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ORTHOGONAL CYCLE TRANSFORMS
OF STOCHASTIC MATRICES*

S. Kalpazidou' and Joel E. Cohen?

Abstract. In this paper we investigate new Fourier series with respect to orthonormal
families of directed cycles y, which occur in the graph of a recurrent stochastic matrix P.
Specifically, it is proved that P may be approximated in a suitable Hilbert space by the
Fourier series ) _ w, y. This approach provides a proof in terms of Hilbert space of the
cycle decomposition formula for finite stochastic matrices P.

1. Preliminaries

Let S be at most a denumerable set and let P = (p;;,i,j € S) be an irre-
ducible and positive-recurrent stochastic matrix. Then there exists a probability
row-distribution # = (71;,i € §) suchthat 7; > 0,7 € S, and

Znipij=2n'jpj,-, iesS. : (1)
J J

From the point of view of homology theory, the “balance equations” (1) may be
equivalently written as follows:

mipij =Y wele(i,j), i,jeS, 2)
ceC

where C is a collection of directed cycles (or circuits) ¢ in S, the w,’s are positive
numbers associated with ¢, and J.(i, j) = 1 or 0 according to whether or not
(i, j) 1s an edge of c. If, in addition, the cycle weights w. are provided by a
probabilistic algorithm involving the sample paths of the Markov chain on P,
then equations (2) define a one-to-one transform P — (C, w.), and w, € C, are
called the probabilistic weights (see Theorem 4.1.1 of [4]). Often this probabilistic
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algorithm is combined with a homologic one, in which case the corresponding
cycle weights w, are called the probabilistic-homologic weights (see Theorem
4.5.1 of [4]). Equations (2) are called the cycle representation formulas for the
transition probabilities p;j, i, j € S.

As formal expressions, the cycle representation equations (2) lead to the ques-
tion of whether or not these equations have a Hilbert space interpretation as de-
compositions on orthonormal collections. One approach to this question is given
in the context of the theory of the unitary dilations of Riesz and Nagy (see [7]
and [4]). Correspondingly, it is shown in [4] that the trigonometric functions may
decompose P and the w, into classic Fourier series.

On the other hand, the cycle representations (2) disclose certain homologic
properties of P focused on the intrinsic structural interrelations between the edge
weights w(i, j) = m;pij, i, j € S, and the cycle weights w,, ¢ € C. This moti-
vates the principal goal of this paper, which is to show the existence of a special
orthonormal family I' = {y ¥y } of algebraic cycles connecting the ruling
edge-cycle relations (2) with a Fourier representation for P. Namely, we shall
show that r P may be viewed as a vector w in a suitable Hilbert space such that it
is approximated by Fourier series on the orthonormal family I'. Then, one original
point of the paper is the definition of new Fourier series whose orthonormal bases
are closer to the graph nature of P, or in general of any object that is characterized
by a graph (1-complex).

A brief presentation of our exposition is as follows. We first define two Hilbert
spaces H(£) and H(C) whose generators £ and C are respectively described by
using the collection E of directed edges and the collection C of directed cycles
of the graph of P; that is, cl(span E) = H(E), and cl(span C) = H(C). Here the
span E = £ and the span C = C mean, respectively, the vector space generated by
the algebraic chains associated with the directed edges of E and with the directed
cycles of C, and cl denotes the topological closure.

As the algebraic cycles of C are not necessarily linearly independent, we shall
replace C by acollectionI” = {y ¥y } of linearly independent algebraic cycles
such that the corresponding Hilbert space H (T") is identical to H (C). Furthermore,
because C is an inner subspace of H(£), we have

HE) =clC®CL,

where ¢l C denotes the topologic closure of C in H(E), CL is the orthogonal
complement of C, and “=" is understood as an isomorphism. Accordingly, the
orthogonal projection on C will transform any vector w in H(£) into a limit of
Fourier series with respect to the orthonormal basis I'; that is,

m(n)
w= nllpgo; wr(n)y, +u, 3
where W (n), k = 1,2,..., and m(n) denote the Fourier coefficients and length

of summation of the corresponding approximating Fourier series, and u € C.L.
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On the other hand, given P, we may consider the Fourier series

wm) =) dumy,, n=12..,
k

of the partial sums

n
E wre,, n=12,...,
k=1

provided by the cycle representations (2). Then, if we view P as a vector w in
H (&), we have

m(n)
w= lim kz;j by )y, . @

where the convergence is understood in H(E), and each w,, (n) is completely
defined by the cycle weights w,, ..., w,,.

The presentation of the paper is as follows. In Section 2 we state the preceding
arguments for finite irreducible stochastic matrices P and prove that when the Betti
cycles y » ¥ are provided by the graph of P, then they form an orthonormal
basis and the correspondmg probabilistic-homologic cycle representation formula
provided by Theorem 4.5.1 of (3],

B
w=Y w,y,, ©))
k=1
coincides with the Fourier representation on Yporn¥ . In Section 3 we inves-

tigate the case of stochastic matrices on a denumerable set of indices and prove
formulas (3) and (4).

As the orthonormal cycles {y k} may also be viewed as discrete periodic func-
tions with different periods, the corresponding Fourier transform ) w,, Yy, on
cycles y . would provide good reasons of comparison with classic trigonometric
series (see [8]). However, the special homologic nature of the graph of the transi-
tion probability functions discloses the existence of peculiar Fourier transforms on
cycles, which are different from the classic Fourier transforms on the trigonometric
functions.

2. Orthogonal cycle transforms for finite stochastic
matrices

Let § = {1,2,...,n},n > l,and let P = (pi;,i,j = 1,2,...,n) be an ir-
reducible stochastic matrix whose probability row-distribution is # = (7;,i =
.,n). Let G = G(P) = (S, E) be the oriented graph attached to P, where

= {by, ..., b;} denotes the set of directed edges endowed with an ordering. The
orientation of G means that each edge by is an ordered pair (i, j) of points of S
such that p;; > 0, where i is the initial point and j is the endpoint. Sometimes we
shall prefer the symbol b ;) for b when we need to point out the terminal points.
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The irreducibility of P means that the graph G is connected; that is, for any
pair (i, j) of states there exists a sequence by i), b, .ip) - - - » by, j) of edges of
G connecting i to j. When i = j, then such a sequence is called a directed
circuit of G. Usually a directed circuit ¢ may also be determined by specifying the
sequence of consecutive points; that is, ¢ = (i, iy, is, ..., i, ). The number s + 1
is called the period of c. Throughout this paper we shall consider directed circuits
c={(,i,l...,Is, i), where the points i, iy, i3, ..., i are all distinct.

Let C denote the collection of all directed circuits of G. Then according to
[2]-[4] and [6] the matrix P is decomposed by the circuits ¢ € C as follows:

mipij = Y wele(i, §) , (6)
ceC
where any w, is uniquely defined by a probabilistic algorithm, and J, is the passage
matrix of ¢ introduced in the previous section. Furthermore, equations (6) are
independent of the ordering of C.

Now we shall look for a suitable Hilbert space where the cycle decomposition
(6) is equivalent with a Fourier-type decomposition for P, as explained in the first
section. In this direction we shall consider two vector spaces Cy and C; generated
by the collections S and E, respectively (see [5] and [4]). Then any two elements
¢ € Cp and ¢; € C; have the following expressions:

n
go=thnh=£'Q, x,€R,nyes,
h=1

=) wh=yb, weR,bhekE,

T
k=1
where R denotes the sets of reals. The elements of Cp and C| are called, respec-
tively, the zero-chains and the one-chains associated with the graph G.

Let§ : C; — Cg be the boundary linear transformation defined as

b¢y =y'nn,
where . . .
Nen, = +1,  if ngis the endpoint of the edge b;;
= —1, if n; is the initial point of the edge b;;
=0, otherwise .
Let

Z=kerd={z€C, :7n=0}

where 0 is the neutral element of C;. Then Z is a linear subspace of Cj, and the
elements of Z are called one-cycles. One subset of Z is given by all the elements
¢ =b; +---+ b, € C; whose edges b;,, ..., b, form a directed circuit ¢ in the
graph G. In general, the circuits occurring in the decomposition (6) of P determine
linearly dependent one-cycles in Z. It is proved in [5] (see also [4]) that there are B
one-cycles y. P Y which form a base for the linear subspace Z. The number
B is called the Betti number of G, and VYoo Y gare called the Betti one-cycles
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of C; and may be defined by algebraic constructions on the polygonal lines of
the graph G (see [4], p. 55). When Yyr--oaYgare induced by genuine directed
circuits 1, ..., yp of the graph G, then we call 1, ..., yp the Betti circuits of G.

With these preparations we now prove

Lemma 1. The vector space Z = keré of one-cycles is a Hilbert space whose
dimension is the Betti number of the graph.

Proof. Let I' = {y VYyreeos } be the set of Betti one-cycles of G, endowed with

an ordering. Then
B
= [Zakzk , ax € R] .
k=1

Define the mapping (,} : Z x Z — R as follows:

B B B
<Z Y Zb"Zk> = Za"b" :
k=1 k=1 k=1

Then (, ) is an inner product on Z, and consequently Z is metrizable with respect
to the metric

B B
d <Z Y o Z bkzk) =
k=1 k=1

Therefore (Z, (,)) is an inner product space where I' is an orthonormal base.
Accordingly, to any one-cycle z = Z,f=1 ay, there correspond the Fourier coef-

ficients q; = (; Y k>, k=1,..., B, with respect to the orthonormal base I".

Define the mapping f : Z — R® as follows:

B
f(Zak1k> =(ai,...,ap) .
k=1

Then f preserves inner-product-space structures; that is, f is a linear bijection
that preserves inner products. In particular, f is an isometry. Then (Z, (,)) is a
Hilbert space, whose dimension is B. The proof is complete. O

The previous result characterizes any finite connected graph G. Now we shall
focus on graphs G (P) associated with irreducible stochastic matrices P. Denote
by B the Betti number of G(P). Consider the collection C of cycles occurring in
the decomposition (6), endowed with an ordering; that is, C = {c}, ..., ¢}, s > O.
Then we have

Theorem 2. Let P = (pij,i, j = 1,...,n) be an irreducible stochastic matrix
whose invariant probability distribution is 7 = (my, ..., ,). Assume that the
graph G(P) contains a collection {yy, ..., yg} of Betti circuits. Then & P has a
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Fourier representation with respecttoT ={y ,...,y B}, where the Fourier coef-
ficients are identical with the probabilistic-homologic cycle weights w,,, . .., Wy,;
that is,
B
D mipibejy = wyY,» Wn€R, )
[(9))] k=1
with

wy=(7Py), k=1..,B.

In terms of the (i, j)-coordinate, equations (7) are equivalent to

Tipij =

B
wyJy G, j), wy, €R;i,jES. @)

k=1

If P is a recurrent stochastic matrix, then a similar representation (7) holds, except
for a constant, on each recurrent class.

Proof. Denote w(i, j) = m;pij, i, j = 1,...,n. Then w P may be viewed as a
one-chainw =}~ . w(i, j)bg, j)- Because m P is balanced, w is a one-cycle; that
is, w € Z = kerd. Then, according to Lemma 1, w may be written as a Fourier

series with respect to an orthonormal base I' = {Z por ¥ B} of Betti circuits of
G; that is,
B
w= (ﬂ,y_k)zk, )
k=1
where (Q Y k), k =1,..., B, are the corresponding Fourier coefficients.

On the other hand, the homologic cycle formula proved by Theorem 4.5.1 of
[4] asserts that w may be written as

B
w=Y w,y,, (10)

k=1
where w,,, k = 1,..., B, are the probabilistic-homologic cycle weights given by

a linear transformation of the probabilistic weights w,, ¢ € C, occurring in (6);
that is,

wy, =Y A,y )w., Alc,y)€Z,

ceC

where Z denotes the set of integers. As representation (10) is unique, we obtain
that the Fourier representation (9) coincides with the homologic one (10); that is,

w}'t=(.u_)1£k), k=1,2,...,B.

Accordingly, because ¢ =}, A(c, ¥ Y, then

Acyp=ler,). k=1..B,
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and therefore

Wy, = Z(g,xk)wc. an

ceC
Let us now suppose that P has more than one recurrentclassein S = {1, ..., n}.

Then we may apply the previous reasonings to each recurrent class e and to each
balanced expression

B
me@pij =Y wyly(, ), ijee,
k=1
where B = Bg is the Betti number of the connected component of the graph G (P)
corresponding to e, and e = {7e(i)} (With me(i) > 0, fori € e, and we(i) = 0
outside e) is the invariant probability distribution associated to each recurrent class
e. The proof is complete. O

Remark. Let w = (w(k), k= 1,2,..., B) be defined as
wk)=w,,, k=1,...,B,

where w,,, k = 1,..., B are the probabilistic-homologic weights occurring in

(10). Then the equation
wl) =Y (e y,)we

ceC

may be interpreted as the inverse Fourier transform of the probabilistic weight
function w,, ¢ € C, associated with P.

3. Orthogonal cycle transforms of denumerable stochastic
matrices

3.1

Let § be a denumerable set and let P = (p;;,i, j € S) be an irreducible and
positive-recurrent stochastic matrix on S. Then considering an arbitrary order-
ing on S, there exists a probability row-distribution 7 = (;,i € S) such that
m; > 0,i € S,and 7P = m. As we have already mentioned, there exist algo-
rithms that associate P with a collection (C*, {w,, c € C*}), where C* denotes a
denumerable collection of directed circuits ¢ in S, and the w, are positive numbers
associated with ¢. Furthermore, if we choose an arbitrary ordering on C*, say
C*={c1,¢2,...,}, we have

o0
T[ipij=zw€k‘l€k(i7j)1 i,jES, (12)
k=1
where J;, (i, j) is the passage function associated with ¢, defined in Section 1.
Throughout our further presentation, in order to ensure the metrizability of the
vector spaces associated with the graph (1-complex) on P, we shall assume that
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P satisfies the local-finiteness condition. That is, for each { € S there are finitely
many j € S such that p;; > O or p;; > 0 (see Proposition 1.10.8, p. 47, and
Theorem 1.10.10, p. 48, of [1]).

Denote by (S, E) the oriented graph associated with P and consider an arbitrary,
but fixed, ordering on each set S, E, and C*. As in the finite case, the edges will be
symbolized either by by, k = 1,2,..., or by b jy, i, j € S. Now we shall define
two Hilbert spaces from the sets E and C*. In this direction we first consider the
sets

E= [Q:Zakbk,neN,ak eR,bkeE] ,

k=1

m
C = [£=Zxkgk,meN,xkeR,ck€C*] s

k=1

where N is the set of positive integers, and the notation ¢, will be explained shortly.
The set £ becomes a real vector space with respect to the operations + and scalar
multiplicity defined as:

D abe+ Y oubr =) (a + by,
k=1 k=1

n n
AZakbk=ZAakbk, AER.
k=1 k=1

In an analogous way we organize the set C as a real vector space. Furthermore, as
any directed circuit c € C* may be associated with a vector¢ = Z(i' » Je(i, b, j
in &€, then C is a vector subspace of £. This motivates the notation ¢, in the linear
combinations of C.

Now let us choose by Zorn’s lemma a linearly independent subcollection I' of
C* that generates C. Define (, ); : € x € > Rby

min(n,n)

n m
<Zakbk,2akbk> = Z ARy .
k=1 k=1 1

k=1

Then (&, {, };) is an inner product space. Analogously, define (, ), : C xC — R
such that (C, {, ),) becomes an inner product space as well. Consequently, {, ),
and (, }, induce the norms | |; and | |, on £ and C, respectively.

Because £ and C are incomplete metric spaces, we shall further consider their
completions H(E) and H(C) along with the corresponding extensions of (, ),
and (,),. This means that £ and C are isomorphic with certain inner product
subspaces Hy(€) and Hy(C) such that cl Hy(€) = H(E) and cl Ho(C) = H(C),
where cl symbolizes the topological closure with respect to the corresponding inner
product topology. Furthermore, the sets E = {b;, by,...}and " = {y Y }

are orthonormal bases of H(£) and H(C), respectively, and consequentfy any
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x € H(€) and any yeH (C) may be uniquely written as Fourier series

o0
X = Z acby ,
k=1
[o 0]
J= de)/k )
k=1
wherea; = (x, b)and oy = (X’ gk>,k =1, 2,....Furthermore, the Riesz—Fischer

representation theorem allows us to write

00 =)
H([’:) = l£= Zakbk A € R,Za,% < OO]
k=1 k=1
and

o0 [
H(C) = {Z= Za"lk Ty € R,Zaf < oo] .
k=1 k=1

Then the topological closure cl C of C in H(E) defines an orthogonal projection
from H (&) toclC. That is, for any element y € H (€) there exist a unique element
Y incl C and u € CL such that

y=y +tu. (13)

3.2

Now we shall turn back to our original stochastic matrix P and investigate the
relation between 7 P and the Hilbert spaces H(£) and H(C). Recall that C is an
inner product subspace of H(E). Denote w(i, j) = m; pij, i, j € S and define

w=Y_ wli, Db - (14)
(9)]

Because Z(i, i w(i, j) = 1, then w is well defined in H(E) (the convergence
in (14) is understood with respect to the norm of H(£)). On the other hand, the
w(i, j)’s may be described by (12) as

(=)
w(i, ) =Y weto(,j), ij€S,
k=1

where w,,, k = 1,2,..., are the representative cycle weights (see [4], pp. 34-36).
Further define foreachn =1,2,...,

wn) =Y gy - (15)
k=1
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Then w(n) € C. Because " = {v 1Yy .} is a base of C, w(n) may be written
as a linear expression of the form

m(n)
w(n) = Zwym)(n)zw) , n=12,..;w,,(n)ER, (16)
=1
where m(n) is the corresponding length of summation.
Introduce
Wy, (n) =wy, (), ifs==k(), forsome l=1,2,...,mn),
=0, otherwise.
Then
m(n)
wn) =) b, My ., d,meR, s=1,...,m@), a7
s=1
and
2 2
(lwmlz)” =) (b, m)" .
s=1

Because the sequence {w(n)}, is a Cauchy sequence in H (), it converges to a
vector

_w/ = Z w,(i, ])b(,‘]) € H(g) ’
.j)

that is,
lwn) —w'|, >0, asn—> .

The formal expression of w(n) in H(E) is as follows:

NOEDY (Z W Jo @, )) ba.j)

G.j) \k=1
m(n)
=) (Z By, (m)Jy, G, j)) bi.jy -
@i.j) \s=1
Because
n 2
(e —w'h)* =Y (Z We, o Gy ) — W', j)) -0,
(i, J) \k=1

as n —> 00, we obtain that

o0
w'(i, j) =Y _ we, Jo G, ) »
k=1
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for any i, j € S. Therefore, w’ = w and we may write

m(n)

w= lim 3 by oy,
s=

where convergence is understood in H(£). In general, using the orthogonal de-
composition (13) for any w in H(£), we may find a sequence

m(n)
{Z wk<n>zk}
k=1 n

of elements of C and a vector u, orthogonal on C, such that

m(n)

w= nlglolo; Di(n)y, +u.,

where convergence is understood in H(£).
Our results can now be summarized in the following theorem.

Theorem 3. Given a denumerable set S, let P = (pyj, i, j € S) be an irreducible
positive-recurrent stochastic matrix that satisfies the local-finiteness condition, and
let {C, w.} be a cycle representation of P with respect to the invariant probability
distribution m = {m;,i € S} Let C = | J:2,C", C" = {c1,c2....Cn} 0 =
L,2,....

(i) Then P and {C, w.} define, respectively, a Fourier series
w= Z(ﬂi Pij)ba.j
()
on the edges by jy of the graph of P, and a sequence

m(n)

w(n) = thy,(n)zs , n=12...,
s=1

of Fourier representations on the independent cycles { Y, } = I' describing C",

n=1,2,..., where each Wy, (n) is a linear expression of the cycle weights
w,, ¢ € C".
(i) We have
m(n)

w= lim ; by, (n)y,, in HE).

In general, for any w in H(E) there exist a sequence [ZZ':(';) wi(n)y . }n of Fourier
representations on the cycles of T, and a vector u, orthogonal on C, such that

m(n)

ﬂ:nli)rgo;wk(n)xk+g.
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