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Environmental variability, in the form of disturbance, is critically important for metapopulations.
Their spatial subdivision makes possible the regional coexistence of inferior competitors (fugitive species)
thatare unable to persist locally. Itis known that such coexistence depends on the frequency of disturbance
relative to the rates of dispersal and competitive exclusion. In this paper, the effects of the spectral “color”
of the environmental variation in a simple two-species competition model are considered. A simple
two-state Markov chain is developed to describe the environment; its single parameter can be tuned to
give a power spectrum that emphasizes low frequencies (red) or high frequencies (blue), or that contains
all frequencies equally (white). Coupling this to a nonlinear Markov chain model for two competing
species, this study considers the interacting effects of disturbance frequency and the spectrum on the
frequency of the losing competitor, local species richness, spatial heterogeneity (beta diversity), and the
Smoluchowski recurrence time for patch states. In general, a red spectrum makes coexistence more
difficult and reduces local diversity. However, the details of the patterns depend on the rates of dispersal

and competition.

1. Introduction

Abundance, coexistence and diversity in metapopula-
tions depend on the combined effects of disturbance,
ecological interactions and dispersal. Disturbance is
particularly important because the spatial subdivision
of a metapopulation makes it possible for a species to
persist regionally without being able to persist locally.
This “nonequlibrium” or “fugitive” coexistence is a
major contributor to species diversity.

In our previous studies of nonlinear Markov chain
metapopulation models for interspecific competition
(Caswell & Cohen, 19914, b, 1993; Barradas & Cohen,
1994) we found that

o diversity can be maximized at intermediate
disturbance frequencies;

o the disturbance frequency maximizing diversity
depends on the time scale of local interspecific
competition;
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e contrary to popular opinion, regional persistence
as a fugitive species does not necessarily require a
dispersal advantage to compensate for local
competitive inferiority; and

e patterns of beta diversity and turnover and
recurrence times respond in complicated ways to
disturbance frequency.

In this paper we extend these analyses to consider the
spectral properties, as well as the frequency, of
environmental variability. These properties charac-
terize the temporal scaling, or autocorrelation pattern
of the environment.

The importance of temporal scaling has been
emphasized by Steele (1985, 1991, Steel & Henderson,
1984, 1994) in a comparison of marine and terrestrial
ecosystems and their responses to environmental
variability. Steele (1985) noted that atmospheric data
(temperature and other variables) exhibit variance
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spectra well described by “white noise” (i.e. equal
variances at all frequencies) down to frequencies of
~0.02 yr~'. By contrast, long-term records of abiotic
variables (e.g. temperature) from the ocean yield
spectra in which the variance is much greater at low
than at high frequencies; such spectra are referred to
generically as “red” (Monin et al., 1977).

The importance of this difference lies in the dynamic
consequences of perturbing ecological systems by red
and white noise. On the basis of simulations of a simple
predator-prey system, Steele & Henderson (1984)
concluded that red noise produces dynamics in which
the system jumps back and forth between qualitatively
different equilibria, while perturbation by white noise
leads to variation around a point between the two
equilibria. They argued that long-term historical
records of marine fish populations show the kind of
abrupt variation predicted from red noise pertur-
bations (although this has been challenged by Sinclair,
1988).

A general model for this effect has been developed
by Kitahara ez al. (1979, 1980) and Horsthemske &
Lefever (1984), and applied to population genetics by
Matsuda & Ishii (1981). They considered a continuous
dynamical system perturbed by a stochastic process
(the “environment”) with two possible states. The
system has a stable fixed point in each of the two
environmental states. Transitions between the en-
vironmental states follow an autoregressive stochastic
process with an exponential autocorrelation function.
When the environment fluctuates the stationary
distribution of the system depends on both the
intensity and the autocorrelation of the environmental
process. When the autocorrelation time of the
environment is long (i.e. the environmental noise is
red) relative to the time scale of approach to
equilibrium, the stationary distribution is concen-
trated at the two equilibria, and the dynamics are
characterized by abrupt transitions between the
alternative equilibria. When the autocorrelation time
of the environment is short (i.e. white noise)
the stationary distribution is unimodal, and the
system fluctuates around a point intermediate
between the two equilibria, without ever converging to
either.

Our analysis differs from this model; rather than
imposing stochastic variation on a deterministic
model, we consider a stochastic model for two
competing species in a variable environment. We
extend the approach of Caswell & Cohen (19914, b;
Barradas & Cohen, 1994) to include variation with
different spectral properties, from “red” through
“white” to “‘blue”. We shall consider specifically
coexistence and the diversity maintained by environ-

mental disturbance in the face of competitive
exclusion.

In the next section we describe our metapopulation
model and its output, and our model for environmental
variation. We then analyze numerically two specific
cases. In one, the environmental variation affects the
disturbance rate; in the other, the identity of the
competitive dominant. We shall describe the results in
terms of the local species diversity, the regional
diversity, and the patterns of recurrence time.

2. A Patch-Occupancy Metapopulation Model

Our approach to metapopulation modelling is to
specify the rates of local, within-patch processes, to
transform those rates into rates of transition among
local patch states, and then to infer from those rates the
dynamics of a regional distribution of patch states
(Caswell & Cohen, 1991a, b). Consider an effectively
infinite set of effectively identical patches, inhabited by
n species, Si,..., S.. We define the state of a patch by
the presence and absence of the species (hence the name
patch-occupancy models); there are 2" possible patch
states, X, X3,..., X»». We assume that the state of the
metapopulation as a whole is given by a vector x whose
entries x; give the proportion of patches in state X;.
This is equivalent to assuming that the system is
well-mixed, so that each patch interacts equally with all
others; the spatial arrangement of patches has no
effect. The state of a patch changes as a result of
within-patch interactions, disturbance, and coloniza-
tion from other patches. Because colonization rates
depend on the abundance of the colonizing species
(measured by the fraction of patches occupied by each
species), the resulting dynamics are given by a
nonlinear Markov chain

X(t + 1) = Axpx(2). M

The (column-stochastic) transition matrix Ay, is
calculated from the timescales of disturbance,
colonization, and interspecific interaction (Caswell &
Cohen, 1991a, b; see below for an example). Where no
confusion seems likely to result, we will suppress the
subscript on A.

Since (1) is a nonlinear map, it is in principle capable
of a variety of dynamics, including stable fixed points,
oscillations, quasiperiodic orbits, and chaos. Analyti-
cal results on these models are difficult to obtain. Our
extensive numerical analyses have revealed only
convergence to unique, globally stable equilibria, and
Barradas & Cohen (1994) have proven this result for
a model which differs only slightly from the one we
describe below. These equilibria depend on parameter
values, but appear to be independent of initial
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conditions x(0) as long as all elements of x(0) are
positive.

Convergence of the metapopulation to a stable
equilibrium probability distribution (satisfying
X = A:X) does not imply that any individual patch
attains equilibrium. Indeed, one of the advantages of
formulating the model as a Markov chain is that
one can examine the temporal variability at the patch
level while the landscape is at equilibrium (Caswell &
Cohen, 19915).

Similar patch occupancy models have been used
to describe metapopulation dynamics by, e.g. Cohen
(1970), Levins (1970), Slatkin (1974), Caswell (1978),
Crowley (1979), Hastings (1978), Hanski (1983); see
the collection of papers in Gilpin & Hanski (1991).
They share several important assumptions. First,
by ignoring within-patch population dynamics, they
implicitly assume that the timescale of those dynamics
is faster than the other timescales in the population.
Second, the use of x as a state variable ignores the
spatial arrangement of the patches. These models
consider only two spatial scales—that of the local,
within-patch population and that of the regional
metapopulation. Comparison of the competition
model we will consider here with a corresponding
cellular automaton model, which does include explicit
spatial pattern, shows that the patch-occupancy model
is an excellent approximation to the cellular

automaton unless the disturbance process introduces
spatial scales intermediate between the single patch
and the regional metapopulation (Caswell & Etter,
1993; Etter & Caswell, 1994; Caswell and Etter, data
in preparation).

2.1. A MODEL FOR INTERSPECIFIC COMPETITION

We consider two species, S and S, and define patch
states as follows, where 0 indicates absence and 1
indicates presence:

Sz Sl State

0 0 X
0 1 X
1 0 X;
1 1 X

We suppose that S; is the winning species, and
eventually excludes S, from any patch in which they
co-occur. The transition probabilities a,., from state X,
to state X,, are calculated from the timescales
of competitive exclusion, dispersal, and disturbance. In
general, the rate of a process is given by the inverse of
the timescale on which it occurs; a long timescale
implies a slow rate, and vice versa.

We assume that disturbance follows a Poisson
process, with a timescale (mean time between

fambda=0.1
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FiG. 1. Trajectories of the environmental state of a single patch as a function of the environmental spectrum, for red (4 = 0.1), white (4 = 0.5)

and blue (4 = 0.9) spectra. Parameter values: 4, =
to make the graphs more easily visible.

d» = 0.1, p. = 0.01, p, = 0.5. A small amount of random noise has been added to the values
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Fi1G. 2. Trajectories of a single patch showing the presence or absence of the inferior competitor (S:) as a function of the environmental
spectrum, for red (A = 0.1), white (A = 0.5) and blue (4 = 0.9) spectra. The trajectories were obtained as stochastic realizations using the

transition matrix A evaluated at the equilibrium state frequency. In all three plots, di

d; = 2, p. = 0.1, and p; = 0.1. A small amount of

random noise has been added to the values to make the graphs more easily visible.

disturbances) given by t,. The expected number of
disturbances per unit time is t;', and the probability
of at least one disturbance in the interval (¢, ¢ + 1] is

2

The rate of competitive exclusion is specified in terms
of 7., the mean time required for S, to exclude S;. If the
probability of exclusion during the interval (¢, ¢ + 1]is
p., then the time required for exclusion (z.) will follow
a zero-truncated geometric distribution, with

Pit.=k)=p(Q—p)"' k=12,.. 3)

The mean time required for exclusion is then
.= E(t.) = p-'. Thus
-1

pe=7 )

Finally, we assume that colonization follows a
Poisson process. The mean number of colonists of
species i, i=1,..., N, arriving in a vacant patch
in (¢,t+ 1] is proportional to the frequency of

—1/td

p,;=l—e

occurrence of species i, i.e. the fraction of all patches
in which species i is present. The constant of
proportionality (the dispersal coefficient) d; combines
the effect of the production of offspring by populations
in the occupied patches and the success at dispersal of
those offspring. Let f; denote the frequency of S;; thus
fi=x2+ xs and f, = x; + x4. Then the conditional
probability of at least one colonist arriving in a patch,
given that the patch is vacant, is

Ci(x) =1 —e %, (%)

Either or both species may colonize a vacant (X))
patch, the winning species S, may also colonize a patch
(X5) containing S,, but the losing species S, may not
colonize a patch (X;) which contains the winning
species. Modifications of this assumption yield models
of various successional mechanisms (Caswell & Cohen,
19915).

The transition matrix A,, which determines the
dynamics in (1) is

1-C)Q—-CG)  pa
C](l —_ Cz) 1 — Da
1 -a)G 0 (1
C.C, 0

Da ( Da

0 1 — pa)p.
— )1 = pa) 0 ©)
Ci(1 —py) A —=p)(A —=po)

where the C; are given by (5).



SPECTRA AND COEXISTENCE 305

2.2. MODEL OUTPUT

From the equilibrium probability distribution %,
obtained by numerical iteration of (1) using (6),
we calculate two types of output: spatial averages
of patch properties (e.g. mean number of species
per patch) and temporal averages of patch transi-
tions (e.g. mean time required to go from one state
to another). In biological terms, these indices of
community structure include

1. The frequency ( f;) of occurrence of each species.

2. The local or alpha diversity, measured by the
expected number of species per patch. In the
two-species case, & = X, + x3 + 2xq.

3. Between-patch, or beta diversity, which
measures the change in species composition
that would be observed along a transect or
gradient across the landscape. Since there are no
actual gradients on our landscape, beta diversity
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can be simply measured by the entropy of the
vector R:

= '—Z Xi log Xi. (7)

Beta diversity is at a minimum when all patches
contain the same set of species; it is maximized
when all different patch types are equally
abundant. We also calculate a biological beta
diversity by excluding empty patches:

2"
Bo=—Y [—Z-log—= ®)
s=2 m n
Z Xj Z Xj
Y=2 j=2

Because § and f, are highly correlated we report
only the results for B, here.
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FiG. 3. The equilibrium frequency f: of the losing competitor as a function of dispersal rate (d;), competitive exclusion rate (p.), and the
frequency (p.) and spectrum (4) of the environmental disturbance process. The two environmental states differ in their rates of disturbance.
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Fi1G. 4. Contours of alpha diversity as a function of disturbance frequency and A. The two environmental states differ in their rates of
disturbance.

4. The recurrence times for states and sets of states,

which give some insight into the within-patch
dynamics implied by the transition matrix A;:
at equilibrium. The recurrence time of state X, is
the mean first passage time from X to X, and is
given by
1

My = xT: (9)
(Iosifescu, 1980). However, because the mean
recurrence time is affected by the probability
of staying in the same state from ¢t to t + 1, in
which event the recurrence time is 1, we will use
instead the mean Smoluchowski recurrence time
E(6,), defined as the mean time elapsing between
leaving state X, and the next return to state X, It
is given by

1 — X,

E(BJ) = f:(l _ 'a_q.\')

(10)
(Iosifescu, 1980: 135). E(0,) can be interpreted
in terms of community development within
patches of the metapopulation. For example,
E(6,) gives the mean time between colonization
of a patch and the next disturbance, which is the
mean time available for interspecific interaction
between disturbances. The Smoluchowski recur-
rence time can also be calculated for sets of states,
defined as the mean time between leaving that set
and the next return to it. This is particularly
useful for sets of states defined by the presence or
absence of a species; the recurrence time for such
a set of states gives the mean time elapsing
between the local extinction of a species and its
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next reappearance. Let ¢ denote the set of states
under consideration. Then

1- Y %
seé

E@f;) = —— (11)

z -xA'J Z s

st rée
(Iosifescu, 1980).

2.3, AUTOCORRELATED STOCHASTIC ENVIRONMENTS

We turn to a simple model of environmental
variability (possibly due to disturbance, for example)
which yields a spectrum that can be adjusted from red
through white to blue. Consider an environment that
at any time is in one of two states, characterized by real
numbers z;, and z,. The transitions between states are
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governed by a homogeneous Markov chain with
transition matrix (from columns to rows)

=4 A
A=<,1 1—,1> 12)

where 0 < A < 1. We suppose that the environmen-
tal process is stationary, so that at time ¢ =0,
P(z(0) = z;) = P(z(0) = z;) = 1/2, from which it
follows that P(z(t) = z;) = P(z(t) = z;) = 1/2for all ¢.

The mean and variance of z(¢) are easily calculated:

E(z(D) = 3(21 + 22) (13)
V(z() = E@(1) — 1(z1 + z2). (14

To determine the spectral properties of this environ-
ment, we need the autocovariance function

y-: (k) = Cov(z(0), z(k)) (15)
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FiG. 5. Contours of biotic beta diversity f, as a function of disturbance frequency and 4. The two environmental states differ in their rates

of disturbance.
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F1G. 6. Contours of the logarithm (base 10) of the Smoluchowski recurrence time for the set of states in which S is present, as a function
of disturbance frequency and A. The two environmental states differ in their rates of disturbance.

Let p;(t) denote the z-step transition probability
P(z(t) = i|z(0) = j). For any time ¢ > 0,

E(z(0)z(1)) = 3(z1z2(p1a(2) + pu(2))
+ Z|2P11(t) + ngZZ(I)) (16)

The probabilities p;(¢) are given by the corresponding
entries of the matrix A'. From Iosifescu (1980: 55-56),
we have

A= ("‘
Y%

where the
(1/2, 1/2).

Without loss of generality, we scale the environment
so that z; = 1 and z, = — 1. Then we have

E(z(0)z(1)) = (1 — 24, (18)

m f T2 —m
n2>+(1—2/1)<_7rz m) a7

stationary distribution is (m, m)=

from which it follows that the autocovariance function
is

This is the autocovariance function of a
discrete first-order autoregressive process (e.g. Jenkins
& Watts, 1968: 228). The spectral density function
(given by the Fourier transform of the autocorrelation
function) is

1
1+ p? — 2u cos(2rf)

r(f)= (20)

where p = (1 — 24). For 0 < A < 1/2, the spectrum
is dominated by low frequencies (i.e. is ‘red’), while for
1/2 < A< 1 the spectrum is dominated by high
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frequencies (i.e. is ‘blue’). The case A = 1/2 corre-
sponds to white noise.

To couple this environmental model with our
metapopulation model, we define two matrices B,
and B,, corresponding to environments z, and z,.
These matrices contain all the appropriate
disturbance, dispersal, and interaction terms for
patches in the appropriate environment. The tran-
sitions between environments are incorporated
by producing a new enlarged transition matrix A, given
by

_(a-2B,| B,
A*‘< 7B, ‘(1—1)132)' @)
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The state vector is now enlarged to include
the proportions of patches in the various states
in environment z, in the top half, and the
proportions of patches in various states in
environment z; in the bottom half. The matrix (21) is
written assuming that change of state within an
environment precedes the change from one environ-
ment to the other. If the two processes occur in the
other order, the diagonal blocks would be inter-
changed.

3. Two Models

We applied the two-state Markovian environment
to the competition model (6). The resulting model
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FiG. 7. Contours of the logarithm (base 10) of the Smoluchowski recurrence time for the set of states in which S is absent, as a function
of disturbance frequency and 4. The two environmental states differ in their rates of disturbance.
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FiG. 8. Contours of the equilibrium frequency /; of S, as a function of disturbance frequency and A. The two environmental states differ

in the identity of the winning species.

contains eight states, in which patches are classified by

species occupancy and the environmental state.

Env. Sz Sl X
-1 0 0 1
-1 0 1 2
—1 | 0 3
-1 | | 4

| 0 0 5
| 0 1 6
| | 0 7
| | | 8

We assume that each species generates colonizing
propagules at a rate independent of its environmental
state. Thus the species frequencies which appear in the
colonization coefficients C; are

f,=x2+x4+x6+xg

fr=X+ X+ X0+ Xs.

This framework for environmental variation can
encompass a variety of processes, depending on which
parameters of the model differ between environments.
We shall consider two models here. In the first, the two
environments differ in the frequency of disturbance,
while in the second they differ in the identity of the
winning competitor.

3.1. ENVIRONMENTS DIFFERING IN
DISTURBANCE RATE

Environmental variability enters the model (6)
only through the independently distributed disturb-
ance process, measured by p,. It is not difficult
to show that the spectrum of this process cor-
responds to white noise, with equal variance at all
frequencies.

o

*
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We suppose that the environment is characterized by
two states, one “‘calm” and the other “turbulent” with
differing values of p,:

Environment Disturbance Probability
calm (z)) 0
turbulent (z;) D

A patch in the calm environment proceeds inexorably
towards its local equilibrium: exclusion of S; by S1. A
patch in the turbulent environment is occasionally
returned to the empty state, in which both species can
colonize. In a red environment (4 < 0.5), a patch tends
to spend long periods in one or the other environment,
whereas in a blue environment (4 > 0.5) a patch tends
to alternate rapidly from one environment to the other.

Since the environmental process characterized by
(12) has a stationary distribution (n, 7;) = (1/2, 1/2),
independent of A, the effective disturbance frequency
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in this model is p,/2. We can vary the autocorrelation,
and thus the spectrum, of the disturbance process,
while keeping the mean frequency fixed.

Figure 1 shows a single realization of the
environmental state of a single patch, for red, white
and blue spectra. The effect of A on the autocorrelation
of the environmental fluctuations is evident from the
figure. The translation of this environmental sequence
into biological variables depends on the parameters,
however. Figure 2 shows the results for the presence or
absence of S; for this same realization. The results on
recurrence time below quantify the differences in
temporal scale of these fluctuations.

It was clear from our simulations that changing from
red to white noise had major effects on the system, but
further increases in A towards blue noise had little
effect. This is because, in our model, the mean residence
time in one environmental state is A~!. As A increases,
this time decreases; once the mean residence time is
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FI1G. 9. Contours of alpha diversity as a function of disturbance frequency and 4. The two environmental states differ in the identity of

the winning species.
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FiG. 10. Contours of biotic beta diversity §; as a function of disturbance frequency and 4. The two environmental states differ in the identity

of the winning species.

significantly less than the relaxation time to the
equilibrium in that environment, further increases in A
will have little effect on the equilibrium distribution %
(cf. Kitahara er al., 1979, 1980).

To study the effects of variation in disturbance
frequency and environmental spectrum, we simulated
systems with high (d, =d, = 10)and low (d, = d, = 1)
dispersal rates and high (p.=0.1) and low
(p. =0.01) rates of competitive exclusion, with
disturbance frequency p, and the environmental
transition probability A ranging from 10~} (red) to
nearly 1 (blue).

The equilibrium frequency f; of the losing
competitor is shown in a series of contour plots in
Fig. 3. When competition is slow or dispersal is rapid,
the maximum in f, for intermediate disturbance
frequencies appears, but only for spectra that are not

too red. A red spectrum counteracts the effects of
disturbance, and makes persistence of the figure species
more difficult. This effect appears in Fig. 4 as a
reduction in alpha diversity as the spectrum becomes
redder.

The effect of the spectrum on f; and « disappears at
low disturbance frequencies, where S, is unable to
persist.

We calculated landscape heterogeneity by the
biotic beta diversity B8,. We calculated this hetero-
geneity only over species composition, not envi-
ronmental state; i.e. we generated a vector b=
[x2 + X6, X3 + X7, X4 + x3] and calculated
b

Br=—% b tog (22)

b o Yy
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Biotic beta diversity f, increases with both p, and
A, reaching its maximum at high disturbance rates
and white (or even blue) environmental variability
(Fig. 5).

To examine Steele & Henderson’s (1984) hypothesis
on the effects of red noise on state transitions,
we computed the Smoluchowski recurrence times for
two sets of states: those in which S, is present (which
we call £;) and for the set of states in which S, is absent
(—1&;). The recurrence time for &, gives the mean time
between extinction of S, and its next colonization. The
recurrence time for —1¢&, is the mean time between the
colonization of S, and its next extinction; i.e. the
persistence time for S;.

Steele and Henderson’s models, forced with red
noise, exhibit abrupt transitions between steady states
which persist for relatively long periods of time. In our
model, this pattern would be reflected in large values
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for the Smoluchowski recurrence time for both &, and
_|ég.

Recurrence times for &, increase, by many orders
of magnitude, as p, becomes small (Fig. 6). At
intermediate to high disturbance frequencies, recur-
rence times increase as the spectrum becomes redder.
Especially at low dispersal rates, a rad spectrum leads
to long intervals in which S, is absent, interrupted by
occasional appearances.

The recurrence times for —1¢& are only weakly
affected by 4 (Fig. 7). The mean time between
colonization of S; and its eventual extinction decreases
as p, increases, and is naturally longer when the
competitive exclusion rate is lower. There is a very
slight tendency, especially at high disturbance
frequencies, for the recurrence time to decrease, rather
than increase, as the environmental variability
becomes redder.
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FiG. 11. Contours of the logarithm (base 10) of the Smoluchowski recurrence time for the set of states in which S is present, as a function
of disturbance frequency and 4. The two environmental states differ in the identity of the winning species.
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FiG. 12. Contours of the logarithm (base 10) of the Smoluchowski recurrence time for the set of states in which S is absent. The two

environmental states differ in the identity of the winning species.

In summary, as the spectrum of the disturbance
process changes from white to red, persistence of the
losing competitor becomes more difficult, and alpha
and beta diversity are reduced. Within a patch, the
intervals between appearances of the losing competitor
become longer, and its persistence when it does appear
becomes briefer.

3.2. ENVIRONMENTS DIFFERING IN COMPETITIVE
DOMINANCE

As a second numerical experiment, we suppose
that the winning competitor differs between the two
environments. Such alternation could result from
changes in the resource base or in abiotic conditions.
Hutchinson (1961) suggested such changes as a
mechanism for mediating coexistence in phytoplank-
ton. For simplicity, we assume that all other
parameters (d,, p., p;) are identical between environ-

ments. We consider high and low dispersal rates,
(di = d, = 10and d, = d, = 1) and rates of competitive
exclusion (p. = 0.1 and p. = 0.01).

The equilibrium frequency f; of S, is shown in Fig. 8;
because of the symmetry of the model, the results for
/i are identical.

At high disturbance frequencies, f; is independent of
A. At lower disturbance frequencies, however, f, is
reduced as the environment becomes redder. This
is because, when the environmental fluctuation is
dominated by low frequencies, patches stay in one state
long enough for competitive exclusion to occur, and
disturbance is necessary for coexistence. As the
switches in environmental state occur more rapidly,
competitive exclusion has no time to occur. Alpha
diversity reflects the same patterns (Fig. 9).

The results for biotic beta diversity §, are shown in
Fig. 10. At high dispersal rates, beta diversity is

“
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maximized at low disturbance frequencies and low
values of A. Under these conditions, as p, and 4 go
to zero, patches stay undisturbed in one state or the
other, and spatial heterogeneity reflects a mosaic
of patches at alternative equilibria. Beta diversity
declines as either p, or A increases.

At lower dispersal rates the picture is more
complicated (Fig. 10). When p, is high, 8, is
independent of A. When p, is low, however, there is a
peak in f, at intermediate values of A.

The recurrence times for this model are consistent
with the predictions of Steele & Henderson (1984). The
results for £; and —1&; are shown in Figs 11 and 12. The
recurrence times for &, increase as A decreases and as
pa declines. The recurrence times for —1¢&, increase as
the environment becomes redder, more so when
competitive exclusion is rapid than when it is slow.
Thus in this model, red noise produces a community
characterized by switches between the presence and
absence of a species over relatively long timescales.

In summary, variation in the identity of the
competitive dominant can maintain coexistence even
when disturbance is very rare. At low disturbance
levels, where the switch in competitive dominant
is largely responsible for coexistence, diversity is
maximized at intermediate values of A. As the
environment becomes redder, the invervals between
appearances of the losing competitor within a patch
become longer.

4. Discussion

Variability that disturbs the approach to equi-
librium is a crucial aspect of the environment for
metapopulations, particularly for species that may be
excluded locally by superior competitors. Qur results
show that the spectral properties of environmental
variation have important effects. Most metapopula-
tion models (indeed, most ecological models) describe
environmental variation with white noise; we conclude
that inferences drawn from such models may be
sensitive to this assumption.

The color of the spectrum of a process reflects its
autocorrelation pattern. The characteristic correlation
time, in turn, is used as a measure of the scale of
temporal variability. It is now recognized that spatial
and temporal scales are an important feature of
ecological processes (e.g. Haury er al., 1978; Harris,
1986; Powell, 1989; Levin, 1992; Levin er al., 1993;
Steel & Henderson, 1994, and many others).

The effects of the spectrum depend on how it acts.
Varying the intensity of the disturbance process and
varying the identity of the winning competitor have
different effects. Obviously, any of the parameters of

the model could have been made subject to
environmental variation.

In general, a very red environmental spectrum
makes the persistence of the losing competitor more
difficult, reduces alpha and beta diversity, and extends
the intervals between appearance of a species within a
patch. However, in the model with a variable winning
species, diversity may be maximized at intermediate
values of A, because at low disturbance levels the
redness of the spectrum is itself responsible for
maintaining coexistence.

One striking contrast between oceanic and terres-
trial communities is the greater species diversity on
land (Angel, 1993; May, 1994). The greater diversity of
species on land may be an artifact of people living on
land, rather than on the ocean floor; as more of the
deep sea is sampled, the diversity of species found there
may increase greatly (Grassle & Maciolek, 1992: 336).
If terrestrial environments really have more species
than marine environments, our models may explain
why. As shown in Fig. §, biotic beta diversity increases
as the frequency of environmental disturbance
increases and as the spectrum of environmental
variability changes from red to white or even blue.
Marine environments generally have redder spectra
of environmental variability than terrestrial environ-
ments. Hence our models suggest that marine
environments should have lower biotic beta diversity
than terrestrial ones. This argument does not explain,
however, why marine environments have about twice
as many reported phyla as terrestrial.

Under some conditions, time series generated by
colored noise are statistically indistinguishable from
chaotic deterministic time series (Stone, 1992). Hence
our results, derived for colored.noise generated by
environmental perturbations, may be equally relevant
to perturbations derived from low-dimensional
chaotic environments. This extends the relevance of
our biological inferences to models in which the
environment is driven chaotically.

Our simple Markovian approach to modeling the
spectrum of environmental variation could be used
in other theoretical analyses in population dynamics
and community ecology, i.e. food web dynamics
models.
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