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1. Introduction. In the study of mechanisms of ecological succession,
Connell and Slatyer (1977) recognized three major types: inhibition, facili-
tation and tolerance. These types differ in the effect of inter-specific
interactions during and after colonization. In the facilitation model, the
later species can colonize a patch only after previous occupation by early
species provides the environmental conditions suitable for them. In the
inhibition model, the later species do not require the presence of early
species to allow them to colonize an empty patch, but once a species (early
or late) occupies a patch, it prevents others from colonizing. Finally, in the
tolerance model, empty patches can be colonized by early or late species,
and the ability to tolerate reduced resource levels determines which of
them will exclude the other. Caswell and Cohen (1991a,b) developed
non-linear Markov chain models for these three mechanisms, and examined
.the effects of disturbance on co-existence and diversity. Here, we focus on
inter-specific interactions during and after colonization in a generalization
of the tolerance model of Caswell and Cohen (1991b) and Barradas and
Cohen (1994).

The way two species interact during and after colonization will influence
which of them will be present in each successional stage. While modeling
this interaction, differences in local and regional processes have to be
considered (Ricklefs, 1987; Connell, 1978; Dayton and Hessler, 1972; Hus-
ton, 1979; Slatkin, 1974). Meta-population models can be used to study
processes taking place at various spatial scales (Caswell and Cohen, 1991a, b;
Caswell and Etter, 1993; Etter and Caswell, 1993; Barradas and Cohen, .
1994) and the relative role played by competition at different stages. For
instance, species in a patchy environment affected by disturbances can
compete against each other to colonize empty patches or to prevail after
colonization. During colonization, one species may be able to interfere
with, or even impede, colonization by a second one whenever they meet or,
alternatively, only if the first one colonizes before the second one arrives.
The efficiency of the two modes of interference need not be the same.
Interference from the first species during colonization by the second one
could be more efficient if the first one is already settled before the second
one arrives. .

The present work shows that different kinds of competition have qualita-
tively different effects on the final equilibrial level of the species involved.
We give an explicit criterion to determine which interactions have stronger .
effects on the final equilibrial levels of the weaker species, and we give.
precise conditions for the co-existence of both species. We show that both

species are more likely to co-exist under an intermediate disturbanc
frequency. : '
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2. The Model. Consider a patchy landscape consisting of an infinite
number of identical patches, which can be occupied by individuals of two
species E; and E,, with E, the competitive dominant (the “late succes-
sional” species). Each patch can be in one of the states numbered 0, 1, 2 or
3, according to the species that are present in it. The states of the patches
are defined as follows: 0 if the patch is empty, 1 if only E, is present in the

patch, 2 if only E, is present in the patch, and 3 if both species are present
in it (see the table below).

Species 1 Species 2 State
Absent Absent 0
Present Absent 1
Absent Present 2
Present Present 3

The state of the landscape is described by a vector y in R*, whose entries
y; are the proportion of patches in state i. Changes in these proportions
result from changes in the states of the patches, which result from coloniza-

tion, disturbances and within-patch interactions, according to the following
rules:

(a) Colonization occurs at random, without neighborhood effects.

(b) The mean number of propagules of species E; arriving at a patch is
directly proportional to the fraction of patches containing E,. There-
fore, the probability of colonization by at least one propagule of species
E, is given, according to the Poisson distribution, by

C= »1 ~ exp( —difi)r (2.1)

where d;> 0 is the dispersal coefficient of species i, and f/(z) is its
frequency, i.e. fi(£) =y,(8) +y5(t), and f(1) =y,(£) + y5(0).

(c) An established population of species E, causes colonization by species
E, to fail with a probability per unit of time of p;, 0 <p, < 1. If both
species reach the patch simultaneously, species E, causes colonization
by species E, to fail with probability per unit of time of p,, 0<p <1l

(d) Disturbances occur with a probability p,, 0 <p, <1, which is constant
and independent in all patches.

(e) Any occupied patch affected by a disturbance becomes empty, ie. it
.returns to the state 0.

(f) If both disturbance and colonization occur in the interval (t,¢t+ 1], the
disturbance causes colonization to fail.
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(g) In competition between established populations within a patch, species
E, eliminates species E, with a probability per unit of time of Pes
O<p . =<1.

The dynamics of the system is then described by the non-linear Markov
chain, :

¥(t+1) =4, y(1). 2.2)

The transition matrix A, can be written as

1-pAC,+C,- C,G,) Pa P4 P4
A PLC\(1-pC,) P4(1-p.C,) 0 Pap.
' p1-C)C, 0 p1-¢c) o |

PL1P,C, Pap,C Py Pape
o (2.3)

where the C; are given by (2.1) and we have used the convention that, for
any parameter x, x =1 —x. Each entry of this matrix describes the proba-
bility that a patch changes from one state to another. For example, pp.
(second row, fourth column) describes the probability that a patch changes
from being occupied by both species to being occupied by E; only. .
System (2.2) includes a great variety of cases. The special case p,=p, =0
was studied by Barradas and Cohen (1994), and corresponds to competition
only after colonization. Colonization is not affected, but species E, elimi-
nates species E, with a probability of p. per unit of time, whenever they
meet after colonization. _ _
Individual patches in this model never reach an equilibrium (unless
Pa = 0). Our interest focuses on the possibilities of landscape-scale equilib-
rium and landscape-scale co-existence, even when local co-existence is
impossible. The idea that disturbance can promote co-existence, and hence
species diversity, dates back to Hutchinson’s (1951) concept of the “fugitive
species.” We want to see how the conditions for co-existence are affected
by the probabilities (p,, p, and p_) that describe the competitive interac-
tions. Since these probabilities reflect the biology of the species (resource
acquisition, behavioral mechanisms, etc.), we can expect that they will
evolve (or co-evolve), and that the adaptive value of changes in each
parameter will reflect their impact on the conditions for co-existence.
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When only a single species is present, it can be shown that the occupancy
level of that species approaches an equilibrium level S;, which depends only
on the rates of dispersal and disturbance. That equilibrium is the maximum
of 0 and the only positive solution of

(1-p )1 —e~%5)(1-8,) —p,S,=0. (2.4)

When two species are present, the outcome depends on disturbance,
dispersal and competition. Our main result describes all possible outcomes

for fixed p, €[0,1) and fixed p,, p,, p, € [0, 1], as a function of the dispersal
rates d, and d,, as shown in Fig. 1.

For notational convenience, define the vector p =(p,, p,, p,, p,)- The
(d,,d,) plane is divided into four sections by two curves,

d, =o(p, dz),
d,= (I)z(p,dl),

P+ (- P, )P,
(-p)-p (-p)-p P} 73

@, (P PP, . P, d,)

1 dp :
P, D1
i
1-p, 1

Figure 1. Regions in plane (d;, d,) of dispersal coefficients d,,d, for species 1
and 2, respectively, where: both species go extinct (D)), species 2 goes extinct
but not species 1 (D,), species 1 goes extinct but not species 2 (D) and both
species co-exist (D,). This informal description omits some unstable solutions;
see Theorem 1 for exact details.
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where
Dq
(Dl(p? d2) - 1 ~ P4 4
p pat+(1—pyp,
q)Z(p’dl) = ‘ : = : .
1-p, PaPrS)
Pa\1—-psS; - 1— +(1-8)1 -5, -pa)p.

(25)

In this expression, S; is the single-species equilibrium for species E,,
calculated from (2.4). These curves define the four regions shown in Fig. 1:

D,={td,,d,)0<d, <®,,0<d,<d,},
D,={(d,,dy)ld, > ®,,0<d, < d,),
D,={(d,,d)0<d, < ®,,d,> ®,),

D, ={(d,,d,)ld, > ®,,d,> @,).

These four regions determine the asymptotic behavior of the systems (2.2)
and (2.3).

Let y(1) = (yo(8), y,(1), y,(8), y5(2)) be the solution of (2.2) with initial
condition y, = (y,(0), y,(0), y,(0), y;(0)). Assume always that p, €[0,1) and
Pe» Py, Ps€[0,1). If (d,,d,) € D,, then asymptotically neither species can
persist. For every initial condition, all patches become empty. If (d,,d,) €
D,, and if species E, is present in any positive fraction of patches initially,
then asymptotically the only globally stable solution is (1 —S,,S,,0,0), in
which species E, has excluded species E, by competition. In addition, there
are two unstable stationary solutions: one where all patches are empty and
one with only species E,. If d,<p,/(1—p,), then species E, must be
absent at equilibrium. If (d,,d,) € D,, then species E, can persist if it is
initially present, but species E, cannot. The stationary solution with all
patches empty is unstable against introduction of species E,. Finally, if
(d,,d,) € D,, then (2.2) has one globally stable stationary solution, in which
both species E, and E, persist and co-exist, plus three unstable stationary
solutions: all patches empty, species E, only and species E, only. These
properties are stated precisely in Theorem 1 of Appendix A. The rigorous
proof given in Appendix A is one of the main achievements of the paper.

3. Numerical Calculation of Persistence Thresholds. In this section, we
calculate numerically the regions of co-existence to see the effects of
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1.8+ ’ 4

critical d1 7
1.6} 4 T

1.2} 7

0.6 7 R

0_4 - 4 -

0 vl X 2 1
0 0.5 1 1.5 2
di

Figure 2. Numerical computation of critical values of dispersal coefficients d,
and d,. Parameter values in this illustration are arbitrary: p, = 0.2, p.=009,
pr=0.1, p,=0.1. Diagonal line d, =d, is included to emphasize that persis-
tence of fugitive species 2 does not always require an advantage in dispersal to

compensate for its competitive inferiority.

changes in parameter values. The details of the numerical calculations are
described in Appendix B. In the following section, we investigate these
questions analytically and discuss the possible evolutionary implications of
the results.

We calculate the persistence thresholds @ ,(p, d,) and ®,(p, d,) by deter-
mining numerically the local stability of the boundary equilibria. Figure 2
shows typical numerical results for arbitrary parameter values.

The critical dispersal rate ®,(p,d,) for the inferior competitor depends
in a complex way on p,, p., p, and p, (Fig. 3). The top row of Fig. 3 models
a low-disturbance environment ( p, = 0.1), the center row an intermediate-
disturbance environment (p, = 0.5) and the bottom row a high-disturbance
environment (p, = 0.8). In each-of the three columns, one of the competi-
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pc=].05,.16.,.5] pr=[.05,.16,.5] ps=[.05,.16,.5)
1 1 ——————‘
go05 0.5 0.5
0 0
0 0.5 1 °o 0.5 1 0 0.5 1
2 2 2
S15 1.5 % 1.5 %
1 1 1
0 2 4 0 2 4 0 2 4
7 7 7
6 6 6
[aV]
© 5 5 5
4 % . 4 %
0 5 10 0 5 10 0 5 10
di d1 d1

Figure 3. Effects of varying p., p, and p, on location and size of the: four
regions in (d,, d,) plane. Within each row of pictures, the value of p, is fixed
(p;=0.1 in Tow 1, 0.5 in row 2, 0.8 in row 3). The three curves in each plot
correspond to values 0.05, 0.16 and 0.5 of parameter at top of each column.
Rates other than rates being varied take the value 0.1. Graphs show that at low
disturbance rates, ®, is most sensitive to changes in p, because most competi-
tion takes place after colonization. Variations of p,, which operates only in
simultaneous colonizations, have almost no effect because simultaneous colo-
nizations are rare when disturbances are rare.

tion parameters is varied over an order of magnitude (from 0.05 to 0.5),
while the others are fixed at a value of 0.1.

At low disturbance rates, ®,(p, d,) is most sensitive to changes in p,, less
so to changes in p, and almost independent of p,. This is because, at low
disturbance frequencies, simultaneous colonization, which is affected by p,,
is a rare event. '

At intermediate disturbance frequencies, the critical dispersal rate is
equally sensitive to all three competition parameters. At high disturbance
rates, ®,(p, d,) is most sensitive to p, (which affects simultaneous coloniza-
tion), and less so to p. and p;.

4. Comparison of Different Modes of Competition. In a meta-population
like that described by (2.3), interdemic selection would operate to reduce
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local extinction rates and increase species occupancy (e.g. Gilpin, 1975). In
the present model, species E, -is unaffected by species E,, so the competi-
tion parameters (p,, p, and p,) are selectively neutral for E,. The persis-
tence of species E,, however, depends on these parameters, so it is of
interest to see how the persistence threshold P, varies as a function of p,,
p. and p,.

First, we consider each form of competition acting alone. Fix Ppg and d,.
A substitution in (2.5) of the special sets of values {p,0,0}, {0, p,0} and
{0,0,p} for p,, p, and p, reveals which interaction has the greatest effect if
the other two are not acting. The quantities to be compared are:

P pat(1—py)p
(I)( ’ :0:0>d)= : s ( e = ):
2Pap " 1-p; p+(1-8)1-S8,~p)p Pe=P

4.1)
q)Z(Pd’O’p’Osdl) = Pa : . ’ (P =P), (42)

1-p, {— PaPS, "

1-p, '
®,(p,,0,0,p,d)) = Pe |1 (p,=p). (4.3)

. Y 1-p, 1-ps,’ s

The effect of p. on the persistence threshold of species E, is greater than

that of p, if and only if the expression in (4.1) is bigger than the expression
in (4.3), which is equivalent to

2-8-p

Da< =y (4.4)
The right side of (4.4) is a decreasing function of p and the inequality is
satisfied for p =0, but not for p = 1. Therefore, there is a unique value
Po € (0,11 such that (4.4) is satisfied if and only if p <p,. As d, increases,
S, tends to 1—p, and therefore p, tends to 1. Thus, when p is small
enough, the persistence threshold is more sensitive to the ability of species
E, to persist with species E, than to its ability to colonize patches already
occupied by E,.

From (4.2) and (4.3), the effect of p, exceeds that of p, if and only if
Ps> 5. That is, when p, is large enough, the ability of species E, to
colonize empty patches simultaneously with species E, becomes more
important than the ability to colonize a patch already containing E,. If

Pa <7, the effect of p, is stronger. If p,= 1, changes in p, and changes in
D, have the same effect.
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Finally, the relative effects of p, and p, on the persistence threshold
depend on the relationship between (4.1) and (4.2). The expression (4.1) is
greater than (4.2) if and only if -

2-8,—p,3-S5,) —pps(1 —p,) > 0. 4.5)

For small p,, this inequality is clearly satisfied. How big p, has to be for
the effect of p, to be greater than that of p, depends on the values of p
and d,. For p,> %, (4.5) is never satisfied. The change of behavior occurs
for some value of p, smaller than . In highly disturbed environments, E,
is better off investing in a simultaneous colonization with E, than trying to
persist together with it after colonization. If disturbances are not too
frequent, it is more efficient for E, to persist with E, after colonization.

When all three types of competition operate, E, may have to choose
among investing energy in‘reducing p,, p, and p,. The relative value of
these choices will depend on the sensitivity of ®,(py, p., P, Ds»dy) to
changes in p,, p, and p,. Based on Fig. 3, we expect these sensitivities to
reflect the turnover rates of individual patches, and thus to depend strongly
on p,. That is, when p, is large enough, most patches will be disturbed
before within-patch competition has time to operate, and p, will be
relatively unimportant. If p, is small, colonization will be infrequent and
the competitive interactions that take place during colonization (measured
by p, and p,) will be unimportant. To make these ideas precise, we take the
partial derivatives of @, with respect to p,, p, and p,, and obtain

P ad
2 S 2

4.6
ap. ap; (4.6
if and only if
2-5,- ¢ Fs
Pa< = l_p P @
2 Py~ Pc— Ds ’
90, D,
25 2 (4.8)
Ip, ap;
if and only if '
pa> ‘ 4.9)
Finally,
ad ad
2y 2 (4.10)
ap. ap,

if and only if
pAp.+p,—p) —psp.+p,—2p,—S +3)—p,— 8 +2>0. (411) |
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As in the previous comparison of the effects of p, and p,, condition (4.6)
is likely to be satisfied (it depends on the relative values of all other
parameters, but it is certainly satisfied for small values of p_, p,, p, and §,).
In this case, for sufficiently large values of p,, the system will eventually
react more sensitively to changes in p, than to changes in p_.. If equal
changes in p, and p, have equal costs, then E, is better off investing
energy in persisting with E; when both are present than in colonizing
patches already occupied by E,.

The sensitivity of the system to changes in p, and p, remains unchanged
- with respect to the previous findings. In highly disturbed environments, the
persistence threshold @, reacts more strongly to changes in p,, whereas
changes in p; are more important if disturbances are rare. When p, =1,
the average inter-disturbance interval is only two time units and half of the
patches are disturbed at every time step. This is quite a high rate of
disturbance. It thus seems reasonable to expect that p, will usually be less
important than p,. :

Finally, for small values of p,, the system is more sensitive to changes in
P, than to changes in p,, but there is a threshold value for D, (again, no
greater than %) above which the system is more sensitive to changes in p,.

At the extreme when disturbance is rare, p_ is more important than p,,
which is more important than p,. The fugitive species benefits most from
extending its temporary co-existence within a patch, less by improving its
ability to invade an already occupied patch, and least by improving its
ability to colonize simultaneously with the winning species. At the opposite
extreme of frequently disturbed environments, the order of importance is
reversed: rapid competitive exclusion carries little cost, and the ability to
colonize (temporarily) in the presence of the winning species is most
important. :

There are several natural generalizations of the model analyzed here.
One of them includes more than two species, with the restriction that all
interactions among them can be neglected except the interaction with a
leader or keystone species. Assume we have a landscape with one keystone
species E; and n — 1 fugitive species. The dynamics of E, are not affected
by any of the fugitive species. Therefore, if any other interaction among the
n — 1 fugitive species is neglected, the generalization of the n species model
is proved separately for each fugitive species by dealing in each step only
with the frequency of the keystone species E, and the frequency of a single
fugitive species. ’

The maximization of species diversity at intermediate levels of distur-
bance can be understood in the following way. According to Theorem 1, if
pq tends to 1, D, blows up to include the whole positive quadrant, i.e. it is
likely that both species become extinct (see Fig. 4). Some kinds of pollution
may act as highly frequent distufbances, and lead to biotic impoverishment.
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pd=.1 pd=.5
2 2
1.5 . 1.5
S 1
0.5 i
o E
0 0.5 1 1.5 2 1.5

d1

Figure 4. Example of effect of increasing disturbance probability (p,) on size of
region D, (shaded) in which neither species can persist. Parameter values:
P.=p,=p,=05.

1.2 7 v T

0.8

0.4

0.2

00 0.5 1 1.5 2
d1
Figure 5. Example of change in critical dispersal rate ®,(p, d,) with disturbance
rate p,, when disturbance is rare. Shaded area represents parameter combina-
tions for which reduction in p, from 0.1 to 0.01 makes persistence of fugitive
species E, more difficult. .
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As D, increases in size, only species which spread very fast (d, and d,
large) will be able to survive.

On the other hand, as p, approaches 0, S, approaches 1 and ®,(p,d,) —
p./(1 —p,). As in the models of Caswell and Cohen (1991a,b), when the
winning competitor E, prevents colonization by the loser (i.e. when p, = 1),
®,(p, d;) becomes infinite and species E, is excluded. When p, <1, species
E, may persist when p, =0, but persistence may become more difficult
because reducing disturbance may increase ®,(p, d,). An example is shown
in Fig. 5. Since many ecosystems may contain many fugitive species,

eliminating natural disturbances can cause a significant decrease in species
diversity.

APPENDIX A

Theorem 1 and proof. Here we. give the formal statement and proof of the theorem
describing the stability of the model (2.2) and (2.3).

THEOREM 1. Let p, €[0,1) and p,, p,, p, € [0,1). Further, let y(t) = (yo(t), y(t), y,(1), y3(1))
be the solution of (2.2) with initial condition y, = (y(0), y,(0), y,(0), y{0)).

(a) If (dy,d,) € D,, then (1,0,0,0) is the only stationary solution of (2.2) in X and it is globally
stable, )i.e. ¥(t) = (1,0,0,0) as t — =, for every initial condition in X. (Neither species can
persist.

(b) If (d,,d,) €D,, then (2.2) has at most three stationary solutions in X: (1,0,0,0) and
1-S5,,0,5,,0), which are unstable, and (1 — S, §,,0,0), which is globally stable, i.e. if
y{0) +y5(0) = 0, then y(t) - (1—~5,,5,,0,0) as t > . If d, <p,/(1—p,), then §,=0
and the first two stationary solutions coincide . (Species E, excludes species E,.)

(©) If (d,,d,) € Ds, then (2.2) has two stationary solutions in X: (1,0,0,0), which is unstable,
and (1-S5,,0,5,,0), which is globally stable, i.e. if y,(0) +y5(0)# 0 then y(t) (1~
$,,0,8,,0) as t — e, (Species E, can persist, but species E, cannot.)

(@) If (d,,d,) € Dy, then (2.2) has only four stationary solutions in X (1,0,0,0),(1 - S}, §,,0,0)
and (1 —S,,0,S,,0), which are unstable, and (1 — §, — 9, — $3, $1, J2, 93), which is globally
stable, i.e. if y,(0) +y;(0) = 0 and y,(0) +y,(0) %0, then as t 2 0, y(t) » (1 =, —F,—
$3, 91, 9, 3), where 91 + 95 =S, and §, + 93 < S,. Moreover §,+3=S, only if p,=p, =
p. = 0. (Both species can co-exist.)

Proof. Because the model operates on probability vectors, the analysis can be restricted
to the set

X={(0,y1,¥2:¥3) ER*Iyo+y; +¥y2+y3=1,¥0,¥1,¥2, ¥y 2 0},

which is invariant under (2.2). Of special interest are vectors y = (¥q, ¥3, Y2, ¥3) in X which
are fixed points of (2.2), that is, points in X such that

Yo=[1=Q=p,)Cy+C; — C,CIyo+Pays +Pay2 +Payss

y1=0=p)C(A~=U~p)Cy,+ 8 ~p)1~0~p)C)y,+(1—pp.ys
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Y2=(1=p)1-C)C,y,+ (1 ~p)(1-C)y,,

y3=({1-p,)C,(1 “Pr)C2Yo +0-p,)(1 =p)Cyy, +(1 =pa)Ciy, +(1 —p)(1-pys,

or

(1= p)(=1+ e~ ity=dilyztynyy, +p,(y, +y;, +y3) =0, (A1)
(1=pg)(1 = e=h0#0)(1 — (1 = p,)(1 = e=d02+70))
~(Pat A =p YA =p )1 = e~y 4+ (1-p)p.ys =0,  (A2)
(1= pe™*r)(1 — e=d024r2yy 4 ((1 = p,)e~dn+ys) Dy,=0, (A3)
(1 =p)(1 = e h0rt9)(1 - p )(1 — e~y 4 (1 -p)(1-p,)

x(1— e"dz(}'z'*h)lyl +(Q -p)( - e“"(y"*”))yz + (PcPd ~py “Pc))’3 =0. (A4)

Define go, g,, g, and g;: X >R to be the left side of (A1), (A2), (A3) and (A4),
respectively. The behavior of a solution of (22) in X is determined only by the sign of the
functions g,. Therefore, if 8: <0, the corresponding variable y,(r) decreases over time, and
if g; >0, it increases in time. Finally, if g, =0, y(t) does not change. The frequencies of E,
and E, increase or decrease according to the signs of g, +g,, and g, + g3, respectively.

Since E, is not affected by E,, its equilibrial frequency depends only on the parameters

Pq and d,. That is why the following lemma holds true regardless of the values of d,, p,, p,
and p,.

Lemma 1. Let y(1) = (yo(0), y,(0), y2(t), y3(1)) be the solution of (2.2) with initial condition
(6(0), y4(0), y,(0), y5(0)).

@) Ifd, <p,/(1~p,), then [ty =y (1) +y3(t) decreases monotonically to 0 as t — o,
®) Ifd,>p,/1~p,) and y,(0) +y;(0) # 0, then f,(1) =y,(t) +y3(1) > S, ast — o,

Lemma 1 is proved by Barradas and Cohen (1994).

E, is eliminated locally by E,, thereby reducing its equilibrial frequency. We aim to make
clear this reduction of the equilibrial frequency as a function of the parameters, and to give
explicit conditions for E, to persist. Since ‘positive solutions are shown to be always globally
stable, the conditions for their existence also describe whether E, is able to invade a
landscape previously occupied by E; (see Fig. 1).

LEMMA 2. There is a continuous function

+(1-plp,
P2:10.1) X100, 1) x[0,1) x[0,1) x[0,e0) - | - fdp & “Pd)l(J‘li'_P Qa i)dpf) —Papy)
d s r

such that for fixed values of p,, Po> Prs Pyt

@) Dx(Pas Pes Pro Po X) = pa /(L= py) for x €10, p, /(1 ~ pl.
®) ©py, pes s p,, x) is monotonically increasing in x for x > p, /(1 —pa)
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() lim, _, 0,(py, P, prr Pyy X) = (Pa + (1~ p2)p.) /(1 = psX1 = p,(1 = p,) = pup,)). Define
(yol2), y(1), y,(1), y5(1)) to be the solution of (2.2) with initial condition
(y0(0), y1(0), y,(0), y5(0)).

@ Ifdy <®py, pes Prs P> 41, then (1) =y,(£) +y5(8) = 0 as t — o, B

(e) Ifdy> @y (py, p., P,» P» dy) andy,(0) + y,(0) # 0, then f(1) =y (1) +y3(1) = S, ast — =,
With S = 8,(Pp4: Per Pr» P52 dy) < Sy. Moreover, S, =S, only ifd, <p,/(1 —p,) orp,=p,

=p.=0.

Proof. Lemma 1 guarantees that E; is not affected by E,. Therefore, E, will tend to the
level S, specified by the one-species model, i.e. f(r) =y(t) +y;(t) > S, as t — . Since all
functions involved are continuous, the behavior of the solution for y, +y; near S, can be

understood by analyzing the case y, +y; = S,. For this reason, we will concentrate first on
the set

S={(y0,¥1,¥2,¥3) €Xly, +y;=5,;}.

The idea of the proof is to find two curves v and ¢ in S such that they intersect in at
most one point with positive co-ordinates. If such a point exists, it will be shown to be a
stationary solution of (2.2).

In S, the equations in system (A.1) to (A.4) may be simplified by substituting for e =45
from (2.4):

1-8,~p4

S e - ¢
¢ A-p)A-8)"

(A5)

Using this value in (A.3) and solving for y, yields a convex curve y(y,), such that for any
initial condition in S, y,(¢) increases (with .f) above vy, and decreases (with ¢) below it.

(Figure Al shows a special case in which y'(0) > 0.) y is independent of p,, p, and p,. It is
given by

1 (-8 -p)10—S;—y,)
~~In Y2,
dy (1-5)0-S8-ps—y,)

y3=7y(y;) =

which is well defined for 0 <y, <1-S, —p,, where it is a convex function of y,. Since
¥(0) = 0, this implies that vy is an increasing function of y,, whenever it takes positive
values. The value of '(0) will be of special interest in the later analysis. It is given by

Pa

v'(0) = LA=S)A=5—p) —1.

(A.6)

The curve ¢ in S mentioned above is determined by the set

G =1{(y0,¥1,¥2:¥3) € Slg2(y0, 1, Y2, ¥3) +85(¥0, ¥1, Y2, ¥3) = 0} (A7)
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Yy h

.
- 2
Figure Al. Curves in (y,, y;) plane that determine equilibrial values of y, and

y3 by their point of intersection. y, is the fraction of all patches that contain

species 2 but not species 1; y; is the fraction of all patches that contain both
species. '

Usihg the equalities yy=1~S,—y,, and y, =S, —y;, G can be written so that it does
not depend on either y, or y,. A further simplification can be achieved by substituting (A.5)

in (A.7). Therefore, ¢ consists of those points y € § whose third and fourth co-ordinates
satisfy

PaPrS, PrPsS)
A-p)A —e D92ty 1 - p S, ~ 1 -
pd € ) ) ps 1 I—Pd (1 _pd)(l—sl) YZ
- "Ps))’3) ~Pa{y2+y3) —p.(1=pslys = 0. (A.8)

The definition of G also guarantees that

G ={(y0,¥1,¥2,¥3) €Slys=o(y,) or y,=y,=0}.

Adter a substitution of the type y; =k +ly,, with 0<y, +y, <1 and k,/ in R, the left side
of (A.8) defines y; as a function of y, whose second derivative does not change sign. This
guarantees that there are at most two values of y, that makes (A.8) hold true. Moreover,
¢'> —1,unless p,=p, =p_= 0, in which case ¢ is given by {(y0, ¥y, ¥2, ¥3) € Sly, +y; =83}
This case corresponds to no interactions between species. Therefore, we will assume from
now on that min{p,, p;, p.} > 0, and hence ¢' > —1. :
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Considering special values of the variables in (A.8) ( y2=0and y, = 0, respectively), it is
clear that ¢ is either concave in that region or it is convex and decreasing. In either case,
the convexity of y and the fact that it is an increasing function for positive values imply that
both curves intersect in a single point with positive co-ordinates, which corresponds to a
non-trivial fixed point of (2.2), if and only if ¢(0)> 0, or ¢(0) =0 and ¢'(0) > v*(0).

For fixed p,, p,., p, and p,, we will look for conditions on d, as a function of d, such
that each of the following cases is satisfied: .

Case 1. ¢(0)> 0. ‘
Case 2. ¢(0) =0 and ¢'(0)> y'(0).
Case 3. ¢(0)=0 and ¢'(0) < 7'(0).

Case 1. For ¢(0) to be positive, we need a positive root of

) s
1 =p)1 -~ e“’”’)(l —psS; — I;dp'p ~(1 “P:))’3) ~(pg+p.(1=p))y;=0. (A9)
d

—
Since the left side of (A.9) is a concave function of y; that takes the value 0 at 0, it has a
positive root if and only if its derivative at 0 is positive, i.e. if and only if

Pa 1 Pa+(1=pp,
d > + A = . (A.lo)
2 (l—pd P ) 1—ps. — PaPrSi (U =p)A-p,8)~p,p,S,
Ps 1 I—Pd
Case 2. Making a substitution of the form Y3 = ay, in (A.8) with a> 0, we get
(1 —pd)(l —_ e_d2(°+])YZ)
PaP:S; P:rPa$,
X|1-p,S, — —1- Ly (1-p)
( p 1 l_pd ( (1 '_pd)(]_sl) P 0'))’2)
pc(l _pd)a
— —_— =0. All

This equation will allow us to calculate ¢‘(0) when ¢(0) = 0. Since ¢ is a convex function,
its derivative at 0 is given by the value of a for which (A.11) has y;=y, =0 as a double
zero. That is the case when the derivative at 0 of the left side as a function of y, is equal to
0, i.e. when

d. = Pa + ap.
2 a —ps)1 =p,Sy) —PaP:S) (a+ 1)(1 —p.S, — PapP,S; ) )
s
1-p4

Any value of d, such that

P pet+(1=ps)p. )
d, e

1-p,” (1 —pa)1 —=PsSy) —PipP,S,
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can be written in a unique way as

d, = Pa + ch
2 (1 _pd)(l "P,Sl) ’—pdp,sl 1 _ pdprsl i
: 1-pa

(A12)

=D,

with B8 in (0,1). For those values, the above calculations show that ¢'(0) = a = B8/(1 — B),
which, together with (A.12), yields

dz((l _Pd)(l "szl) —pdprsl) —Pa
—d((1-p, )0 =p,8,) ~pap,S)) +pa+ (1 =p)p:’

¢'(0) =

Combining this equality with (A.6), we finally get that y'(0) < ¢’(0) transforms into

Pa :_ 1< d,((1 ~pa)1—p,S;) ~PaPrS)) — P4
d,(1-8)1 =S, -py) —d (1 =p )1 =p,S)) —p,p,S;) +pa+ (1 —pp.’

or
+ (1 -py)p.
d2>1pd : pI;dS Pa’P (A.13)
pd pd(l —pssl— ld—’pdl)—‘-(l—sl)(l—sl '_pd)pc

The right side of this inequality determines the function @, used in (2.5). The case analyzed
here, and Case 3 below, justify the definition of ®,.
Case 3. According to the previous calculations, Case 3 occurs if and only if (A.13) fails to
hold. This concludes the proof of Lemma 2. We now complete the proof of the theorem.
The definition of @, clearly satisfies conditions (a) and (b) of lemma 2. To see that it
satisfies condition (c) as well, observe that for d; — o, §; = 1 — p,, which implies

Pat (1 —pop,
(1-p)1~pQ1 ’de) = PaP;) '

@ Pys Pes Py Py dy) =

The continuvity of ¢, at d,=p,/(1 —p,) is a consequence of the fact that as d;, —
pa/1 —po), S, — 0, which implies

¢(pd’pc’pr’ps’d1) - 1 ~ P4 .

For x <p,/(1 — p,), Lemma 1 guarantees that S; = 0.
To prove that the definition of @, satisfies the remaining conditions stated in the lemma,
we will next show that y and ¢ divide S into four regions (one of which becomes empty in

Case 3) such that every solution of (2.2) starting in S tends to § = (9, §y, F2, §3), the
intersection of v and ¢, as ¢ — o,
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Define the following subsets of S, as shown in Figure Al:

Fi={(y0,y1,72,¥3) €Sly; < 0(y2), y3 < ¥(3,)},
F2={(y0, 51,52, ¥3) €Sly3 > 0(y2), y3 < ¥(3,)},
F3={(¥0,y1,y2:¥3) €Slys > ¢(y2), 73> y(y2)},
Fo= (50, 51,52, 53) €Slys < 0y), y3 > y(y)).

Any solution of (2.2) starting in F,, F,, F;, or F; will eventually either tend to §, or reach
one of the curves y or . ‘

If the solution reaches vy for y, > ¥2, the fact that y, remains constant on v, and Y2+y,
decreases, implies that the solution enters F,. 1f the solution reaches y with y,<y,, a
similar argument shows that the solution enters F,.

If a solution reaches ¢, y,+y, remains constant, and the behavior of the solution
depends on whether y, increases or decreases. Since ¢’ > —1, we conclude that solutions
reaching ¢ can only enter F, or F,.

Once a solution enters F, or F, it is clear that as t — o, it tends to §.

In any case, we have that as t — =, y,(1) +y,(1) — $, +¥,. Condition (e) in the lemma is
then a consequence of Cases 1 and 2 analyzed above, whereas Case 3 proves (d).

Finally, since ¢’ > ~1and y, =, is the only positive root of ¢ (when d,>p, /(1 —p,)),
it follows that S, =J, + §; <S,. Here, §,= S, only if ¥3=0,ie.when S;=0,0r p,=p, =
b= 0. ’

APPENDIX B

Numerical methods. Let § denote an equilibrium, and linearize (2.2) in the neighborhood
of this equilibrium (Beddington, 1974). Let

x(1) =y(t) - ¥ (B.1)
x(t+1) = (A;,+ [i‘ty... jf‘—y])x(t) (B.2)
Yo ys
= Bx(1) (B:3)

where all partial derivatives are evaluated at §. The matrices B for both boundary equilibria
are reducible: the dynamics of the states involving the invading species (i.e. of y, and Y3
when E, is invading, and of y, and y, when E, is invading) are independent of the other
states. Thus, the success of the invasion is determined by the eigenvalues of the 2 x2
submatrix of B involving the invading species.

When species E, is invading the boundary equilibrium § = (1 ~ S 1»51,0,0), the submatrix
of B describing the dynamics of y, and y, is

PLCy +50p. Crd, YopaCds

_ o PaaT . R (B.4)
PdCy+390pap,Crdy + 910404, pap. + ($,C, +91)papd,
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where C, is evaluated at §. We solve numerically for the value of d, that gives a dominant
eigenvalue of 1; this value of d, is our numerical estimate of @,(p, d,). Because the matrix

is non-negative and all its entries are monotonic increasing functions of d,, there will be at
most one such value of d,.

Similarly, when species E, is invading the equilibrium §=(1 - S,,0, S,,0), the dynamics
of y; and y, are given by the submatrix

pL1-p,C)) +9pdy(1 = P,C;)  pap. +HopaA(1 — p,Cy)

e e iAo AR I (B.5)
PabCo+ pd($p,Co+59,)  pap.+ pad(Fop,Ca+52)

where C, is evaluated at §. The value of d, at which the dominant eigenvalue of this matrix
equals one is our numerical estimate of ®,(p, d,). That @, =p,/(1 —p,), as guaranteed by
theorem 1, can be shown by substituting d; =p;/p, in the matrix and noting that both

columns then sum to 1. Since the matrix is non-negative, Frobenius’ theorem implies that
the maximum eigenvalue is 1.

This approach can be used to investigate invasibility and persistence in other models (e.g.
Caswell and Cohen, 1991a, b)-for which global stability results like those proved here are not
available. In such cases, invasibility of the boundary equilibria may imply co-existence, but it
does not guarantee that the species co-exist at a fixed point. These issues will be explored
elsewhere (Caswell and Cohen, in preparation).

I. B. was supported in part by a John Simon Guggenheim Memorial
Fellowship and acknowledges CONACYT Grant No. 3400-E. H. C. ac-
knowledges the support of U.S. NSF Grant No. DEB 9119420, ONR Grant
No. URIP-N00014-92-J-1527 and a John Simon Guggenheim Memorial
Fellowship. Woods Hole Oceanographic Institution Contribution No. 8933.
J. E. C. acknowledges the partial support of U.S. National Science Founda-
tion Grants Nos. BSR 87-05047 and BSR 92-07293 and the hospitality of
Mr. and Mrs. William T. Golden.

REFERENCES

Barradas, I. and J. E. Cohen. 1994. Disturbances allow coexistence of competing species.
J. Math. Biol. 32, 663-676.

Beddington, J. 1974. Age distribution and the stablhty of simple discrete time populatlon
models. J. Theor. Biol. 47, 65-74.

Caswell, H. and J. E. Cohen. 1991a. Communities in patchy environments: a model of
disturbance, competition, and heterogeneity. In Ecological Heterogeneity, J. Kolasa (Ed).
Berlin: Springer.

Caswell, H. and J. E. Cohen. 1991b. Disturbance and diversity in metapopulations. Biol. J.
Linnean Soc. 42, 193-218.

Caswell, H. and R. J. Etter. 1993. Ecological interactions in patchy environments: from
patch-occupancy models to cellular automata. In Patch Dynamics, S. A. Levin et al. (Eds).
New York: Springer Verlag.

Connell, J. H. 1978. Diversity in tropical rain forest and coral reefs. Science 199, 1302-1310.

Connell, J. H. and R. O. Slatyer. 1977. Mechanisms of succession in natural communities

and their role in community stability and organization. American Naturalist 111,
1119-1144. .



COLONIZATION IN DISTURBED ENVIRONMENTS 1207

Dayton, P. K. and R. R. Hessler. 1972. Role of biological disturbance in maintaining
diversity in the deep sea. Deep Sea Research 19, 199-208.

Etter, R. J. and H. Caswell. 1993. The advantages of dispersal in a patchy environment:
effects of disturbances in a cellular automaton model. In Reproduction, Larval Biology
and Recruitment in the Deep-Sea Benthos, K. J. Eckelbarger and C. M. Young (Eds). New
York: Columbia University Press.

Gilpin, M. E. 1975. Group Selection in Predator-Prey Communities. Princeton, NJ: Princeton
University Press. '

Huston, M. 1979. A general hypothesis of species diversity. American Naturalist 113, 81-101.

Hutchinson, G. E. 1951. Copepodology for the ornithologist. Ecology 32, 571-577.

Ricklefs, R. E. 1987. Community diversity: relative roles of local and regional processes.
Science 235, 167-171.

Slatkin, M. 1974. Competition and regional coexistence. Ecology 55, 128-134.

Received 20 April 1995
Revised version accepted 6 March 1996



