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Marker Transport Through Ecosystem Energy Flow
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Markers are substances which are artificially introduced into ecosystems in small quantities and which
have no acute effects on energy flow. A marker might be a pollutant which affects life significantly only
over long time frames. Alternatively, a marker might be a benign substance easily detected in small
amounts and introduced in order to trace energy flow and so evaluate energy flow models. The flow
of markers can be modeled in parallel to energy flow by assuming that energy flowing out of a
compartment carries with it a proportional mass of marker. The purpose of this paper is to derive
qualitative conditions on the food-web structure and the consumption functions of a model which
guarantee stability of energy and marker flows. We will show that many consumption functions used
in mathematical ecology lead to sign-stable models of energy flow and furthermore that such models

enjoy inherent stability of associated marker flows.

1. Introduction

The purpose of this paper is to model and characterize
the flow of a marker in ecosystems. A marker is
defined to be a substance which is carried by
ecosystem energy flows but which does not acutely
affect those flows. For our purposes, the energy
content of an ecosystem compartment means its mass
of fixed carbon. A marker is also measured as mass
in each compartment. The foundation of our effort is
the physical notion of conservation of mass of
biologically indivisible entities, among which is
assumed to be the marker.

A marker is herein also assumed to be neither
preferentially excreted nor retained by any compart-
ment, so the mechanism of bioaccumulation is absent.
Certain radionuclide tracers may be examples of
markers (Odum, 1971), as would be, therefore, certain
types of radioactive pollutants. If an ecosystem model
has 7 energy compartments, the same compartments
also contain amounts of marker, leading in a natural
way to a 2n-dimensional dynamical system.

To illustrate the parallelism between energy and
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marker flows, let us start with an example of the
familiar Lotka—Volterra model

dx,/dt = x,(4 — Bx; — Cx3)

dx,/dt = x,(Dx, — Ex, — F)

dx;/dt = Fx, — Gx3x4

dxs/dt = x4(Hx; — Ixs) 1)

where x, = autotroph, x, = herbivore, x; = detritus
generated by the herbivore and x, = detritivore. The
variables {x;} are the amounts of energy (as fixed
carbon) in ecosystem compartments. The coefficients
A through I are positive constants. The terms
A — Bx; — Cx; and Dx, — Ex, — F are in units: [mass
per time}/mass. Coefficient A arises from photosyn-
thesis, coefficients C and D correspond to energy
transfer through consumption, and coefficients B and
E are intracompartmental energy loss effects (ex-
cretion, heat loss, or autolysis). Here compartments x,
and x, comprise a two-dimensional ‘“‘consumption
community”, a subsystem with dynamics independent
of the downstream detritus compartment x; and
detritivore compartment x,. Coefficient F corresponds .
to “detritus donation” from the herbivore compart-
ment x, to the detritus compartment x;. A second
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consumption community with compartments x; and
x4 is built upon detritus. The coefficient G corresponds
to consumption of detritus energy and the coefficient
H corresponds to energy arrival in a detritivore.
Finally, coefficient I is another intracompartmental
energy loss term.
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shows that if all eight state variables in (x, u) are
initially positive, then no state variable can reach zero
in finite time.

The linear approximation matrix L for the full,
eight-dimensional system at the constant trajectory
()_Cl, X2, X3, Xa, 0, 0, 0, 0) is

(—Bxy, —Cx; 0 0 0
D)_Cz —E)_Cz 0 0 0
* * —Gxs —Gx; 0
* * Hyx, ~1Ix, 0
L= * * * * —K, —A
% % % % %
% * %k *
* % % *

-

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 1G]
—Kz — E)_Cz — F 0 0

* —K; — G)_C4 0

* * -Ki—Ixs

/

Provided F is sufficiently small, this energy flow
model (1) has a unique constant trajectory in which
all components are positive (as well as other constant
trajectories). The constant trajectory with positive
components is

x1 = (AE + FC)/(BE + CD)

x2 = (Dx; — F)IE

x; = [[Fx:/(GH)]"

xo= Huxs|I )

Now let u, uz, 4, us represent the amounts of a
marker in the same compartments. Thus each ; is in
units of mass. Suppose by virtue of excretion,
metabolic consumption, or autolysis, the concen-
tration of marker in compartment i exponentially
decays at the rate — K; times concentration. We allow
the possibility that some or all K; = 0. Such first-order
kinetics are sometimes assumed in mathematical
biology in lieu of details of biochemical mechanisms.
For example, excretion of an element in an aquatic
plant-herbivore system has been so modeled by
Nisbet er al. (1991). The coefficients K; are also in
units [mass per time]/mass. Mass conservation and
the assumption of proportional transport of energy
and marker imply that the associated equations for
marker rates of change are

du,/dt = — Kiuy + ui(— Bx; — Cx3)

du,/dt = — Kous + uyDx; — u, Ex; — Fu,
dus/dt = — Ksus + Fus — usGx,

dus/dt = —Kous + us Hxy — usdx, 3)

Together (1) and (3) constitute an eight-dimensional
dynamical system.
The trajectory trapping theorem (Jeffries, 1989)

The first and second consumption communities
correspond to the two 2-by-2 blocks in the upper
left corner. The * entries are unimportant in the
sense that regardless of their values, this matrix is
sign-stable (Jeffries, 1989, pp. 108—113). That is, just
the sign pattern of the displayed entries in this
matrix guarantees that the real parts of all eigenvalues
of the matrix are negative. Thus every trajectory
starting sufficiently close to the constant trajectory
must asymptotically approach it.

The significance of sign-stability lies in the fact that
the qualitative pattern of interactions insures stability,
provided that no parameters change sign. Precise
values of ecosystem flow parameters are generally
difficult if not impossible to obtain. Thus sign-stable
systems not only can be relied upon to exhibit stability
as models but also can be argued to capture the
general nature of organization at the ecosystem level.
Systems with linear approximations which are not
sign-stable will be unstable or topologically the same
as unstable systems.

2. General Stability Criteria

A dynamical system with a constant trajectory
X is

dx/dt= 3 Ly(x—x)

Jj=1l...n

+ higher order terms in (x; — x;) (4a)

The linear approximation matrix of this system at x is,
of course, L itself. This system (4a) is stable at x
provided the real part of every eigenvalue of L is
negative (Brauer & Nohel, 1989). In turn, this
eigenvalue condition is satisfied provided L meets the
following qualitative-quantitative conditians (Jeffries,
1979, 1989):
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(a) every diagonal entry of L is negative;

(b) matrix L is in block form (possibly after
relabeling the system variables) in which all blocks
above and right of main diagonal blocks are all zero;
the diagonal blocks are either submatrices (corre-
sponding to subsystems called consumption commu-
nities) with positive and negative off-diagonal pairs of
entries, or lower triangular blocks; in every consump-
tion community submatrix (diagonal block), i # j and
L; # 0 imply L;L; < 0;

(c) in every consumption community, no loops
exist, that is, every cyclic product of p > 3 terms in a
consumption community is zero; thus, for example,
L12L23 .. Lpl = 0

A more complicated but less restrictive condition
can replace (c): all loops in consumption communities

3. Some Consumption Functions Appearing in the
Literature

The survey by DeAngelis (1992 p. 83) lists a
variety of two-compartment predation models of
the form

dx/dt = G(x) — F(x, y) = G(x) — xy®;(x)
dy/dt = nF(x, y) — H(y) = nxy®(x) — H(y) (5)

Here and throughout our analysis, only positive
values of energy densities (such as x and y) are
considered. Here 5 is an efficiency constant and
®,(x) is one of the first six functions in (6). For
purposes to be explained below, we also list
®; + xd®,/dx for each ®..

®s = (x — x0)/[x(b + x)]
@ = 1/[x"2(b + x'?)]

[0 D, + xd®,/dx

D, =1/(b + x) bj/(b + x)

D, =[1 — exp(—kx)]/x k exp(—kx)

D, = x/(b* + x?) 2xb?/(b* + x?)? 6)
@, = x/[(b + x)(b: + x)] x(2b\by + bix + byx)/[(by + x)(b: + x)*]

(b + xo)/(b + x)’
b/2x"(b + x)'?]

are “balanced” in the sense of equality of magnitudes
of products of factors in the two directions around
each loop (Jeffries, 1979). Thus, for example,
|LioLos . .. Lyl = |Ly,L,, 1 ... Ly|. The ecological
interpretation of ‘“‘balanced loops” is equality of
products of efficiencies |L;/L;| of different paths in
a consumption community from a compartment in
a low trophic level to a top consumer compart-
ment.

Sign-stability can replace lengthy algebra argu-
ments to establish stability of or point to specific
destabilizing entries in some linear approximation
matrices appearing in the mathematical ecology
literature. For example, many of the 3-by-3 matrices
in Schmitz (1992) can be so treated.

A constant trajectory x for a nonlinear dynamical
system is called locally stable if all trajectories starting
sufficiently close to x must stay arbitrarily close to x
and must asymptotically approach x. If the linear
approximation at x of the nonlinear system (4a) is
stable (all eigenvalues of the linear approximation
matrix L have negative real parts), then the full
nonlinear system is locally stable (Brauer & Nohel,
1989). In particular, the linear approximation matrix
L in (4) fulfills the above four conditions. Note that
L has two 2-by-2 consumption community blocks and
a 4-by-4 lower triangular diagonal block.

The parameters b, k, b, by, x, are all positive
constants.

The linear approximation matrix L of (5) at a
constant trajectory (x,y) using @ from (6) has
off-diagonal entries

Ly = —x®:(x)

Ly = ny(®: + xd®,/dx)

Thus a constant trajectory meets conditions (b) and
(c) of the general stability criteria only if
D;(x) + x@/(x) >0 (®)
where ’ is the derivative of ®;(x) with respect to x.
Remarkably enough, for all (x, y) in the positive
orthant, not just for a constant trajectory (x, y), each of
the functions ®; in (6) fulfills (8). The biological
interpretation of (8) is this: near (x,y) the full
consumption term xy®(x) must increase if biomass
available for consumption x increases. This condition
is related to but not the same as one of Kolmogorov’s
criteria for existence of a constant attractor trajectory
or limit cycle in two-dimensional systems (Yodzis,
1989).
The diagonal entries in L at (x, y) are

L, =dG/dx — Z[(Di(lf) + xd®;/dx]
Ly, = nx®,(x) — dH/dy

(M

)



326 C. JEFFRIES AND J. E. COHEN

Condition (a) of the general stability criteria requires
at a constant trajectory (x, y)—but not necessarily at
all (x, y) in the positive orthant—that

dG/dx — y[®@:(x) + xd®;/dx] < O

(10)
nx®:(x) —dH/dy < 0

Thus if dG/dx is non-positive at (x, y) and dH/dy is
greater than y x®,(x), then all of (10) is fulfilled. The
requirement dH/dy > 5nx®;(x) might be referred to as
the dominance of auto-regulation in the dynamics of
the predator population near the constant trajectory
(x, ).

It is natural to consider models in which ®; + x®;
is not positive. As described in Jeffries (1989) and the
several primary references therein, the northern
prairie of western Canada is characterized by long,
cold winters followed each spring by a tremendous
burst of productivity. Rather than settling on a
constant trajectory, such an ecosystem goes between
extremes of compartment dynamics, extremes rep-
resented by arrival in spring of migratory birds and
emergence of adult grasshoppers. Insectivorous birds
find themselves in an ocean of food. In such a case,
the rate of energy taken up by birds such as
clay-colored sparrows (Spizella pallida) depends upon
the bird population but not upon the superabundant
grasshopper population. That is, #xy®(x, y) in (5)
must be replaced by some n¥(y) so 0¥/6x = 0in Ly
becomes zero.

4. A General Model for Energy and Marker Flows

The main point of this paper is to develop
implications of the general stability criteria for
n-dimensional energy (fixed carbon mass) flow
systems as well as analogous criteria for marker
transport systems.

The basis of energy and marker flow modeling is
consistent accounting of introduction, transport and
removal effects. We assume the compartments of the
model are partitioned into predation communities
connected by detritus donation. Every compartment
- must generate energy (as do autotrophs), consume the
energy from some other compartments or receive
detritus from some other compartments. The general
energy flow model is

dxi/dt = x.Ji(x;) — x:Li(x;) — Y. x:Gy(x:)x;

i<j

+ 2%Gy(x)x + Y, Du(x)x (1)

i>j k<i

The terms on the right side of (11) are respectively
self-mediated input (such as photosynthesis), self-
mediated loss (heat, detritus), consumption loss,
consumption gain, and detritus gain from other
compartments in other upstream consumption com-
munities. The system functions I, L, G and D are all
assumed to be piecewise smooth; predation efficiency
ny (energy gain to i per energy loss to j) is assumed
constant between 0 and 1.

The partition of compartments means that as a
matrix of functions, D, is zero unless compartments
i and k are in different consumption communities.
Detritus donation functions D (x)x; depend only
upon components of x in upstream consumption
communities; the numbering of components reflects
this in that Dy # 0 implies: i > k; Dy > 0; Dy, = 0;
and 6Dy /0x; = 0 unless i > j. Regarding the matrix G
of consumption functions, if G; # 0, then compart-
ments / and j are in the same predation community
and G;G; < 0. Moreover, G; depends only upon the
consumed compartment level (the lesser of i and j);
this is shown in (11) by the G;(x;)x; terms for i < jand
the x;G;(x;) terms for i > j. The partition assumption
implies indices can be chosen so that G; > 0 implies
i> .

The model (1) is an example of (11). It should be
appreciated, however, that (11) allows for consump-
tion communities of arbitrary size (not just two-di-
mensional) and number (not just two). Furthermore,
(11) allows for non-constant coefficients I, L, G, D—
in contrast to the simple constant coefficients of (1).

In parallel to (11) we define the general marker flow
model by

du;/dt = — Ky — w;Li(x;) — Y, wiGy(x)x;

i<j

+ Y nixGi(x)u + Y, Du(x)u.  (12)

i>j k<i

Here K is a decay constant (possibly zero). This
model could be modified by adding a term #;1:(x;) to
represent incorporation of a marker from the
environment, for example, a soil contaminant. This
system is readily derived from the assumption that the
marker per energy ratio u;/x; multiplied by the rate at
which energy moves to or from compartment i/ is the
rate at which marker arrives in or departs from that
compartment. Together (11) and (12) comprise a
2n-dimensional dynamical system.

The model (1), (3) from the first section can be seen
to be an example of (11) and (12). Again, the full
energy-marker model offers much more generality
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than that
example.

low-dimensional, constant coefficient

5. Implications of General Stability Criteria for
Energy and Marker Flows

The energy flow model (11) and marker fiow model
(12) combine to yield a 2rn-dimensional dynamical
system. If a constant trajectory (x, u) exists for the full
model, the linear approximation matrix L of partial
derivatives at (x, u) has the following form. For all i
and j in the same consumption community,

(2) d[dx,/de]jox; =T, — Li— Y. Gy(x)x;

i<j

+ Y miGy(x)x + xilll — L1 — Y, xix,Gy(x:)

i>j i<j
(b) Oldx;/dr)/ox; = —x:Gy(xi) ifi<j

13)
(©) Oldx,/d1)/ox; = nyxi[Gy(x;) + x,Gylx;) ifi>j

(d) a[du,/dt]/au. —k — L,' — Z GU(.)_C,).E,

i<j
(e) o[du;/dt)/ou; =0
We want to show that certain restrictions imply the

form of L is consistent with the general stability
conditions.

ifi<j

Theorem. Suppose (x, u) is a constant trajectory for
the energy-marker model. If an ecosystem model can
be partitioned into consumption communities as in
Section 2; if no loops exist in any consumption
community (or if all loops are balanced); if for all i,
II — L — %, ;xG;(x;) <0; and if for all i > j with
Gy #0, Gy(x:))+ x,Gi(x;) >0; then the energy-
marker model is stable at (x, ).

Proof. The typical form of the linear approximation
matrix L of (11), (12) at a constant trajectory (x, u)
is as follows.

(A 0 0 0 0 0 0

* A0 0 0 0 0

* % A 0 0 0 0

L 0 0 0 0

L= j* * T 0 0 0 (14)

* %k % *TOO

* k% **TO

sk Kk 3k k ok %k

L J

The A blocks represent g-by-¢q consumption commu-
nities, 1 < ¢ < n. Concerning diagonal entries in 4,
we note that at a constant trajectory the first four
terms of the right side of (13a) add to —(1/
Xi)Zk <:Da(x)xc, which is non-positive. Hence the
assumption I/ — L/ — Z;.;x,Gi(x:) <0 implies the
diagonal entries in each A are negative. Furthermore,
the sum of the last two terms of the right side of (13)
must be negative, for otherwise compartment / is not
an autotroph, does not consume any other compart-
ment and does not receive detritus from any other
compartment. Thus each T has negative diagonal
entries. The condition G;(x;) + x,G;(x;) > 0 implies
the symmetric pairs of off-diagonal entries in each 4
are of opposite sign. Since condition (c) is assumed,
each A, in itself, meets the general stability criteria.
Each matrix * is of arbitrary form; 0 represents the
zero matrix. Thus the upper left n-by-n block in
(14)—corresponding to the energy flow subsystem—
meets the general stability criteria and so insures the
stability of the energy flow part of (11).

Each marker compartment in each consumption
community is paired with an energy compartment.
Thus each marker submatrix T in (14) is of the same
size as its corresponding consumption community
matrix A. Considering (13d), we see each T has
negative diagonal entries. By the choice of indices in
Section 4, T is in lower triangular form (reflected in
equation (13¢)). Again * blocks among T blocks and
* blocks corresponding to detritus donation are
essential to the existence and values of the constant
trajectory, but do not influence the eigenvalues of L.
Note that the form of the lower right block is quite
different from the upper left block; the full
energy-marker system is not a trivial doubling of the
energy system.

The above sign-pattern analysis shows that L meets
the general stability criteria and that the real part of
every eigenvalue of L is negative. By the linear
approximation theorem of dynamical systems theory,
the full energy-marker system is locally stable at the
constant trajectory (x, u).

For a given matrix of the form of L in (14),
sufficiently small additional terms in any positions
(arising from partial derivatives of more general
coefficients) would not change the fact that the linear
approximation (and so the full system) is locally
stable at (x, u).

6. Conclusion

We have modeled the flow of markers as part of an
energy flow model by assuming that energy flowing
out of a compartment carries with it a certain
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proportional mass of marker. In describing sufficient
qualitative conditions for stability, the condition (8)
on consumption functions ®; + x®; > 0 repeatedly
presents itself. Here the rate: of energy loss due to
consumption is xy®;, so this condition is equivalent
to requiring that the partial derivative of xy®, with
respect to the consumed variable x be positive. This
condition turns out to be met by several rates (6)
studied by populations dynamicists. Given this
condition and some additional flow conditions
(including the absence or balancing of loops within
consumption communities), the stability of an
energy-marker model can be guaranteed. The flow
conditions are largely qualitative, pointing to a model
class with very desirable mathematical characteristics
and arguably many reflections in nature.

In some special cases of (11) the general stability
criteria assure not merely local stability near a
constant trajectory, but also global asymptotic
stability for all non-zero initial conditions (Cohen
et al., 1990). For example, consider the Lotka—
Volterra equations with constant coefficients 7, and
Gy,

dx,~/dt = x,-<1,- + Z G,‘ij) i= 1, PR ] (15)

Jj=1l...n

Suppose each x;(0) > 0, there is a constant trajectory
(with positive components), each G; < 0, and every
eigenvalue of G has non-positive real part. It can be
shown then that every trajectory of (15) is bounded,
has a limit as t — oo, and that the limit is independent
of the initial conditions (Redheffer & Zhou, 1989;
Cohen et al., 1990, p. 611). The strength of (11)
compared to (15) lies in the non-constancy of I; and
G;, but the conclusion of our present theorem is
limited to local (not global) stability, as we next
elucidate.

Global stability is not a hidden general feature of
(11) or even its special case (5). For example, the
abstract model

dx/dr = bx + L — % sin2mx) — xy/(1 + x)

dy/dt = 55xp/(1 + x) — fzy + % (16)

satisfies the conditions of the theorem at two stable
constant trajectories (1,1) and (2,2). Thus the
theorem of the previous section gives only sufficient
conditions for local stability of a constant trajectory.
This example shows the mathematical possibility that
such local attractors are not global attractors.

The model (11), (12) of marker transport has
potential applications as a null model for comparison
with the observed transport of a suspected toxin with
decay. If a credible model of the form (11) can be
constructed for energy flow and if the corresponding
marker flow model (12) clearly fails to describe the
trajectory of the suspected substance, then bioaccu-
mulation, intoxication, selective sequestration, selec-
tive excretion, selective degradation, or some other
deviation from passive neutral transport may be
suspected.
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