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Chapter 8

RANDOM GRAPHS IN ‘ECOLOGY

Joel E. Cohen
Rockefeller University

ABSTRACT

Random graphs have described relations among biological species at least since
Charles Darwin’s Origin of Species (1859). In ecology, random directed graphs
called food webs describe which species eat which species. When large num-
bers of real food webs are viewed as an ensemble, empirical patterns appear.
Stochastic models of food webs can explain and unify some of these empirical
patterns. This chapter gives an elementary account of how stochastic models
of food webs are constructed, analyzed and interpreted. Connections are de-
scribed with models of parallel computing and the qualitative of large systems
of nonlinear ordinary differential equations.

1. HISTORICAL BACKGROUND

The first edition of Charles Darwin’s book On the Origin of Species by Means
of Natural Selection, or the Preservation of Favoured Races in the Struggle
for Life, contains only one picture. The picture is a fold-out inserted between
pages 116 and 117. Because the first edition has been reissued in a facsimile
edition (Darwin 1859 [1964], [14]), it is not necessary to collect rare books to
enjoy the picture (Figure 1).

The picture is a diagrammatic sketch of a small portion of what Darwin
later (p. 130) calls “the great Tree of Life,” showing how (p. 123) “two or more
genera are produced by descent, with modification, from two or more species
of the same genus.” One node of the tree is labelled (A). Darwin explains:
“Let (A) be a common, widely-diffused, and varying species, belonging to
a genus large in its own country. The little fan of diverging dotted lines
of unequal lengths proceeding from (A), may represent its varying offspring.
The variations are supposed to be extremely slight, but of the most diversified
nature; they are not supposed all to appear simultaneously, but often after
long intervals of time; nor are they all supposed to endure for equal periods.
Only those variations which are in some way profitable will be preserved or
naturally selected.” Some of the dotted lines terminate in extinction; others

0-8493-8073-1/95/$0.00+5.50 2 3 3
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give rise to new varieties or species. Lines emanating from these new varieties
or species give rise to other new varieties or species, which in turn eventually .
give rise to new genera.

FIGURE 1. Evolution of new genera from old, according to the sole illustration of
Charles Darwin’s Origin of Species. Source: Darwin (1859 [1964], between p. 116
and 117).

The picture appeared in 1859, when the theory of probability was relatively
young (Pierre Simon Laplace had first published his Théorie des Probabilités in
1812, but Isaac Todhunter was not to publish his History of the Mathematical
Theory of Probability until 1865), the theory of graphs (apart from Leonhard
Euler’s great initiatives) was little developed, and the theory of random graphs
lay a century in the future.

Yet to modern eyes, the picture is clearly a realization of a random directed
graph. It is in fact a random directed tree. Charles Darwin made a simplified
graph-theoretic model of nature, though I do not know whether he was the
first to do so. Darwin symbolized all the complexity of a species or variety by
a node of a graph, and all the complexity of a relation between two species or
varieties (in Darwin’s case, the relation of descent) by a directed edge, or arc,
of the graph.
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Darwin’s picture has been as influential scientifically as the book it illus-
trated. His picture provides the prototype of today’s phylogenetic trees, which -
are drawn based on results of molecular biology and numerical taxonomy that
Darwin could not even imagine. Beyond summarizing evolutionary relation-
ships, the picture’s way of representing relationships among varieties or species
influenced ecologists, though the words “ecology” and “ecologist” had not been
invented when Origin appeared. We shall pursue the ecological thread of the
story.

In the 1870s, in America, according to Stephen Alfred Forbes, “under the
~ influence of Darwin and Agassiz and Huxley, a transforming wave of progress
was sweeping through college and school, a wave whose strong upward swing
was a joy to those fortunate enough to ride on its crest, but which smoth-
ered miserably many an unfortunate whose feet were mired in marsh mud”
(Forbes 1977, [16], p. 10), in a retrospective speech he gave in 1907). Forbes,
then at the Illinois State Normal University, published detailed empirical
studies of the food of birds (1877) and fishes (1878) of Illinois and the Great
Lakes. Forbes’s major papers from 1878 onward have recently been reissued
in facsimile (Forbes 1977, [16]).

FIGURE 2. Camerano’s schema of feeding relations. Vegetazione = vegetation,
Fitofagi = phytophagous animals, Predatori = predators, Parassiti = parasites, Car-
nivori = carnivores, Endoparassiti = endoparasites. Source: Camerano (1880, [3]),
plate IX).
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In 1880, Forbes summarized long lists of the food of Illinois fishes in tabular
form. He listed categories of food eaten by fishes as the headings of columns,
and the names of particular species of fishes as the labels of rows. As the
entries in each row, he reported how many of each kind of fish he examined
and how frequently he found each kind of fish eating each kind of food. In
later papers, he exchanged the roles of rows and columns, listing predators as
the column headings, prey as the row labels, and the frequencies of predators
consuming prey items as entries of the tables. This is still the format of modern
so-called “predation matrices”.

Also in 1880, a 24-year-old Italian entomologist named Lorenzo Camerano,
working at the Museum of Zoology of the University of Turin, used a relabeled
form of Darwin’s random directed tree to describe the feedmg relations in a
community of plants and animals (Figure 2).

Camerano did not refer explicitly to Darwin, so I do not know whether
he borrowed Darwin’s graphical idea or came upon it independently. The
nodes of Camerano’s tree represent groups of species, and an arc goes from
one group to another if members of the second consume members of the first.
For example, “predators” eat “phytophages”, “parasites” eat “predators”, and
so on. To my knowledge, this is the first picture of a food web as a directed
graph.

TerrESTRIAL EcoL0GY OF KAPINGAMARANGI ATOLL
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FIGURE 3. A contemporary food web: Niering’s web of the Kapingamarangi Atoll.
Source: Niering (1963, [29],p. 157), reprinted with permission.
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These brief historical comments are not intended as exhaustive scholarship,
and certainly not as establishing priorities, but rather as evidence that the
mathematical models of food webs below are rooted in biological experience
and thought.

In the century and more since Forbes described food webs in empirical de-
tail and Camerano described generalized, abstract food webs, other ecologists
have reported many hundreds, perhaps thousands, of food webs. A minor-
ity of reported webs is quantitative, like Forbes’s tables. Most show only the
feeding links among species (e.g., Figure 3). Henceforth, except in section 7,
we shall be concerned exclusively with qualitative food webs that show who
eats whom, but not how much or how often.

If a collection of species living in one place is like a city, a web is like a
street map of the city; it shows where road traffic can and does go. A street
map usually omits many important details, e.g., the flow of pedestrian and
bicycle traffic, how much traffic flows along the available streets, what kind of
vehicular traffic it is, the reasons for the traffic, the laws governing traffic flow,
rush hours, and the origin of the vehicles. By analogy, a web often omits small
flows of food or predation on minor species, the quantities of food or energy
consumed, the chemical composition of food flows, the behavioral and physical
constraints on predation, variations over time, whether periodic or random,
in eating, and the population dynamics of the species involved. Thus a web
gives at best very sketchy information about the functioning of a community.
But just as a map provides a helpful framework for organizing more detailed
information, a web helps biologists picture how a community works.

Until the second half of this century, each web was treated much as a species
of butterfly was treated before Darwin — as unique, complex, and beautiful,
perhaps sharing some similarities with other webs from similar habitats, but
essentially individual and lawless. In recent decades, in addition to relishing
the features that set each individual web apart, ecologists have given more
attention to the patterns and order to be found in collections of a large number
of food webs. Some recent accounts of the results obtained from this relatively
new perspective are by Pimm (1982, [31]), Yodzis (1989, Chap. 8, (37]), Lawton
(1989, [24]), Schoener (1989, [36]), Cohen, Briand, and Newman (1990, [9]),
and Pimm, Lawton, and Cohen (1991, [33]).

This paper will review some theoretical ideas about random directed graphs
that have been used to interpret data on ensembles of food webs. Little at-
tention will be given to comparing the results of theoretical derivations with
data, though such comparisons are the vital scientific rationale for theoretical
work.

The mathematical custom, which will be followed here, of showing only
theoretical derivations without the detailed empirical research that leads a
scientist to require them is a traditional but unfortunate fraud. If data analysis
is thought of as one level of research, and mathematical analysis is thought of
as another level of research (let us take the level of mathematical analysis as
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higher, to flatter mathematicians), then the trajectory of my own research in
this area is something like the letter M, starting from data and moving up to
~theory, then back down to data, then again up to theory, and so on. During a
long-term effort to collect, analyze, and summarize real food webs (starting in
1968, and still continuing), I noticed along the way some remarkably simple
patterns; for example, the ratio of the number of predators to the number of
prey, and the ratio of the total number of links to the total number of species,
are roughly independent of the total number of species in different webs. These
and several other data-analytic patterns required theoretical explanation. I
constructed and, with mathematical colleagues, analyzed dozens of models
to see which ones could explain the patterns quantitatively and qualitatively.
The few surviving models made novel predictions not tested previously, so
I returned to data analysis. When the data suggested modifications in the
models, more mathematics was required. Most of my part of the story so far
appears in gruesome detail in two books (Cohen 1978, [4], Cohen, Briand,
Newman 1990, [9]), but the story is far from complete.

Before turning to some mathematical ideas, I would like to urge budding
mathematicians and mathematical scientists to study at least one area of em-
pirical science. I do not mean other people’s mathematical theories about
empirical science. Rather I urge contact with some domain of nature, con-
tact that is as direct as possible. If that contact turns out to be fun, then a
strenuous effort to formulate, analyze and interpret it by using mathematical
language is almost guaranteed to lead to novel mathematical questions, and
may well lead to new scientific insights.

2. CHARACTERISTICS OF DIRECTED GRAPHS USEFUL FOR
MEASUREMENT AND THEORY

Some characteristics of directed graphs will now be defined. The purpose of
these definitions is to specify properties of food webs, which will be treated
as directed graphs, that can be measured in the real world and compared
with predictions calculated from probabilistic food web models. This section
will give definitions; the next, some models; and, the following sections, some
calculated properties of the models leading to testable predictions.

A directed graph (henceforth abbreviated to “digraph”) consists of a finite
set of vertices together with a set of arcs, or directed edges (Robinson and
Foulds 1980, [35]). Each vertex corresponds to a species, or sometimes to a
stage in the life-cycle of a species (for example, the larvae of a certain insect or
the eggs of a certain fish), or sometimes to a group of species whose diet and
predators are not distinguished (for example, a size-class of phytoplankton
or zooplankton species). For simplicity we shall just say that each vertex
represents a species. Let the number of vertices (species) be S > 1. We
label the vertices (and species) 1,2,...,S and call the set of vertices [S] =
{1,2,...,8}.
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If i € [S)], j € [S], we interpret the arc (i,j) to mean that species i is
eaten by species j. Graphically, as in Figure 3, we draw an arrow from i to
j, showing the direction that the food flows. An arc of a food web is called
a trophic link, or a link, in ecology. Denote by A the set of arcs or links or
directed edges, A C [S] x [S]. Then a digraph Dg on S vertices is the ordered
pair ((5), 4). |

The adjacency matrix W = W(Dg) of Dg is an S x S matrix such that
wij = 1 if and only if (¢,j) € A and w;i; = 0 otherwise (Robinson and Foulds
1980, [35] p. 169). Ecologists call this matrix the predation matrix. Its column
7 has an element equal to 1 in each row that represents a species in the diet
of species 7, and 0 elsewhere. Its row 7 has an element equal to 1 in each
column that represents a predator or consumer of species i, and 0 elsewhere.
Sometimes we shall call W the web. The digraph and the adjacency matrix
contain equivalent information. Sometimes it is more convenient to think in
terms of a graphical representation of a web, other times in terms of a matrix
representation.

A basal species is a species that eats no other species. A basal species
is called a source in digraph theory, and is identified by a column of W in
which all elements are equal to zero, or by a vertex of the digraph that has
no incoming arcs. A top species is a species that is eaten by no other species.
A top species is called a sink in digraph theory, and is identified by a row
of W in which all elements are equal to zero, or by a vertex of the digraph
that has no outgoing arcs. A species that is simultaneously basal and top is
said to be isolated. A basal species that is not isolated is said to be a proper
basal species. A proper top species is a top species that is not isolated. An
intermediate species is one that eats and is eaten by other species.

A walk in a digraph is a sequence of alternating vertices and edges, start-
ing and ending with vertices. For example, if (i,7) € A, (j,k) € A, then
1,(2,9),4, (4, k), k is a walk from vertex i to vertex k. Cannibalism is repre-
sented by a walk of the form ¢, (¢,%), ¢, and is present if W has any nonzero
diagonal element. The length of a walk is the number of edges in it. An n-
walk is a walk of length n. A digraph is acyclic if and only if no vertex (or
species) appears as a vertex more than once in any walk in the digraph. Thus
an acyclic web has no cannibalism, no 2-loops such as i, (i, ), 7, (4, 1), ¢, where
1 % 7, nor any longer loops.

A chain is a walk from a basal species to a top species. A chain in this
sense is identical to a “maximal food chain” as defined by Cohen (1978, [4] p.
56). An n-chain is a chain of length n, i.e., a chain with n links. The height
of a web is the length of the longest chain.

A real web can be described by its number of species, links, top species,
intermediate species, basal species, number of chains of each length n =
1,2,...,8 — 1, and other characteristics. These observations can then be

compared with predictions of stochastic models of webs, to which we now
turn.
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3. MODELS

In modeling an ensemble of food webs, the elements wj;j of W, which represent
the presence or absence of feeding on species i by species j, are treated as
random variables. This step in modeling food webs is very troubling for some
ecologists. After all, much of ecology is devoted to documenting the exquisite
adaptation of organisms to their diet and to their predators. The teeth of the
tiger adapt it to carnivory. The teeth of the antelope adapt it to herbivory.
Some plants provide refuge and food to certain species of ants that protect
the plants against more deleterious consumers. What then is the sense of
modeling the presence or absence of feeding between two species as a random
variable? While the interactions between species may be very complex in many
feeding relations, it may be possible to summarize the pattern resulting from
these interactions in simple ways. By analogy, each driver on the congested
highways of New York has his or her own special personal, cultural and ethnic
history, his or her own reasons for urgency or patience, but the traffic jams of
morning and evening rush hour are substantially predictable. Traffic engineers
have long found simplified models of driver behavior useful approximations for
understanding repeatable phenomena of traffic flow.

The probability that w;; = 1, i.e., that species j eats species %, is written
P{wi; = 1}. The heterogeneous cascade model (Cohen 1990, [7]) assumes that
P{wij = 1} = pij, 0 < py; < 1, where

pij =0 if i>j (3.1)

p; >0 if i<j, and C(3.2)

the events {w;; = 1} are mutually independent for all 1 <i < j < S. (3.3)

The matrix P with elements pi; is called the predation probability matrix.
Assumptions (3.1) and (3.2) guarantee that a heterogeneous cascade digraph
is acyclic with probability one, because food is permitted to flow only from a
species with a lower label i to a species with a higher label j. There is thus
a cascade, or hierarchy, of feeding relations. The cascade is heterogeneous
because it is not yet assumed that all nonzero elements pij are equal to one.
another.

More general cascade models could weaken the assumption (3.3) of in-
dependence among trophic links or relax (3.2) to pij > 0 for i < j. Such
extensions will not be considered here.

It seems difficult to estimate separately all the elements of the predation
probability matrix P. Indeed, even if one had a large number of webs with the
same S, it might not be obvious how to label species, because, if links were
relatively sparse, there could be multiple orderings of the species compatible
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with the assumption of a cascade. Therefore, it is convenient to assume that
certain elements of P are equal in order to estimate their common value.

Many special cases of the heterogeneous cascade model are of biological in-
terest (Cohen 1990, [7]). For example, suppose that each consumer is equally
likely to consume any of the prey species available to it, but, because of dif-
ferent behavioral capacities and morphology, different predators have different
probabilities of preying on the species available to them. Then the model is
said to be predator-dominant, and p;; = b; > 0, for j = 2,...,S and i < j.
For a second example, suppose that the chances of predation are determined
by the relative abundances or defensive abilities of the available prey species,
so that different prey species have different probabilities of being preyed on
but, as a first approximation, each prey is equally like to be preyed on by any
of its possible consumers. Then the model is said to be prey-dominant, and
Dij = a4 >0, forj=2,...,Sandi<j.

The simplest model assumes p;;j = p > 0, for 1 < i < j < S§. This
homogeneous cascade model C(S,p) on S species (vertices) with link (arc)
probability p is the only case that will be considered further here.

Because real webs have widely varying numbers of species, it has been of
interest to describe empirically and explain theoretically how the properties
of webs vary as the number S of species varies. It is found empirically that
the average number of links (averaging over different webs with roughly the
same number of species) increases with the number of species. The increase
in the expected number of links is at least proportional to the number of
species. Clearly, the expected number of links cannot increase faster than §2
asymptotically for large S, because W has only 52 elements. There is still some
uncertainty among ecologists whether the expected number of links increases
linearly with S or superlinearly, that is, as some power, greater than one, of
S. The homogeneous cascade model can encompass both of these possibilities,
as follows.

Fix the positive real number c and the nonpositive real number d, 0 > d >
—1. For 1 <7 < j <8, let the probability of any arc be p = ¢S%. Then the
expected number of arcs is

E(L) = (g) P~ -;-s”d (3.4)

asymptotically. When d = —1, E(L) is linear in S, hence this special case is
called the linear cascade model; when d > —1, E(L) rises faster than linearly

in S, hence this special case is called the superlinear cascade model (Cohen
1990, [7]).

4. CONNECTIONS

The homogeneous cascade model C(S, p) on S species (vertices) with link (arc)
probability p;; = p > 0, for 1 < i < j < S, is identical to a model that was
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proposed independently for parallel computation. The homogeneous cascade
model is also closely connected with a basic model of random (undirected)
graphs.

The homogeneous cascade model may be interpreted as a model of parallel
computation by supposing that each vertex represents a task that must be
processed, and that an arc goes from task i to task j if task i must be completed
before task j; thus the arcs represent precedénce (Gelenbe, Nelson, Philips,
Tantawi, 1986, [18]). If each task requires unit time, then the duration of
the entire computation is just one plus the length (number of arcs) in the
longest chain, or one plus the height of the digraph. If each task requires an
amount of time given by some random variable, then the duration of the entire
computation is the maximum of the sum of the random task durations, where
the sum is taken along each chain and the maximum is taken over all chains.

A basic model G(S, p) in the theory of random (undirected) graphs (Erdds
and Rényi 1960, [15]; see also e.g., Bollobds 1985, [1], p. 32; Palmer 1985, [30],
p. 6) constructs a random graph on the vertex set [S] by placing an undirected
edge {i,j} between vertices i and j with probability p and no edge between
vertices ¢ and j with probability 1 — p, independently for all i and j with
1<i<j<S. Togo from the random digraphs specified by C(S,p) to the
random graphs specified by G(S,p), simply drop the orientation of arcs, i.e.,
replace the arc (4, 7) from 7 to j by the edge {i, j} between i and j. To go from
G(S,p) to C(S,p), do the reverse, i.e., orient each edge from the vertex with
the lower number to the vertex with the higher number.

Suppose the edge probability p = p(S) in G(S, p) depends on S as the num-
ber S of vertices increases without bound. The marvellous accomplishment of
Erdés and Rényi (1960) was to discover that the structure of G(S, p) changes
quite suddenly as p changes smoothly from 0 to 1, and to invent methods for
calculating these changes in structure (see Bollob4s [1985], [1]). Without going
into the methods, it is worthwhile to give a simple example of the powerful
results. The complete graph K, is defined as the graph on n vertices in which
all possible n(n —1)/2 edges are present. Erdds and Rényi (1960) proved that,
in the limit as § — oo, if pS%/(™=1 — 0, then the probability that the random
graph G(S, p) contains K, approaches zero, while, if pS% (=1 — oo, then the
probability that the random graph G(S9, p) contains K, approaches one. Thus,
loosely speaking, complete graphs on n = 4 vertices are virtually absent from
large random graphs if p(S) < S~%3 for large S, but suddenly appear as soon
as p(S) > §2/3, ‘

Define the competition graph G(D) = ([S], E) of a digraph D = ([5], A)
as an undirected simple graph on the vertex set [S] with edge set E, where
{i,7} € E if and only if there exists a vertex k in [S] such that both (k,1) € A,
(k,j) € A. Thus consumers i and j are joined by an edge in the competition
graph if and only if there is at least one prey species that both consumers
eat. [Ecologists also call G(D) the trophic niche overlap graph of D.] When
the random digraph is specified by the homogeneous cascade model C(S, p),
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the competition graph G(C(S,p)) is a random graph model that differs from
the classical model G(S,p). Like G(S, p), G(C(S, p)) displays abrupt changes
in structure, but the changes occur for different values of p(S) (Cohen and
Palka 1990, [13]). For example, in the limit as S — oo, if pS1+1/? — 0, then
the probability that the random competition graph G(C(S,p)) contains K,
approaches zero, while if pS1t1/* — oo, then the probability that the random
competition graph G(C(S,p)) contains K, approaches one. Thus, loosely
speaking, complete graphs on n = 4 vertices are virtually absent from large
random competitions graphs derived from the homogeneous cascade model if
p(S) < S~5/4 for large S, but suddenly appear as soon as p(S) > S~5/4. Some
structural properties of the competition graph of the homogeneous cascade
model explain facts about observed competition graphs (those derived from

real food webs) that have previously lacked a quantitative explanation (Cohen
and Palka 1990, [13]).

5. BASIC PROPERTIES OF THE HETEROGENEOUS
CASCADE MODEL FOR FINITES

Define
qij=1—p,~j=P{w,~j=0}, fOI”i,j=1,...,S, (5.1)
S

rs=1, =[] @, fori=1,...,5-1, (5.2)

J=i+l

j-1
a=1, cj=Hqij, forj=2,...,5. (5.3)

i=1

The probability that row i of W is entirely 0 is given by r; and the prob-
ability that column j of W is entirely 0 is given by ¢;. For i = 1,...,5, it
follows that

P {species 7 is not isolated } = 1 — ry¢;,

P{species 7 is top} = r;,

P{species 7 is basal} = ¢;,

P{species i is intermediate} = (1 — r;)(1 — ¢;) = 1 — 73 — ¢ + Ty,

P{species i is proper top} = r;(1 — ¢;),

P{species i is proper basal} = ¢;(1 — ;).

Consequently, if N, T, B, I, Tp, and Bp respectively denote the numbers
of not isolated, top, basal, intermediate, proper top, and proper basal species
(these numbers are random variables), then

S
E(N)=8§-Y ra, (5.4)
1=1

S S
E(T) = Zri, var(T) = Zr,—(l —73), (5.5)
i=1 i=1
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B(B) = éq var(B) =§c,~(1 —a) (56)
E(I) ; 25 — E(T) - E(B)_— E(N), (5.7)
E(Tp) = E(T) + E(N) — §, (5.8)
E(Bp) = E(B) + E(N) - S. (5.9)

A weak component is a maximal set of species linked to each other, directly
or indirectly, by arcs regardless of their orientation. A web has more than one
weak component with very low probability in the models to be developed and
in the data, so this possibility receives no special treatment here.

Let the number of links, i.e., the number of elements of W equal to 1, be

L=Al= Y wy, (5.10)
1<i<ji<S

Lpr the number of basal-top links (links from some basal species to some
top species), Lpr the number of basal-intermediate links, Ly the number of
intermediate-top links, and L;; the number of intermediate-intermediate links.
For i < j, there is a basal-top link from i to J if and only if there is a link from
¢ to j (with probability p;;) and j is top (with probability r;) and i is basal
(with probability ¢;). By such arguments, it is obvious that

Jj-1
E(L)=)"3" pij, (5.11)
j=2i=1
s j-1
var(L) =Y " piigij, (5.12)
j=2i=1
s j-1
E(Lpr) =Y pjar;, (5.13)
j=2i=1
s j-1 _
E(Lpr) = Z pijci(l —rj), (5.14)
j=2i=1
s j-1
E(Lrr) =YY pi(1 = c)ry, (5.15)
j=2i=1
S j-—-1
E(Lir) = pij(1 —c)(1 = ry). (5.16)

)

j=21
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There is a chain of length n, where n counts the number of links, that
involves the n + 1 species 49,11, ...,1i, if and only if the following conditions
all hold: 1 <4y <43 <...< i, £8;and there is a link from i; to ix4; for all
h=0,...,n~1; and i is basal; and i, is top. Let C, denote the number of
chains of length n. Then

S—n S—n+1 S—n+h

S n—-1
EC)=Y, > - > > Tl riuningiCioTin (5.17)

to=1141=1p+1 ih=tp_1+1 in=ip-1+1 h=0

or
S—n S—-n+1 S—n+h S
BC)=Y G 3 o 3 B D Pinosintin
io=1 i1=ig+1 th=tp—1+1 tn=tp-1+1

(5.18)

For different values of n, different numbers of summations are required to
evaluate E(C,). For numerical and symbolic computation, a recursive function
is convenient.

12 T T - . Y T T T

expected number of chains

chain length

FIGURE 4. Expected number of chains of each length according to the linear
cascade model of a web with § = 17 species and link probability 4/17, based on ¢ =
4. The expected total number of chains is 38.458. The expected numbers of chains of
length 11 through 16 are not shown because their sum is less than 0.001.
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Exercise. Simplify the above formulas (5.1) to (5.18) when pij =p >0, for

1<i<j<S. In particular, prove (Cohen, Briand and Newman 1990, 9], p.
119) that (5.18) can be transformed to

S-1
E(Cn) =p"¢° 1Y (S-k) (’“ 1) g% n=12,...,5-1. (5.19)

ol n-—-1

Figure 4 plots (5.19), the expected number of chains of each length ac-
cording to the linear cascade model, for a web with S = 17 species and link

probability 4/17, based on ¢ = 4.0. The choice of this value of ¢ is explained
at (6.8).

III///I//I/II///II/IIIII/III/IIII

Freqguency
Top 2o Joe 499 599 s g Bog
/,

a

FIGURE 5. Observed numbers of chains with one to nine links in 113 community
food webs. No chains longer than nine links were observed. Each slice parallel to the
axis labeled “length” is the observed frequency distribution for one web. The height
of a slice at each value of length is the observed number of chains of that length.
The webs are ranked from the smallest (web 1) to the largest (web 113) number of

species. The mean number of species was close to 17. Source: Cohen (1990, [7], p.
59), reprinted with permission.
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For qualitative comparison, Figure 5 shows the observed number of chains
of each length in 113 real webs. The raw data are given in Cohen, Briand,
Newman (1990, Chap. 4, [9]). A detailed quantitative comparison between the
observations and the predictions of the linear cascade model (Cohen, Briand,
Newman 1990, [9], Chap. 3.4) shows that the predictions are not bad for all
but 16 or 17 of the webs.

6. LIMIT THEORY OF THE LINEAR CASCADE MODEL FOR
LARGE S

One reason for developing the linear cascade model was to explain a simple
empirical pattern — as the number of species in a web increases, the fraction
of all species that are top species seems neither to increase nor to decrease
systematically, but fluctuates around a fixed proportion. (Caveat! This finding
was based on webs with at most 48 species. The finding is under challenge
by the very few webs reported so far with more than 48 species. In a science
as young as this part of ecology, models and theories often aim at a shifting
target.) How can the linear cascade model account for this (tentative) finding?

Giving away part of the answer to the previous exercise, the expected
number of top species and the expected number of basal species in the linear
cascade model are

E(T)=E(B)=[1-¢%/p, (6.1)
where ¢ = 1 — p. Hence, since p = ¢/S, asymptotically
‘lim E(T)/S = lim E(B)/S=(1/c)(1—-¢€"°), (6.2)
S—o00 S—o0

Exercise. Prove that

var(T) = var(B) = (1 - ¢%)/p— (1 - ¢*°)/(1 - ¢%) (6.3)
and hence
gLn;ovar(T/S) = Sh_rggvar(B/S) =0. (6.4)

The right side of (6.2) is a constant, independent of S. The model predicts
that the proportion of species that are top species will asymptotically be inde-
pendent of S and will [according to (6.4)] have vanishing variability, relative
to S.

For quantitative comparison with actual data, it is necessary to examine
the number of proper top species as a fraction of nonisolated species, because
isolated species have been removed from the data. The right quantity to
calculate would be E(Tp/N), but that appears to be too difficult!

Exercise. Show that

E(Tp) = E(Bp) = S[(1- ¢°)/c—¢°7"], EWN)=5(1-¢°"), (65)
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and asymptotically

E(Tp) ..  E(Bp) _(1—-e®)/c—ec
M M < o 69

Table 1 compares the linear cascade model’s predicted asymptotic (as
S — o0) fractions of nonisolated species that are proper basal, proper top,
and intermediate with the observed fractions. It also compares the predicted
asymptotic fractions of links of each possible kind with the observed fractions.
To calculate these numerical predictions requires not only the formulas above
but also a specific numerical value for the parameter c. The asymptotic for-
mula (3.4) with d = —1 gives a rough-and-ready estimate

&=2E(L)/S. (6.7)

The predictions in Table 1 take the ratio of links to species as exactly 2,
though the actual ratio is 1.99, hence & = 4.0.

113 Community Observed Observed Linear cascade

food webs number fraction model pre-
dicted fraction

proper basal species 353 0.186 0.231

intermediate species 1038 0.546 0.537

proper top species 511 0.269 0.231

all species 1902 1.000 1.000

basal-intermediate links 1029 - 0.272 0.264

basal-top links 230 0.061 0.114

intermediate 1194 0.316 0.359

-intermediate links

intermediate-top links 1327 0.351 0.264

all links 3780 1.000 1.000

TABLE 1. Observed fractions of nonisolated species that are proper top, intermedi-
ate and proper basal, and observed fractions of links of each kind, in 113 community
food webs. Source: Cohen (1990, [7], p. 56).

The fact that the right side of (6.7) is independent of § illustrates a proper- |
ty of the linear cascade model, and possibly a property of the real data, called
scale-invariance — the form of the web (as measured by the proportion of its
nonisolated species that are proper top species) is asymptotically independent
of its scale, or size, or number of species. In the superlinear cascade model,
by contrast, the proportion of nonisolated species that are proper top species
slowly but markedly declines as the number of species increases (Cohen 1990,
[7], p. 70). Whether this is a virtue or a defect of the superlinear cascade
model will depend on large food webs now being collected.
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Chain lengths may also be analyzed in detail, but the analysis is sub-
stantially more difficult (Newman and Cohen 1986, [28]; reprinted in Cohen,
Briand, Newman 1990, [9], pp. 149-173). Let

S-1
C=) Cn (6.8)
n=1
be the total number of chains of all possible lengths. It may be shown that
lim E(C,/C) = lim E(Cn)/E(C), n=12,...,5-1, (6.9)
S—o0 S—o0

and both limits may be calculated from the coefficients of a power-series ex-
pansion of an explicitly stated generating function. Because, in the linear
cascade model,

Sli_r*x;ovar(Cn/S) =0, (6.10)

the random variable C,/C converges in probability as S — oo to the limit in
(6.9). For large c, say ¢ = 10, the asymptotic relative frequency of chains of
each length is normally distributed with mean equal to ¢ and variance equal
to ¢ — 1/2 (Cohen, Briand and Newman 1990, [9], p. 155). For realistic values
of ¢ around 4.0, the asymptotic relative frequency of chains of each length is
skewed to the right, with modal value close to c. Apparently S = 17 is close to
infinity, because the asymptotic (large S) distribution of chain lengths closely
resembles that shown for S = 17 in Figure 4.

The linear cascade model explains qualitatively an observation made inde-
pendently by many biologists, that the longest chain length is short relative
to the number of species in a web, even for webs with very large numbers of
species. Let M be the maximum chain length, or height, in a realization of the
linear cascade model; M is a random variable. Then for extremely large S,
M grows like In(S)/ In(In(S)), even more slowly than In(S). The exact results
(Newman and Cohen 1986, [28]) are a bit more surprising than this.

Define m* to be the smallest positive integer m such that c™*1S/(m+2)! <
(m + 2)_1/ 2, Then, for large enough S, m* is a nondecreasing sequence such
that

*

im —— = 6.11
S S nms (6.11)
and
lim PIM=m*or M =m* —1] = 1. (6.12)
S—o00

That is, the distribution of the height is concentrated on just two numbers
(which depend on S), m* and m*—1. For very, very large numbers 5 of species,
m* grows at a rate that is essentially independent of c or p = ¢/S (provided
c > 0) and depends only on S. For extremely large S, m* is approximately
InS/In In S in the sense that their ratio approaches 1. This does not imply
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that the difference between M and In(S)/In(In(S)) is arbitrarily small with
high probability, because M and In(S)/ In(In(S)) could differ by an amount
that goes to infinity more slowly than In(S)/ In(In(S)). Higher order correction
terms to the asymptotic expansion (6.11) are given by Newman and Cohen
(1986, [28)).

The estimated rate of convergence of P[M = m* or M = m* — 1] to 1 is
very slow, namely,

1-P[M=m"or M =m* - 1] = O(m*~1/?), (6.13)

A qualitatively similar phenomenon has been observed elsewhere in the
theory of random graphs. Bollobds and Erdés (1976, [2]) proved that the size
of the maximal complete subgraph (clique) in a random graph takes one of
at most two values (that depend on the size of the random graph) with a
probability that approaches 1 as the random graph gets large, when the edge
probability is held fixed, independent of the number of vertices. However,
the asymptotic behavior of the at most two possible values for the size of
the largest clique does depend on the fixed probability that there is an edge
between any two given vertices, according to Bollobds and Erdés (1976, [2]).

According to the superlinear cascade model (Newman 1991, [27]; Cohen
and Newman 1991 , {12}, when S becomes very large, the ratio between M
and epS is arbitrarily close to one, where p = cS9, with a probability that
approaches one. So M grows like ecS1t¢, much faster than in the linear
cascade model.

The average chain length u(S) in the homogeneous cascade model web
with S species and probability p of a link is the same for both the linear and
the superlinear cascade models (Newman and Cohen 1986, [28], p. 358):

(1+p)5 '~ (1-p)S! |
“(S)"Sp(1+p)5~(1—p)5—2sp(1-p)5~1 : (6.14)

In the linear cascade model, the average chain length approaches a finite

limit for large S:

) - c(1—e%)

Sll»ncio u(s) = 1—-e"2¢(1+2¢c)”’ (6.15)
which is approximately 4.01 if ¢ = 4.0. This limit is approached fairly rapidly.
For example, the average chain length is predicted to exceed 3.5 as soon as
S > 30; if S = 100, M (100) = 3.86.

Comparing (6.11) and (6.15) shows that the ratio of the height to the
average chain length in the linear cascade model increases without limit as
the number of species gets large. Here is an intuitive explanation for this
phenomenon. First, as mentioned above, there is a fixed limiting distribution
of chain lengths as S gets large. The limiting average chain length given by
(6.15) is the mean of this fixed distribution. Second, as S gets large, more and
more chains are sampled from this fixed distribution of chain lengths, so that
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very long chains, with a fixed low probability, are more likely to be observed
and the height increases without limit. The particular form of the increase
given by (6.11) is expected with a sample size proportional to S taken from a
fixed distribution whose tail probabilities behave approximately like those of
a Poisson distribution. Such a tail behavior can be proved by using the exact
formulas for the generating function of the distribution. The expected number
of chains of all lengths, which represents the sample size, is proportional to S
(Newman and Cohen 1986, [28]).

In the superlinear cascade model, as S increases without limit, the ratio of
the average chain length to Sp approaches 1 (Cohen and Newman 1991, [12]).
The ratio of the height to the average chain length in the superlinear cascade
model approaches the limit e as the number of species gets large. Thus there
is a qualitative difference in the ratio of the height to the average chain length
between the cascade and the superlinear homogeneous models.

7. DYNAMICS OF FOOD WEBS

When food webs were still young, few people had hopes of comprehending
their structural and dynamic complexity in simple models. Instead, early
explorers focused on a single feeding link, and on the dynamics of the two
populations interacting through that link. Kingsland (1985, [22]) tells the
history in an interesting way. Alfred J. Lotka, trained as a physical chemist,
borrowed the style of the kinetic equations of chemistry to model a single
predatory population eating a single prey population (his great 1924 book
[25] summarizes his work). If N(t) is the number or biomass (quantity of
living material) of the resource population and P(t) is the number or biomass
of the predatory population, the Lotka-Volterra equations for predator-prey
interactions are (May 1981, Chap. 5, [26]):

dN

== aN(t) — aN(t)P(t), (7.1)
%1;. — —bP(t) + BN(8)P(2), (7.2)

where the coefficients a,b,« and 3 are all assumed positive. Among other
simplifications, these equations ignore genetic variations within the predator
and prey populations, differences in ages within a population with respect
to probabilities or rates of predation, reproduction and mortality, the spatial
distribution of predators and prey, the possible influences of environmental
changes (weather, diurnal cycles, volcanoes, tides) on both species and their
interactions, all other species that might interact with either or both species,
and any physical and chemical constraints (such as limited nutrients or limited
space) that affect either or both species.

Dynamic equations of the same embarrassing simplicity as (7.1) and (7.2)
are often presented as more realistic than the structural models described in
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the previous sections, and are often accepted as such by both ecologists and
mathematicians. The reason for this acceptance is simply familiarity, not
~ evidence. In general, the empirical support for dynamic equations such as the
Lotka-Volterra predator-prey equations, though non-zero (Gause 1935, 17);
see Krebs 1972, [23], pp. 250-272 for a review), is slimmer than that for the
cascade models.

Realistic or not, the Lotka-Volterra, predator-prey equations (hereafter ab-
breviated to LV’s) can obviously be generalized to S interacting species. If
u;(t) is the abundance or biomass of the ith species at time ¢, then it is as-
sumed that there exist a real S x S matrix B = (bi;) and a real S x 1 vector
e = (e;), with both B and e independent of time ¢, such that, for all ¢ > 0,

du; 5 :
Tif- =:ui(ei+j§=:lbiju]'>, u,(O) >0, 1=1,...,5 (73)

The coefficient b;; measures the effect of species j on the growth rate of
species 1. It is assumed that (7.3) has a stationary solution in the first orthant,
i.e., that there exists a constant S x 1 vector g = (g:) such that

S
O=ei+> bijgi, ¢>0, i=1,...,58. (7.4)
=1

LVs make several further assumptions that could be shortcomings empir-
ically. The LVs assume that there are no mutualistic interactions between
species, that all interactions among species are strictly pairwise, and that the
pairwise interactions follow a, simple mass-action law specified by the product
of abundances or biomasses.

Nevertheless, LVs have been extensively used for food web thecry (Pimm
1982, [31]; Cohen, Luczak, Newman, Zhou 1990, [10]); Pimm, Lawton, Cohen
1991, [33]). A major problem is that the LVs have S2 + S parameters (the b;;
and the e;), not counting the initial conditions. Yet, in the real world, there
are only roughly twice as many links as species. It seems unlikely that all the
possible interactions really matter dynamically.

Since the values of the interaction coefficients in the matrix B in (7.3) can
never be known exactly, but the signs of the coefficients can be estimated more
reliably, it is natural to consider the behavior of (7.3) when the value of any
interaction coefficient bi; is changed to some other number with the same sign,
while an interaction coefficient that is zero is left at zero. Under certain con-
ditions, some of which will be described in a moment, the LVs bequeath their
stability to the whole family of equations obtained by replacing the interaction
coefficients by others with the same signs. Under such conditions, (7.3) is said
to be qualitatively stable. Qualitative stability is a natural concept for link-
ing dynamic models with structural models based on random graphs, because
structural models deal with the presence or absence of certain interactions,
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and not with the magnitudes of those interactions. What is surprising is that
it is possible to say things about qualitative stability that connect usefully
with structural food web models.

A recently proposed hybrid of the LVs and the linear cascade model, called
the Lotka-Volterra cascade model (LVCM), assumes the population dynam-
ics of the LVs while letting a refinement of the cascade model determine the
interactions between species (Cohen, Luczak, Newman, and Zhou 1990, [10]).
Mathematical analysis of the LVCM combines the theory of large random di-
graphs with the qualitative theory of nonlinear differential equations to char-
acterize the global asymptotic stability of ecological communities in the double
limit of large time and large numbers of species.

The LVCM links the cascade model to the Lotka-Volterra model by dis-
criminating among the possible population dynamical effects caused by each
feeding link. In principle, when species j eats species 4, there could be a pos-
itive, a negative, or no effect on the population growth rate of species j, and
a positive, a negative, or no effect on the population growth rate of species i,
for a total of nine possible pairs of effects. The LVCM ignores the five possible
pairs of effects where j eating ¢ hurts the population growth rate of species j
or helps the population growth rate of species i. Thus if species j eats species
i, the LVCM supposes that one of four biological effects occurs:

(i) the feeding has no effect on the growth of species j but hurts the growth

of species i; or

(ii) the feeding helps the growth of species j but has no effect on the growth

of species i; or

(iii) the feeding helps species j and hurts species i; or

(iv) the feeding has no effect on the growth of either j or <.
Corresponding to each biological effect, assume that:

(i) bjs = 0 and b;; < 0; or

(ii) bj; > 0 and b;; = 0; or

(iit) bj; > 0 and b;; < 0; or

(iV) bji = bij = 0.

Because of (iv), the event:

(iv") there is no dynamic interaction of any kind between species 1 and
j represents two biologically distinct situations: predation without dynamic
effects [described by (iv)] (e.g., the old lady who accidentally swallowed a fly),
and the absence of predation [i.e., the absence of an edge (i,7) in W]. '

The LVCM assumes that events (i), (ii), (iii), and (iv’) occur independently
for each pair i, j =1, ..., S such that i < j, with probabilities, respectively,
r/S, s/S, t/S and 1 — (r + s +t)/S, where r, s, t are nonnegative constants
that do not depend on S. [Predation without dynamic effects (iv) occurs with
probability ¢/S — (r + s +1t)/S.]

More formally, for § = 1, 2, ..., let Ng be the system (7.3) with randomly
chosen coefficients where, with probability 1, b;; < 0 for ¢ = 1,...,S and the
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pairs {bj;, bi;} for each i,j = 1,...,8 with i < j are chosen independently
with probabilities : ‘

P {bﬁ =0 and bij < 0} = T/S, (2)
P{bji >0 and bij = 0} = s/S, ('L’L)
P{bi>0and b; <0} = ¢/8, (%)
P{bji =0and b;; =0} = 1-(r+s+t)/8S. (iv')

and the vector es = (e;)5_, is chosen (depending on bg = (bi)i j=1) so that for
some vector gs > 0 (also depending on bs), 0 = es + bsgs. The sequence of
systems {Ns}o>, defines the LVCM.

To state the interesting facts about the LVCM requires some further defi-
nitions. For any real finite scalar s, define sign(s) = +1 if s > 0, sign(s) = 1
if s < 0 and sign(s) = 0 if s = 0. Define B ~ B (read: B is sign-equivalent to
B) if and only if, for all t,7, sign(b;;) = sign(b;;). Let N refer to the family of
equations (7.3) when (i) B is replaced by any § x S matrix B ~ B, and (ii) e
is replaced by any S x 1 vector & such that 0 = &€+ B has a positive solution
g > 0. Positive initial conditions u(0) > 0 are assumed throughout. A result
is considered “qualitative” if it refers to all of N.

Define LVs (7.3) to be qualitatively globally asymptotically stable (q.g.as.)
if and only if every solution of every system in the family N is bounded and
has a limit as ¢ — 0o and that limit is independent of the initial conditions.
This property may formalize what some ecologists mean by ecological stability
(Pimm 1984, [32]) for some ecological communities, but no claim is made that
it formalizes ecologists’ concept of ecological stability for all communities.

The LVCM has what physicists call a phase transition. As the parameters
of the LVCM cross a certain critical surface, the probability of being quali-
tatively globally asymptotically stable changes from positive to zero. Cohen,
Luczak, Newman, and Zhou (1990, [10]) show where the critical surface is and
how the LVCM behaves on either side of the surface as well as on it.

Let z:[1,00) — (0, 1] be the smallest root of z(z2)e™%() = ze=2,

(i) If
r+t<lands+t<1, or (7.5)
r+tz2lbut s+t<az(r+t), or (7.6) .
stt21lbutr+t<az(s+1) (7.7)
then :
Slim P {Nsisqg.as}=p>0, where (7.8)
—00

» T#ES (7.9)

r—s

p 3 e(r+t)(s+t)/2 (T + t)es""t _— (S + t)er+t
e(r+t)2/zer+t(1 —r—t), T = 8.



Random Graphs in Ecology 255

When (r +t)(s +t) > 0, then p < 1.

(ii) If
r+t>1 and s+t>z(r+t), or (7.10)
s+t>1 and r+t=z(s+i) (7.11)
then
Slim P {Ng is q.g.a.s.} = 0. (7.12)
—00

The proof of this theorem is difficult and will not be attempted here. The
proof depends crucially on facts, first developed by Quirk and Ruppert (1965,
[34]), about the qualitative stability of linear systems.

4

FIGURE 6. Perspective view of the probability of qualitative global asymptotic
stability in the Lotka-Volterra cascade model (LVCM), in the limit as the number of
species S approaches infinity, as a function of the parameters 7+t and s+t, which are
defined in the text. The limiting probability is O in the flat region in the foreground.
Small values of r + ¢ and s + ¢t assure a high limiting probability of qualitative global
asymptotic stability. Source: Cohen, Luczak, Newman, Zhou (1990, [10], p. 616),
reprinted with permission.

Informally speaking, a critical surface divides the three-dimensional pa-
rameter space {(r,s,t)|[r > 0,s > 0,t > 0} of the LVCM into two regions. In
region (i), where (7.5) or (7.6) or (7.7) holds, as the number of species becomes
large, the probability that the LVCM is qualitatively globally asymptotically
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stable (q.g.a.s.) approaches a positive limit. This limiting probability is given
explicitly by (7.9). In region (ii), where (7.10) or (7.11) holds, as the number
of species becomes large, the probability that the LVCM is q.g.a.s. approaches
zero. The critical surface for the phase transition in the stability of the LVCM
is exactly the same as the critical surface for a phase transition when a giant
strongly connected component suddenly appears in a certain digraph D(B),
called the interaction digraph, associated with the matrix B of interaction
coefficients. D(B) has S vertices, an arrow (j,1) from vertex J to vertex i if
bij # 0 and bj; = 0, and a bidirectional arrow {4,7} between i and j (equiva-
lent to a pair of unidirectional arrows (7,9) and (4, 7)) if bijbj; < 0. (The case
bijbji > 0 with ¢ # j was excluded in constructing the LVCM.) Whereas the
web W represents feeding relations, the digraph D(B) represents population
dynamical interactions.

Figure 6 plots the probability of qualitative global asymptotic stability in
the LVCM, in the limit of large numbers of species S, as a function of the
barameters r+¢ and s+t. The limiting probability is zero in the flat region in
the foreground. Small values of 7+t and s+t assure a high limiting probability
of qualitative global asymptotic stability. The transition from the region of
positive probability to the region of zero probability is abrupt in the sense
that the derivative of p changes discontinuously as the frontier of stability is
crossed. For example, along the diagonal cross-section through the surface
defined by r + ¢ = s+ ¢, the derivative of p is evidently zero when r + ¢ > 1,
but, as r + ¢ approaches 1 from below, the derivative of p approaches —e3/2,

The theory of the qualitative stability of linear and nonlinear systems has
made great progress since the pioneering paper of Quirk and Ruppert (1965,
[34]). Jeffries, Klee, and van den Driessche (1987, [19]) and Jeffries (1988b,
[21]) review and extend this progress. The qualitative stability of linear sys-
tems is closely connected to the qualitative stability of LVs. An open scientific
opportunity is to exploit recent discoveries about the qualitative stability of
linear systems (such as those in Jeffries, Klee and van den Driessche 1987,
(19]) and of nonlinear systems (such as those in Jeffries 1988a, [20]) to give
new information about stochastic families of nonlinear dynamical systems like
the LVCM.

Information about qualitative global asymptotic stability could assist the
design of managed ecological systems such as closed ecological life support sys-
tems for space travel, nature reserves, and complex chemostats, microcosms,
and mesocosms. Qualitatively globally asymptotically stable systems may be
desirable for practical and aesthetic reasons, because perturbations that do not
change the signs of the interactions between species will not alter the existence
of a long-run globally stable equilibrium. If future empirical studies confirm its
usefulness, the LVCM would suggest designs that maximize (subject to some
constraints) the probability of being q.g.a.s., asymptotically for large number-
s of species. They would be those designs that satisfy the hypotheses (7.5)
to (7.7) with large values of p. The LVCM would suggest avoiding ecological
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designs that satisfy (7.10) or (7.11), which have little chance of being q.g.a.s.,
asymptotically for large numbers of species. —

Apart from its potential uses in ecological design, the LVCM warns of
the possibility that gradual, smooth changes in the probabilities r,s, and ¢
of various kinds of dynamic interactions related to feeding can have abrupt
effects on the long-run probability of qualitative global stability or instability
of ecological communities. Such phase transitions in stability are driven by
phase transitions in the structure of underlying random graphs or digraphs,
and are found in many large, random structures (see Cohen [1988), [5] for an
expository account).
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