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Several countries have attempted to change human fertility through economic incentives. This paper
presents simple mathematical models of the participation of couples in a locally funded program of eco-
nomic incentives. The models take as a springboard China’s one-child program. Localities with a low per
capita incentives attract few couples to the program, while localities with high incentives attract many
couples at first but the value of the benefits is then watered down. The models show that participation in
the program may persistently oscillate or may decay to a stationary level. Which behavior occurs is de-
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1. INTRODUCTION: HOW DO LOCAL RESOURCES AFFECT
PROGRAM PARTICIPATION?

Several countries have attempted to lower or raise fertility through economic in-
centives (Ferreira 1986). According to a 1987 questionnaire survey of one hun-
dred developing countries with populations over one million, six Asian countries
(Bangladesh, India, Korea, Nepal, Pakistan, and Sri Lanka) pay acceptors of a ster-
ilization program, and two of these (Bangladesh and India) also pay acceptors of an
intrauterine device program (Ross and Isaacs 1988). Payments are often presented
as compensation for the time and expenses required to participate in the program,
but are cash incentives nonetheless. For example, Thapa et al. (1987) and de Silva
et al. (1988) describe payments to vasectomy acceptors in urban Sri Lanka. On the
other hand, the Province of Québec (Canada), Belgium, France, and several for-
merly Communist countries of Europe have attempted or are attempting to raise
fertility through economic incentives (Ekert-Jaffe 1986; Blanchet 1987).
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Governments may use economic incentives to influence individual behavior with
significant social externalities for a variety of purposes besides lowering or raising
fertility. State-run lotteries may be used to influence savings and investment. The
time-series of traffic tickets issued in Taiwan from 1977 to 1989 showed pronounced
peaks in 1977, 1980, 1982, 1987 and 1988 (Chu 1990). During these episodes,
“sweeping traffic rectification” campaigns tightened enforcement of traffic laws.
Subsequently, traffic violations dropped dramatically, enforcement was relaxed, and
another cycle began.

This paper presents a simple mathematical model of the participation of indi-
viduals, couples or families in a locally funded program of economic incentives.
The model takes as its point of departure China’s policy of one child per family,
launched in 1979, but is not closely tied to the details of that program. For example,
the model pays no attention to whether the incentives are intended to raise or lower
fertility, and could in principle be applied to some behaviors other than fertility.

Implementation of China’s family planning policy of one child per family faced
many difficulties, including one described by Bongaarts and Greenhalgh (1985,
p. 593): “Administrative decentralization also creates economic problems that com-
pound enforcement difficulties. Under the one-child policy, one of the major moti-
vations for limiting childbearing is the expectation of economic incentives, including
wage supplements and priority in housing, schooling, medical care, and the like
[I omit the citations to original sources] .... The costs of these incentives are borne
by local work units, whose resources vary widely. Where units are poor, few couples
sign up for one-child certificates, because benefits are poor or fail to materialize ... .
Where units are rich, many couples sign up, and the value of the benefits is watered
down: everyone having priority is tantamount to no one having priority ....”

The models presented here show when the behavior described by Bongaarts and
Greenhalgh (1985) may be expected to occur and to persist. The models make it
possible to answer some specific questions, given explicit assumptions. How does
the program participation rate differ between localities with different levels of eco-
nomic incentives, all else being equal? If many couples join a program, and the per
capita benefits are diluted, what will happen next? If couples drop out of a program
because the expected benefits fail to materialize or are diluted, will the resources
made available by the departure of those couples cause a subsequent increase in
program participation? If so, will the fluctuations in the participation rate persist or
disappear?

Bongaarts and Greenhalgh (1985) suggested that the level of participation de-
pends on the per capita budgets available. The dynamic models proposed here be-
long to a family of models in which population dynamics are assumed to depend on
per capita resources (e.g., Getz 1984; Arditi and Ginzburg 1989).

Section 2 describes the construction of a simple dynamic model to represent the
participation of couples in a reversible program (i.e., one which couple can join or
leave at will) when the program provides incentives that are locally funded. Section
3 gives a nontechnical review of the model’s behavior when the so-called participa-
tion function (defined below) is assumed to be always convex, or always concave,
or always linear. Section 4 describes the model’s behavior when the participation
function is allowed to have a point of inflection. Section 5 describes the model’s
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behavior when prospective parents respond to the weighted average incentive of-
fered since the beginning of the program, and not merely to the incentive offered
most recently. Sections 4 and 5 are based largely on numerical calculations. Section
6 answers the specific questions raised in this introduction and raises further em-
pirical and theoretical questions. The main exposition is nontechnical and uses only
elementary algebra. The mathematical analysis of the model of Section 2 is confined
to an appendix.

2. CONSTRUCTION OF A DYNAMIC MODEL FOR PROGRAM
PARTICIPATION

Consider a locality with N eligible couples and an annual budget for incentives of B
(measured in units of currency, housing, food, or any appropriate single yardstick).
This budget can provide an annual incentive (per capita, taking a couple as a unit)
of C = B/N. Suppose that an incentive of a or less will attract nobody into the
program, while 3n incentive of b or greater will attract everybody into the program.
The interesting €ase to be considered here is that in which the incentive C is enough
to attract some people, but not everybody; hence assume a < C < b. The per capita
budget is assumed constant, i.e., B and N are assumed to change either not at all
or proportionally. .

For each possible incentive x between 4 and b, suppose that the fraction of cou-
ples who participate in the program is F(x), when x is announced (at the beginning
of the first year) or observed (during the year before the second or later years). For
each incentive x, F(x) is thus a number between 0 and 1. The function F will be
called the participation function. (In classical economics, the supply function speci-
fies the amount of a commodity that will be produced in response to a given market
price. The participation function is an analogous concept that gives the participation
rate as a function of the incentive.) One way to think about the participation func-
tion is to imagine that each couple in the locality has its own reserve price. If the
incentive is below the reserve price, the couple will not participate; if the incentive
is at or above the reserve price, the couple will participate. From this viewpoint,
F(x) is the fraction of couples whose reserve price is at or below the offered incen-
tive x.

Since the incentive announced at the beginning of the program is C, the fraction
of couples who will participate in the first year of the program is p; = F(C). The
actual number of couples will be NF(C). Assume that the locality aims to spend
its entire annual budget B on the couples who choose to participate, because it
does not like to be seen as having surpluses, or because it cannot stockpile unex-
pended resources from one year to the next, or for other reasons. Then the actual
incentive available during the first year will be the budget divided by the number of
participating couples, i.e., B/(NF(C)). Since B/N = C, the available incentive may
also be written C/F(C) = C/p1. Suppose also that, in order to avoid charges of ex-
travagance, the locality never spends more than b on each couple that participates,
i.e., if the available incentive C/F(C) exceeds b, then the actual incentive expended
during the first year is just b. Now let xp = C be the incentive initially announced
(prior to the first year of the program) and let x; be the incentive delivered during
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the first program year. The preceding assumptions about the behavior of couples
and of the locality are summarized by

X; = min (b, P£1) = min (b, F(C?)) = min (b, %) . (2.1)

Seeing that the actual incentive during the first year was xj, the fraction of
couples who will sign up for the second year of the program is assumed to be
P2 = F(x1), and hence the actual incentive during the second year of the program
will be x; = min(b, C/ p) = min(b, C/F(x;). In general, the incentive in succeeding
years will be determined by

C C
=min|{ b, — |, xo=C, t=0,1,2,.... (2.2
) m ( F(x:)) " 22)

X¢41 = min (b, >
t+1

The fraction of couples who participate is likely to be of greater practical interest
than the incentive itself. To describe the dynamics of the fraction of couples who
participate, (2.2) may be rewritten in an equivalent form that involves participation
rates instead of incentives. Since N is finite, the fraction of couples who partici-
pate must be some integer multiple of 1/N. Assume that N is large enough that it
is reasonable to treat the fraction of couples who participate as a continuous vari-
able, i.e., as a quantity that can vary smoothly from 0 to 1. Write the fraction of
couples who participate in year ¢ of the-program as p,. Thus p; = F (C) = F(x),
P2 = F(x1), and generally p,,; = F(x,). Then taking F of both sides of (2.2) and
shifting ¢ by 1 gives

pie1=F (min (b, g)) ., m=FC), t=123,.... (2.3)

This equation depends on the units used to measure incentives, because these
units determine the magnitudes of b and C. To eliminate that dependence, hence-
forth let incentives be measured by the fraction of the distance that they are be-
tween a and b; that is, the incentive x in dimensional units is now replaced ev-
erywhere by (x —a)/(b— a) in dimensionless units. Thus the incentive b sufficient
to attract all couples becomes the incentive 1 in dimensionless units; the incen-
tive a sufficient to attract no couples becomes the incentive 0 is dimensionless
units; the incentive C in dimensional units corresponds to a dimensionless incen-
tive ¢ = (C—a)/(b— a); and F is rescaled to dimensionless form so that F =0
and F(1) = 1. In dimensionless form, (2.3) becomes

p,+1=F(min(1,p£)>EG(p,), p1 = F(c), O<e<l, t=123,....
t
(24)

It now remains to specify the participation function F. At a minimum, it is rea-
sonable to expect that more incentives should attract more couples. Hence F will
be assumed to be strictly increasing.
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How many additional couples will each additional small increment in the incen-
tive attract? Three possibilities will be considered in detail: decreasing returns; con-
stant returns; and increasing returns.

If each small increment of a given size in the incentive attracts a diminishing
increment of couples to the program, then the participation function displays di-
minishing returns, or is concave. Diminishing returns would occur, for example, if
the eagerest couples were attracted into the program by even a small incentive, but
increasingly larger incentives were required to attract increasingly reluctant couples.

If each small increment of a given size in the incentive attracts the same additional
fraction of couples, then the participation function displays constant returns, or is
linear.

If each small increment of a given size in the incentive attracts an ever larger
increment of additional couples, then the participation function displays increasing
returns, or is convex. Increasing returns might occur if there were a bandwagon ef-
fect, so that the more couples there were already participating, the easier it became
for an additional increment in the incentive to attract additional couples.

Many mathematical functions could represent increasing or decreasing returns. At
the moment, there appear to be few or no data to choose among them. Hence, in
a first analysis like this one, a mathematical function may be chosen on the basis of
its simplicity and convenience. Assume

F(x)=x% 0<x<1, 0<g<oo. (2.5)

Figure 1 plots the participation functions (2.5) with g = 1/2, 1, and 2. These func-
tions illustrate decreasing returns, constant returns, and increasing returns, respec-
tively, and will be the participation functions used except for Section 4.

It seems reasonable to suppose that any concave or convex strictly increasing
participation functions F with F(0) =0 and F(1) = 1 would share the qualitative
properties of (2.5) with ¢ = 1/2 and g = 2, respectively. The participation function
(2.5) has decreasing returns whenever 0 < g < 1, constant returns when g = 1, and
increasing returns whenever 1 < g < co. Using the participation function (2.5) in the
dynamic equation (2.4) for the participation rate gives an iteration rule that predicts
(according to the model) the program participation rate in the following year as a
function of the program participation rate in the present year:

q
) ¢
Pre1 = [mm(l,;)} = G(py), pL=c, 0<c<l, 0<g<oo,
t

r=123.... (26)

Figure 2 graphs the iteration rules G for all combinations of decreasing, constant
and increasing returns (¢ = 1/2,1,2) and low and high budgets (c = 1/3,2/3). It is
evident from Figure 2 that, for any given value of g and any given participation rate
this year, the participation rate will be higher next year if the per capita budget ¢
is higher. For any given budget and any given participation rate this year, the par-
ticipation rate will be higher next year as the participation function changes from
increasing, to constant, to decreasing returns. This difference is an obvious conse-
quence of Figure 1, because for any given incentive, the participation rate is higher
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FIGURE 1. Participation functions give the fraction of couples who participate in the program as 2
function of the incentive. The dimensionless incentive, measured as a fraction of the distance from a
completely ineffective incentive to a completely effective incentive, is denoted by x. The fraction who
participate when observing incentive x in a previous year is denoted by F(x). (2) Decreasing returns:

F(x) = x!/2. (b) Constant returns: F (x) = . (¢) Increasing returns: F(x) = x%

with decreasing returns than with constant returns, and higher with constant returns
than with increasing returns.

The behavior of (2.6) is analyzed in the Appendix. The following section summa-
rizes the results nonmathematically.

3. BEHAVIOR OF THE MODEL WITH DECREASING, CONSTANT,
OR INCREASING RETURNS

The rates of participation of couples in the fertility incentive program will change
over time in different ways, depending on whether there are decreasing, constant
or increasing returns in the rates of participation in response to successive smal
equal increments in the incentive offered.

When the participation function shows decreasing returns, then the participatior
rate rapidly converges to a single fixed value, given explicitly by the formula for p’
in (7.2). This behavior holds whatever the initial incentive, sO it does not matte
whether the locality initially announces its incentive as the budget per capita or an:
other arbitrary figure; the limiting participation rate is determined solely by the bud
get per capita (denoted by ¢) and the extent of decreasing returns (measured by ¢,
Moreover, if the participation rate is near p* and then is perturbed away from )2
e.g., by a random fluctuation or an exogenous shock, then (provided the budget pe
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FIGURE 2. Iteration rules predict the program participation rate in the following year as a function
of the program participation rate in the present year, according to (2.6) with (a) decreasing returns
(9 =1/2) and low budget (c = 1/3); (b) decreasing returns (g = 1/2) and high budget (¢ = 2/3); (c) con-
stant returns (g = 1) and low budget (c = 1/3); (d) constant returns (¢ =1) and high budget (c = 2/3);

(e) increasing returns (g =2) and low budget (c =1/3); and (f) increasing returns (g =2) and high
budget (¢ =2/3).

capita ¢ and the parameter q remain constant) the participation rate will gradually
return to p*. While approaching its limit p*, the participation rate may overshoot
p*, and then fall below p*, as shown in Figure 3(a, b). This behavior corresponds to
that described by Bongaarts and Greenhalgh (1985): a high participation rate dilutes
the incentive actually received, and participation subsequently falls. However, over-
shoots are temporary. Fluctuations are gradually replaced by an increasingly steady
level of participation. The steady level p* increases with an increasing per capita
budget c. Hence the higher the per capita budget c, all else being equal, the higher
the long-run average participation (compare Figure 3(b) with Figure 3(a)).

When the participation function shows constant returns, then the participation
rate never converges to a single fixed value unless it just happens to start at p*.
Rather, the participation rate fluctuates back and forth between two values. One of
these two values equals the initial incentive, so it matters what the locality initially
announces as its incentive. The long-run average participation rate, i.e., the average
of the two alternating values of the participation rate, is never less than p*. The
higher the locality’s per capita budget c, the higher the long-run average of the
participation rate (compare Figure 3(d) with Figure 3(c)). If the participation rate
s perturbed at any time, then it enters a new two-point cycle starting from wherever
t happens to fall; it does not return to its previous cycle.
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FIGURE 3. Trajectories in time, or forward orbits, of the program participation rate according to (2.6)
with (a) decreasing returns (g = 1/2) and low budget (c = 1/3); (b) decreasing returns (g = 1/2) and
high budget (c =2/3); (c) constant returns (g =1) and low budget (c =1/3); (d) constant returns
(g =1) and high budget (c = 2/3); (e} increasing returns (g = 2) and low budget (¢ = 1/3); and (f) in-
creasing returns (g = 2) and high budget (¢ = 2/3). The exact formulas for these trajectories are given
in (7.4) and (7.5).
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When the participation function shows increasing returns, the participation rate
never converges.to a single fixed value unless it just happens to start at the fixed
point p*. If the participation rate does not start at p*, then it alternates between
two values. These values are determined by the budget per capita ¢ and the extent
of increasing returns (measured by ¢), and not at all by the initial incentive. The
long-run average participation rate (that is, one half the sum of the high value plus
the low value) may be greater or less than p*. Thus the effect of cycling may be
favorable or unfavorable to the average participation rate. The higher the locality’s
per capita budget c, the higher the average participation rate (compare Figure 3(f)
with Figure 3(e)). If the participation rate is perturbed at any time, it returns to the
two values of its previous cycle. The return to the stable cycle may be gradual or
immediate, depending on the particular perturbation.

In the cases of constant and of increasing returns, an overshoot followed by a fall
of participation, as described by Bongaarts and Greenhalgh (1985), is a perma-
nent characteristic of the behavior of couples. Low participation is always followed
by an overshoot. The extent of the oscillation is stable against perturbations in the

case of increasing returns, but is sensitive to perturbations in the case of constant
returns.



FERTILITY INCENTIVES MODELS 11

participation

02 04 06 08 1
incentive

FIGURE 4. More complex participation functions. (a) Decreasing, then increasing returns: F(x)=

(1/2)((2x — 1)® +1). (b) Increasing, then decreasing returns: F(x) = (1/2)((2x - 1)!/3 + 1). See Figure
1 for the definition of terms.

4. BEHAVIOR OF THE MODEL WITH COMBINED DECREASING
AND INCREASING RETURNS

A participation function could be convex in one interval of incentives and concave
in another (or even more complex). For example, bandwagon effects might lead to a
convex participation function for incentives below a certain threshold, while increas-
ing resistance of wealthy couples might lead to a concave participation function for
incentives above that threshold. Such a participation function would be S-shaped,
like the logistic curve or the cumulative distribution function of the normal distribu-
tion. An S-shaped participation function could (but need not necessarily) have the
intuitively appealing property of being differentiable at the boundaries of both low
and high incentives. Alternatively, as incentives increased from low to high, decreas-
ing returns might precede increasing returns. Some numerical calculations suggest
that these possibilities yield few surprises in the dynamic behavior of program par-
ticipation according to (2.4).
Figure 4 plots two forms of the participation function

Fx)=3@x-17+1), 0<x<1 0<g<o (4.1)
for g = 1/3 (convex for x < 1/2, concave for x > 1/2) and g = 3 (concave for x <

1/2, convex for x > 1/2). The function (4.1) with ¢ = 1/3 has derivative 1/3at x =0
and x = 1, so is S-shaped without being differentiable at the boundaries of x. It
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FIGURE 5. Trajectories in time, or forward orbits, of the program participation rate according to (2.4)
and (4.1) with budget ¢ = 1/3. (a) Decreasing, then increasing returns (g = 3). (b) Increasing, then de-
creasing returns (g = 1/3).
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follows from the appendix that there is a unique fixed point of the iteration function
G defined in (2.4).

Trajectories are computed by using the two forms of the participation function
(4.1) with ¢ = 1/3 and g = 3 in (2.4). When the dimensionless peg <apita budget ¢
is less than 1/2, the participation rate oscillates between two valuds if ¢ = 1/3, but
rapidly converges to a fixed value if g = 3. These behaviors are illustrated in Figure
S for ¢ = 1/3. This behavior is just what would be expected from the results of
Section 3 if the convex (respectively, concave) portion of the participation function
for x < 1/2 were all that mattered. In reverse, when the dimensionless per capita
budget ¢ exceeds 1/2, the participation rate rapidly converges to a fixed value if ¢ =
1/3, but oscillates between two values if g = 3. This behavior is just what would be
expected from the results of Section 3 if the concave (respectively, convex) portion
of the participation function for x > 1/2 were all that mattered. When ¢ = 1/2, the
trajectory for g = 1/3 is identical to that for ¢ = 3; in both cases, the participation
rate alternates between 1/2 and 1.

The chief difference between the trajectories determined by the participation
function (4.1) and the trajectories determined by the participation function (2.5)
seems to be that, under (4.1), the dimensionless per capita budget ¢ affects qualita-
tively the form of the trajectories. A change in ¢ can change two-point oscillations to
convergence toward a fixed point, or vice versa. It is possible to interpret this find-
ing in terms of the difference Bongaarts and Greenhalgh (1985) anticipate between
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the dynamics of participation in localities with low versus high per capita budgets.
For the participation function with decreasing returns for low incentives and in-
creasing returns for high incentives (¢ = 3 in (4.1)), a low dimensionless per capita
budget (c < 1/2) produces convergence to a fixed point, while a high dimensionless
per capita budget (¢ > 1/2) produces persistent oscillations.

5. BEHAVIOR OF THE MODEL WITH LEARNING FROM
CUMULATIVE EXPERIENCE

To assume that the participation of prospective parents depends on the most recent
incentive only, and not on any earlier incentives, is probably unrealistic. Prospective
parents must estimate the costs and benefits of having, or not having, a child over
many years. They may be less eager to participate in a one-child program after a
high incentive is offered if they know that, in earlier years, anticipated benefits have
sometimes not been realized.

We now modeljone way that parents might use more than one year’s informa-
tion about prior-incentives to adjust their current level of participation. Suppose
that parents respond to a weighted average of all previous incentives. Specifically,
suppose there is a weighting coefficient w, 0 <w <1, such that last year’s incentive
x;_1 is weighted by w relative to this year’s incentive x;, and the incentive x;_2
of two years ago is weighted by w? relative to this year’s incentive, and so on for
carlier years. The weighted average incentive up to and including year ¢ is defined
by

Yo = Xo = €,

X+ wWx_1 +wW2xi_a+ -+ wxg CNY
) t>1.
1+w+w2+.. +w

Yt

At one extreme, if w =0, then y, = x,, ie., the parents consider only the current
year’s incentive, as in previous sections. At the opposite extreme, if w = 1, then par-
ents weigh the current and all prior incentives equally. (In principle, parents might
weigh more remote incentives more than more recent incentives, perhaps because
results in the early days of the program were impressed on their memories, but this
possibility will receive no further attention here.) Now suppose that participation
depends on the weighted average incentive according to

Pr+1 = F(yi), (5.2)

instead of p;4+; = F(x;) as previously. We shall investigate the participation func-
tion F(x) = x? as in (2.5); obviously the alternative (4.1) could also be studied, but
will not be here. Finally, suppose that the incentive depends on the participation
according to

x,=min<1,i>, Xo=c¢ t=12.. (5.3)

§Zi

which is a dimensionless form of (2.2). These assumptions, together with values for
the three parameters ¢, g and w, completely specify the dynamics of participation
and incentives.
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Since the right side of (5.3) cannot decrease when ¢ increases, the current incen-
tive, and therefore the cumulative average incentive as well as the participation rate
at every time, also cannot decrease when c increases. Thus localities with relatively
higher per capita budgets ¢ have higher participation rates, all else being equal.

As in Sections 2 and 3, three cases will be considered: decreasing returns (g =
1/2), constant returns (g = 1), and increasing returns (g = 2). All the computations
reported here for a low budget (¢ = 1/3) have been carried out also for a high
budget (¢ = 2/3) with qualitatively identical results, which are omitted for brevity.

The behavior of this model is unexpectedly rich. To appreciate this richness, the
reader is invited to try to guess how the model behaves before reading the following
description.

When the participation function has decreasing returns (g = 1/2), then regardless
of the weighting coefficient w, the trajectory of participation shows rapidly damped
oscillations and tends in the limit of large time towards the fixed point which is (in
the absence of memory) the limiting value p* given by (7.6). The numerical evi-
dence in support of the mathematically unproved assertion that the limit of partici-
pation p, is p* is illustrated by the following example. When w = 0.1 and when w =
0.5, pso = 0.69336127435063. According to (7.6), p* = (1/ 3)1/3 = 0.69336127435063,
which agrees to the number of places calculated.

When the participation function has constant returns (¢ = 1), then the trajecto-
ries show two qualitatively different modes of behavior. When w =0, the participa-
tion follows a two-point cycle given by (7.5). When w > 0, the participation shows
damped oscillations and tends in the limit of large time towards the fixed point
p* given by (7.2). Any amount of memory (w > 0) qualitatively changes the effect
of constant returns from periodic cycling to asymptotically constant participation.
The numerical evidence in support of the mathematically unproved assertion that,
when w > 0, the limit of participation p, is p* is illustrated by the following exam-
ple. When w = 0.01, the values of p, for ¢ = 495, 496, ...,500 are 0.57733687057341,
0.57736340014135, 0.57733740115258, 0.57736288014987, 0.57733791072128, and
0.57736238075050. Even after 500 time steps, damped oscillations/ are visible in the
fifth decimal place. According to (7.6), p* = (1/3)}/2 = 0.57735026918963, which
falls within the range of oscillation. When w > 0.1, p; effectively converges to p*
by t = 20.

When the participation function has increasing returns (g = 2), then the trajec-
tories show two qualitatively different modes of behavior, depending on w. There
is a critical w*, which appears to be near 1/3, such that if w < w*, the partici-
pation converges to a two-point cycle. The amplitude of this cycle decreases as
w increases from 0 to w*. This behavior is illustrated by the trajectories shown
in Figure 6(a, b) for w = 0.1 and w = 0.3, respectively. If w > w*, the participa-
tion shows damped oscillations and tends in the limit of large time towards the
fixed point p* given by (7.2). This behavior is illustrated by the trajectory shown
in Figure 6(c) tor w = 0.5. The numerical evidence in support of the mathemati-
cally unproved assertion that, when 0 < w < w*, the participation converges to a
two-point cycle (rather than merely being very slowly damped toward a unique
limit) is illustrated by the following example. When w = 0.01, the values of p;
for ¢ = 495,496, ...,500 are 0.11854590316418, 0.98692909273171, 0.11854590316418,
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FIGURE 6. Trajectories in time, or forward orbits, of the program participation rate when prospective
parents learn from cumulative experience ((5.1)~(5.3)) with budget ¢ = 1/3 and increasing returns to in-
centives (¢ = 2 in (2.5)). (a) Weight w = 0.1: the participation settles into a two-point cycle. (b) Weight
w =0.3: the participation settles into a two-point cycle of smaller amplitude than that of the previ-
ous case. (c) Weight w =0.5: following damped oscillations, the participation approaches a limit p* =
(1/3)2/3 which is the fixed point of the participation function.

0.98692909273171, 0.11854590316418 and 0.98692909273171, which are exactly cyclic
to the number of places computed. Similarly, when w = 0.1, the values of p; for
t = 495,496,...,500 are 0.18624999668722, 0.88954454353336, 0.18624999668722,
0.88954454353336, 0.18624999668722 and 0.88954454353336, again exactly cyclic to
the number of places computed. The numerical evidence in support of the math-
ematically unproved assertion that, when w > w*, the limit of participation p; is
the fixed point p* is illustrated by the following example. When w = 0.5, the values
of p, for ¢ =90,91,...,100 are all equal to 0.48074985676914. According to (7.2),
p* = (1/3)?/3, which is numerically identical to the number of places calculated.
(For a model very similar to that in (5.1)~(5.3), Cohen and Newman, in prepara-
tion, have proved that the critical value of w*, when F(x)=x4,is (§—1)/(q + 1),
which is 1/3 when g = 2.)

The participation rate at £ = 199 and ¢ = 200 according to the model with learn-
ing from cumulative experience is shown in Figure 7, for all values of the weight w.
The participation shown in Figure 7 differs from what is believed to be the
limiting behavior of participation only for constant returns and small positive w
(Figure 7(b), extreme left), where the participation has not yet converged to the
fixed point p*.



16 J. E. COHEN

0.8

(a)

0.6

()

()

\\\

">
0.4

-

0.2

0 02 04 06 08 1
weight w

FIGURE 7. The program participation rates pjo and pagp at ¢ = 199 and ¢ = 200 according to the
model of learning from cumulative experience ((5.1)~(5.3)) with budget ¢ =1 /3. Values are computed
for w from 0 to 1 by increments of 0.01. (a) Decreasing returns (g = 1/2 in (2.5)): p1g and pogo are
indistinguishable from each other and from p* = 0.69336. (b) Constant returns (g=1in (2.5)): for
w =0, pigo and pyyp fall on a two-point limit cycle. For all w> 0, as t — oo, px—_1 (the lower curve)
and py (the upper curve) approach a limit indistinguishable from each other and from p* = 0.57735; but
for small w, convergence to p* is so slow that p1ge and pag differ visibly from p*. (c) Increasing returns
{g =2 in (2.5)): for w < w* 2 0.37, p1g9 (the lower curve) and pago (the upper curve) fall on a two-point
limit cycle. Above w*, pig9 and pyyq are indistinguishable from each other and from p* = 0.48075.

participation att =199 and t = 200

To summarize, I compare how participation evolves when prospective parents
learn from cumulative experience (w > 0) with how participation evolves whern pro-
spective parents do not (w = 0; Sections 2 and 3), according to the/available numer-
ical evidence. Under decreasing returns, the addition of learning from cumulative
experience makes no difference to the long-run behavior of participation: the par-
ticipation converges to the same unique fixed point as in the absence of learning.
Under constant returns, the addition of learning from cumulative experience makes
participation behave as if there were decreasing returns, i.e., it converges to the
unique fixed point. Under increasing returns, there is a bifurcation at a critical value
w* of the weight attached to prior experience. For 0 <w < w*, participation settles
into a two-point cycle. The larger w, the smaller the amplitude of this cycle. For
w > w*, participation converges to the fixed point p*. In light of the calculations af-
ter (7.8), it appears that, for constant and increasing returns, when the participation
converges to a single limiting value p*, that limiting value is not in general equal
to the long-term average participation p of the corresponding model without learn-
ing from cumulative experience. Thus, under constant or increasing returns, when
participation approaches a unique limit, the participation is qualitatively (asymptoti-
cally constant instead of cycling) and quantitatively (p* instead of p) different from
the participation in the absence of learning.
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6. QUESTIONS ANSWERED AND RAISED BY THE MODEL

Bongaarts and Greenhalgh’s (1985) account of a dynamic process in China’s one-
child program raises several questions which can be answered under the assump-
tions of the models just described.

Dynamics of Participation

How does the program participation rate differ between localities with different
levels of economic incentives, all else being equal? The long-run average participa-
tion will be higher, the higher the per capita budget. If the participation function
is inflected, as in Section 4, the program participation rate of the locality with the
higher incentive may oscillate between two values while that of the locality with the
relatively lower incentive may converge to a fixed value, or the reverse.

If many couples join a program, and the benefits per capita are diluted, what will
happen next? As Bongaarts and Greenhalgh (1985) stated, the participation rate will
fall in the next time period. The models provide additional details. If there are de-
creasing returny in participation, the subsequent fall will be less than the preceding
rise, and the alternating rises and falls will gradually damp out as the participation
rate approaches a steady limit. If there are constant returns in participation, the
subsequent fall will just equal the preceding rise, and an undamped alternation be-
tween high and low values will ensue. If there are increasing returns in participation,
alternating rises and falls in participation will adjust the participation to approach
a single pair of alternating high and low values. If the participation function is in-
flected, as in Section 4, the mode of behavior depends on the per capita budget.
If prospective parents average all prior incentives, as in Section 5, participation will
converge to a steady limit under decreasing and constant returns in participation,
as well as under increasing returns if prospective parents attach sufficient weight
to earlier incentives. If there are increasing returns in participation but prospective
parents attach less than a certain critical weight to earlier incentives, the participa-
tion will approach a pair of alternating high and low values. The difference between
the limiting high and low values will be smaller, the higher the weight prospective
parents attach to earlier incentives.

If couples drop out of a program because the expected benefits fail to materialize
or are diluted, will the resources made available by the departure of those couples
cause a subsequent increase in participation? Yes, as just described, and the fluctu-
ations in the participation rate will persist or disappear depending on whether there
are, on the one hand, constant or increasing returns or, on the other, decreasing
returns in the participation function. The difference between persistent cycles of
boom and bust versus an ultimately steady plateau in participation is determined,
according to these models, by the concavity or convexity of the participation func-
tion in the region of the participation rate determined by the available per capita
budget. Prospective parents’ memory of earlier incentives may eliminate cycles in
participation that would persist in the absence of learning from experience.

A referee remarked: “With respect to the one-child family program, however, it
ought to be observed that local and higher level authorities, having observed such
oscillations, would surely modify the program so as to attenuate them.” That might
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not necessarily be the best thing to do, I say. While the models considered here
are admittedly overly simple cartoons of China’s one-child program, under some
conditions the cycles they predict are probably socially superior to steady levels
of participation and incentives. This tentative claim is based on analogy to Chu’s
(1990) game-theoretic model of individual decisions to obey or violate laws in traffic
encounters. Without repeating his detailed argument, I will spell out the analogy
between a program of fertility incentives and a program of traffic law enforcement,
and then describe Chu’s conclusions.

In a fertility incentive program and a traffic enforcement campaign, each indi-
vidual (couple or solo) must trade off a preferred behavior (having another child,
not waiting at a red light) against a socially provided incentive against that behavior
(payments or fines). The expected incentive depends on the fraction of people who
choose the preferred behavior (as more people reject the one-child incentives, those
incentives rise for the acceptors; as more people run red lights, the likelihood of
a traffic crackdown or “sweeping traffic rectification” increases). The function that
relates participation at one time period to participation at another may be linear,
convex, concave, or mixed; though independently derived, Chu’s Figure 2 is identi-
cal in form to our Figure 1 plus Figure 4(b). Chu assumes that the fines collected
by the government from traffic tickets are paid back to the public, so that they rep-
resent a private but not a collective cost; changing the sign of the fines gives incen-
tives paid by a locality from general tax revenues. Chu gives a numerical example
in which the total discounted social benefit under any steady enforcement policy is
always less than the total discounted social benefit under a two-point cyclical policy.
Though an analogous example for fertility incentives remains to be worked out, it
seems very likely that, at least under some circumstances, a cyclical policy could be
socially preferable to a steady one.

Empirical Questions

The models raise numerous empirical questions. Does the participation function
of a real locality display decreasing, constant or increasing returns? Or does the
participation function of a single Jocality display some combination of decreasing,
constant and increasing returns over different ranges of incentive? Are the partic-
ipation functions of different localities the same? Are the participation functions
of different demographic, social or economic subgroups within a locality the same?
(A priori, one might expect a nulliparous 20-year-old wife to be more easily per-
suaded not to have a child during the coming year than a nulliparous 37-year-old
wife. Similarly, one might expect a woman with wealthy relatives to be less attracted
by a given cash incentive than another woman of the same age with poor relatives.)
Does the participation function of a given locality remain constant in time? All of
these questions presuppose an answer to a methodological question: How can a
participation function be estimated from experimental or observational data?

Do localities really spend all their available budget on the participating couples,
subject to an upper limit on the per capita incentive, as assumed in (2.3) and (2.4)?
If so, is the upper limit (b in (2.3)) the same from one locality to another? Other-
wise, what is the connection between the participation rate in one period and the
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incentive announced or perceived at the beginning of the next (i.e., what is the re-
placement for (2.2))? If a locality does not expend all its budget in one time period,
does it lose the surplus (as the model assumes) or is it able to cumulate the sur-
plus against future need? How much attention do prospective parents pay to earlier
incentives?

Alternative Models

The answers to each empirical question may suggest other models with different
assumptions from those made here. Some possible alternatives are listed in the re-
mainder of this section. I do not venture to guess the behavior of these alternatives.
Each one requires its own analysis or computation.

A multi-locality model might consider the aggregate participation rate from a few
or many localities that have different participation functions, different budgets, or
different ceilings on the per capita incentive. A model with local heterogeneity
might consider the impact of having different subgroups that respond differently
to the same incentive. The assumption that the available budget is uniformly dis-
tributed among 1all participants might be replaced by an assumption that couples
who sign up forsthe program receive a prescribed stream of benefits as long as they
remain in the program (a suggestion of the referee). Alternatively, the incentive
offered could be directly or inversely proportional to a couple’s other income.

A time-inhomogeneous model might allow for secular trends or stochastic fluctua-
tions in the values of the iteration rule’s parameters, such as the population size and
the budget. Different assumptions about the transferability in time of any unused
budget could be modeled by considering, e.g., growth from the investment of savings
versus depreciation from the aging of housing or food stocks. The budget could be
made to depend positively or negatively on the fraction of couples in the one-child
program in prior periods, inducing long-run feedbacks in participation (Ronald D.
Lee, personal communication, 13 January 1992). Instead of assuming that the frac-
tion of participating couples is a continuous variable, the number of participating
couples could be modeled as a discrete variable. Other models of parental memory
for prior incentives could be considered, e.g., a finite memory span for earlier in-
centives. Models of wishful (or fearful) thinking might assign more (or less) weight
to higher incentives than to lower incentives.

The model analyzed here assumes that a couple’s decisions to enter and to leave
the program are both reversible. A different class of models could assume that ei-
ther or both of these decisions is or are irreversible. For example, in a voluntary
sterilization program, an individual once sterilized cannot (easily) be unsterilized,
so the decision to enter the program is irreversible. A couple that leaves the one-
child program by bearing a second child leaves the program irreversibly. The model
analyzed here could be interpreted as applying to the proportion of eligible cou-
ples in the locality, rather than to all the couples in the locality, in order to allow
for such irreversible departures, but this reinterpretation makes the assumption of a
time-invariant participation function less plausible; it would be better to model irre-
versible departures directly. Because there may be a delay between conception and
the appearance of pregnancy, it might be of interest to model a latency between the
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actual withdrawal from a program and the recognition of withdrawal by the locality
or by other couples.

CONCLUSION

Modeling the dynamics of participation in fertility incentive programs confirms some
intuitive expectations (Bongaarts and Greenhalgh 1985). Modeling also generates a
more detailed picture of the conditions under which these expectations are fulfilled
and generates a rich set of further empirical and theoretical questions. The impli-
cations of the modeling for policy, and for the comparison of centralization versus
local control in family planning programs, will be explored elsewhere (Cohen and
Newman, in preparation).

APPENDIX: ANALYSIS OF THE MODEL WITH DECREASING,
CONSTANT, OR INCREASING RETURNS

This appendix presents a partial analysis of the general model (2.4) and a detailed
analysis of the specific model (2.6). Standard terms from the theory of dynamical
systems defined in Devaney (1989) will not be defined here. The agenda is first to
describe the fixed points, then the 2-point cycles, and finally the forward orbits of
these models.

Fixed points. Assume the participation function F is a continuous, strictly in-
creasing function from [0,1} onto [0,1] such that F(0)=0 and F(1) = 1. Define
G(p) = F(min(1,¢/p)) as in (2.4). (Examples of G(p) are graphed in Figure 2.) We
now prove that G(p) has exactly one fixed point p* = G(p*) in [0,1], and that fixed
point p* lies in (c,1). Since min(1,¢/p) is continuous and weakly decreasing in p,
G is also continuous and weakly decreasing in p. Where min(1,¢/p) is strictly de-
creasing in p, G is also strictly decreasing in p. For p<¢, G(p) = F(1) = 1. For
p in (c,1), min(1,¢/p) is strictly decreasing in p, and G(l)=F (q') < 1. Therefore
G(p) — p is positive for p < c and is negative for p = 1 and is strictly decreasing on
(c,1). Hence for exactly one p in (c,1), G(p)—p = 0. This proves the claim.

Now assume F is differentiable on [0,1]. Then for p # c,

G'(p)=F' (min (1, %)) ;; min (1, %) . (1.1)

If p <c, then (dmin(1,¢/p))/dp =0s0 G'(p) =0.1f p>c, then (dmin(1,c/p))/
dp = d(c/p)/dp = —cp~2 so G'(p) = —F'(c/p)ep.

Now assume (2.5). On the interval (c,1) where the fixed point p* lies, G(p) =
(c/p)?. To find p*, we set G(p) = p and obtain

p* = /¥, G'(p*) = —q. (1.2)

Thus p* is an increasing function of ¢ and a decreasing function of q. Moreover,
p* is an attracting fixed point if and only if ¢ <1, and p* is a repelling fixed point
if and only if ¢ > 1. If ¢ = 1, p* is neutrally stable.

Two-point cycles. For the analysis of 2-point cycles, we again begin with the
general model (2.4). We prove that, in [0,c], there exists at most one participation
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FIGURE 8. The second iterate of each iteration rule (2.6) graphed in Figure 2 predicts the participation
rate two years hence as a function of the participation rate in the present year, according to p;12 =
G(G(p:)) with (a) decreasing returns (g = 1/2) and low budget (¢ = 1/3); (b) decreasing returns (g =
1/2) and high budget (¢ = 2/3); (c) constant returns (g = 1) and low budget (¢ = 1/3); (d) constant
returns (g = 1) and high budget (¢ = 2/3); (e) increasing returns (g = 2) and low budget (¢ = 1/3); and
(f) increasing returns (¢ = 2) and high budget (¢ = 2/3).

rate p, say pp, with period 2. For all p <c¢, we have 1<c¢/p so G(p)=F(1) =1,
hence G(G(p)) = G(1) = F(min(1,c)) = F(c). So any point p < ¢ of period 2 satis-
fies p = G(G(p)) = F(c) < c. So a participation rate p; < ¢ with period 2 exists if
and only if F(c¢) <c, and in that case p, = F(c). This proves the claim.

The argument just given also establishes that if a participation rate p; <c with

period 2 exists, then G(p2) = 1, i.e., the other point on the 2-cycle that contains p;
is the participation rate 1.

Now assume (2.5). Then it is easy to check that

cf pe[0c),
qZ
GG =4 L pelemin,e-9), (1.3)
i
1 p € [min(1,c!~1/9),1].

The interval [min(1,c'~1/9),1] is empty if g < 1, contains just the point 1 if g =
1, and has positive length if ¢ > 1. G(G(p)) is graphed in Figure 8 for the same
parameter values as in Figure 2.

Any point of intersection of the line of slope 1 through the origin with the graph
of G(G(p)) satisties p = G(G(p)) and hence is a periodic point of G with period
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2. On the interval [0,c], there are no points of period 2 if 0 <g <1 since then
F(c) > c, while if g > 1, the unique point of period 2 in [0,c] is po = F (c) = c4.
The other point on the 2-cycle that contains p; is 1.

On the interval (c, 1), if ¢ = 1, every point in [c,1] has period 2, and every point
in [c,1] except p* (which has prime period 1) has prime period 2. To prove this, let
g=1,p# p*,andc < p <1 Then G(p) = ¢/p < 1and G(G(p)) = min(1,¢/(c/p))
= p. Thus p has period 2, and p has prime period 2 because only p* has period 1.

The point p =1 has period 2 if and only if ¢ > 1, as is clear from (7.3). On
(c,1), when q # 1, G(G(p)) = p < 1 if and only if [c/(c/p)?]? = p, i.e,, if and only
if p = p*. So there are no points of prime period 2 on (c,1] other than p =1, and
p = 1 has prime period 2 if and only if ¢ > 1.

In short, if ¢ < 1, G has no points of prime period 2. If ¢ = 1, then every p in
[c,1] has prime period 2 except p*, which has prime period one. If ¢ > 1, there is
a unique 2-cycle (aside from the trivial one on p*), namely, the 2-cycle through the
points p, and 1.

If ¢ = 1, the points in [c,1] are neutrally stable, because then G(G(p)) = p s0
dG(G(p))/dp = 1. If ¢ > 1, the only point of prime period 2 in [c, 1], namely, p =
1, is an attracting periodic point, because dG(G(p))/dp = 0.

Forward orbits. Finally, we describe analytically the forward orbits of (2.6),
which are plotted numerically in Figure 3. For the special initial condition given in
(2.6), when g < 1, direct computation shows that

pr=c?,py =109 py = c11-a+4) p, = c11-a+a" )
o = 1T () (7.4)

lim p, = c1/1+9)

n—oo

The limit of p, is just the attracting fixed point p* given by (7.2).
When g > 1,

P2n+1 = qu p2n+2 = 1, n= O, 1,2,-.. . (7.5)

For arbitrary initial conditions xo in [0,1], the forward orbits of (2.6) may be
described by using graphical analysis to obtain phase portraits (Devaney 1989, pp.
20-21). When g < 1, regardless of xo,

lim p, = c?/(*9) = p*, (7.6)

n-—o0
When g =1 and xo <¢, then p; = Xo, and for n> 1, p, is identical to that in
(7.5) (taking q = 1 there); when ¢ < xp <1,
c
Dan+1 = Xo, Dan+2 = ‘x—o’ h= 01 1121”- . (77)

It follows, as has previously been noted, that when g = 1, every point in [c, 1] lies
on a periodic orbit of period 2; except for the orbit that is constant at p*, these
period-2 orbits have prime period 2.
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When g > 1, if p1 = (xo)? falls in [0,c], then for n>1, pn is identical to that in
(1.5) (taking g > 1 there); if p1 = (x0) falls in [c'~1/4,1], then the orbit is the 2-
cycle given by (7.5) (taking ¢ > 1 there), though with the opposite phase (i.e., 7 is
shifted by one). When g > 1 and p; = (xo)? falls in [c,c'~1/4], then, according to the
available numerical results, the forward orbit of p, oscillates more and more widely,
rapidly approaching the 2-cycle on the values ¢? and 1, where it remains. It can be
proved with little difficulty that dG(G(p))/dp > 1 throughout [c,c* /9] if and only
if dG(G(p))/dp |p=c> 1, and since dG(G(p))/dp |p=c= q2c?™, this is true if and
only if ¢ >g~%/@. The last inequality is, of course, satisfied by ¢ =2, ¢ =1/3
or ¢ =2/3, as in the numerical illustration. When dG(G(p))/dp > 1 throughout
[c,c}~1/9), the orbit of p must leave the interval [c,c!~1/4] after some finite number
of iterations of G. What remains unproved at present, but appears to be true from
numerical calculations not presented here, is that the orbit of p leaves [c, ci-1/4)
after a finite number of iterations of G, even when ¢ < q @b,

The long-run average participation rate of a forward orbit, assuming the following
limit exists, is

n

p= lim 1 Dn- (7.8)

Assuming (2.5), the limit always exists and

r g<1l,
! ¢ for 0<p< =1

=42 P+; or V=ps¢, q=1, (1.9
%(1+cq), g>1

It is easy to prove that p > p* if g =1 but that p may be greater or less than p*
if ¢ > 1. For example, in Figure 3, in orbit (e), 1+ (1/3)»)/2= (1+0.11)/2=
0.56 > 0.48 = (1/3)?/3 but, in orbit (f) A+ (2/3))/2=0+ 0.44)/2=0.72 < 0.76
= /372
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