoffs with
continuous distribution functions. In each realization, players
are shown the values of all payoffs and then choose their
strategies simultaneously. Noncooperative self-interest is mod-
eled by Nash equilibrium (NE). Cooperation is advantageous
when a NE is Pareto-inefficient. In ordinal games, the numerical
value of the payoff function gives each player’s ordinal ranking
of payoffs. For a fixed number of players, as the number of
actions of any player increases, the conditional probability that
a pure strategic profile is not pure Pareto-optimal, given that it
is a pure NE, apparently increases, but is bounded above strictly
below 1. In games with transferable utility, the numerical payoff
values may be averaged across actions (so that mixed NEs are
meaningful) and added across players. In simulations of two-
player games when both players have small, equal numbers of
actions, as the number of actions increases, the probability that
a NE (pure and mixed) attains the cooperative maximum de-
clines rapidly; the gain from cooperation relative to the Nash
high value decreases; and the gain from cooperation relative to
the Nash low value rises dramatically. In the cases studied here,
with an increasing number of actions, cooperation is increasingly
likely to become advantageous compared with pure self-interest,
but self-interest can achieve all that cooperation could achieve in
a nonnegligible fraction of cases. These results can be interpreted
in terms of cooperation in societies and mutualism in biology.

When agents act on the basis of individual self-interest alone, to
what extent can they attain all the gains they could obtain in the
same situation if they were to act cooperatively? Two examples,
one from business and one from ecology, suggest that coopera-
tion may be advantageous under some conditions.

In the 1970s, ‘‘Silicon Valley,’’ in northern California, and
‘‘Route 128,’’ in eastern Massachusetts, led innovation in elec-
tronics and software, stimulated by university research and mil-
itary spending. In the early 1980s, international competition in the
manufacture of semiconductor memory and the rise of worksta-
tions and personal computers challenged both regions and slowed
their growth. During the 1980s, in Silicon Valley, new companies
emerged and flowered along with large high-technology compa-
nies, and high-technology employment and production surged.
Along Route 128, by contrast, layoffs at minicomputer companies
overbalanced startups and the so-called ‘‘Massachusetts Miracle’’
ground to a halt. A careful comparison (ref. 1, pp. 2–6) suggests
that the firms interacted with one another in substantially dif-

ferent ways in the two regions, and that the different forms of
interaction were at least partially responsible for the regions’
differing success in meeting external challenges. In Silicon Valley,
‘‘a regional network-based industrial system [promoted] collec-
tive learning and flexible adjustment among specialist producers
of a complex of related technologies, . . . informal communication
and collaborative practices . . . The Route 128 region, in contrast,
[was] dominated by a small number of relatively integrated[,] . . .
independent firms that internalize[d] a wide range of productive
activities. Practices of secrecy and corporate loyalty govern[ed]
relations between firms and their customers, suppliers, and
competitors. . . . Their differences in performance cannot be
explained by approaches that view firms as separate from the
social structures and institutions of a local economy.’’

A second example comes from Lake Tanganyika, one of the
African Great Lakes and home to at least 165 species of fishes in
the family Cichlidae. Most Tanganyikan cichlids live on or near
the lake bottom. There they find food, breeding sites, and areas
for foraging and mating. Cichlids interact in different ways in
different places. Detailed studies (2) compared cichlid commu-
nities in two patches of lake bottom at the northwest end of Lake
Tanganyika: a sandy-bottom habitat of area 7 3 10 m at a depth
4 m, and a rocky–sandy bottom habitat of area 8 3 9 m at a depth
of 5 m. In the sandy-bottom patch, there was an abundance of
aggressive, exclusive behavior. In the rocky–sandy bottom habitat,
the majority of the 26 rock-dwelling cichlid species were passive
and tolerant of one another and of aggression. The rocky bottom
supported many more cichlid species and more individuals of
these species than did the sandy bottom. Intricate commensal and
mutualistic behavioral interactions enabled many cichlids to
coexist on the rocky bottom. For example, fry-eaters and pisci-
vores had higher rates of success in feeding when other cichlids
with similar food habits were present, apparently because the
variety of attack methods confused the prey. Overall, ‘‘a com-
munity on a sandy bottom is characterized by fewer species, fewer
threats by predators, and fewer co-operative relationships, while
a community on [a] rocky bottom has more species, more threats
by predators, and more co-operative relationships . . .’’ (ref. 2, p.
224).

Neither the comparison between Silicon Valley and Route 128
nor that between sandy- and rocky-bottom habitats in Lake
Tanganyika is a controlled experiment. Therefore inferences can
be only weakly tested by these observations. Nevertheless, the
examples suggest that economic growth and technological ad-
vance, as well as richness of species and abundance of individuals,
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are both associated with cooperative, or at least tolerant, inter-
actions and with a diversity of modes of interaction. This weak
claim does not exclude the possibility that background factors
(intellectual property law and regulatory practices in the high-
technology communities; primary productivity and substrate
complexity in the fish communities) play a role in the differences
between communities.

This paper reports results about Nash equilibria and Pareto-
optimality in finite random games which suggest that examples
such as these illustrate a coherent pattern: cooperation becomes
advantageous increasingly often, compared to self-interest alone,
in increasingly complex situations when actors have increasingly
numerous possible responses to the strategic actions of others.

GAME THEORETIC BACKGROUND
Game theory provides a mathematical way to compare the
benefits of self-interest with those of cooperation when individ-
uals interact with others (3, 4). In game theory, a game consists
of a set of at least two players, a set of at least two actions for each
player, and a set of payoff functions, one per player. This paper
is limited to single-period or one-shot games, and all players are
assumed here to have complete information about the payoff
functions of every player. Each player chooses his or her own
action on the basis of all the payoff functions without knowing the
actions chosen by other players. A player’s payoff function assigns
to that player a payoff (a real number) that depends on the actions
chosen by all players. When there are n players and n is finite, the
game is called n-player. When each player’s set of actions is finite,
the game is called finite.

A mixed strategy for a player is a probability distribution over
the player’s set of actions. An action is sometimes called a pure
strategy. The term ‘‘strategy’’ without qualification refers to a
pure or mixed strategy.

A strategic profile specifies one strategy for each player. A pure
strategic profile specifies an action for each player. When a
strategic profile includes a mixed strategy, each player’s payoff is
the average of the payoffs of the corresponding actions, with
weights given by the mixed strategies, assuming that the proba-
bility distributions of different players are independent.

A Nash equilibrium (NE) (5, 6) is a strategic profile in which
each player’s strategy is a best response to the strategies chosen
by the other players. The concept of NE is a standard game-
theoretic formalization of noncooperative self-interest on the
part of all players. A pure Nash equilibrium (PNE) is a NE and
a pure strategic profile. A mixed Nash equilibrium (MNE) is a NE
in which at least one player’s strategy is mixed.

Two strategic profiles may be partially ordered by Pareto-
dominance. As no other kind of dominance will be discussed here,
henceforth ‘‘dominance’’ will refer to Pareto-dominance. If the
respective payoffs from the second profile are at least as large as
those from the first profile for every player and are strictly larger
for some player, then the second profile is said to dominate the
first. A strategic profile is said to be Pareto-inefficient if some
strategic profile dominates it.

A strategic profile is said to be Pareto-optimal if it is not
Pareto-inefficient. A strategic profile is said to be pure Pareto-
optimal (PPO) if no pure strategic profile dominates it. A pure
strategic profile that is PPO may be Pareto-optimal or may not,
according as there does not exist, or does exist, a mixed strategic
profile that dominates it. A pure strategic profile that is not PPO
is Pareto-inefficient by definition.

Game theory can formalize the question, ‘‘to what extent could
interacting agents do as well by self-interest alone as they could
through cooperation?’’ to clearer but narrower questions: ‘‘to
what extent are Nash equilibria not Pareto-optimal?’’ or ‘‘to what
extent are pure Nash equilibria not pure Pareto-optimal?’’ Here
‘‘cooperation’’ may be defined as any binding and enforceable
commitment that makes it rational for players to choose a
strategic profile that is not a given NE. When a given NE is
Pareto-inefficient, then cooperation is required for players to

choose a profile that dominates that NE (even if the dominating
profile is another NE, as may occur in so-called coordination
games).

Here we consider n-player finite random games. Player p is
assumed to have mp actions, 1 , mp , `, p 5 1, . . . , n. The payoff
function of an n-player finite game is specified by an (n 1
1)-dimensional m1 3 z z z 3 mn 3 n payoff array A. The last
dimension of this array corresponds to the set of players: the
payoff function of player p is the m1 3 z z z 3 mn subarray A(z, . . . ,
z, p). If a PNE i* 5 (i*1, . . . , i*n) exists, define its degree d(i*) to be
the number of pure strategic profiles i 5 (i1, . . . , in) that dominate
it. When the degree of a PNE is 0, that PNE is PPO. When the
degree is positive, then the PNE is Pareto-inefficient. The degree
measures how Pareto-inefficient the PNE is (though this measure
ignores the existence of any MNE that may dominate the PNE).

The M 5 )p51
n mp numerical values in the payoff function of

each player are generated in one of two ways: discretely or
continuously. In discrete n-player finite random games, the M
values are a random permutation of the integers {1, 2, . . . , M}.
In continuous n-player finite random games, the M values are
independently and identically distributed (iid) from a continuous
distribution function. The continuity of the distribution function
ensures that all values in all the payoff functions are distinct with
probability 1. The payoff functions of distinct players are assumed
to be mutually independent.

Whether discrete or continuous, n-player finite random games
may be ordinal or cardinal. In ordinal games, a player’s payoffs are
interpreted as specifying only a rank ordering over the set of all
possible strategic profiles: the smallest payoff is least preferred
and the largest is most preferred, but no averaging or adding of
different payoffs is meaningful, even for one player. Mixed
strategies are not meaningful in ordinal games. The probability of
any preference rank ordering over any set of strategic profiles, for
any player or set of players, is exactly the same in an ordinal
discrete n-player finite random game as it is in an ordinal
continuous n-player finite random game.

In cardinal games, a player’s payoffs are interpreted as speci-
fying a quantity that can be added and averaged for that player.
Then mixed strategies are meaningful, and the particular contin-
uous real-valued distribution function that is used to generate the
payoffs is important (unlike the ordinal case). A cardinal game in
which payoffs are measured on the same scale for all players is
called a game with transferable utilities. A game with transferable
utilities need not have a medium of exchange; all that is required
is that it be meaningful to add different payoffs of a given player
and of different players.

In each realization of a finite random game, all players are
shown the values of all players’ payoffs (which are randomly
determined for each realization). Then all players simultaneously
choose their strategies as if those payoffs specified a usual
deterministic (single-shot normal-form) game. The infinite en-
semble of such realizations, and players’ choices, constitutes the
finite random game.

Prior Comparisons of NEs and Pareto-optima. General results
on the Pareto-inefficiency of NEs in well defined classes of games
are recent. In games induced by market mechanisms, NEs are
Pareto-optimal if there is a continuum of traders (players) and
other conditions are satisfied (7). When the number of traders is
finite, NEs are generically not Pareto-optimal (8). In n-player
noncooperative games with smooth payoff functions, where each
player’s set of actions is a finite-dimensional simplex, NEs are
generically not Pareto-optimal (9).

Stanford (10) found that the average payoffs from randomly
chosen PNEs (always conditional on the existence of at least one
PNE) exceed the average payoffs from randomly chosen PPOs in
two-player finite discrete cardinal random games. However, in a
generic game, for every k PNEs, there are at least k 2 1 MNEs
(11). Limiting the analysis to PNEs in contexts where averaging
of payoffs has meaning leaves open the question of how the
MNEs would behave.
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Prior Results on Ordinal Games with No PNEs. As our results
for ordinal games are conditional on the existence of a PNE, it is
important to know what fraction of ordinal random games have
no PNE.

In two-person ordinal finite random games, as the number of
actions of both players gets large, the probability of no PNE
converges to 1ye (12), and the probability distribution of the
number of PNEs in two-player ordinal finite random games is
known explicitly (13). In n-person ordinal finite random games,
as the number of actions of at least two players gets large, the
probability of no PNE converges to 1ye (14) and the limiting
distribution of the number of PNEs is Poisson with mean 1 (15).
If the number of actions of only one player, say, player 1, gets
large, then the limiting distribution of the number of PNEs is
binomial with parameters )p52

n mp and 1y)p52
n mp (ref. 15, p. 280).

In an n-player ordinal finite random game, if by definition
limmp3`,@p P0(m1, . . . , mn) 5 P0,n is the limiting probability of no
PNE when all n players have many actions, then P0,2 5 1ye and
P0,n11 5 exp(21 1 P0,n) for n $ 2, a sequence that increases
monotonically with the number n of players and converges to 1
(16, 17). When every player has the same fixed finite number of
actions and the number of players becomes large, the probability
of having no PNE again approaches 1.

In the light of these findings, results conditional on the exis-
tence of a PNE are most relevant to games with finite numbers
of players, whether the number of their actions be small or large.

ORDINAL FINITE RANDOM GAMES
Exact Results for n > 2 Players. As before, define mp to be

the number of actions of player p. Let mW 5 (m1, . . . , mn), M 5
)p51

n mp. A strategic profile i 5 (i1, . . . , in), 1 # ip # mp, specifies
that player p chooses action ip, for p 5 1, . . . , n. Also define

W 5 P
p51

n

mp 2 O
p51

n

mp 1 n 2 1. [1]

Assume that {a(i1, . . . , in, p) : ip 5 1, . . . , mp, for p 5 1, . . . , n}
is a family of M 3 n independent random variables uniformly
distributed on (0, 1).

PROPOSITION 1. For any pure strategic profile i* 5 (i*1, . . . , i*n),
1 # i*p # mp, for p 5 1, . . . , n, the conditional probability P(mW ) that
i* is not PPO, given that i* is a PNE, is

P~mW ! 5 P$i* is not PPO u i* is PNE%

5 1 2 P$d~i*! 5 0 u i* is PNE%

5E
x150

1

· · · E
xn50

1 F1 2 H1 2 P
p51

n

~1 2 xp!JWG
3 P

p51

n

~mpxp
mp21dxp!

5 1 2E
x[@0,1#n

H1 2 P
p51

n

~1 2 xp!JW P
p51

n

~mpxp
mp21dxp!

5 1 2 EFH1 2 P
p51

n

~1 2 Xp!JWG [2]

where, under the last integral, x 5 (x1, . . . , xn), and in the last line
Xp is the maximum of mp iid random variables uniformly distributed
on (0, 1).

Proof: Because all inequalities between elements of A are strict
with probability 1, I shall write strict inequalities without further
comment. Define (i2p, j) to mean that player p chooses action j
while every other player q Þ p chooses the action iq specified by
the profile i. Thus, by definition, (i2p, ip) [ i. This notation (i2p,
j) describes a situation in which player p varies her choice of action
from that specified by i while all other players persist in the choice
specified in i. If i* is a PNE, then by definition no dominating pure
strategic profile can have the form (i*2p, j) for any j and for any p.

Hence the number of pure strategic profiles that could possibly
dominate a PNE i* is W defined by Eq. 1. W is the number of cells
that remain in the payoff subarray of any player, say player 1, after
striking out all the ‘‘rows’’ and ‘‘columns,’’ one for each player,
that pass through the PNE i*. For example, if n 5 2 and (2, 3) is
a PNE, then W is the number of pure strategic profiles that remain
after striking out the second row and third column of both
players’ payoff matrices. These remaining pure strategic profiles
are all and only the pure strategic profiles that could dominate (2,
3) if (2, 3) is a PNE.

The complement of the conditional probability that a PNE is
not PPO is the conditional probability that the PNE has degree
0. The latter conditional probability, given that player p’s payoff
at the PNE i* is xp, is
P$d~i*! 5 0 u i* is PNE & a~i*, p! 5 xp, @p 5 1, . . . , n%

5 P$@i Þ i*, not@a~i , p! . xp, @p 5 1, . . . , n#%.

For a single pure strategic profile i among the W pure profiles that
could possibly dominate i*, P{a(i, p) . xp} 5 1 2 xp for each
player p. Because the payoff functions of the players are mutually
independent,

P$@p, a~i , p! . xp% 5 P
p51

n

~1 2 xp!,

P$not@@p, a~i , p! . xp#% 5 1 2 P
p51

n

~1 2 xp!.

Because the distinct entries in each player’s payoff function are
mutually independent, and because there are W pure strategic
profiles that could dominate i*,
P$@i Þ i*, not@a~i , p! . xp, @p 5 1, . . . , n#%

5 H 1 2 P
p51

n

~1 2 xp!JW

. [3]

To remove the conditioning on a(i*, p) 5 xp, @p 5 1, . . . , n,
integrate over all x 5 (x1, . . . , xn) [ [0, 1]n with respect to the
probability density of this event. Because xp is the maximum of mp
iid uniform random variables for each player p, the probability
density of x given that i* is PNE is )p51

n (mpxp
mp21 dxp) (ref. 18, pp.

60–61). h
If each payoff for player p has the continuous distribution

function Fp(.) instead of a uniform distribution, and if the
assumptions of independence are retained, then reasoning iden-
tical to that used to establish Eq. 2 yields

P~mW ! 5 P$i* is not PPO u i* is PNE%

5 1 2 E
x[Rn

H1 2 P
p51

n

~1 2 Fp~xp!!JW

3 P
p51

n

$mp@Fp~xp!#
mp21F9p~xp!dxp%. [4]

Alternatively, Eq. 4 follows immediately from Eq. 2 because if the
random variable X has continuous distribution function F, then
the random variable F(X) is uniform on [0, 1]. Because Eq. 2 is
the special case of Eq. 4 in which Fp(x) 5 x, x [ [0, 1], it follows
that Eqs. 2 and 4 are equivalent.

In ordinal games, the probability distribution over orderings of
the elements of the payoff function for each player does not
depend on the distribution (always assumed continuous) of each
element. Hence it is possible to express P{i* is not PPO u i* is
PNE} without reference to the distribution of each element.
Define

S~mW , t! 5

SW
t D

P
p51

n Smp 1 t
t D , t 5 0, 1, . . . , W [5]
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so that S(mW , 0) 5 1.

PROPOSITION 2.

P~mW ! 5 P$i* is not PPO u i* is PNE%

5 O
t51

W

~21!t21S~mW , t!. [6]

Proof: We calculate the probabilities that the PNE i* is
dominated by t or more pure strategic profiles (has degree t or
more), for each t 5 1, . . . , W, and then use the theorem of
inclusion and exclusion (ref. 19, vol. 1, p. 106, equation 3.1) to
obtain the probability that the PNE is dominated by 0 pure
strategic profiles. It will simplify notation, and entails no loss of
generality, to suppose that i*p 5 1, for all p. Then given that (1, . . . ,
1) is a PNE, any pure strategic profiles that dominate (1, . . . , 1)
must be drawn from the set D of W pure strategic profiles that
remain after striking out the first ‘‘column,’’ the first ‘‘row,’’ and
every other first ‘‘straight line’’ of each player’s payoff subarray.

Consider pure strategic profiles that dominate (1, . . . , 1) from
the point of view of player 1. For any fixed t [ {1, . . . , W},
consider the m1 1 t pure strategic profiles (1, 1, . . . , 1), (2, 1, . . . ,
1), . . . , (m1, 1, . . . , 1), i(1), . . . , i(t) where i(s) [ D for all s 5 1, . . . ,
t. Given that a(1, 1, . . . , 1) . a(r, 1, . . . , 1), @r 5 2, . . . , m1

(because (1, . . . , 1) is a PNE), what is the conditional probability
that a(1, 1, . . . , 1) , a(i(s)), @s 5 1, . . . , t? For each ordering
(from smallest to largest) of the m1 elements of ‘‘column’’ 1 of
A(z, . . . , z, 1) such that a(1, 1, . . . , 1) . a(r, 1, . . . , 1), @r 5 2, . . . ,
m1 and for each ordering of the t payoffs a(i(1), 1), . . . , a(i(t), 1),
there is only one ordering of the union of these two sets such that
all m1 elements of the former set are smaller than all t elements
of the latter set, whereas the elements of the former and latter sets
(considered one set at a time, without regard to the other set)
retain their chosen order. However, for each ordering of the m1

elements of ‘‘column’’ 1 of A(z, . . . , z, 1) such that a(1, 1, . . . , 1)
. a(r, 1, . . . , 1), @r 5 2, . . . , m1 and for each ordering of the t
payoffs a(i(1), 1), . . . , a(i(t), 1), if the elements of the former and
latter sets retain their chosen order but there is no constraint on
the ordering between the sets (so that elements of the latter set
may occur anywhere between elements of the former set when the
elements of both sets are ordered from smallest to largest), then

there are Sm1 1 t
t Dorderings of the union of the two sets such that

the elements of the former and latter sets (considered one set at
a time, without regard to the other set) retain their chosen order.
Hence

P$a~1, . . . , 1, 1! , a~i~s!, 1!, @s 5 1, . . . , t

u ~1, . . . , 1! is a PNE% 5
1

Sm1 1 t
t D .

An identical argument works for every player. Because payoffs to
different players are mutually independent,

P$a~1, . . . , 1, p! , a~i~s!, p!, @p 5 1, . . . , n,

@s 5 1, . . . , t u ~1, . . . , 1! is a PNE% 5
1

P
p51

n Smp 1 t
t D .

There are ( t
W) choices of the t pure strategic profiles i(1), . . . , i(t)

from the set D. Hence,

O P$a~1, . . . , 1, p! , a~i~s!, p!, @p 5 1, . . . , n,

@s 5 1, . . . , t u ~1, . . . , 1! is a PNE% 5

SW
t D

P
p51

n Smp 1 t
t D

where the sum extends over all subsets of t pure strategic profiles
from D. Direct application of the theorem of inclusion and
exclusion yields Eq. 6. h

More generally, for a pure strategic profile i*, define the
conditional probability that i* has degree d, given that i* is a PNE,
as Q(mW , d). Thus P(mW ) 5 1 2 Q(mW , 0). Then again using inclusion
and exclusion and the previous results, we find

Q~mW , d! 5 S~mW , d! 2 Sd 1 1
d DS~mW , d 1 1! 1 Sd 1 2

d DS~mW , d 1 2!

2 · · · 6 SW
dDS~mW , W!, d 5 0, 1, . . . , W. [7]

Comparing Eqs. 2 and 6 gives an identity:

PROPOSITION 3.

1 2 E
x[@0, 1#n

H1 2 P
p51

n

~1 2 xp!JW P
p51

n

~mpxp
mp21dxp!

5 O
t51

W

~21!t21S~mW , t!. [8]

Proof: To prove identity 8 directly, use the binomial expansion
and the Beta integral *0

1 xa(1 2 x)bdx 5 a!b!y(a 1 b 1 1)! for
nonnegative integers a, b. Then

1 2 E
x[@0,1#n

H1 2 P
p51

n

~1 2 xp!JW P
p51

n

~mpxp
mp21dxp!

5 1 2 S P
p51

n

mpD O
t50

W E
x[@0,1#n

~21!t SW
t D Pp51

n

~xp
mp21@1 2 xp#

tdxp!

5 S P
p51

n

mpD O
t51

W

~21!t21SW
t D P

p51

n E
xp50

1

xp
mp21 ~1 2 xp!

tdxp

5 S P
p51

n

mpD O
t51

W

~21!t21SW
t D P

p51

n ~mp 2 1!!t!
~mp 1 t!!

5 O
t51

W

~21!t21S~mW , t!. h

Inequalities.

PROPOSITION 4. Let Xp be the maximum of mp iid random
variables uniformly distributed on (0, 1), for p 5 1, . . . , n, as before.
Then

1 2 P~mW ! $ EFH1 2
1

m1 1 1 P
p.1

n

~1 2 Xp!JWG
$ EFH1 2

1
m1 1 1

1
m2 1 1 P

p.2

n

~1 2 Xp!JWG
$ . . . $ H1 2

1
m1 1 1

1
m2 1 1

· · ·
1

mn 1 1J
W

. [9]

Proof: Holding x2, . . . , xn constant, {1 2 )p51
n (1 2 xp)}W is

easily seen to be a convex function of x1. Consequently, Jensen’s
inequality for conditional expected values (ref. 20, p. 449) applies.
Because E[Xp] 5 mpy(mp 1 1) and E[1 2 Xp] 5 1y(mp 1 1) for
each p, Eq. 2 gives

1 2 P~mW ! 5 EFH1 2 P
p51

n

~1 2 Xp!JWG
$ EFH1 2

1
m1 1 1 P

p.1

n

~1 2 Xp!JWG .

The same argument applies successively to p 5 2, 3, . . . , n. h
Limiting Behavior.

PROPOSITION 5. Suppose there are n 5 2 players. Then
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limsup
m13`

P~m1, 2! # 1 2
2
e

< 0.2642,

limsup
m13`

P~m1, 3! #
1
4

1
3

4e2 < 0.3515,

limsup
m13`

P~m1, 4! #
11
27

2
8

27e3 < 0.3927.

Proof: When n 5 2, W 5 (m1 2 1)(m2 2 1) and when mW 5 (m1,
2), W 5 m1 2 1. Hence

P~~m1, 2!! # 1 2 E
x250

1 H1 2
1 2 x2

m1 1 1J
m121

2x2dx2

3 1 2E
x250

1

e2~12x2!2x2dx2 5 1 2
2
e

, m13 `.

The same method proves the other cases. h

PROPOSITION 6. Suppose n is fixed and the number of actions
of each player increases without bound. Then

limsup
@p, mp3`

P~mW ! # 12
1
e

< 0.6321.

Proof: From the definition 1, lim@p,mp3` Wy)p51
n (mp 1 1) 5 1.

Then from the last member of inequalities 9,

P~mW ! # 1 2 H1 2
1

m1 1 1
1

m2 1 1
· · ·

1
mn 1 1J

W

3 1 2
1
e

@p, mp3 `. h

PROPOSITION 7. Suppose that every player has the same fixed
number m $ 2 of actions and that the number of players n increases
without bound. Then, in the limit, the probability that a PNE is not
PPO vanishes:

lim
n3`

P~mW ! 5 0 @p, mp 5 m.

Proof: In this case, W 5 mn 2 mn 1 n 2 1, so limn3` Wy(m 1
1)n 5 0. Hence

P~mW ! # 1 2 H1 2
1

~m 1 1!nJW

5 1 2 H1 2
1

~m 1 1!nJ ~m11!n3Wy~m11!n

3 1 2 e0 5 0 n3 ` and @p, mp 5 m. h

Numeric Computations and Results. Numerical computations
indicate that increasing the number of actions available to any
player increases the conditional probability that a PNE is not
PPO. That is, for all 1 # p # n,

P~~m1, . . . , mp21, mp, mp11, . . . , mn!!

, P~~m1, . . . , mp21, mp 1 1, mp11, . . . , mn!!. [10]

However, I have no general proof of this inequality. A sufficient
condition for inequality 10 is that for every q such that 0 # q #
1, for r 5 1 2 q, and for positive integers m $ 2, a $ 1, b $ 1 such
that am 2 b $ 1,

m
m 1 1

$ E
x50

1

$q 1 rx%a~m11!2bxmdxy
E

x50

1

$q 1 rx%am2bxm21dx. [11]

It is easily proved that if r 5 0, then 11 is an equality, while if r 5
1, then 11 is a strict inequality, because then the right side equals
(am 2 b 1 m)y(am 1 a 2 b 1 m 1 1) , my(m 1 1). For r in
a sufficiently small open neighborhood (0, «), « . 0, the inequality
11 is strict. If inequality 10 could be proved in general, then all the
limsups above would actually be limits.

For very small numbers of players and few actions per player,
the finite sum 6 is an easy way to calculate P(mW ). Fixing the
number of players at n 5 2, the formula gives for 2 3 2 games
P((2, 2)) 5 S((2, 2), 1) 5 1y9, as W 5 1; that is, self-interest will
not attain a PPO outcome in only 1y9 of games. As the number
of actions per player increases, we find P(3, 3) 5 244y1,225; P(4,
4) 5 229,301y920,205; P(5, 5) 5 4,021,593,943y14,354,835,768.
A few decimal approximations based on sum 6 are shown in Table
1, labelled F for finite sum.

An unexpected feature of the results in Table 1 is that, when
each player has 2 actions, P(mW ) is not monotonic in the number
of players:
P~~2, 2!! , P~~2, 2, 2!! . P~~2, 2, 2, 2!!

. P~~2, 2, 2, 2, 2!! . P~~2, 2, 2, 2, 2, 2!!.

Similarly,

P~~3, 3!! , P~~3, 3, 3!! . P~~3, 3, 3, 3!!.

To compute P(mW ) by Eq. 2 requires an n-fold integral for
n-players. For 2 players, the double integral required is readily
computed numerically. Table 1 gives a few numeric values
(labeled I for integral) for 2 and 3 players. These values agree to
the precision shown with those obtained from the finite sum for
2 players, but there are small discrepancies (not exceeding 0.006)
between I and F for 3 players. Fig. 1 plots P(mW ) when both of 2
players have from 2 to 60 actions.

To check these results, I simulated 2,500 random games for
each combination of the parameter values shown in Table 1 and
Fig. 1 and recorded the fraction f of PNEs that were PPO. The
denominator of the fraction f is the number N of the 2,500
simulated pairs of payoff matrices that had one or more PNEs.

Table 1. Conditional probability that a PNE is not PPO in an
n-player game where each player has m actions

Actions per
player m

Numbers of players n

2 3 4 5 6

2 S 0.1098 S 0.1257 S 0.1080 S 0.0814 S 0.0544
I 0.1111 I 0.1211
F 0.1111 F 0.1241 F 0.1051 F 0.0803 F 0.0582

3 S 0.1911 S 0.2057 S 0.1688 S 0.1102*
I 0.1992 I 0.1976
F 0.1992 F 0.2021 F 0.1662

4 S 0.2376 S 0.2531 S 0.1951
I 0.2492 I 0.2341
F 0.2492 F 0.2401

5 S 0.2760 S 0.2654 S 0.2168
I 0.2802 I 0.2541
F 0.2802

6 S 0.3063 S 0.2837 S 0.2352
I 0.3010
F 0.3010

S, based on 2,500 simulations; I, based on numerical integration of
Eq. 2, F, based on summation of the finite series 6.
*Only 500 simulations.
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The first PNE encountered in each simulation was checked to see
if it was PPO. Only one PNE was examined per simulation. The
numerator of the fraction f is the number of PNEs checked that
were not PPO. The estimated standard deviation of f is [f(1 2
f)yN]1y2. The simulated values (labeled S for simulated) in Table
1 are generally within 2 or 3 standard deviations of the values
calculated by the other methods. When all players have 2 or 3
actions, the simulated values display the same nonmonotonicity
with increasing numbers of players as the F estimates of P(mW )
based on the finite sum 6 (Table 1).

TRANSFERABLE PAYOFFS IN TWO-PLAYER
FINITE RANDOM GAMES

We now shift attention to two-player finite games (often called
bimatrix games) with transferable utilities, and we give full
attention to mixed strategies. Player 1’s pure or mixed strategies
may be represented as probability vectors [each denoted x 5
(x1, . . . , xm1

)], that is, vectors with nonnegative elements that sum
to 1. (This notation has no connection with the notation x in the
previous section.) Each element xi is the probability of the action
i (namely, choosing row i). Player 2’s strategies may be repre-
sented as probability vectors [each denoted y 5 (y1, . . . , ym2

)]. If
player 1 chooses strategy x and player 2 chooses strategy y, the
payoff to player p is vp(x, y) 5¥i ¥j xia(i, j, p)yj, p 5 1, 2. As before,
a strategic profile (x*, y*) is a NE if and only if, for all strategies
x and y, v1(x*, y*) $ v1(x, y*) and v2(x*, y*) $ v2(x*, y). Nash (5,
6) showed that every bimatrix game has a NE.

Assuming that payoffs are transferable, the combined value of
a strategic profile (x, y) is defined as the sum of the payoffs to each
player v(x, y) 5 v1(x, y) 1 v2(x, y). The Nash high value vH is the
maximum of v(x*, y*) for any NE (x*, y*). The Nash low value vL
is the minimum of v(x*, y*) for any NE (x*, y*).

The Pangloss value (‘‘the best of all possible worlds,’’ as
Voltaire put it) is the highest combined payoff that the two
players can obtain by cooperative action: vP 5 maxi maxj ¥p a(i,
j, p). Fudenberg and Maskin (21) call a pair of payoffs ‘‘strongly
efficient’’ if their sum equals the maximal sum of payoffs. When
all payoffs (to individual players and combined) resulting from
pure strategic profiles are distinct (as occurs with probability 1 in
the random games considered here), a unique pair of payoffs is
strongly efficient; a unique strategic profile (called the Pangloss
profile) yields the Pangloss value. The Pangloss profile is PPO.

In the following simulations, the elements of the payoff array
A are drawn from one of four probability distributions: uniform

from 0 to 1 (denoted U); exponential from 0 to infinity with mean
1, denoted X 5 2log U; normal with mean 0 and variance 1,
denoted N; and lognormal, with log-mean 0 and log-variance 1,
denoted L 5 exp(N).

If player 1 chose action i at random and player 2 chose action
j at random, without regard to payoffs, then the average com-
bined payoff E(v1 1 v2) attained by the two players would be
2E(U) 5 1, 2E(X) 5 2, 2E(N) 5 0, and 2E(L) 5 2exp(1y2) 5
3.2974, where E denotes expectation or average. Letting R denote
any one of the random variables U, X, N, and L, the constants kR
5 2E(R) are the average combined value that the players could
attain by random choice of a pure strategic profile.

The average improvements in combined payoff, compared to
the random baseline, that the players could attain by reaching the
Nash low value, the Nash high value, and the Pangloss value are,
respectively, E(vL) 2 kR, E(vH) 2 kR, and E(vP) 2 kR. Hence the
gain from cooperation relative to the Nash high value is

gH 5
E~vP! 2 kR

E~vH! 2 kR
.

The gain from cooperation relative to the Nash low value is

gL 5
E~vP! 2 kR

E~vL! 2 kR
.

Explicit formulas for E(vH) and E(vL) appear to be unknown.
I estimated these values and the gains from cooperation by
simulation. The number of actions available to each player was set
in turn at m1 5 m2 5 2, 3, 4, 5, 6, 7, 8, and 10. For each m1 5 m2,
100 payoff arrays were sampled numerically from each probabil-
ity distribution. In total, 8 (game sizes) 3 100 (simulations) 3 4
(probability distributions) 5 3,200 bimatrix games were gener-
ated.

For each game, I computed all Nash equilibria (pure and
mixed) by using the algorithm of Vorobjev (22), Kuhn (23), and
Jansen (24). In this algorithm, for s 5 1, . . . , m1, each s 3 s
submatrix of A(z, z, 1) and the corresponding s 3 s submatrix of
A(z, z, 2) are checked to see if the pair of submatrices generates
a NE. Each such check requires inverting both s 3 s submatrices.
Because the matrices are sampled from smooth probability
distributions, each s 3 s submatrix is nonsingular with probability
1 so inversion is well defined.

To verify the correctness of my encoding of this algorithm, I
checked computational results against numerous textbook exam-
ples and hand computations. In addition, I tabulated the numbers
of PNE and MNE computed for each simulated game and
compared the numbers with known results: nondegenerate bima-
trix games have an odd number of NEs (25); if a nondegenerate
bimatrix game has T NEs (T odd), at most (T 1 1)y2 of them are
pure (11); the average number of PNE in a random bimatrix game
with smoothly distributed payoffs is 1, regardless of the payoff
distribution or the number of actions (ref. 15, p. 280). Numerical
results were completely consistent with these theorems.

To check the pseudorandom variates used in the simulations,
I compared the average Pangloss values E(vP) from the simula-
tions using normal random elements against the theoretical
expectation of the maximum of m1m2 samples from a normal
distribution with mean 0 and standard deviation =2. For m1 5
m2 5 2, 4, 6, the sample average Pangloss values E(vP) 6 one
standard deviation of the mean were 1.55 6 0.10, 2.40 6 0.08, and
3.09 6 0.07 (Table 2), none of which differed significantly from
the theoretical expectations (based on normal order statistics) of
1.46, 2.50, and 3.00, respectively.

For payoff matrices with uniformly distributed random ele-
ments and two actions for each player (Table 2), the Pangloss
value vP exceeded the Nash high value vH with frequency 0.36
(that is, in 36 of 100 simulated cases) and exceeded the Nash low
value vL with frequency 0.50. In half of these simulated interac-
tions, two players would have attained the best that cooperation
could attain even if they reached the worst outcome attainable by

FIG. 1. Probability that a PNE is not PPO in two-player ordinal finite
random games where each player has m actions. Solid line, probability
computed by numerical quadrature of Eq. 2; 3, fraction estimated from
2,500 simulations for each m; dotted and dash–dotted lines, lower and
upper limits of 99% confidence intervals (62.57 standard deviations)
around 3.
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pure self-interest. On the other hand, in 0.36 of the simulations,
the two players would have done better through cooperation than
they could have done under the most favorable noncooperative
NE. The gains from cooperation relative to self-interest ranged
from 33% if the average Nash high value were attained (gH 5
1.33), to 73% if the average Nash low value were attained (gL 5
1.73).

As the number of actions available to each player increased
from 2 to 10, the estimated probabilities rose to 98% and 60%,
respectively, that the Pangloss value would exceed the Nash low
value or the Nash high value. The average Pangloss values and the
average Nash high values increased steadily and nearly in parallel,
but the average Nash low values changed relatively little. Con-
sequently, the gain from cooperation over the average Nash low
values rose from 1.73 to 4.01, while the gain from cooperation
over the average Nash high values fell from 1.33 to 1.14. Thus the
relative gain from cooperation rose or fell with increasing num-
bers of actions depending on whether the average Nash low value
or the average Nash high value was attained.

The results for exponential, normal, and lognormal payoffs
were qualitatively similar to those for the uniformly distributed
payoffs (Table 2). When players had 10 choices, the Pangloss
value exceeded the Nash low value (vP . vL) from 94% to 99%
of the time; the gain from cooperation (relative to the average
Nash low value) ranged from 5.6 to 7.0. When players had 10
choices, the Pangloss value exceeded the Nash high value from

66% to 79% of the time (more frequently than when payoffs were
uniformly distributed) and the relative gain from cooperation
ranged from 26% to 102% (higher than the 14% gain in the
uniform case).

Some simple conclusions emerge from these computations. In
two-player finite random games with transferable payoffs and
very small numbers of actions, as the number of actions increases,
the fraction of cases where a NE attains the maximal combined
payoff declines rapidly. Cooperation always yields an average
combined payoff that is larger than the average Nash high value,
but the relative gain from cooperation decreases as the number
of actions increases. The gain from cooperation over the average
Nash low value rises dramatically as the number of actions
increases.

DISCUSSION
This paper addresses the question: in an ensemble of strategic
interactions, how likely is it that noncooperative self-interest
alone would yield a Pareto-optimal outcome? Alternatively, how
likely is it that cooperation could be advantageous to the partic-
ipants? Present results suggest an increasing selective advantage
to cooperative institutions and behaviors in increasingly complex
social and biological interactions.

Here finite random games model an ensemble of interactions.
Calculations show that in finite random games with limited
numbers of actions, self-interested players can often achieve the

Table 2. Means and standard deviations (SD) of the Pangloss value (vP), Nash high value (vH), Nash low value (vL), gains from cooperation
(gH and gL), and frequencies of advantages to cooperation, in simulated two-person games with random payoffs independently distributed
according to the uniform, exponential, normal, and lognormal distributions

m

nP vH vL

gH gL

Frequency
nP . vH

SD of
frequency

Frequency
nP . vL

SD of
frequencyMean SD Mean SD Mean SD

Uniform random elements
2 1.4157 0.0284 1.3122 0.0342 1.2398 0.0359 1.3318 1.7339 0.36 0.0480 0.50 0.0500
3 1.5907 0.0199 1.4449 0.0298 1.2970 0.0286 1.3277 1.9884 0.55 0.0497 0.77 0.0421
4 1.7056 0.0148 1.5828 0.0262 1.3279 0.0269 1.2107 2.1520 0.47 0.0499 0.84 0.0367
5 1.7384 0.0130 1.5813 0.0245 1.2922 0.0258 1.2703 2.5273 0.63 0.0483 0.92 0.0271
6 1.8118 0.0098 1.6977 0.0192 1.3148 0.0247 1.1636 2.5791 0.55 0.0497 0.90 0.0300
7 1.8202 0.0094 1.6810 0.0205 1.2892 0.0219 1.2046 2.8366 0.64 0.0480 0.98 0.0140
8 1.8319 0.0088 1.7138 0.0174 1.2739 0.0199 1.1654 3.0367 0.59 0.0492 0.98 0.0140

10 1.8823 0.0066 1.7725 0.0176 1.2199 0.0172 1.1421 4.0125 0.60 0.0490 0.98 0.0140
Exponential random elements

2 3.4815 0.1411 2.8728 0.1618 2.5108 0.1507 1.6974 2.9002 0.48 0.05 0.65 0.0477
3 4.7606 0.1677 3.8955 0.1855 3.0581 0.1689 1.4564 2.6091 0.50 0.05 0.72 0.0449
4 4.9592 0.1407 3.7552 0.1705 3.0805 0.1635 1.6859 2.7387 0.61 0.0488 0.79 0.0407
5 5.9810 0.1700 4.4791 0.1953 3.1167 0.1402 1.6058 3.5650 0.63 0.0483 0.87 0.0336
6 5.8790 0.1225 4.3161 0.1577 3.0923 0.1501 1.6748 3.5514 0.73 0.0444 0.94 0.0237
7 6.4515 0.1321 4.7634 0.1978 2.9706 0.1177 1.6109 4.5863 0.67 0.0470 0.95 0.0218
8 6.9736 0.1598 5.2178 0.1906 2.9158 0.1196 1.5457 5.4306 0.79 0.0407 0.98 0.0140

10 7.2419 0.1339 5.5513 0.1757 2.7568 0.0965 1.4761 6.9264 0.71 0.0454 0.98 0.0140
Normal random elements

2 1.5460 0.0990 1.0982 0.1328 0.9580 0.1306 1.4078 1.6138 0.44 0.0496 0.53 0.0499
3 2.1637 0.0875 1.6321 0.1144 0.9772 0.1128 1.3257 2.2142 0.46 0.0498 0.72 0.0449
4 2.4020 0.0785 1.8329 0.1044 1.1692 0.1096 1.3105 2.0543 0.58 0.0494 0.82 0.0384
5 2.7643 0.0747 2.2084 0.1143 1.0749 0.1055 1.2517 2.5717 0.51 0.0500 0.85 0.0357
6 3.0859 0.0705 2.2795 0.1112 0.9262 0.0784 1.3538 3.3319 0.64 0.0480 0.95 0.0218
7 3.2937 0.0635 2.6162 0.1093 0.8942 0.0789 1.2589 3.6832 0.59 0.0492 0.98 0.0140
8 3.5375 0.0562 2.8731 0.1012 0.9247 0.0713 1.2312 3.8256 0.65 0.0477 1 0

10 3.6397 0.0667 2.8989 0.1110 0.6496 0.0574 1.2556 5.6031 0.66 0.0474 0.99 0.0099
Lognormal random elements

2 5.7816 0.2759 4.7429 0.2839 4.2310 0.2557 1.7186 2.6609 0.38 0.0485 0.51 0.0500
3 7.9461 0.3982 5.9691 0.4053 4.9034 0.3698 1.7400 2.8946 0.58 0.0494 0.74 0.0439
4 12.1749 0.6061 7.3961 0.5582 4.9426 0.3738 2.1660 5.3960 0.71 0.0454 0.90 0.0300
5 13.6882 0.6132 7.7887 0.5528 4.5540 0.2558 2.3135 8.2694 0.73 0.0444 0.95 0.0218
6 15.2887 0.8331 9.1590 0.6870 5.0921 0.3389 2.0458 6.6815 0.73 0.0444 0.94 0.0237
7 16.1433 0.8001 8.6974 0.6402 5.0961 0.3438 2.3789 7.1421 0.80 0.0400 0.96 0.0196
8 16.6446 0.8053 10.1846 0.6489 4.9593 0.2922 1.9380 8.0315 0.74 0.0439 0.96 0.0196

10 19.4218 0.8089 11.2659 0.7444 5.6061 0.6422 2.0235 6.9842 0.79 0.0407 0.94 0.0237
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best that could be attained by cooperation. As the number of
actions increases, it becomes increasingly likely that cooperation
enables, or is required for, players to capture payoffs beyond
those accessible to self-interest alone. If Pareto-optimal outcomes
are desired, then the policy implication is that complex situations
are more likely than simple situations to require mechanisms for
cooperation, but if cooperation seems unattainable, the set of
available actions should be kept small if possible.

Understanding the relative merits of self-interest and cooper-
ation is a central task of the social and biological sciences. In
economics, Adam Smith’s parable of the Invisible Hand (ref. 26,
p. 423) has been formalized in a so-called Fundamental Welfare
Theorem: If all relevant goods are traded in a market at publicly
known prices and if firms and households are all price takers, then
the outcome of the market is Pareto-optimal. However, markets
frequently fail to satisfy all the theoretical conditions required to
perform Pareto-optimally (ref. 27, p. 308). Externalities and
public goods are among the principal (though not the only)
reasons for market failures. For example, self-interested users of
road networks (28, 29), queuing networks (30–32), and the
Internet (33) experience congestion avoidable by proper pricing
or cooperation; common-pool natural resources are often ex-
hausted in the absence of cooperation or rational pricing (34, 35);
self-interested rates of savings are suboptimal (36, 37); individual
decisions regarding fertility do not take account of all externalities
(38–40); independent national decisions regarding monetary and
fiscal policy are likely to be less effective than internationally
coordinated policy (41); and self-interested national decisions
regarding emissions of greenhouse gases reduce welfare com-
pared to those attainable by cooperation (42, 43). Thus there are
abundant examples of complex strategic interactions where
agents must cooperate to attain Pareto-optimal outcomes.

In terms of biological evolution (44), some evolutionists
‘‘argue that the fundamental unit of selection, and therefore of
self-interest, . . . is the gene, the unit of heredity’’ (ref. 45, p.
11). Others argue that natural selection acts simultaneously at
multiple levels (46), for example, on genomes (47, 48), kin-
ships, colonies and communities (49), to produce behaviors
that appear sometimes to be cooperative (50), mutualistic (51,
52), or altruistic (53) from the point of view of the individual.

Further Research. These results have important limitations
and leave open many questions.

For ordinal finite random games, mathematical proof is re-
quired that increasing the number of actions available to any
player increases the conditional probability that a PNE is not
PPO.

For two-player finite random games with transferable utility,
and with iid payoffs distributed according to a sufficiently smooth
probability distribution, where each player has m1 5 m2 actions,
mathematical analysis of the quantities estimated by simulation is
needed. Does limm13` P{vP . vH} exist, and if so what is its value?
Can it be proved (for some probability distributions of payoff
elements) that gL, the gain from cooperation relative to the Nash
low value, is an increasing function of the number of actions
available to each of two players, whereas gH, the gain from
cooperation relative to the Nash high value, is a decreasing
function of the number of actions available, as the simulations
suggest? Supposing each NE were considered equally likely, the
average NE payoff could be simulated. How would the average
NE payoff behave, and can its behavior be analyzed mathemat-
ically?

Additional technical questions include: What are the analo-
gous results for evolutionarily stable strategies (54)? In finite
random games with cardinal payoffs, what is the conditional
probability that a PNE is not Pareto-optimal? What is the
probability that a MNE is not PPO? is not Pareto-optimal? Do
these probabilities depend on whether the game has a PNE?
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