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This paper offers a quantitative theory of the length of food chains. The
theory derives from a mathematical model of community food webs
called the cascade model. The paper tests the predictions against data
from real webs.

An exact formula for the expected number of chains of each length
in a model web with any given finite number, S, of species is, to our
knowledge, the first exactly derived theory of the length of food chains.
Since the numbers of chains of different lengths are dependent in the
cascade model, we evaluate the goodness of fit between the observed and
predicted numbers of chains by a Monte Carlo method.

Without fitting any free parameters, and using no direct information
about chain lengths other than that implied by the total number of
species and the total number of links in a web, we find that the cascade
model describes acceptably the observed numbers of chains of each
length in all but 16 or 17 of 113 webs. Of 62 webs previously used to test
the cascade model, the cascade model describes acceptably the chain
lengths in all but 11 or 12. With a fresh batch of 51 webs, we establish
first that (apart from two outlying webs) the numbers of links are very
nearly proportional to the numbers of species and that the constant of
proportionality is consistent with that in the original 62 webs. This
finding verifies the so-called species-link scaling law with new data. The
cascade model describes acceptably the chain lengths of all but 5 of the
51 new webs.

Most of the 16 or 17 webs with chain lengths described poorly by the
cascade model have unusually large average chain lengths (greater than
4 links) or unusually small average chain lengths (fewer than 2 links).

1. INTRODUCTION
The purpose of this paper is to derive a quantitative theory of the length of food
chains from a mathematical model of community food webs called the cascade
model and to test this theory quantitatively against data from real food webs. The
cascade model was developed and tested by Cohen & Newman (1985, hereafter
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referred to as paper I) and by Cohen et al. (1985, hereafter referred to as paper
II). The predictions of the cascade model describe, to a first approximation,
several major characteristics of a collection of 62 real webs: the proportions of all
species that are top, basal and intermediate, and the proportions of all links from
basal to intermediate species, from basal to top species, from intermediate to
intermediate species, and from intermediate to top species.

This paper determines what the cascade model implies for the frequency
distribution of the length of food chains in webs with a finite number of species
and compares the predictions with observations. The number of species in the
observed webs ranges from 3 to 48. The theory of chain lengths is developed
further for webs with a large number of species in the companion paper (Newman
& Cohen 1986; hereafter referred to as paper IV).

Section 2 reviews present biological theories of food chain lengths; §3 presents
terminology for chains and reviews the cascade model. Section 4 gives exact results
about the frequency distribution of chain lengths for webs with a finite number
of species and proposes a way to evaluate the goodness of fit of the cascade model’s
predictions to the observed frequency distribution of chain length in an individual
web. A mathematical proof in §4 (the only one in this paper) is set off by Proof
at the beginning and E at the end. Readers may defer or skip the proof with no
loss of continuity.

In §5, we find that the cascade model describes acceptably most, but not all,
of the frequency distributions of chain length observed in 62 webs, other aspects
of which were previously used to develop and test the model. Does the cascade
model succeed in most of these webs because the model was selected to describe
other aspects of the same data, since such selection might constrain the possible
frequency distributions of chain length ?

No, according to the results of §6. There we examine the frequency distributions
of chain lengths in a freshly assembled and edited collection of 51 webs that have
not been previously related to the cascade model. The species-link scaling law
(Cohen & Briand 1984 ; paper I), one of the central features of the cascade model,
is not contradicted by these new data. The cascade model describes acceptably 46
of the 51 observed frequency distributions of chain lengths; this majority is even
larger than the majority of its successes with the original 62 webs.

According to §7, the mean and variance calculated from the expected numbers
of chains of each length cannot validly be compared with the mean and variance
of chain lengths in an observed web. If such a comparison is made, nevertheless,
the mean chain lengths are described acceptably, but not the variances.

In §8, we explain why we doubt the assumption that the 113 webs in our
collection are a random sample from some statistical ensemble of webs. Under this
dubious assumption, a Kolmogorov—Smirnov test rejects the null hypothesis that
the cascade model’s predictions describe the chain lengths in the ensemble of webs
sampled by either the original 62 or the new 51 webs or all 113 combined.

Most of the 16 or 17 webs with chain lengths that the cascade model fits poorly
have unusually large average chain lengths (greater than four links) or unusually
small average chain lengths (fewer than two links).

Finally, in §9, we review the accomplishments of the paper, relate them to
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previous work, and propose several further studies. An appendix presents algo-
rithms that were used to compute the frequency distribution of chain length and
the length of the longest chain of a given web.

Two important descriptive tasks that will be undertaken elsewhere are, first, to
relate chain lengths to characteristics of webs such as dimensionality, productivity,
and variability of the environment, and the presence of man (F.Briand and
J. E. Cohen, in preparation) and, second, to present in detail the sources and full
data on all 113 (62+51) webs (F. Briand, in preparation).

2. THE LENGTH OF FOOD CHAINS: PRESENT ECOLOGICAL THEORY

Elton (1927 [1935], p. 56) justifies attention to food webs and food chains: ‘The
primary driving force of all animals is the necessity of finding the right kind of
food and enough of it. Food is the burning question in animal society, and the
whole structure and activities of the community are dependent upon questions of
food-supply’.

To our knowledge, Elton (1927 [1935], p. 56) is the first to introduce the
terminology ‘food chains’: ‘There are, in fact, chains of animals linked together
by food, and all dependent in the long run upon plants. We refer to these as ‘“food
chains”’, and to all the food-chains in a community as the ‘“food-cycle”.” Elton’s
‘food-cycle’ has been generally replaced by ‘food-web’.

In notes added to the second impression, Elton (1927 [1935], p. xxvii) remarks
that ‘the first food-cycle diagram was published by V. E. Shelford’ in 1913. Elton
does not remark that the community described by Shelford’s diagram is
hypothetical, but observes elsewhere (p. 57): ‘ Extremely little work has been done
so far on food-cycles, and the number of examples which have been worked out
in even the roughest way can be counted on the fingers of one hand’.

Systematic quantitative data about food chains have been assembled only in
the last decade. To our knowledge, the first numerical data on the frequency
distribution of chain lengths in real food webs are presented by Cohen (1978, pp.
56-59), who emphasizes the need for, but does not provide, a quantitative theory
(see also Cohen 1983).

The most comprehensive, quantitative and empirically based modern presenta-
tion of theories about the length of food chains that we know of is Pimm’s (1982,
ch. 6, pp. 99-130). He evaluates four hypotheses to explain why food chains rarely
contain more than, roughly, five animal species (Hutchinson 1959, p. 147). Some
recent perspectives on these hypotheses and their cousins are given by May (1983)
and DeAngelis et al. (1983).

First, the energetic hypothesis suggested by Hutchinson (1959, p. 147) proposes
that the length of food chains is limited by the inefficiency with which energy is
transmitted along a chain and by the minimal energy requirements of predators
at the top of a chain. This hypothesis could be interpreted to predict that food
chains in ecosystems with higher primary productivity should be longer. Pimm’s
data do not confirm this prediction, though the ecosystems in Pimm’s collection
with extremely low primary productivity do have short chains. However, the
energetic hypothesis could also be interpreted to predict that food chains in
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ecosystems with higher primary productivity can support energetically less
efficient intermediate and top species without any change in chain length. Data
on chain length alone, without detailed information on the energetic efficiency of
the species in the chains, can neither establish nor disprove the energetic
hypothesis. In a pioneering experimental study, Pimm & Kitching (1986) compared
the chain lengths of artificial ecosystems with varying levels of energy input. They
found no evidence of increasing chain lengths with increasing energy inputs.

Secondly, the size or design hypothesis predicts that chains should be limited
in length by the requirement that a predator be larger than its prey. Pimm points
out that parasites need not obey this requirement, and suggests that size or design
requirements have no simple or easily testable effects on chain length.

Thirdly, the optimal foraging or evolutionary shortening hypothesis cites advan-
tages in energetic efficiency that result from feeding low (near the primary
producers) in food chains, and other energetic advantages that result from feeding
high (near top predators), and suggests that the observed distributions of chain
lengths result from an equilibrium of these opposing selective advantages.
Although examples appear to illustrate one or another aspect of this hypothesis,
precise quantitative predictions do not seem to follow from it.

Fourthly, the dynamical stability hypothesis argues first that, in several specific
mathematical models of interacting populations, the longer the chains, the more
severe the restrictions that must be imposed on the coefficients in the models for
an equilibrium to be feasible or stable, and second that in certain models, those
with longer food chains take longer to return to equilibrium once perturbed, so
that systems with longer chains are less likely to persist in nature. The models
(generally based on Lotka—Volterra equations) that support the dynamical stability
hypothesis have not been independently verified. When these models are tested
against data including data on chain length, it will be possible to decide what
weight this hypothesis deserves as an explanation.

In addition to these four hypotheses, Kitching & Pimm (1986) describe seven
environmental factors that may influence webs in phytotelmata. Phytotelmata
are plant-held waters, such as occur in the axils of trees, bamboo internodal spaces,
bromeliads, tree holes, and pitcher plants. The factors affecting webs include the
size (surface area and volume) of the body of water, the latitude (hence climate),
the size of the pool of species available to colonize the phytotelma, the evolutionary
history of the host plants (see Beaver 1985), the particular host plant species, the
successional stage, and altitude. Most of these factors influence webs in general.
Kitching & Pimm give no quantitative predictions of the effects on chain length
of changes in these factors. ’

Pimm (1982, appendix 6A) also presents a so-called ‘null hypothesis’ about
chain lengths. To our knowledge, his is the first simple quantitative model of web
structure that is used to derive quantitative predictions about the frequency
distribution of chain length. To describe Pimm’s model, we repeat some definitions
from papers I and II. A proper basal species is a species that preys on no other
species but is preyed on by at least one other. An intermediate species is a species
that preys on at least one other species and is preyed on by at least one other
species. A proper top species is a species that preys on at least one other species
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and is preyed on by no other species. If By, I and T, are the numbers of proper
basal, intermediate and proper top species in a community with L (trophic) links,
Pimm constructs a predation matrix with (Bp+ 1) rows and (7p+ I) columns. All
but L elements of the matrix are zero. The L elements that are equal to 1 are
randomly assigned subject to three constraints: each proper top or intermediate
species has at least one prey (at least one 1 in its column), each proper basal or
intermediate species has at least one predator (at least one 1 in its row) and, to
assure that the web is acyclic, the submatrix where intermediates prey on inter-
mediates is strictly lower triangular. (The species are numbered from the top of the
web to the bottom, contrary to the convention we adopt for the cascade model.)

For each of 13 real webs, Pimm computes the modal trophic level of each real
top species (which, except for some minor details, is one greater than the modal
length, defined below, of chains leading up to that species) and the modal trophic
level of each (proper) top species, in simulated webs generated as just described.
He then adopts a conservative procedure for deciding when the vector of
simulated trophic levels of (proper) top species is smaller than the vector of real
trophic levels of top species. He concludes that the simulated trophic levels of top
species are smaller than the real levels in a proportion P of simulations whose mean
(over different real webs) is ‘significantly less” (Pimm 1982, p. 104) than 0.5, though
he gives no significance level, and therefore that real chains are shorter than would
be expected ‘at random’ according to the null hypothesis.

This conclusion seems liable to two criticisms. First, assuming with Pimm that
the observed webs are independent observations (we shall return to this
assumption), we believe that Pimm’s null hypothesis that the expected P = 0.5
should be replaced by the null hypothesis that P is approximately uniformly
distributed between 0 and 1. P will not be exactly uniformly distributed under the
null hypothesis because the number of trophic levels is a discrete, not a continuous,
random variable. When we perform a one-sample Kolmogorov—Smirnov test of
the null hypothesis that Pimm’s 13 P values are drawn from a uniform distribution,
we obtain a D, ;-statistic of 0.389. The probability that a value that large or larger
would occur by chance alone is between 0.02 and 0.05. We conclude that the data
do not overwhelmingly reject Pimm’s null hypothesis.

Secondly, Pimm’s test of the hypothesis that the expected P = 0.5 is based on
adding y* values for each of the 13 webs; this is equivalent to treating the webs
as independent. The webs are chosen from ten papers; Paine is the author or a
co-author of two of these. We doubt that different webs reported by the same
observer are independent in structure because the observer brings the same,
usually unstated, biases to all his observations (Briand & Cohen 1984; Cohen &
Briand 1984 ; papers I and IT). Under the worst dependence, Pimm’s y2 value could
be based on as few as nine independent observations. The probability that a
Dy-statistic of 0.389 or larger would occur by chance alone is between 0.05 and
0.1 according to the Kolmogorov—Smirnov test.

We are less persuaded than Pimm that his null hypothesis is a bad idea. Pimm’s
model is in the same family, though perhaps not in the same genus, as the cascade
model] of paper I that we now review.

12 Vol. 228. B
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3. TERMINOLOGY; THE CASCADE MODEL

This section reviews and introduces terminology, then describes the cascade
model (as in sections I. 2 [i.e. §2 of paper I] and II. 1).

A food web is a set of kinds of organisms and a relation that shows which, if any,
kinds of organisms each kind of organism in the set eats. A community food web
is a food web whose vertices are obtained by picking, within a habitat or set of
habitats, a set of kinds of organisms (hereafter called species) on the basis of
taxonomy, size, location, or other criteria, without prior regard to the eating
relations (specified by trophic links) among the organisms (Cohen 1978, pp. 20-21).
Hereafter ‘web’ means ‘community food web’. A basal species is a species that
eats no other species, and a top species is a species that is eaten by no other species.

In the representation of a web by a directed graph or digraph (see section I. 2),
each vertex corresponds to a (lumped trophic) species. An edge (alway directed)
(a, b) from vertex a to vertex b corresponds to a link from species a to species b,
meaning that species b eats species a. An example of a walk in a digraph is the
sequence a, (a, b), b, (b, ¢), ¢ of alternating vertices and edges. The length of a walk
is the number of edges in it. An n-walk is a walk of length n. The digraph of any
web generated by the cascade model is acyclic, so no vertex (or species) can figure
more than once in a walk in such a web. A chain is a walk from a basal species
to a top species. A chain in this sense is identical to a ‘maximal food chain’ as
defined by Cohen (1978, p. 56). An n-chain is a chain of length =, i.e. a chain with
n links. The length of a chain is one less than the number of species involved in
that chain.

Let S be the number of species in a web, and let C,, be the number of n-chains
in an acyclic web, n = 1,2, ..., S—1. Algorithms for computing C,, for a given web
are presented in the appendix. Chains of length greater than S—1 are impossible.
The frequency distribution of chain length is the vector (C,, ..., Cs_;) = C. The total
number of chains in the web will be denoted

S—1
c= % C,.
n=1

The cascade model assumes that species in a community are arranged in a
hierarchy, pecking order or cascade of potential feeding relations. Whether a
potential feeding relation becomes an actual feeding relation is determined
randomly, independently of all other potential feeding relations. The probability
that a potential feeding relation becomes actual is the same for every potential
feeding relation within a community, and varies inversely as the number of species
in the community.

More formally, the cascade model assumes that the S > 2 species of a web may
be labelled from 1 (at the bottom, subject to predation by all other species) to S
(at the top, subject to predation by no other species). (In graph theory, this
labelling is called a topological sorting (Gibbons 1985, p. 122) because for every edge
(¢, 7), we have ¢ < j.) The probability that species j feeds on species 7 is 0 if j < <.
If ¢ < j, then j feeds on ¢ with probability p = p(S), i.e. with a probability between
0 and 1 that depends on S, and does not feed on ¢ with probability ¢ = 1—p,
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independently for all 1 <7 <j < 8. Unless a contrary assumption is explicitly
given, it will be assumed that for some finite positive real number ¢ < 8, p = ¢/S,
where ¢ is a constant independent of S.

All numerical predictions of the cascade model depend on the values of the
model’s two parameters ¢ and S. These two parameters, in turn, may be estimated
from only two observations: the observed number, L’, of links and the observed
number, §’, of species.

4. FREQUENCY DISTRIBUTION OF CHAIN LENGTH IN FINITE WEBS;
TESTING FIT

Asusual, E(.) denotes the expectation (or mean) of the random variable enclosed
in parentheses. According to the cascade model, with probability p of a random
link, the expected number of n-chains in a web with S species is

S—1 _
E(C,) =p"¢5t Z (S—lc)(lc l)q—k, n=1,2, ...,8—1.
k=n n—1

Proof. There is an n-chain going upward from vertex (species) ¢ to vertex j if
and only if: (@), 1 <1< S—mn; (b), i+n <j<8; (c), all » links on one of the
(55 possible walks of length n from 4 to j are present (d), ¢ is basal, i.e. no link

is present from one of the ¢+ —1 vertices below ¢ to ¢; and (e), j is top, i.e. no link
is present from j to one of the S —j vertices above j. Therefore

S-n S —i—1 .
c)=Y Y (J v ) prgiigS
i=1j=1i+n

n—1
Now
S-n S S—1 S—k
X2 X =2 X if k=j—1;
t=1j=1i+n k=n i=1
therefore
S—-1 S—k k— 1
Bo) = S 8 (F2 )
k=ni=1
n,S—1 = k—1 —k
=p"¢St X (8—k) q . [
k=n n—1

Figure 1, which we discuss in more detail below, plots E(C,) as a function of
n for parameter values that are typical of the webs in the sample of 62 webs
analysed in papers I and 1I.

This analysis leaves open a question concerning dependence, which we will
answer roughly by numerical simulations of the cascade model. For typical webs,
is there enough dependence between the number of chains of one length and the
number of chains of another length to affect what statistical test we use to evaluate
the goodness of fit between the observed and the predicted frequency distributions
of chain length ? In the cascade model of a web with S species, for any two different
positive integers m and n, 1 < m # n <S—1,if C,, and C,, the (random) numbers

12-2
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number of chains

0 1 | &
1 3 5 7 9

chain length

Ficure 1. Theoretically expected number ( ) of chains of length 1 to 9 in a web of § = 17
species, according to the cascade model with ¢ = 3.75, sample mean number (o) of chains
of each length in 100 simulations of the cascade model, and sample mean plus one sample
standard deviation (00) in the number of chains of each length. No chains with more than
nine links occurred in the simulations; the expected total number of such chains per
simulation is 0.003.

of chains of length m and n, were independent, then we might measure the
goodness of fit of the observed to the expected frequency distributions of chain
lengths by Pearson’s y? statistic. However, if €, and C,, m # n, were not
independent, then the tabulated probability distribution of ¥* would bear no
relation to the actual probability distribution of the computed y? statistic. In the
case of dependence, it would be necessary to compute the correct probability
distribution or find another way to measure goodness of fit.

To answer this question, we chose S = 17 as a typical number of species, because
the mean number of species per web in the 62 webs analysed in papers I and II
is 16.7. We chose ¢ = 3.75, near the observed estimate of 3.71, so that the expected
number of links per web would be 30, near the observed mean in the 62 webs of
30.95 links per web. Given these two parameters, we generated 100 random webs
according to the cascade model and recorded various statistics.

The mean number, averaged over the 100 simulated webs, of chains of each
length is plotted in figure 1 along with the theoretically expected number derived
above. The excellent agreement serves as a check both on the simulation and on
the theoretical derivation. Also plotted in figure 1 is the mean number plus one
sample standard deviation in the number of chains of each length.

To investigate dependence among the numbers of chains of each length, we
computed the dispersion matrix or variance-covariance matrix of the simulated
random variables {C,, n =1, 2, ..., 9}. (No chains of length greater than nine
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TABLE 1. DISPERSION OR VARIANCE—-COVARIANCE MATRIX OF THE NUMBERS OF
CHAINS OF EACH LENGTH 1, 2, ..., 9 IN 100 SIMULATIONS OF THE CASCADE
MODEL WITH S = 17 AND ¢ = 3.75

(For example, the sample covariance of C, and C, was 19.85. No chains of length greater than 9 occurred.)

chain length
chain , A N
length 1 2 3 4 5 6 7 8 9
1 8.08 2.42 —5.74 —8.08 —5.83 —3.85 —1.61 —0.58 —0.10
2 2.42 11.87 1.87 —1.90 —3.07 —3.39 —2.42 —1.14 —0.28
3 —5.74 1.87 26.82 19.85 16.19 7.96 1.28 —0.26 —0.14
4 —8.08 —1.90 19.85 32.64 28.02 16.16 5.29 1.12 0.06
5 —5.83 —3.07 16.19 28.02 32.13 20.00 8.31 2.49 0.37
6 —3.85 —3.39 7.96 16.16 20.00 17.70 10.26 4.14 0.72
7 —1.61 —2.42 1.28 5.29 8.31 10.26 8.52 3.98 0.80
8 —0.58 —1.14 —0.26 1.12 2.49 4.14 3.98 2.12 0.44
9 —0.10 —0.28 —0.14 0.06 0.37 0.72 0.80 0.44 0.10

occurred.) Table 1 gives the dispersion matrix. In general, the numbers of chains
of similar length appear to be positively correlated, while the numbers of very
short chains are negatively correlated with the numbers of very long chains.

To test whether {C,,, n =1, 2, ..., 9} could be treated as independent, we
applied a test for independence given by Kendall & Stuart (1968, p. 271). If the
p % p dispersion matrix D (for p random variables) has diagonal elements d,; and
determinant det D and is based on a sample of N observations, then the test
statistic

i=1

—2(1—[2p+11]/[6n])In (det D/'Ipl d,.i)%N

has approximately the distribution of y with p(p—1)/2 degrees of freedom. For
the dispersion matrix in table 1, p = 9, and N = 100, we obtain a test statistic of
nearly 1050 with 36 degrees of freedom. The test statistic is so large that it
decisively rejects the null hypothesis that {C,,, n =1, 2, ..., 9} are independent.

We therefore measure the goodness of fit of the predicted frequencies E(C,,) to
the observed frequencies, for each web separately, by a Monte Carlo procedure.
For brevity, let E, = E(C,) be the expected number of chains of length =
according to the cascade model and D,, the observed number in a given web. (We
reserve (', for the random variable that denotes the number of n-chains in the
cascade model.) If M (for maximum) is the length of the longest chain observed
in the given web, we take as data the vector

D= (D, ..., Dy,0),

where the final 0 is the total observed frequency of chains of all lengths greater
than M (namely, none). We take as our theoretical predictions the vector of
expectations computed using the values of S and ¢ estimated by the iterative
procedure in the appendix of paper II:

S—-1
E=(El,...,EM, > Eh).

h=M+1
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Table 2 gives D and E for all 113 webs analysed here; and shows that the sum of
the expected number of chains of each length, i.e. the expected total number of
chains, does not, in general, equal the sum of the observed number of chains of
each length, i.e. the observed total number of chains. The values of the parameters
¢ and S used to compute E match the expected with the observed numbers of links,
but these links can be arranged to yield widely varying numbers of chains.

TABLE 2. SPECIES, LINKS, AND NUMBERS OF CHAINS OF EACH LENGTH OBSERVED IN 11!
WEBS, AND THE CASCADE MODEL’S ESTIMATED PARAMETERS S, C, AND EXPECTE]
NUMBERS OF CHAINS OF EACH LENGTH

(Under ‘S’, the upper number for each web is the observed number of species, the lower number the estimated valu
of the parameter 8. Under ‘L’, the upper number is the observed number of links, the lower number the estimate
value of the parameter ¢. Under the number of chains of each length, the upper number is the observed number, whil
the lower number is the predicted number. The last positive predicted number is the number predicted for all chair
of that length and longer.)

number of chains of length
web p A

number S L 1 2 3 4 5 6 7 8 9 10 > 1(;
1 8 14 0 2 3 3 0 (] 0 0 0 0 0
1 8.1 4.0 1.9 4.0 3.8 2.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0
2 14 22 0 4 10 0 0 0 0 0 0 0 0
2 14.5 3.3 3.7 6.1 5.3 4.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 24 34 1 19 10 0 0 0 0 0 0 0 0
3 25.5 2.8 7.1 94 74 6.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 13 26 0 7 10 2 0 0 0 0 0 0 0
4 13.1 4.3 29 7.1 8.7 6.7 5.5 0.0 0.0 0.0 0.0 0.0 0.0
5 6 5 0 3 0 0 0 0 0 0 0 0 0
5 8.1 1.4 2.4 1.1 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6 25 43 1 12 8 18 18 3 0 0 0 0 0
6 25.7 35 6.3 11.7 12.1 8.7 4.7 2.0 0.9 0.0 0.0 0.0 0.0
7 18 30 1 5 16 2 0 0 0 0 0 0 0
7 18.5 34 4.6 8.2 8.0 5.3 3.8 0.0 0.0 0.0 0.0 0.0 0.0
8 15 25 5 6 12 2 0 0 0 0 0 0 0
8 15.4 3.5 3.9 6.9 6.7 4.2 2.7 0.0 0.0 0.0 0.0 0.0 0.0
9 9 13 0 1 6 0 0 0 0 0 0 0 0
9 9.3 3.1 2.5 3.7 2.7 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10 3 2 0 1 0 0 0 0 (] 0 0 0 0
10 3.0 2.0 1.1 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.C
11 5 4 0 2 0 0 0 0 0 0 0 0 0
11 6.9 14 1.8 0.7 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.C
12 9 13 0 6 2 0 0 0 0 0 0 0 0
12 9.3 3.1 2.5 3.7 2.7 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0
13 9 14 0 4 4 0 0 0 0 0 0 0 0
13 9.2 34 2.4 4.0 3.3 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.C
14 8 10 1 1 3 0 0 0 0 0 0 0 0
14 8.5 2.7 24 2.7 1.5 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.C
15 7 7 0 2 1 0 0 0 0 0 0 0

15 8.1 2.0 2.5 1.8 0.7 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.
16 14 20 1 10 3 0 0 0 0 0 0 0 0
16 14.7 29 3.9 5.4 4.1 3.1 0.0 0.0 0.0 0.0 0.0 0.0 0.(
17 14 23 0 2 9 9 3 0 0 0 0 0 0
17 14.4 3.4 3.6 6.4 6.0 3.7 1.6 0.6 0.0 0.0 0.0 0.0 0.(
18 23 35 13 10 5 4 0 0 0 0 0 0 0

18 24.1 3.0 6.5 9.9 8.6 5.2 3.6 0.0 0.0 0.0 0.0 0.0 0.C
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19
19
20
20
21
21
22
22
23
23
24
24
25
25
26
26
27
27
28
28
29
29
30
30
31
31
32
32
33
33
34
34
35
35
36
36
37
37
38
38
39
39
40
40
41
41
42
42
43
43
44
44

N
17
17.3
19
19.7

9

9.0
28
28.3
15
15.3
12
12.4
24
25.1
32
32.9
22
22.5
32
375
16
17.0
14
14.1
14
14.0
14

14.0
29
30.0
12
12.0
13
13.0
19
19.3
23
23.8
31
31.0
33
334
11
11.6
18
18.0
15
15.0
20
20.3
12
12.0

L
32
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TABLE 2 (cont.)
number of chains of length
A
N
r1 2 3 4 5 6 7 8 9 10 > 10
0 4 17 4 0 0 0 0 0 0 0
4.0 8.7 10.1 7.1 6.7 0.0 0.0 0.0 0.0 0.0 0.0
0 5 9 7 2 0 0 0 0 0 0
5.1 8.2 74 4.6 2.1 1.0 0.0 0.0 0.0 0.0 0.0
0 2 8 15 16 10 3 0 0 0 0
1.8 54 7.4 5.7 2.7 0.8 0.1 0.0 0.0 0.0 0.0
4 13 34 36 19 6 2 0 0 0 0
6.2 15.3 20.6 18.9 13.0 7.0 3.1 1.6 0.0 0.0 0.0
1 11 7 1 0 0 0 0 0 0 0
3.7 74 8.0 5.6 4.2 0.0 0.0 0.0 0.0 0.0 0.0
3 5 12 4 0 0 0 0 0 0 0
3.3 5.0 4.0 2.1 1.0 0.0 0.0 0.0 0.0 0.0 0.0
3 16 5 1 0 0 0 0 0 0 0
6.8 104 9.3 5.8 4.1 0.0 0.0 0.0 0.0 0.0 0.0
7 16 16 10 5 2 0 0 0 0 0
8.0 15.1 16.2 12.2 6.9 3.2 1.7 0.0 0.0 0.0 0.0
0 12 28 7 0 0 0 0 0 0 0
5.5 10.6 114 8.4 7.4 0.0 0.0 0.0 0.0 0.0 0.0
6 15 5 0 0 0 0 0 0 0 0
11.2 9.2 4.9 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 5 8 6 2 0 0 0 0 0 0
4.9 6.3 4.6 2.3 0.8 0.3 0.0 0.0 0.0 0.0 0.0
0 0 5 21 39 25 4 0 0 0 0
2.8 8.4 124 11.6 7.5 3.5 1.2 0.4 0.0 0.0 0.0
0 9 39 51 29 7 0 0 0 0 0
1.8 104 28.4 47.2 53.5 43.4 41.8 0.0 0.0 0.0 0.0
0 11 40 51 29 7 0 0 0 0 0
1.7 10.5 29.2 499 57.8 48.0 47.8 0.0 0.0 0.0 0.0
14 20 7 2 0 0 0 0 0 0 0
7.8 13.4 13.3 9.3 7.9 0.0 0.0 0.0 0.0 0.0 0.0
1 22 18 4 0 0 0 0 0 0 0
24 71 10.2 9.0 8.3 0.0 0.0 0.0 0.0 0.0 0.0
1 33 36 12 0 0 0 0 0 0 0
2.2 8.7 16.5 19.2 28.5 0.0 0.0 0.0 0.0 0.0 0.0
14 13 11 3 0 0 0 0 0 0 0
4.6 9.5 10.7 8.1 7.2 0.0 0.0 0.0 0.0 0.0 0.0
0 21 23 8 0 0 0 0 0 0 0
6.0 10.3 10.1 6.8 53 0.0 0.0 0.0 0.0 0.0 0.0
20 55 34 0 0 0 0 0 0 0 0
4.9 21.2 47.6 314.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
19 34 7 0 0 0 0 0. 0 0 0
7.2 18.3 25.5 59.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 10 2 0 0 0 0 0 0 0 0
3.2 4.1 2.8 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 0 5 18 55 86 59 14 0 0 0
3.1 11.8 22.3 27.1 23.5 15.4 7.8 3.1 1.3 0.0 0.0
2 3 17 37 56 43 15 2 0 0 0
2.9 9.2 14.6 14.7 10.4 54 2.1 0.6 0.2 0.0 0.0
"0 16 27 16 4 0 0 0 0 0 0
4.7 10.3 12.1 9.6 5.6 3.7 0.0 0.0 0.0 0.0 0.0
0 3 19 19 7 0 0 0 0 0 0
2.3 7.5 11.8 11.3 7.3 4.6 0.0 0.0 0.0 0.0 0.0
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TABLE 2 (cont.)

number of chains of length

web p A N
number S L 1 2 3 4 5 6 7 8 9 10 > 10
45 11 20 1 10 3 0 0 0 0 0 0 0 0
45 11.1 3.9 2.6 5.6 5.9 6.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
46 19 68 3 12 59 85 84 45 13 2 0 0 0
46 19.0 7.6 2.5 14.0 37.5 64.2 77.8 70.9 50.1 28.0 18.8 0.0 0.0
47 27 50 0 1 10 22 25 0 0 0 0 0 0
47 27.6 3.8 6.5 13.5 15.5 12.3 74 54 0.0 0.0 0.0 0.0 0.0
48 13 20 0 2 7 8 2 0 0 0 0 0 0
48 134 3.2 3.5 55 4.7 2.6 1.0 0.3 0.0 0.0 0.0 0.0 0.0
49 12 20 0 8 7 1 0 0 0 0 0 0 0
49 12.3 3.6 3.1 5.6 5.3 3.1 1.7 0.0 0.0 0.0 0.0 0.0 0.0
50 14 23 0 10 8 0 0 0 0 0 0 0 0
50 14.4 34 3.6 6.4 6.0 5.9 0.0 0.0 0.0 0.0 0.0 0.0 0.¢
51 25 46 0 4 17 9 2 0 0 0 0 0 0
51 25.5 3.8 6.0 12.4 14.2 1.1 6.5 4.5 0.0 0.0 0.0 0.0 0.0
52 20 32 2 19 4 0 0 0 0 0 0 0 0
52 20.7 3.2 5.3 8.7 8.1 8.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
53 22 31 1 19 0 0 0 0 0 0 0 0 0
53 23.4 2.8 6.5 8.6 12.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
54 14 20 1 4 6 1 0 0 0 0 0 0 0
54 14.7 2.9 3.9 5.4 4.1 2.1 1.0 0.0 0.0 0.0 0.0 0.0 0.0
55 12 18 0 7 6 0 0 0 0 0 0 0 0
55 12.4 3.1 3.3 5.0 4.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
56 10 14 0 7 2 0 0 0 0 0 0 0 0
56 10.4 3.0 2.9 3.9 2.7 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0
57 9 19 0 5 14 10 2 0 0 0 0 0 0
57 9.0 4.7 1.9 5.2 6.6 4.8 2.1 0.7 0.0 0.0 0.0 0.0 0.0
58 17 21 1 3 3 2 3 4 2 0 0 0 0
58 18.7 2.4 5.4 5.7 3.5 1.5 0.5 0.1 0.0 0.0 0.0 0.0 0.0
59 29 61 0 34 17 1 0 0 0 0 0 0 0
59 29.3 4.3 6.3 16.0 220 20.6 28.2 0.0 0.0 0.0 0.0 0.0 0.0
60 33 69 1 54 33 0 0 0 0 0 0 0 0
60 33.4 4.3 7.3 18.1 24.7 56.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
61 8 10 2 3 2 0 0 0 0 0 0 0 0
61 8.5 2.7 2.4 2.7 1.5 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0
62 11 12 1 0 3 2 0 0 0 0 0 0 0
62 12.6 2.1 3.7 3.1 1.5 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0
63 18 75 2 50 131 100 0 0 0 0 0 0 0
63 18.0 8.8 2.0 13.9 45.1 919 516.8 0.0 0.0 0.0 0.0 0.0 0.0
64 19 28 7 14 0 0 0 0 0 0 0 0 0
64 20.0 3.0 5.3 7.6 11.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
65 13 25 3 17 0 0 0 0 0 0 0 0 0
65 13.1 4.1 3.0 6.9 18.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
66 10 18 0 4 8 3 0 0 0 0 0 0 0
66 10.1 4.0 2.4 5.1 5.2 3.2 1.7 0.0 0.0 0.0 0.0 0.0 0.0
67 21 62 1 8 30 48 30 6 0 0 0 0 0
67 21.0 6.2 34 14.2 30.1 41.3 40.9 309 322 0.0 0.0 0.0 0.0
68 22 32 4 8 20 3 0 0 0 0 0 0 0
68 23.2 2.9 6.4 9.0 7.3 4.1 2.6 0.0 0.0 0.0 0.0 0.0 0.0
69 29 73 6 4 37 36 19 2 0 0 0 0 0
69 29.1 5.2 55 18.0 31.3 36.6 31.9 21.8 20.8 0.0 0.0 0.0 0.0
70 14 28 0 19 18 0 0 0 0 0 0 0 0

70 14.1 4.3 3.1 7.6 9.4 13.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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71
71

72
72

73
73

74
74

75
75

76

77
7

78

79
79

80

81
81

82
82

83
83

84

85
85

86
86

87
87

88

89
89

90

91
91

92
92

93
93

94
94

95

96
96

N
16
16.2
17
17.3

10
10.3

21
21.6

9.2
14
15.4

13
13.2
16
16.4
21
22.4

27
27.1
12
12.3
10
10.4
25
25.1
12
12.1
27
27.6
16
16.1
11
11.3
16
16.0
18
18.4
22
22.5

10
10.6

18
22.0
26
26.1
12
12.3

10
10.9

9.1
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TABLE 2 (cont.)
number of chains of length
A

N
1 2 3 4 5 6 7 8 9 10 > 10
0 1 7 17 28 25 11 0 0 0 0
3.6 86 108 8.8 5.1 2.2 0.7 0.2 0.0 0.0 0.0
0 3 6 19 10 0 0 0 0 0 0
4.0 87 10.1 7.7 4.2 2.5 0.0 0.0 0.0 0.0 0.0
2 6 8 0 0 0 0 0 0 0 0
2.7 4.2 3.3 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 14 8 2 0 0 0 0 0 0 0
5.3 9.8  10.1 7.0 5.7 0.0 0.0 0.0 0.0 0.0 0.0
1 3 6 2 0 0 0 0 0 0 0
2.4 4.0 3.3 1.6 0.6 0.0 0.0 0.0 0.0 0.0 0.0
1 4 5 2 0 0 0 0 0 0 0
45 4.6 2.8 1.1 0.4 0.0 0.0 0.0 0.0 0.0 0.0
1 3 9 13 6 0 0 0 0 0 0
3.1 6.6 7.3 5.1 25 1.1 0.0 0.0 0.0 0.0 0.0
0 5 8 6 1 0 0 0 0 0 0
4.1 7.4 7.3 4.8 2.2 1.1 0.0 0.0 0.0 0.0 0.0
0 4 8 7 3 0 0 0 0 0 0
6.3 8.0 6.1 3.2 1.2 0.5 0.0 0.0 0.0 0.0 0.0
3 16 18 33 8 0 0 0 0 0 0
49 170 307 37.0 330 453 0.0 0.0 0.0 0.0 0.0
0 6 7 2 0 0 0 0 0 0 0
3.2 5.3 4.6 2.6 1.3 0.0 0.0 0.0 0.0 0.0 0.0
0 0 3 3 1 0 0 0 0 0 0
2.9 3.9 2.7 1.2 0.3 0.1 0.0 0.0 0.0 0.0 0.0
2 31 25 2 0 0 0 0 0 0 0
44 161 302 376 829 0.0 0.0 0.0 0.0 0.0 0.0
0 4 10 11 6 0 0 0 0 0 0
2.8 6.4 7.3 5.2 2.5 1.1 0.0 0.0 0.0 0.0 0.0
2 6 27 35 13 0 0 0 0 0 0
66 13.2 149 115 6.7 4.7 0.0 0.0 0.0 0.0 0.0
0 0 13 43 16 2 0 0 0 0 0
3.2 9.6 145 142 9.8 5.0 2.7 0.0 0.0 0.0 0.0
1 5 11 5 0 0 0 0 0 0 0
3.0 4.8 4.0 2.1 0.9 0.0 0.0 0.0 0.0 0.0 0.0
3 59 0 0 0 0 0 0 0 0 0
28 103 733 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 6 18 3 0 0 0 0 0 0 0
44 8.8 9.4 6.7 5.4 0.0 0.0 0.0 0.0 0.0 0.0
6 32 0 0 0 0 0 0 0 0 0
55 106 272 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 2 4 2 0 0 0 0 0 0 0
3.0 3.5 2.2 0.9 0.3 0.0 0.0 0.0 0.0 0.0 0.0
3 5 3 0 0 0 0 0 0 0 0
6.7 4.6 2.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 51 8 0 0 0 0 0 0 0 0
46 168 31.7 130.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 4 8 6 4 0 0 0 0 0 0
3.2 5.3 4.6 2.6 1.0 0.3 0.0 0.0 0.0 0.0 0.0
1 3 3 1 0 0 0 0 0 0 0
3.0 3.1 1.7 0.6 0.2 0.0 0.0 0.0 0.0 0.0 0.0
1 11 0 0 0 0 0 0 0 0 0
2.2 4.6 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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web
number

97

97

98

98

99

99
100
100
101
101
102
102
103
103
104
104
105
105
106
106
107
107
108
108
109
109
110
110
111
111
112
112
113
113

N
11
11.3
17
17.1
48
48.1
22
22.0

6
8.1
9
9.0
23
23.0
27
27.2
10
10.0
35
35.4
10
10.4
14
14.7
21
21.0
13
13.2
19
19.3
14
154
11
12.6

L
17
3.3
39
4.9
138
5.9
59
5.6
5
14
27
6.7
133
12.1
62
4.7
22
4.9
73
4.2
14
3.0
20
2.9
57
5.7
23
3.8
36
3.9
17
2.4
12
2.1
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TABLE 2 (cont.)

number of chains of length
A

34
14
8.1
3
3.9
i
2.4
0
1.3
1
1.9
2
55
0
2.0
7
7.7
1
2.9
0
3.9
0
3.6
3
3.2
2
4.5
3
4.5
1
3.7

2
14
4.8

11
10.1

115
31.8

27
14.2

11

6.3
46
19.2
21
15.8

5.9
44
19.1

2

3.9
11

54
18
13.7

7

6.4
15

9.8

8

4.6

6
3.1

3
1
4.0
21
15.2
98
66.1
28
26.6
0
0.3
19
i3.0
260
92.7
17
24.4
6
8.1
22
26.1
5
2.7
4
4.1
40
25.9
5
6.6
17
11.4
1
2.8

2
1.5

4
0
3.0
35
14.9
21
93.7
28
32.7
0
0.0
24
14.9
602
284.8
22
25.4
11
6.5
6
24.7
0
1.6
0
3.1
10
32.1
0
7.2
0
17.3

[o14

co =0

.6

5
0
0.0
10
10.4
0
315.8
16
29.2
0
0.0
16
10.3
769
624.1
7
19.6
4
3.3
2
17.6
0
0.0
0
0.0
0
66.4
0
0.0
0
0.0
0
0.0
0
0.0

6

0
0.0
0
8.5
0
0.0
3
20.0
0
0.0
6
4.3
856
1036.8
0
21.2
0
1.4
0
17.4
0
0.0
0
0.0
0
0.0
0
0.0
0
0.0
0
0.0

0
0.0

(=

co oo oo
=)

(=3

0
18.2
0
0.0
1
1.0
621
1355.1
0
0.0
0
0.0
0
0.0
0
0.0
0
0.0
0
0.0
0
0.0
0
0.0
0
0.0
0
0.0

0.0
0
0.0
0
0.0
0
0.1
285
14271
0
0.0
0
0.0
0
0.0
0
0.0
0
0.0
0
0.0
0
0.0
0
0.0
0
0.0
0
0.0

0.0
0
0.0
0
0.0
0
0.0
0
0.0
0
0.0
88
1230.6
0
0.0
0
0.0
0
0.0
0
0.0
0
0.0
0
0.0
0
0.0
0
0.0
0
0.0
0
0.0

12
877.9
0
0.0
0
0.0
0
0.0
0
0.0
0
0.0
0
0.0
0
0.0
0
0.0
0
0.0
0
0.0
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We compute the difference between data and predictions by one of two

measures: the sum of squared differences,

or a Pearson x> measure,

M+1
d,(D,E) = hZ (Dn—E)?,
=1

M+1
dz(D, E) = h§1 (Dh - Eh)2/Eh'

Large values of these measures of difference confound two distinct kinds of
discrepancies between D and E: differences in the expected and observed total
numbers of chains, and differences in the expected and observed proportions of
all chains that are of given lengths. However, both measures are useful in that low
values of either measure signify good agreement between observation and
expectation in both total numbers of chains and proportions of each length.

TJO 00 00 0000 00 OC

-
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To measure how likely the difference d,,, m = 1, 2, is to arise by chance alone
according to the cascade model, we generate random strictly upper triangular
adjacency matrices according to the cascade model. For S, the size of the matrix,
we use the integer part of the value of S obtained by the iterative procedure in
the appendix of paper II. In most but not all cases, the size of the matrix is
identical to the observed number of species in the web. For ¢, we use exactly the
value of ¢ obtained by the iterative procedure in the appendix of paper II.
Rounded values of § and ¢ for each web are also given in table 2. For each
randomly generated adjacency matrix, we compute the frequency distribution of
chain lengths (see the appendix of this paper). We then combine the frequencies
of all chains longer than M and compute the difference between the resulting
(M + 1)-vector of simulated frequencies and E. Call this difference d{? for the ith
simulated web.

We take our null hypothesis to be that the difference, d,,, between the observed
and expected frequency distributions is greater than 959% of randomly chosen
values of d?, i.e. that the cascade model provides a description of observed chain
lengths that is poor enough to reject at the 5% level of significance. If our
simulations show that a sufficiently small proportion of the simulated differences
satisfy d® < d,,, then we can reject the null hypothesis and conclude that the
cascade model could not be rejected at the 5 %, level, and hence describes the data
on chain lengths.

For each observed web, we test the goodness of fit between E and D as follows.
We generate 20 random webs according to the cascade model and find the number,
X,, of those simulated webs for which d¥) <d,,. We then consult a table
(previously calculated and stored) of the binomial cumulative distribution function
with parameters N = 20 and p” = 0.95 to find the probability, P, of X,, or fewer
successes. If this probability P is less than or equal to 0.01, we reject the null
hypothesis that the difference d,, between the observed and expected frequency
distributions is greater than or equal to 959, of randomly chosen values of d(%
and accept E as describing D. In this case, we then go on to the next observed
web. However, if P > 0.01, we generate another 20 random webs according to the
cascade model and find the cumulative number, X,,, of the 40 simulated webs for
which d? < d,,. We then consult the table of the cumulative binomial distribution
with parameters N = 40 and p” = 0.95 to find the probability P of X,, or fewer
successes. Once again, if P < 0.01, we stop and accept the cascade model. If
P > 0.01, we continue to generate additional batches of 20 random webs, up to
a total of 100 random webs, until either we find a P < 0.01 and accept the cascade
model or we are left with X,,,/100 as the estimated fraction of random webs that
satisfy d < d,,,.

For every web, we record the number, N, of simulated webs generated, the
number, Xy, of ‘successes’ among the simulated webs, and either the probability
P (provided P < 0.01) of X, or fewer successes from a binomial distribution with
parameters N and p” = 0.95 or, if P > 0.01, the fraction X,,/N. We carry out this
analysis for all observed webs once with d; and again, generating new random webs
for each observed web, with d,, to see whether the choice of difference measure
affects our conclusions.
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This procedure tests the goodness of fit of E to D for an observed individual web
without making any assumption that D for one observed web is independent of
D for another observed web.

5. THE ORIGINAL BATCH OF 62 WEBS

By using the sum-of-squares measure, d,, of difference between observed and
predicted frequency distributions, we find that 40 of 62 observed webs (65 %)
reject at the 0.01 significance level the null hypothesis that the cascade model’s
expectations fit the data worse than 95 %, of random webs generated by the cascade
model. For brevity, we say that the cascade model describes the observed fre-
quency distribution of chain lengths well in 40 of 62 webs. In 11 of 62 webs (18 %),
more than 95 9%, of the generated random webs had chain length distributions that
were closer to expectation than is the observed chain length distribution. For
brevity, we say that the cascade model describes badly the observed frequency
distribution of chain lengths in 11 of 62 webs (serial numbers 10, 21, 30, 37, 41, 42,
47, 53, 58, 59, 60). For the remaining 11 ( = 62—40—11) webs, we say that the
cascade model describes chain lengths moderately well (serial numbers 3, 5, 6, 9,
34, 35, 38, 39, 43, 52, 62). Figure 2 plots the frequency histogram of X,/ N for the
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Fieure 2. Frequency histogram of X /N for 62 webs previously studied: the number of webs
with X, /N in the interval [0.1¢, 0.1(¢+1)), for ¢ =0, 1, 2, .., 10. Here N is the number
of random webs generated for each real web and X is the number of those random webs
with chain length distributions closer (using d,) to that expected from the cascade model
than is that of the real web.
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62 webs, where (as above) N is the number of random webs generated for a given
web and X, is the number of these random webs with a chain length distribution
closer to the theoretical expectations than is the observed chain length distribu-
tion. Evidently a majority of webs have X, /N greater than or equal to 0.6.

According to the y* measure, d,, of difference between observed and predicted
frequency distributions, 43 of 62 observed webs (69 9%,) have frequency distributions
of chain length that are described well by the cascade model, and 7 have frequency
distributions that are described moderately well (serial numbers 3, 6, 9, 27, 47, 52,
59). The cascade model describes badly the observed frequency distribution of
chain lengths in 12 of 62 webs (serial numbers 10, 21, 30, 35, 37, 38, 39, 41, 42,
53, 58, 60). In this batch of webs, the measure of difference chosen makes very
little difference to the overall performance of the cascade model.

The frequency distributions of chain lengths that are described badly by the
cascade model are of at least three kinds. First, { :'some webs, the number of chains
is so small that it is not clear whether to take seriously any measure of fit (e.g.
web 10 has only one chain of length 2). Second, in some webs, most of the observed
chains are shorter than most of the predicted chains (e.g. webs 53, 60). Third, in
some webs, most of the observed chains are longer than most of the predicted
chains (e.g. webs 21, 30, 41, 42, 58).

We conclude that, when webs are considered one at a time, the cascade model
predicts the observed frequency distributions of chain length well or moderately
well in 50 or 51 of the 62 webs in our original batch, although no information about
chain length was used in developing the cascade model or in estimating its
parameters.

6. A FRESH BATCH OF 51 WEBS

The finding that 11 or 12 of the 62 webs in the first batch have frequency
distributions of chain length that the cascade model describes badly shows that
there is no logical necessity for the cascade model to describe well, or moderately
well, the chain lengths of an individual web. However, such bad fits do not exclude
the possibility that the cascade model describes chain lengths, at least in part,
because the cascade model also describes, for most webs, the other major features
of web structure considered in papers I and II. One of us therefore assembled and
edited a fresh batch of 51 community webs (to be described in detail elsewhere:
F. Briand, in preparation) and extracted, for each web, the observed number, §’,
of species, the observed number, L’, of links, and the observed frequencies D,
n=1,..., M, of chain length. These webs provide a strong test of the ability of
the cascade model to describe new observations.

6.1. Checking the assumptions of the cascade model

One central structural assumption of the cascade model is that species are
arranged in a hierarchy so that (ignoring cannibalism, as in paper I), cycles should
be absent. The 51 new webs contain only one cycle of length 2 (in the web
numbered 100 in the serial numbering of Briand) and no longer cycles. Cycles are
rare enough that the assumption of a hierarchy is a reasonable assumption.

A second structural assumption of the cascade model is that the probability of
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a link from one species to another above it in the hierarchy varies inversely as the
number of species in the web. This assumption implies that the total number of
links in a web should be directly proportional to the total number of species: this
is the species-link scaling law. Figure 3 plots the number, L’, of observed links as
a function of the number, §’, of observed species for the 51 webs in the new batch.
Apart from two clear outliers with 75 and 133 links (webs numbered 63 and 103),
the points appear to fall along a straight line through the origin. Web 63 is an
extended version of the River Rheidol subweb depicted by Jones (1950). High
connectance aside, nothing special appears to distinguish this web from the others.
Web 103, one of three webs in the collection of 113 provided by Petipa (1979),
describes a tropical plankton community in the Pacific Ocean. This web contains
the longest chain, with ten links, in the entire collection of 113 webs.
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F1cUure 3. Observed number, L', of links as a function of the observed number, §’, of species
in 51 webs not previously studied.

The cascade model implies that the variance of the number, L, of links is
asymptotically (for S considerably greater than c) proportional to S, and figure
3 makes it plausible that the variance of the number, L’, of observed links is
proportional to the number, S’, of observed species. When this is true (see, for
example, Snedecor & Cochran 1967, p. 168), the least squares estimate of the slope
of the line through the origin is the ratio of the total number of links to the total
number of species. The standard error of the slope may be estimated by a formula,
also given by Snedecor & Cochran.
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In the 51 webs of this batch, there are 1878 links and 874 species, giving an
estimated slope of 2.1487 with an estimated standard error of 0.1220. If webs 63
and 103 are omitted, there remain 1670 links and 833 species, giving an estimated
slope of 2.0048 with an estimated standard error of 0.0801. For comparison, Cohen
& Briand (1984, p. 4105) report, in the first batch of 62 webs, that L’ is
approximately proportional to 8’ with slope 1.8559 and estimated standard error
0.0740. Figure 4 plots links, L’, versus species, §’, for all 113 ( = 62+ 51) webs.
The lack of marked difference between the slopes 1.86 +0.07 for the old batch of
62 webs and 2.00+ 0.08 for the new batch of 49 webs (51 minus the two outliers),
and the lack of clear separation between the old and the new sets of data points
in figure 4, suggest that underlying both batches of webs is a common direct
proportionality between numbers of species and numbers of links, with a constant
of proportionality near 2. Combining all 113 webs gives 1908 species, 3797 links
and an estimated slope of 1.9900+0.0697. Without webs 63 and 103, the slope is
1.9223 +0.0546.
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Fiaure 4. Observed number, L’, of links as a function of the observed number, §’, of
species in all 113 webs.

Cohen & Briand (1984) remark that the 62 webs available to them do not
exclude a slightly nonlinear relation, as noted by Briand (1983), between species
and links, i.e. a relation of the form E(L) = aS® with b slightly different from 1.
They find that a graph of L'{ against 8’ looks very nearly linear through the origin.
The same caveat and observation hold here. The use of the ordinary linear least
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squares method to regress log L’ on log 8’ for all 113 webs gives the allometric
model L = 0.6713 §1:3559+¢ ywhere ¢ is the error term, or (taking 1/1.3559 ~ ) L}
proportional to S. The parameters obtained by this procedure are not the least
squares estimates for the nonlinear allometric model in the original scales of L and
S. Scatter plots (not shown) of the residuals (observed links L” minus predicted)
as a function of §” show very little difference between the fitted allometric model
and the linear model L = 1.9900 S+e¢. The sum (rounded to three significant
figures) of the absolute residuals of the allometric model, namely 897, is smaller
than the corresponding sum for the linear model, namely 999. The sum of the
squared residuals of the allometric model (20000) is also smaller than the sum of
the squared residuals of the linear model (21400). The data thus suggest that a
relation between K(L) and § that is mildly nonlinear for the observed range of
species may be more precise than a simple proportionality. The exact relation
between K(L) and S deserves further empirical and theoretical investigation.

However, taking E(L) as proportional to S does not do serious violence to the
data. Moreover, in this paper, we estimate ¢ independently for each web rather
than assuming ¢ to be constant for all webs. Hence this empirical test of the
cascade model is less sensitive to how many links there are than to how the links
that do occur are connected into chains.

6.2 Testing the predictions of chain length

On the basis of the rarity of cycles and the near-proportionality shown in figure
3, we conclude that the underlying assumptions of the cascade model are
approximately satisfied by (nearly all of) the new batch of webs. As with the old
batch, for each web in the new batch, we estimate the parameters S and ¢ (given
in table 2 after rounding), compute the expected frequency of chains of each
length, and measure the goodness of fit between observed and predicted frequencies
by the procedure described in §4.

From the sum-of-squares measure, d,, of difference between observed and
predicted frequency distributions, we find that the cascade model describes well
36 of 51 observed webs (71 %) and moderately well 10 webs (serial numbers 63,
68, 70, 72, 77, 85, 86, 93, 96, 103). In 5 of 51 webs (189), the cascade model
describes the observed frequency distribution of chain lengths badly (serial
numbers 65, 71, 88, 90, 97). The outlying webs 63 and 103 are not among these
badly described five webs. Figure 5 plots the frequency histogram of X, /N for
the 51 webs, where (as above) N is the number of random webs generated for a
given web and X, is the number of these random webs with a chain length
distribution closer to the theoretical expectations than is the observed chain
length distribution. As in figure 2, a majority of the webs have X, /N greater than
or equal to 0.6.

According to the y* measure, d,, of difference between observed and predicted
frequency distributions, 34 of 51 observed webs (67 % ) have frequency distributions
of chain length that the cascade model describes well. Twelve webs have frequency
distributions that the cascade model describes moderately well (serial numbers 63,
65, 68, 70,72, 77, 86, 87, 96, 97, 99, 106). The cascade model describes the observed
frequency distribution of chain lengths badly in 5 of 51 webs (serial numbers 71,
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Ficure 5. Frequency histogram of X /N for 51 webs not previously studied: the number of
webs with X /N in the interval [0.1¢,0.1(¢+ 1)), for¢ = 0,1, 2, ..., 10. Here N is the number
of random webs generated for each real web and X is the number of those random webs

with chain length distributions closer (using d,) to that expected from the cascade model
than that of the real web.

85, 88, 90, 93). In this batch of webs, as in the first, which measure of difference
we choose makes very little difference to the overall performance of the cascade
model.

As in the original batch of 62 webs, in this new batch sometimes more short
chains are observed than expected (e.g. webs 65, 88, 90) and sometimes more long
chains are observed than expected (e.g. webs 71, 85).

Table 3 lists, for all 113 webs, the number of random webs generated and the
number of those random webs with chain length distributions closer to the
expected than that of the real web. For the sum-of-squares measure of difference,
d,, all 74 real webs for which fewer than 100 random webs were generated fitted
the cascade model’s predictions well. In addition, webs 48 and 87, for each of which
100 random webs were generated, also fitted the cascade model’s predictions well.

We conclude that, considering webs one at a time, the cascade model predicts
the observed frequency distributions of chain length well, or moderately well, in
46 of the 51 webs in a new batch of webs not previously used to calibrate the model.
This success rate is slightly higher than that of the cascade model with the original
batch of 62 webs.
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TABLE 3. CHARACTERISTICS OF 113 WEBS

(Serial numbers are the same as in table 2, in Briand (1983), and in all previous joint publications of Briand
& Cohen. d, measures the difference between observed and predicted frequency distributions of chain length
by the sum of squared differences; d,, by a Pearson y? function; see text. N is the number of random webs
generated. X is the number of random webs with frequency distributions of chain length closer to that
predicted theoretically than is the observed distribution. Variability: 0, unclassified; 1, fluctuating; 2,
constant. Dimension: 0, unclassified ; 2, two-dimensional ; 3, three-dimensional. Productivity : 0, unclassified ;
1, low productivity; 2, high productivity. Man: 0, absent from web; 1, present in web.)

d, d,
web —_— —
number N X N X variability dimension productivity man

1 20 6 20 10 0 0 0 1

2 40 33 40 33 1 0 0 0

3 100 94 100 92 1 2 0 0

4 20 5 20 11 1 0 0 0

5 100 92 60 51 0 0 2 0

6 100 94 100 93 1 0 0 1

7 60 50 20 14 0 0 0 1

8 20 6 20 13 1 0 2 1

9 100 92 100 93 0 0 0 0
10 100 100 100 100 1 2 0 0
11 40 33 60 49 1 2 0 0
12 20 12 20 12 1 2 0 0
13 20 8 20 12 1 2 0 0
14 20 13 20 11 0 0 0 0
15 20 14 20 10 1 0 0 0
16 40 30 20 14 1 0 2 0
17 20 14 20 14 0 3 0 0
18 20 7 40 30 0 0 0 1
19 40 31 40 32 1 3 1 (]
20 20 13 20 15 0 3 1 0
21 100 99 100 100 0 3 0 0
22 20 11 20 14 1 0 0 0
23 20 14 40 32 1 2 0 0
24 20 14 40 31 1 3 0 0
25 40 29 20 15 1 3 (] 0
26 20 0 20 0 1 0 0 0

7 60 51 100 94 1 3 2 0
28 40 30 40 33 1 0 0 0
29 40 31 60 51 0 3 1 0
30 100 96 100 99 0 3 1 1
31 20 12 40 28 0 3 0 0
32 20 13 20 13 2 3 0 0
33 60 52 40 32 2 0 0 0
34 100 92 40 33 2 2 0 0
35 100 92 100 97 0 2 0 0
36 20 13 80 69 0 0 0 0
37 100 98 100 96 2 0 0 0
38 100 94 100 96 2 0 0 0
39 100 94 100 96 2 0 0 0
40 60 51 40 33 2 3 0 0
41 100 100 100 100 2 3 1 0
42 100 100 100 100 2 3 2 0
43 100 94 80 67 2 3 0 0
44 40 27 20 13 2 0 2 0
45 60 49 20 15 2 2 0 0
46 20 6 20 9 0 3 1 0
47 100 96 100 92 2 0 0 0
48 100 88 60 52 1 0 0 1
49 20 8 20 13 1 0 0 1
50 20 13 20 15 1 2 0 0
51 20 14 20 13 0 0 0 0
52 100 92 100 91 1 2 0 0
53 100 99 100 96 1 2 0 0
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TABLE 3 (cont.)

d, d,
web — —r
number N X N X variability dimension productivity man
54 20 8 20 6 0 0 0 0
55 20 13 40 30 1 2 2 0
56 60 50 40 31 1 2 0 0
57 60 52 20 15 0 0 2 0
58 100 96 100 100 1 0 0 0
59 100 98 100 95 1 3 0 0
60 100 97 100 99 1 3 0 0
61 20 0 20 1 1 2 1 0
62 100 93 100 84 1 2 1 0
63 100 91 100 93 0 2 0 0
64 60 52 60 52 0 2 0 0
65 100 97 100 93 0 2 0 0
66 20 7 20 6 0 2 0 0
67 40 25 20 11 (] 0 0 0
68 100 91 100 91 1 3 0 1
69 20 14 20 8 1 0 0 0
70 100 92 100 92 1 (1] 0 0
71 100 99 100 99 1 3 0 1
72 100 90 100 95 1 3 0 0
73 20 13 20 15 1 3 0 0
74 20 9 20 9 1 2 0 0
75 20 7 20 6 1 3 0 0
76 20 11 20 10 1 (1] 1 0
77 100 90 100 89 2 0 0 1
78 20 3 20 8 2 0 2 1
79 40 33 60 48 1 0 0 0
80 20 15 20 12 1 0 0 0
81 20 11 20 9 0 0 1 0
82 20 15 60 51 1 0 0 ]
83 60 50 60 51 1 0 1 0
84 20 14 60 50 1 0 0 0
85 100 95 100 97 1 (1] 2 0
86 100 93 100 94 1 3 0 1
87 100 87 100 93 0 0 1 0
88 100 96 100 98 0 2 0 0
89 60 51 40 30 0 3 0 0
90 100 97 100 97 1 2 0 0
91 20 13 40 28 1 3 0 0
92 20 12 20 7 0 2 1 (]
93 100 93 100 96 1 2 1 0
94 20 15 60 51 1 2 1 0
95 20 7 20 7 1 2 1 0
96 100 94 100 93 1 2 1 0
97 100 96 100 93 1 2 1 0
98 60 51 20 14 0 2 1 0
99 60 52 100 93 0 2 1 0
100 20 8 20 12 0 2 1 0
101 20 7 20 9 1 0 0 0
102 20 12 20 12 2 3 1 0
103 20 12 40 33 2 3 1 0
104 20 15 20 12 0 2 0 0
105 20 12 20 7 1 2 0 0
106 100 89 100 93 1 2 0 0
107 20 15 20 10 1 2 0 0
108 60 49 60 52 1 2 0 0
109 20 15 40 32 1 2 0 0
110 20 1 20 11 1 2 0 0
111 20 14 40 32 1 2 0 0
112 20 13 20 12 1 0 0 0
113 40 32 20 11 1 0 0 0



340 J. E. Cohen, F. Briand and C. M. Newman

7. DOES THE CASCADE MODEL PREDICT THE MOMENTS OF CHAIN
LENGTH ?

After examining table 2 in a previous draft of this paper, S. L. Pimm (personal
communication, 3 September 1985) suggested that the cascade model does not
predict adequately the variance and kurtosis of the distribution of chain lengths.
He allowed that the cascade model may predict roughly the mean chain length,
according to table 2.

Direct comparisons of the mean and variance of the observed chain lengths with
the corresponding quantities calculated from the expected numbers of chains of
each length shown in table 2 confirm Pimm’s observations regarding the first two
moments. However, we claim that to evaluate the cascade model’s ability to
predict the moments of chain length the expected numbers in table 2 may not be
the right numbers to compare with the observed. We will explain what calculations
are required, although they remain to be done.

In computing numerically the mean and variance from the observed and
expected numbers of chains of each length, separately for each web in table 2, we
truncate (i.e. ignore) all predicted frequencies for chains of length 9 or greater. This
truncation lowers the predicted mean and variance of chain length. The effect is
small for all webs other than the exceptional web 103 because, for the remaining
112 webs, the expected number of chains of each length greater than or equal to
9 is less than 0.05. (We do not cumulate all predicted frequencies of chains longer
than the largest observed, as we did in testing goodness of fit between observed
and predicted frequencies.)

Temporarily, we shall call the mean calculated from the theoretically expected
numbers of chains of each length the ‘predicted mean’, and the variance
calculated from the theoretically expected numbers of chains of each length the
‘predicted variance’. The terminology is misleading, for reasons we shall explain.

The scatter plot (figure 6) of ‘predicted means’ against the observed means
clusters around a line of slope one through the origin. The observed mean chain
lengths exceed the ‘predicted means’ in 50 of 113 webs. The ‘predicted means’
of the cascade model do reasonably well in predicting the observed mean chain
length, as Pimm conceded.

In contrast to the acceptable performance of the ‘predicted mean’, the observed
variance of chain length exceeds the ‘predicted variance’ in only two of 113 webs.
Most points in the scatter plot (figure 7) of ‘predicted variance’ against observed
variance lie well above a line of slope one through the origin. This finding confirms
Pimm’s suggestion that chain lengths observed for a single web generally have a
smaller variance than the ‘predicted variance’.

However, this finding does not imply that the cascade model predicts the
variance of chain lengths badly. Also, unfortunately, the acceptable performance
of the ‘predicted mean’ does not imply that the cascade model predicts the mean
of chain lengths well. It is not possible to infer the mean or variance of chain length
in one realization of the cascade model with a finite number of species from the
expected numbers of chains of each length, averaged over all realizations, which
are given in table 2.

The ‘predicted mean’ and ‘predicted variance’ are (except for the truncation
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‘predicted mean’ chain length

observed mean chain length

FicURE 6. ‘Predicted mean’ chain length, i.e. mean calculated from the expected numbers of
chains of each length according to the cascade model, as a function of the observed mean
chain length in 113 webs. The points fall about a line of slope one through the origin. See
text for an explanation of why the ‘predicted mean’ is not the mean chain length predicted
by the cascade model.

of chains of length 9 or greater) the mean and variance of a distribution in which
the relative frequency of chains of length = is

E(C,,)/E(C),

where, as before, C,, is the number of chains of length » and C is the total number
of chains. As explained in § IV. 3, for finite S this distribution does not describe
the chain length distribution of a single web randomly generated by the cascade
model, but rather describes the distribution of the pooled chains from many webs
generated by the cascade model with a fixed ¢ and S.

The proper theoretical mean to compare with the observed mean chain length
is (again ignoring truncation and conditional on C > 0)

B[S kCy/0).

The proper theoretical variance to compare with the observed variance is (ignoring
truncation and assuming C > 0)

E[Ek k*Cy/(C—1)— (Zkl kCy)*/1C(C—=1)]].
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Fioure 7. ‘Predicted variance’ of chain length, i.e. variance calculated from the expected
numbers of chains of each length, as a function of the observed variance of chain length
in 113 webs. All but two of the points fall above a line of slope one through the origin. See
text for an explanation of why the ‘predicted variance’ is not the variance of chain lengths
predicted by the cascade model.

In addition to the difference between E(C,/C) and E(C,)/E(C), there are correl-
ations between C,, and C,, m # n, illustrated by table 1, which influence the
theoretical variance of chain length but not the ‘predicted variance’. This
additional discrepancy may explain why the ‘predicted variance’ (figure 7) does
worse in describing the variance of observed chain lengths than the ‘predicted
mean’ (figure 6) does in describing the mean of observed chain lengths.

It follows from the results of section IV. 4 that the corresponding theoretical
and ‘predicted’ moments have the same limit for large S. However, for any finite
8, the corresponding theoretical and the ‘predicted” moments need not agree. We
are not able analytically to compute the theoretical mean or variance, or higher
moments, of chain length according to the cascade model for finite S. It may be
impossible to do so. Simulation, observed web by observed web, would make it
possible to compare the observed mean and variance of chain lengths with the
mean and variance in each of, say, 100 simulations. We have yet to carry out this
computation.

Because of the success of the cascade model according to the measures of
goodness of fit that we have used so far, we expect that the observed moments
should not fall far in the tail of the distributions of the simulated moments. The
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theoretical moments could not be systematically and grossly different from the
observed if the simulated distributions of chain lengths are usually near the
observed distributions of chain lengths. However, we have not conclusively
demonstrated that the moments of chain lengths according to the cascade model
correspond well to the moments of ocbserved chain lengths in real webs.

8. TRYING TO EXPLAIN THE CASCADE MODEL’S FAILURES

In this section, we seek characteristics of webs that explain why the cascade
model’s predictions sometimes fit badly the observed frequency distributions of
chain length. We find that bad fits occur far more often than expected among webs
in which the mean length of chains is either unusually large (more than four links)
or unusually small (less than two links). Twenty-one other characteristics do not
appear to be associated with bad fits.

First, we explain why we do not use the conventional statistical tools of
hypothesis testing; we then present our descriptive analyses.

Throughout, we have been sceptical of the assumption that our observed webs
are a random sample from some statistical ensemble of webs. One reason for
scepticism is that webs reported by the same author sometimes share idiosyncrasies
that differentiate them from webs reported by others. Sixty-one of our 113 webs
were described by distinct observers or teams (two sets of observers are considered
distinct here if they have no member in common). The remaining 52 webs were
reported by 20 distinct observers or teams, each contributing between two and five
webs; there is therefore likely to be dependence among the webs.

A second reason for scepticism is that field ecologists with special training in
some taxon (birds or insects or fishes) or in some habitat (lacustrine or marine
intertidal or tropical montane) pick communities in which their special training
can be used, rather than at random. Until it is shown that the properties of webs
are invariant with respect to major taxa, habitats and other characteristics that
may bias ecologists’ choices of webs to study, it seems implausible a priori to
regard any given batch of webs as a random sample of webs from the world.

If the webs were a random sample from a cascade model ensemble, then the
frequency histograms in figures 2 and 5 should approximate histograms sampled
from the uniform distribution, which is a horizontal straight line. Under the
assumption of random sampling of webs, it would be valid to use the Kolmogorov—
Smirnov test (Kendall & Stuart 1973, p. 469) to assign a probability value to the
deviation between the sample and uniform cumulative distribution functions.
Denoting the test statistic by D (not to be confused with our notation above for
the observed total number of chains), with a subscript that gives the sample size,
we compute for the first batch of webs Dg, = 0.4403, for the second batch
D, = 0.4127 and for all webs combined D,,, = 0.4142. These values are all far
beyond the 0.01 critical values for the corresponding sample sizes. Because we
regard the assumption of random sampling with scepticism, we also regard with
scepticism the ‘significance’ of this rejection of the fit of predicted to observed
chain length distributions in the collection of webs as a whole.

Nevertheless, 16 or 17 of 113 webs (11 or 12 in the first batch, 5 in the second)
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individually have chain lengths that the cascade model describes badly. We now
seek a simple explanation for these bad fits in terms of the characteristics of webs.

S. L. Pimm (personal communication, 3 September 1985) suggested that the
cascade model describes worse the chain length distributions of webs with large
numbers of species. To examine this suggestion, we identified the 45 webs with
more than 17 species as ‘above average’ in size. (The average number of species
per web in 113 webs is 16.9.) We also identified the 19 webs with more than 24
species as ‘large’ in size.

As figure 6 shows, most webs have mean chain lengths of two to four links. We
defined the 12 webs with mean chain length less than two links (webs numbered
28, 33, 39, 40, 53, 64, 65, 88, 90, 96, 101, and 112) and the 10 webs with mean
chain length greater than four links (webs numbered 21, 30, 41, 42, 46, 47, 58, 71,
86, and 103) to be webs with ‘extreme mean chain length’.

As figure 7 shows, most webs have a variance of chain length that is less than 1.
We defined the 22 webs with variance greater than or equal to 1 to be webs with
‘high variance of chain length’. We also defined the 17 webs with variance less
than 0.25 to be webs with ‘low variance of chain length’.

For all 113 webs, we determined four characteristics in addition to trophic
structure: dimension, variability, and productivity of the environment, and the
presence of man in the web (table 3).

A web is classified as having dimension 2 if it occurs in an environment that
is essentially flat, such as grassland, a sea or lake bottom, a stream bed or the rocky
intertidal zone. A web is classified as having dimension 3 if it occurs in a solid
environment, such as the pelagic water column or forest canopy. Webs that could
not clearly be assigned dimension 2 or 3 are shown in table 3 as having dimension 0.

Asin paper I1, the variability of a web’s environment is classified as ‘fluctuating’
or ‘constant’. The environment is ‘fluctuating’ if the original report indicates
temporal variations of substantial magnitude in temperature, salinity, water
availability or any other major physical parameter. The magnitude, and not the
predictability, of the variations is the criterion of classification. In this paper we
apply stricter criteria than previously for deciding whether an environment is
fluctuating or constant. Whereas previously webs 1 to 28 and 48 to 62 were
classified as from fluctuating environments, while webs 29 to 47 were considered
to be from constant environments, we now regard a number of webs from each
former category as unclassifed. These are shown by 0 in table 3.

In several instances, the original observers measured and reported the net
primary productivity of the ecosystems they studied. For such cases, we classify
the productivity of a web as low if it falls below 100 g C m™2 a™, and as high if
it exceeds 1000 g C m™2 a™!. When productivity is unknown or has an intermediate
value, we treat it as unclassified (shown by 0).

Man is present in a web if explicitly recorded as one of the species, and is absent
otherwise.

We then cross-classified the webs by 22 pairs of dichotomous criteria. One
member of each pair was bad fit between predicted and observed frequency
distributions of chain length (X, /N > 0.95, with the sum-of-squares measure of
difference, d,) against not a bad fit. Another member of the pair was selected from
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this list of dichotomies: above-average number of species (more than 17 observed
species) versus average or below number of species (17 or fewer observed species);
large number of species (more than 24 observed species) against not large number
of species (24 or fewer observed species); high value (greater than 3.6) of the
parameter ¢ against low value (¢ < 3.6); extreme mean chain length against not
extreme; high variance of chain length against not high; low variance of chain
length against not low; man absent against man present; dimension unclassified
against dimension known; dimension 2 against dimension not 2; dimension 3
against dimension not 3; dimension 2 against dimension 3; environment not
classified against environment fluctuating or constant; environment fluctuating
against environment not fluctuating; environment constant against environment
not constant; environment fluctuating against environment constant; produc-
tivity unclassified against productivity low or high; productivity low against
productivity not low; productivity high against productivity not high; produc-
tivity low against productivity high; dimension 2 and fluctuating against dimen-
sion 3 and constant; no basal-top links against one or more basal-top links; one
or fewer basal-top links against more than one basal-top link. (The last two
dichotomies explore the possibility that the webs with anomalously few basal-top
links, apparent in figures 2 and 3 of Cohen & Briand (1984), might also be those
badly described here by the cascade model.) Some of these cross-classifications
involve all 113 webs; others involve fewer (for example, only 34 webs are either
dimension 2 and fluctuating or dimension 3 and constant).

For each cross-classification, we compute the y measure of association corrected
for continuity (Snedecor & Cochran 1967, p. 217). If we could accept the doubtful
assumption that the webs are a random sample, we could assign a level of
statistical significance to the computed values of y* with one degree of freedom.
Under this assumption, the critical value for significance at the (very weak) 109,
level is 2.71. Only three of the 22 values of y* exceed this level: y? = 4.55 for the
cross-classification with dimension not classified, y*> = 5.45 for the cross-
classification with low variance of chain length, and y* = 25.33 for the cross-
classification with extreme mean chain length. The first two of these y? values do
not exceed the one percent significance level. The third is very large. Table 4 shows
the counts of bad and not-bad fits cross-classified according to whether or not the
mean chain length is extreme.

When we carry out the same 22 cross-classifications with bad fit based on d,,
which is the y? measure of difference between observed and predicted chain length

TABLE 4. CROSS-CLASSIFICATION OF 113 WEBS ACCORDING TO FIT (BASED ON d,)
BETWEEN OBSERVED AND PREDICTED FREQUENCY DISTRIBUTIONS OF CHAIN
LENGTH, AND EXTREME VALUES OF MEAN CHAIN LENGTH

(x* with one degree of freedom (corrected for continuity) = 25.3265.)
mean chain length

goodness of fit =>2and <4 <2and >4
not bad 86 11
bad (X /N > 0.95) 5 11
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distributions, only two of the 22 values of the association y* exceed the 109,
critical value: y* = 4.60 for the cross-classification with high ¢, and y* = 16.92 for
cross-classification with extreme mean length of chains. The former value does not
exceed the 2.5 %, significance level. The latter value far exceeds the 1 9%, significance
level.

We conclude that a single dichotomy, extreme mean lengths of chains, explains
at least partly why the cascade model’s predi-tions sometimes fit badly the
observed frequency distributions of chain length. This finding does not exclude the
possibility that a more elaborate stratification of webs by combinations of other
characteristics could yield another, and perhaps better, explanation of the bad fits
(Mantel 1982). However, we have not explored possible explanations based on
more elaborate combinations of characteristics. Table 3 provides raw data for a
more sophisticated analysis.

We now speculate briefly on how the deviations between the observed and
predicted frequency distributions of chain lengths could arise. To explain the
excess numbers of observed long chains relative to the numbers expected, suppose
that, instead of describing all species and links in a community, as we assume, an
observer initially samples a link at random and then follows a chain containing
that link up to a top species and down to a basal species; and then samples another
link at random from those not previously recorded and repeats the procedure. The
longer a chain is, the more links it contains, and therefore the more likely it is to
be sampled by this procedure. This sampling procedure would produce an
observed excess of long chains compared to sampling in which each chain is
sampled randomly.

To explain the excess numbers of observed short chains relative to the numbers
expected, suppose that, as above, an observer picks a link at random and finds
some of the other (if any) links in the same chain but, wary of the bias of sampling
chains in proportion to their length, interrupts recording the entire chain after a
small number of links. This hypothetical procedure would selectively sample long
chains at first and would then selectively break the long chains into short chains,
producing an observed excess of short chains compared to sampling in which each
chain is sampled randomly.

A plausible model of the process of observation that would not explain an
observed excess of either long or short chains is to suppose that an observer
attempts to record all links, but has a probability ¢ (for ‘error’), 0 <e < 1, of
failing to observe or record any given link, independently and identically for all
links. The recorded web will then be identical to that of a cascade model in which
the true probability p = ¢/S of an edge is replaced by the recorded probability
p” = p(1 —e¢). The mean length of chains will be reduced by these errors of omission,
but conditional on the net probability, p’, that a link occurs and is recorded, the
distribution of the expected number of chains of each length will be as predicted
by the cascade model with paran eter p’.

The original reports of webs rarely describe the sampling procedures by which
the links are determined. Different investigators may use different sampling
procedures. It is not possible to prove, from the original reports, either of the
above explanations for deviations from the predictions of the cascade model. Still,
it is some comfort that simple explanations exist.
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9. DISCUSSION AND CONCLUSION

Here we review the accomplishments of this paper, relate them to previous
work, and indicate some useful further efforts.

9.1. Accomplishments of this paper

From an exact analysis of the cascade model, we derive the expected number
of chains of each length in a web with any finite number, S, of species. Simulations
of the cascade model demonstrate substantial dependence among the numbers of
chains of different lengths. Because of the dependence, we develop a Monte Carlo
method of evaluating the goodness of fit between the numbers of chains observed
in an individual web and the numbers expected from the cascade model.

Without fitting any free parameters, and with the use of no direct information
about chain lengths other than that implied by the total number of species and
the total number of links in a web, the cascade model describes acceptably the
observed numbers of chains of each length in all but 16 or 17 of 113 real webs.
The cascade model describes well, in the technical sense defined in §5, the chain
lengths of 40 or 43 of the 62 webs previously used to test the cascade model, and
well or moderately well, again in the technical sense, the chain lengths of all but
11 or 12 of these webs. In a fresh batch of 51 webs, the numbers of links are very
nearly proportional to the numbers of species (apart from two outlying webs). The
constant of proportionality is consistent with that in the original 62 webs. This
finding independently verifies the species—link scaling law (Cohen & Briand 1984;
paper I). The cascade model describes well the chain lengths of 34 or 36 of the 51
webs, and well or moderately well all but 5 of these webs. When the collection of
webs is viewed as a whole, the cascade model describes adequately the mean chain
lengths.

The poor fit of the cascadsde model to 16 or 17 webs is associated with one
characteristic of the webs, namely, an unusually large (more than four links) or
an unusually small (fewer than two links) mean length of chains.

In papers I and II, we evaluated the cascade model’s fit to the data on the
proportions of each kind of species and link largely by visual inspection of
graphical displays. Even measured by that very crude procedure, the fit between
predictions and observations was not always good, e.g. for the proportions of
basal-top links. Here, in paper III, we examine a much finer aspect of web
structure than in papers I and II, namely, the frequency distribution of chain
lengths, and we use far more delicate measures of goodness of fit. 4 priore, the
apparent performance of the cascade model should be worse than in papers I and
II. We consider it significant that the approximation between observed and
predicted frequency distributions of chain length, though far from perfect, is as
good as it is.

9.2. Relation to previous work

This paper offers three novelties in ecological theory. First, this paper presents,
to our knowledge, the first exactly derived theory of the length of food chains. The
only previous quantitative model to predict chain length (Pimm 1982) has been
simulated but not analysed mathematically. Secondly, this paper represents, we
believe, the first instance in which an ecological model that was initially developed
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to explain an aspect of webs different from chain length (namely the proportions
of species and links of various kinds) is used to predict chain lengths quantitatively.
Thirdly, this paper gives the first quantitative predictions (obtained either by
simulation or by analysis) of the entire frequency distribution of chain length.
Pimm (1982, ch. 6) considers only the modal trophic level of top species.

Although the cascade model is the first to be analysed exactly in the detail given
here, it is one of a family of similar models that have been proposed for webs.
Cohen’s (1978, p. 60) model 5 proposes that webs be generated by constructing
a matrix with a number of rows equal to the observed number of prey (basal plus
intermediate species), a number of columns equal to the observed number of
predators (intermediate plus top species), and a number of 1-elements equal to the
observed number of links, all other elements of the matrix being 0. According to
this model 5, the positive elements of the ‘predation matrix’ (a condensed
adjacency matrix) are to be distributed randomly.

From comparisons of real food webs with simulations of model 5 and other
similar models, Cohen (1978, p. 92) ‘concluded that the high observed frequency
of arrangements of niche overlap that can be represented in a one-dimensional
niche space does not result from the operation, within the framework of several
plausible models, of chance alone’, i.e. that the species’ feeding relations have a
one-dimensional ordering.

The null model of Pimm (1982, appendix 6A) adds to Cohen’s model 5 the
constraints that each prey have a predator and each predator a prey, and that the
intermediate species be in a strict hierarchy or cascade. Such a hierarchy or
cascade is a natural interpretation of Cohen’s finding that feeding relations have
a one-dimensional ordering. Sugihara (1982, 1984, §3.1.2) also discusses the
importance of a hierarchical ordering in assembly rules for food webs, but does not
analyse the lengths of food chains.

When we proposed the cascade model (paper I), we had not read appendix 6 A
of Pimm (1982) because we were considering questions other than the length of
chains. Whereas Pimm’s null model takes as given the numbers of links and of
basal, intermediate and top species, the cascade model takes as given the total
number of species and the number of links. The cascade model predicts the
fractions of species that are basal, intermediate and top and the numbers of links
of each of four kinds. Pimm'’s null model could be viewed as a conditional version
of the cascade model: given numbers of links and of basal, intermediate and top
species produced by the chance mechanisms of the cascade model, the distribution
of these links among pairs of species in the cascade model is identical to that in
Pimm’s null model (ignoring the negligible probabilities in the cascade model that
top species are not proper top and basal species are not proper basal).

Cohen (1978) and Pimm (1982) propose the models just described as ‘null’
models, models that would describe how webs should look in the absence of
interesting biological structure. Here we consider the cascade model as a ‘theory’.
We suggest that between ‘null models’ and ‘theories’ is a continuum of increas-
ingly sophisticated and successful models. The null models at one extreme are
models that do not describe much of nature well. ‘Theories’, at the other extreme,
provide a unifying and quantitatively successful view of diverse phenomena. The
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cascade model provides explanations for some aspects of webs that Cohen’s (1978)
and Pimm’s (1982) models take as given and describes with moderate success the
observed frequency distributions of chain lengths. Whether the cascade model
should continue to be dignified as theory depends on its success in describing other
aspects of real webs.

9.3. Further work required

How well does the cascade model describe the variance and higher moments of
the distribution of chain length ? A key difficulty in answering this question, which
was raised by S. L. Pimm, is the dependence among the numbers of chains of
different lengths. Attacks via mathematical analysis and via numerical simulation
are both desirable.

Why does the cascade model fail to predict 16 or 17 observed frequency
distributions of chain length ? One possibility is that, like a straight line tangent
to a parabola, the predictions of the cascade model are systematically of the
wrong shape but are locally good approximations in a certain neighbourhood.
According to this possibility, a better model could explain all the observed
frequency distributions of chain length, as well as explain better the other features
of webs that are described approximately by the cascade model. As noted in paper
II, some assumptions underlying the cascade model are unrealistic. For example,
the model assumes that the species at the top of the cascade is equally likely to
prey on all other species in the community, and that the prey species a predator
eats are chosen statistically, once and for all, independently of the abundance of
the prey species and of the existence of other links. A better model might replace
these assumptions by more realistic ones. However, we cannot provide and analyse
a better model at this point.

A second possibility is that the bad fits of the cascade model are associated with
some combination of the characteristics of webs. According to this possibility, the
cascade model is acceptable for a large class of webs, e.g. those with mean chain
length between two and four links, but for another relatively small class of webs
a different model is required.

A third possibility is that the original data are wrong; that links have been
overlooked, or that inconsistent criteria have been used for reporting links, or that
stomach contents have been misidentified and mistaken links have been reported,
or that error has crept into the process of writing, publishing and transcription.

The consequences for action of these three possible explanations are different.
If the cascade model is only an approximation to a better global model, then one
should try to construct a better global model. If combinations of characteristics
could identify exactly webs for which the cascade model fails, one should try to
discriminate the webs where the cascade model succeeds from those where it fails.
If the reported frequency distributions of chain length are materially wrong, one
should go back into the field and do better field work and reporting. There is no
shortage of opportunities for diverse skills.

The empirical successes of the cascade model are great enough to encourage the
hope that efforts in all three directions may yield further successes. The present
successes of the cascade model also justify attempts to exploit the model further
as it stands. Can the cascade model describe or explain yet other aspects of webs,
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such as the frequency of omnivory, i.e. predation on different trophic levels
(S. L. Pimm, personal communication, 3 September 1985), however ‘trophic
levels’ are to be defined? Can the cascade model account for the relative
importance of predation against competition (Schoener 1982), the occurrence of
compartments (Pimm 1982), and the frequency of intervality (Cohen 1978)?

APPENDIX: COMPUTING ALGORITHMS

This appendix describes procedures for computing the frequency distribution of
chain length and the length of the longest chain of a given acyclic web.

The frequency distribution of chain length

A digraph (directed graph) with S vertices (species) and L edges (links) may be
represented by its S xS adjacency matrix, 4. The elements of 4 are a; =1 if
(1, §) is an edge, a;; = 0 if (7, j) is not an edge, 1 < 1,5 < 8.

An easily programmed, but inefficient, way to compute the number of n-chains,
C,, from the adjacency matrix 4 of an acyclic web uses the powers 4™ of 4. If
Sy and Sy are the subsets of {1, 2,..., S} that contain the labels of, respectively,
the basal and the top species, then

Ch= 2 2 (A" n=1,2,...,8-1.
ie SBje ST
If each power is computed by O(S?%) multiplications, then the computation of the
frequency distribution of chain length {C,} requires O(S®) multiplications.

A much more efficient algorithm that requires O(S?) steps (additions or
multiplications) was outlined in conversation (1984) by P. H. Sellers. Assume that
the adjacency matrix A4 is strictly upper triangular, so that the vertices are
numbered from 1 at the bottom of the web to S at the top of the web, i.e. edges
point from vertices with lower numbers to vertices with higher numbers. The
following algorithm requires as input the adjacency matrix 4 and returns as
output an (S—1)-vector, C, with nth element C,,, the number of n-chains.

Step 1. Set I = 1 and set V to be an § x S—1 matrix with all elements 0. (After
completion of the loop on I below, V(/,J) will hold the number of maximal J-walks
that terminate at vertex I, i.e. the number of J-walks that originate at some basal
species and terminate at species 1.)

Step 2. Increment I by 1. If the result exceeds S, go to step 8.

Step 3. Set H=10.

Step 4. Increment H by 1. If the result equals I, go to step 2. (We are going
to compute for each J the contribution, to the number of maximal J-walks
terminating at vertex I, of maximal (J—1)-walks terminating at vertex H, for
every H < I.)

Step 5. If A(H,I) =0, go to step 4. (If there is no edge from H to I, then walks
terminating at H either do not pass through I at all or must pass through some
other vertex on their way to I.)

Step 6. If the sum of the Hth row of V is positive, then for J = 2,...., §—1, set
V{,J)= V(,J)+ V(H,J—1). Then go to step 4. (Each maximal (J—1)-walk that
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terminates at a vertex H that is connected by an edge to vertex / determines a
maximal J-walk that terminates at vertex I.)

Step 7. Otherwise, increment V(I, 1) by 1. Then go to step 4. (If no walks
terminate at vertex H but H is joined to I by an edge, then there is a maximal
1-walk terminating at I.)

Step 8. For J=1,..., §—1, set C; equal to the sum of V(I, J) over only those
I such that the Ith row sum of A4 is 0. (The chains are the maximal walks that
terminate at top vertices. Vertex I is a top vertex if and only if the Ith row sum
of A is 0. After all the maximal walks terminating at all the vertices have been
counted, the number of J-chains is the total number of maximal J-walks that
terminate at top vertices.)

We programmed both the algorithm based on powers and Sellers’ algorithm in
APL, with the APL68000 interpreter running on the WICAT 150-6, a micro-
processor that uses the Motorola 68000 chip. For the 14 x 14 adjacency matrix of
Briand’s (1983) web number 31, the algorithm based on powers required approxi-
mately 10s to produce the frequency distribution of chain length, whereas
Sellers’ algorithm required approximately 5s. For a 50 x 50 adjacency matrix
generated according to the cascade model with ¢ = 3.71, the powers algorithm
required approximately 25.5 min and Sellers’ algorithm required approximately
0.6 min.

The length of the longest chain

For a digraph with a strictly upper triangular adjacency matrix 4, finding the
height, i.e. the length M of the longest chain, is a standard problem in network
theory. For example, Gibbons (1985, pp. 121-122) gives a recursive algorithm for
finding the longest path from a specified vertex to every other vertex. The
following algorithm for finding the longest path from any vertex to any other,
which requires in general O(S?) multiplications, was outlined in conversation
(1985) by F. R. K. Chung. The algorithm requires as input the adjacency matrix
A and returns as output the height M.

Step 1. Set V equal to an S-vector with all elements 0, and set 7 = 0. (After
completion of the loop on I below, V(I) will hold the length of the longest walk
terminating at vertex I.)

Step 2. Increment I by 1. If the result exceeds S, go to step 4.

Step 3. Set V(I) = max{A(H, I)(V(H)+1)|1 < H<I—1}.Then go to step 2.
(The length of the longest walk terminating at vertex I is 1 greater than the
maximum over all H < I with an edge from H to I of the length of the longest walk
terminating at H.)

Step 4. Set M = max{V(I)|]1 <I<S8}. (The longest chain is as long as the
longest of the maximal walks.)

For a 50 x 50 adjacency matrix, generated according to the cascade model with
¢ =3.71, independently of the matrix used in the previous example, the
computation of M = max {n|C, > 0} based on Sellers’ algorithm for C required
38 s and Chung’s algorithm required only 6 s.

As S gets large, the number of positive elements in adjacency matrices generated
by the cascade model increases only as O(S) rather than as O(S?). The number of
multiplications and the amount of memory required by the preceding algorithm
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may be reduced from O(8?%) to O(S) as S gets large by representing the digraph by
an L x 2 matrix that lists, in some order, the initial and final vertex of each of its
L edges. Step 3 above is then modified to pay attention only to those vertices H < [
for which there is an edge from H to I. By using this modified algorithm, we
simulated webs of § species where S? far exceeded the words of memory available
in our microprocessor.
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