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Abstract-—In many networks for traffic and telecommunica-
tions, minimizing delays from entry to exit is a major concern
of users. In user-optimal routing, each user chooses a path to
minimize delay from entry to exit, given the existing paths chosen
by all other users. Under user-optimal routing, at equilibrium ali
users experience the same delay. Many networks, especially data
networks, are commonly modeled as networks of single-server
queues. We report examples of single-server queueing networks
with user-optimal routing in which adding servers or increasing
the capacity of existing servers worsens the delay experienced by
all users.

I. INTRODUCTION

HE optimal design and efficient use of traffic networks

(including networks for voice communication and com-
puter data) are important aspects of the infrastructure of
economically complex societies [1]-{4]. Until recently, it
was generally believed that increasing the capacity of links
in traffic networks or adding links to networks could not
worsen and would probably improve network performance.
This plausible belief is now known to be false in several kinds
of congested networks when traffic is routed by each individual
participant to minimize its own delay, given the paths chosen
by all other participants [3]-[10]. In such networks, additional
capacity to process traffic, together with user-optimal routing,
can—apparently paradoxically—worsen transit time through
the network for all traffic. Similar apparent paradoxes can also
arise in computer networks; for example, introducing a high-
speed link in a serial chain of processors may increase the
average transfer time from input to output [11].

Examples of such apparent paradoxes in networks consist-
ing entirely of single-server queues are reported here. These
examples were developed independently of a similar example
recently reported in [12]. Such paradoxes are important prac-
tically because networks of single-server queues are widely
used to model the network level of data networks [1]-[3].
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Single-server queuing models at the network level focus on
long-term average performance, summarizing the complexities
of transient congestion through the service time distribution
[1]-[2]. Transient congestion is also of practical importance at
the physical and the data-link-control layers in data networks
like the Internet [11].

II. SINGLE-SERVER QUEUES

An infinite-buffer single-server queue with Poisson
message-packet arrivals takes an exponentially distributed
amount of time (independently for all packets) to service each
packet. Packets are processed in first-in, first-out order. (This
idealization ignores packet loss and retries.) The capacity
(number of packets processed per unit time) is the reciprocal
of the average time the server requires to process one packet,
and the flow is the average number of packets that arrive at
the server per unit of time. The average delay experienced by
a packet arriving as part of a Poisson stream at a single-server
queue equals 1/(capacity — flow), always assuming capacity
> flow. Thus, delay becomes arbitrarily great as flow in a
link approaches capacity [1, pp. 385-390].

A network consists of nodes and links (directed edges, here
modeled as single-server queues). Some pairs of distinct nodes
are in—out pairs, meaning that traffic enters at the first node
and leaves at the second at a constant flow rate F. For a
given in—out pair, traffic can choose among paths p,, . . .,pg,
so the flow F' can be divided as F' = f, + -+ + fz where
the flow in path p, is some nonnegative number f,. Link
number ¢ has a capacity C;. When flows f,,..., fs are all
using link i, the delay d; of each flow through that link is
d; = 1/(C; = foa — --+ — fg). Delay is defined and positive,
even in the absence of flows, namely, d; = 1/C;. Under
user-optimal routing, users seek the route that minimizes their
average delay, given the routes already chosen by all other
users. At equilibrium, all paths in use have the same delay, and
that delay is less than that of any paths not in use. The total
cost T' of given flows in the network is defined to be the sum
of all the link costs, where the cost in link 4 is (fo+- - -+ f3)d;.

III. EXAMPLES

Consider the networks shown in Fig. 1.

In the left network in Fig. 1, there are two flows from the
input node to the output node. We label as f; the left flow
using links with capacities C; and Cy, and as f, the right flow
using links with capacities Cy and C5. Suppose fi+ fo = 1, so
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output = 1 output =1

input=1 input =1

Fig. 1. Networks of single-server queues before and after the addition of a
link with capacity Cj.

that the total cost equals the weighted total of all delays. With
arbitrary positive capacities, delays are equal (D; = Dy) if

/(Cr = ) +1/(Cy~ f1)
=1/(Ca— f2) = 1/(Cs — f2) = 0
or, using fo = 1 — f,

1/(Ci - fi) +1/(Cs - f1)
—1/(Co+ fi~1)-1/(Cs+ fr = 1) = 0.

Note that this function of f has a strictly increasing derivative,
S0 any zero is the only zero.

The right network in Fig. 1 has a third flow, the zigzag
flow f; using links with capacities C», Cs, and Cy. The right
network satisfies the flow constraint f; + f, + f3 = 1. The
delays for the three flows are

D1 =1/(Ci = i) +1/(Ca ~ f1 — f3) (left flow)
Dy =1/(C2~ f2 - f3) + 1/(Cs — f3) (right flow)
D3 =1/(Ca~ fo— fs) + 1/(C3 — f3) +1/(Cys — 1 - f3)

(zigzag flow)

and the total cost is

T=h//(Ci=fi)+ (f2+ f3)/(Ca— fo = f3)
+f3/(Cs = f3) + (f1 + £3)/(Ca — fr = f3)
+ f2/(Cs = f2).

Suppose the capacities are C; = C5 = 1,0, = Cy = 3,
and Cj varies from 0 (absence of the link) to infinity.

Equal delay traffic in the left network results in flows
fi = f2 =1/2 and delays D; = D, = 2.4. Note that the total
delay is f; D+ fo D, = 2.4. Even with no traffic in the zigzag
path, the delay of that path in the right network is defined and
is 1/(3-—1/2)+1/(C3—0)+1/(3—1/2) = 0.84-1/Cj3. Thus,
no traffic will choose the zigzag path if 0.8+ 1 /Cs > 2.4, that
is, unless the capacity of the new link Cs is at least 0.625.
This is reflected in Fig. 2.

Suppose C3 = 1/2, so no traffic would choose the zigzag
path with user-optimal flows. Should flows be imposed as,
say, fi = f; = 0.49 (and so f3 = 0.02), then delays in the
side paths are reduced to D; = D, = 2.3624. However, the
zigzag delay would be 2.8865, contradicting the assumption
of equal delays. This imposed flow would be an improvement
in total delay because f1D; + foDsy + faD3 = 2.3729 < 2.4,
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Fig. 2. Delay decreases as the capacity C'3 of the middle link in Fig. 1
increases, as intuition would suggest. Fixed capacities are ¢, = C5 = 1
and C; = C4 = 3. This graph (and Figs. 4 and 6) were generated from
equilibrium values attained by a difference equation method described in
Section VI

but, again, an external factor would be needed to compel some
traffic to use the zigzag path with longer delay.

More generally, for all single-server queuing networks con-
nected as shown in Fig. 1 with C;, = Cs,Cy = C,, the
zigzag path never leads to increased delay, and in fact, reduces
delay if used at all, as we now prove. Let f; = f, =
T,fs = 1-22,0 < 2 < 1/2, so each flow and delay is

a function of z. Traffic will shift to the new zigzag path

precisely if D1(1/2) = Dy(1/2) > D3(1/2) or, equivalently,
if 1/(C1~1/2) > 1/(C2—1/2)+1/Cs3; this occurs if and only
if C3 > C) and Cj is sufficiently large. To prove that such
use of the zigzag path decreases delay for fixed Cy; > Cj,
let us consider case (A) in which all three paths are used,
and case (B) in which only the zigzag path is used. In case
A, Di(z) = Dy(z) = D3(z) for some 0 < z < 1/2.
Suppose, in addition, that D;(1/2) = Dy(1/2) < Ds(z)
(by which the zigzag path would make delay worse). Thus,
D\(z) = Dy(x) = Ds(z) and D1(1/2) = Dy(1/2) < Ds(z)
imply

1 1 2 1
Cio12 G o1z G oivs G112
1 1
= 0 1/2). A
Cl—.’lf+Cg—l+fl‘ (<.’L‘</) ()
Selecting terms from (A) yields

1 1 1 1
G-1276-12 G276 115
which can be rewritten as
1 1 < 1 + 1
01—1/2 Cy~z 02—1/2 Co—-142z
Adding fractions then yields
1/2-z < 1/2—-2
(C1-1/2)(Cy—2) ~ (Co—1+ z)(Cy - 1/2)°
Since 1/2 > z, it follows that

(C1 =1/2)(C1 — ) > (C2 ~ 1 +2)(Cy — 1/2).
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output = 1 output=1

input =1 input = 1

(@ (b)

Fig. 3. For certain flow capacity values, the right network with the shortcut
has longer delay than the left network.

Selecting terms in (A) also yields
1 1
Ci—x > Co—1+z
Thus Cy — 1+ 2 > C1 — z. The inequalities (C; — 1/2)(C; —~
z) > (Co—142z){(Cy—1/2)and Cy —1+2 > C) ~ =z
together imply '

(C1 =1/2)(C1 — 2) > (C1 — 2)(C2 — 1/2)

Thus C1 —1/2 > C3—1/2, but this contradicts C> > C; from
the assumption that traffic initially shifts to the new link.

For case B, D1(0) = D5(0) > D3(0). Suppose, in addition,
that D1(1/2) = D,(1/2) < D3(0) (by which the zigzag path
would make delay worse). Substituting x = 0 and otherwise
using the same line of reasoning leads again to Cy, > Cs, a
contradiction.

We do not know whether the symmetries C; = C5,Cy = C;
are crucial for decreasing delays in response to increasing Cs.
However, in certain networks with the same topology as Fig. 1,
but with links not responding as single-server queues, delay
does not always decrease as Cj increases [5], [9].

IV. PARADOXICAL FLOWS

Contrary to some intuition, including ours, user-optimal
delay need not decline with increasing capacity in larger
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Fig. 4. The effect of C'3 values on delay in the network in Fig. 3.

networks of single-server queues. For example, consider the
networks in Fig. 3.

Suppose the capacities in Fig. 3 are C; = C5 = 8.9 and
Cy = C4 = 2.7, while C3 varies from 0 to infinity. As in the
previous section, there are three flows: left ( 1), right ( f2), and
zigzag (f3). If, initially, the link with capacity Cj is absent (the
left network), then the flow with f; = fo = 1/2 is both the
flow with equal delays D; = Do = 1.65 (decimal values are
approximate) and the flow with optimal cost T = 1.65. Under
user-optimal routing, the addition of the link with capacity Cs
results in delay as shown in Fig. 4. ‘

No traffic uses the zigzag path for 0 < C; < 1.36. For
1.36 < C3 < 2.87, all three paths are used. For C3 > 2.87,
all traffic uses the zigzag path, and the delay is D3 =
1.18 + 1/(C3 — 1). For C3 between 1.36 and 3.14, the delay
is, paradoxically, worse than it would be without the zigzag
path. The delay diminishes to 1.18 as C3 goes to infinity.

For any fixed C3 > 1.36, the network with user-optimal
routing will reach equilibrium in a curious manner. With the
opening of the zigzag route, the delay D3 of the zigzag path p3
remains lower than D; and D, so all traffic eventually shifts
to the shortcut. The delay D3 remains lower than D; and D,
because of congestion on the bottleneck links with capacities
C, and C4. However, when equilibrium is reached, the delay
can be worse than before the addition of the new link.

The above apparent paradox arises because an individual’s
choice of least delay path does not consider delays imposed by
congestion on other individuals. If flow in a path is reduced,
then in itself that reduction causes a reduction in delays in that
path. However, if the flow is displaced to a second path which
shares a link with and traffic from the first path, the increase in
delay in the common link can more than negate the decrease
in delays in other links. That is, delay in the first path may
increase because of the increased delay in the shared link. In
Fig. 3, as the zigzag link with C3 between 1.36 < C3 < 3.14
is introduced, nonequilibrium traffic abandons the left and
right paths for shorter delay in the zigzag path. Initially,
traffic in the zigzag path does enjoy shorter delay, but at
the expense of increasing delay in the left and right paths
because of congestion in the shared links. As traffic approaches
equilibrium, delay in the zigzag path increases past the original
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output = 1

input=1 input =1

Fig. 5. A network with two in-out pairs.

delay, but delay in the right and left paths increases even more.
Thus, traffic continues to choose the zigzag path to the extent
that, when equilibrium is reached, delays have increased along
the old paths.

In a recent paper by Korilis et al. [12], a network like that
in Fig. 3, but with even more repeated links (54 on each side)
exhibits increased delay (compared to C3 = 0) for all C;
above a threshold, even infinite C3. To avoid the paradox in
the special cases where all users have identical demands or
where users route all flows through links (or paths) of minimal
delay, the authors advocate adding additional capacity either
to all links in proportion to existing capacity or directly from
the source node to the destination node. However, recipes for
avoiding the paradox with more general classes of users do
not appear to be known.

Similar apparent paradoxes arise in single-server queueing
networks with more than one in—out pair. The network in
Fig. 5 has two in—out pairs, each with unit total flow. All flow
from the left input is assumed to go to the left output, and all
flow from the right input is assumed to go to the right output.
If capacities are C; = 4 and Cy = 2.5, then as Cj3 varies from
0 to infinity, the two zigzag paths are not used, used with all
other paths, or used exclusively. For 6.04 < C3 < 17.0, the
delay is worse than in the absence of the C5 link (Fig. 6).

V. CONGESTION TAXES

Congestion taxes have been proposed as a means of im-
proving the efficiency of other congested networks (3], [4],
and the principle applies here as well. To illustrate this, we
refer again to the networks in Fig. 3. Various combinations
of taxes could be imposed on the short-cut link with capacity
C3 or on the the congested links with capacities Co and Cy4
so that user-optimal routing with taxation would minimize the
total cost T. For example, if, as before, C; = C5 = 8.9
and Cy = Cy = 2.7, the capacity C3 = 2.5 results in user-
optimal delays D; = T = 1.6907 in all three paths with
flows fi = fo = 0.1066 and f3 = 0.7868. By contrast, the
optimal total cost is T’ = 1.5874 when f; = f, = 0.3193 and
f3 = 0.3614. Then Dy = Dy = 1.6606 and D3 = 1.4580,
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Fig. 6. Delay for the flows in Fig. 5 as a function of the capacity C'3 of the
middle links in the zigzag paths.

so the delay of traffic along the zigzag path is less than that
along the left and right paths by 1.6606 — 1.4580 = 0.2026.
If a monetary tax equivalent to an additional time delay of
0.2026 is imposed on traffic through the link with capacity
Cs, then traffic seeking the user-optimal routing with taxation
will reach an equilibrium with the above optimal total cost
T = 1.5874. The tax could be imposed by agreement among
all participants to remove any apparent unfairness in the flow
that minimizes total cost. The proceeds of the taxation could
be distributed equally to all participants, possibly as services
or infrastructure. Under user-optimal routing with optimal
taxation, the delay along every path would be lower than the
delay under user-optimal routing without taxation.

VI. TIME-DEPENDENT FLOWS

The delay values in the above graphs can be calculated
by allowing certain systems of difference equations to con-
verge to equilibrium states. Time is discrete with values
t =0, At, 2A¢,..., and for every in—out pair of nodes, there
is a given sequence of total flows F(0), F(At), F(2At),...
(each F is constantly 1 in our examples). As explained in
Section II, the flow total F(t) of a given in—out node pair can
be partitioned as F(t) = fa(t) +--- + fs(t) where the flow
in path p, is some nonnegative function f,(t). Thus, the set
{fa(t)} of all flows along every possible path associated with
every in—out node pair comprises a set of microscopic dynamijc
variables. Since, at equilibrium, delays along all paths with
positive flows are equal, we devised heuristic equations that
increase flows along paths with low delays and decrease flows
along paths with high delays, until delays along all paths are
equal.

For example, in Fig. 5, there are two in-out node pairs.
The flow of the first in—out node pair goes in at bottom
left and out at top left, and Fy(t) = 1 for all time. Three
paths are possible, and so there are three flows with f1(¢) +
f2(t) + f3(t) = 1. Likewise, the flow of the second in—out
node pair goes in at bottom right and out at top right, and
F5(t) = 1 for all time. Again, three paths are possible, and so
there are three more flows with f4(t) + f5(t) + fe(t) = 1.
Flow dynamics as C3 changes can be modeled by a six-
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dimensional difference equation system with system variables
{f1(t), f2(2), ..., fe(t)}. (The constancy of Fi(t) and F5(t)
here implies that some of these variables are redundant, but
this harms nothing in obtaining the equilibrium flows.)

We recall from Section II that link number i has capacity
C;, and that when flows f,,..., fs are all using link 1, the
(always positive) delay d;(t) of each flow through that link is
di(t) = 1/(C; — falt) — -+ — f5(t)). The total delay Dq(t)
of a flow f,(t) in a path for an in—out node pair is the current
sum of all delays of links in that path. For a given in—out node
pair and nonequilibrium flows {fa(t)}, we first calculate the
variables

~falt + AL)
= fa(t) +

2

B € all possible paths for the given in—out pair

fa()[Dp(t) = Dalt)]:

Thus, for example, if delays for all paths other than path
o are consistently less than D, (t), then variable ~ fo(t) is
less than the flow fo(t). Let ~F(t + At) be the sum of
{~fa(t + At)} for the given in—out node pair. The new flow
values {f,(t + At)} are computed by

F(t+ At)

fa(t + At) = m

~fa(t + At).

Thus, for each t, flows {f.(t)} and delays {D,(t)} are used
to define terms {~ fo(t+At)} and ~F(t+ At), and then new
flows { fo(t+At)} with the correct given total flow F(t+At).
The equilibrium states of the corresponding six-dimensional
system were used to produce the delay curves in Fig. 6.

A variety of iterative solution techniques [1, p. 388] could
be used here. For example, Nash equilibria in noncooperative
product-form networks are discovered by linear programming
in [13]. Our difference equation scheme is motivated by the
nature of noncooperative network dynamics.

With small perturbations, a path with initially zero flow
and smaller delay than other used paths will acquire traffic.
Likewise, flow in an initially used path with high delay can
asymptotically approach zero. Provided the rates of change of
total flows are sufficiently small, user-optimal traffic dynamics
are captured by this method.

Time-dependent M/M /1 networks in which traffic greedily
switches to least loaded paths can exhibit routing instabilities
such as oscillations and loops. For example, the original
ARPANET routing scheme, using a link metric in which
packet delay was averaged over a 10 s interval, performed
effectively under light to moderate loads. However, under
heavy loads, routing was potentially unstable and far from
optimal (see Khanna and Zinky [14]). A new, heuristic metric
installed in July 1987 caused an immediate and dramatic
decrease in the frame drop rate. The new metric incorporates
averaging with previous utilization estimates, as well as upper
and lower limits on both metric values and the rates of change
of metric values, all with the goal of damping oscillations
within routing overhead constraints.

Admittedly, our paradoxical examples deal only with con-
stant equilibrium flows. However, we anticipate that networks
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to which such paradoxically counterproductive links are added
and in which users choose among currently or recently optimal
paths would be especially good candidates for unstable time-
dependent flows.

VII. CONCLUDING REMARKS

Practicing designers are well aware that adding links might
not improve the performance of some systems. This awareness
stems from experience. However, our point is to present a
mathematically rigorous set of examples based solely on the
simplest single-server queues, bringing the phenomenon out
of designer lore and into a scientific framework.

The above apparent paradoxes arise because an individual’s
choice of least delay path takes no account of the delays
imposed by congestion on other individuals. If two paths share
a link, and traffic from the first path and other paths changes
to follow the second path, the delay in the first path may
increase because of the increased delay in the shared link.
For example, in Fig. 3, as the zigzag link with C3 between
1.36 < Cs < 3.14 is introduced, nonequilibrium traffic
abandons the left and right paths for shorter delay in the zigzag
path. Immediately, however, the delays in the left and right
paths increase because of congestion in the shared links with
capacities Cz and Cj. Even though delay in the zigzag path
increases, delay in the right and left paths increases even more.
Thus, traffic continues to choose the zigzag path to the extent
that, even when equilibrium is reached, delays have increased
along the old paths.

These examples illustrate, for single-server queueing net-
works, a general phenomenon in noncooperative games, often
illustrated by the Prisoner’s Dilemma: user-defined optima are
not system optimal [15], [16]. More technically, under broad
assumptions, Nash equilibria are Pareto-inefficient [17], [18].

If traffic chooses paths with minimal delay, given the
choices of other traffic, the addition of a link can paradoxically
degrade system performance. However, when traffic is routed
to minimize total cost, the addition of links never worsens
the total cost [1]. In general, enforcing flows with minimal
total cost implies that some traffic uses paths with nonminimal
delay. Incentives, priorities, or systems of compensation are
sometimes required in congested networks to induce users to
choose routes that minimize the total cost [4].
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