An Uncertainty Principle in Demography and the Unisex Issue
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The crude death rate of country A may be less than that of
country B even if every age-specific death rate of country
A is greater than each corresponding one of country B. This
is an example of what statisticians (unjustly) call Simpson’s
paradox. What holds for death rates holds equally for all
other demographic rates. Simpson’s paradox can recur, re-
versing an inequality of rates, whenever an additional var-
iable is introduced into a stratification. Repeated stratification
of a finite population (e.g., by age, sex, education, income,
region) may eventually produce comparison groups that are
too small for a given difference in mortality to be detected.
The trade-off between the increased homogeneity of highly
stratified comparison groups and the decreased ability to
detect small differences in probabilities of death is described
here quantitatively by an uncertainty principle, which takes
the form of an inequality. The possibility of encountering
Simpson’s paradox suggests that since sex is only one of
many possible stratifying variables that appear to affect mor-
tality, the use of mortality tables distinguished by sex and
by no other variables is, in the absence of information about
the importance of other variables, demographically arbi-

trary.
KEY WORDS: Heterogeneity; Stratification; Simpson’s

paradox; Sex differences in mortality; Spurious correlation;
Pooling.

1. INTRODUCTION

The purpose of this article is to show that if many char-
acteristics affect the mortality of individuals, there are in-
trinsic limits to the ability of demographers to answer two
elementary questions:

1. In the last year, was the force of mortality less severe
in country A or in country B?

2. In the last year, would my chances of surviving have
been better in country A or in country B?

The arguments to be given for death rates apply equally
to all demographic crude rates. Death rates are used here
because they are concrete and practically important.
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For simplicity assume that the vital statistical systems of
countries A and B are both perfect: thus every death is
recorded. Assume also that perfect censuses of both coun-
tries were completed at the beginning of the last year, so
there is no uncertainty about the populations at risk of mor-
tality. Finally, assume that information about the charac-
teristics of those who remain alive and those who die is as
detailed as desired. Their exact ages, heights, weights, med-
ical histories, smoking and drinking habits, driving habits,
and any other desired features are assumed to be known.
These assumptions avoid the necessity of discussing errors
or incompleteness in data.

Even in this statistical utopia, question 1 appears easier
to answer than question 2. Statistics pertain to aggregates,
and question 1 is a question about aggregates. To measure
the mortal risks of an individual might strain any statistical
system.

Unfortunately, the comfort offered by statistical aggre-
gates is limited. Intrinsic constraints, to be derived, limit
the possibility of simultaneously specifying a large number
of characteristics that affect mortality and detecting a small
difference in mortality between two subgroups that are
matched on these characteristics. These intrinsic constraints
may be stated as an uncertainty principle. Question 1 reduces
to many simultaneous versions of question 2 when so many
characteristics affect mortality that the subgroups specified
by those characteristics reduce to single persons.

The uncertainty principle arises because the stratification
of two populations, that is, the division of each population
into apparently more homogeneous subgroups for purposes
of comparison, may have two effects. First, stratification
may reverse the apparent rank ordering of the forces of
mortality affecting the two populations. This phenomenon
has been known for at least 50 years (Cohen and Nagel
1934) and is familiar to most statisticians as Simpson’s
(1951) paradox. [Yule (1903) pointed out that if two attri-
butes are not associated in each of two strata, then pooling
the strata can sometimes produce an artifactual association
of the attributes in the aggregate. He did not discuss the
possibility of apparently reversing the direction of an as-
sociation by pooling strata.] Second, stratification usually
reduces the size of the comparison subgroups. Small com-
parison groups limit the possibility of deciding whether a
difference between groups is real or due to random fluc-
tuations. This fact is also well known. What is new here is
the combination of these two familiar facts in a quantitative
inequality that governs the resolution of comparisons of
demographic rates (or conditional probabilities or any other
weighted means) in two populations.

The argument has implications for the *‘unisex issue”
lately before American courts (U.S. Supreme Court 1983)
and the Congress (U.S. Congress, 1983). Stratification of
a population’s mortality experience by only the sex of in-
dividuals is arbitrary if other characteristics affect the force
of mortality more.
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2. A HYPOTHETICAL EXAMPLE OF
SIMPSON’S PARADOX

Mortality is measured by death rates. A death rate is
defined as the number of deaths in a specified population
in one time unit (one year) divided by the number of person-
years at risk of death. The number of person-years at risk
of death is often approximated by the total living midyear
population. Such an approximation will suffice here.

The crude death rate is defined as the total number of
deaths in a year divided by the total midyear population.
An age-specific death rate is defined as the number of deaths
in a particular age group divided by the midyear number of
individuals in that age group. Obviously an age-specific
death rate may be viewed as a crude death rate of the pop-
ulation consisting only of the specified age group.

Intuitively, it might appear that if the crude death rate of
country A is less than that of country B, then there must
exist at least one age group such that its age-specific death
rate in country A is less than its corresponding rate in country
B. This intuition is false.

The intuition is false because a crude death rate is a
weighted average of age-specific rates, where the weights
reflect the age structures (or proportions of people in each
age group) of each country. If the two countries have very
different age structures, the crude death rate of country A
may be less than that of country B, even though every age-
specific death rate in country A is higher than the corre-
sponding rate in country B.

Here is a hypothetical example. Suppose that countries
A and B each have 100 people at risk of mortality. Suppose
that there are only two age groups, “young” and “old.”
Suppose that the population at risk and the deaths are dis-
tributed by age in each country as in Table 1.

For both young and old, the age-specific death rates are
higher in country A than in country B: 25/90 > 10/40 and
4/10 > 20/60. Yet the crude death rate of country A, namely
29/100, is lower than the crude death rate of country B,
namely 30/100. In both countries the young have a lower
death rate than the old in the same country and in the other
country. Country A has a much larger fraction of its pop-
ulation young, whereas country B has a much larger fraction
of its population old.

Simpson (1951) observed the apparent paradox to which
his name is attached in contingency tables (see also Blyth
1972). Lindley and Novick (1981, app. 1) derived a nec-
essary condition for the occurrence of Simpson’s paradox
in a population stratified into two subgroups. Independently,
Ljiri (Sunder 1983, app.) derived the same necessary con-
dition and showed that it is sufficient. Shapiro (1982) and
Paik (1985) gave graphical representations of Simpson’s
paradox in this situation. These studies make it clear that
Simpson’s paradox can occur in any comparisons of prob-
abilities, rates, or measurements that are weighted averages
of component probabilities, rates, or measurements from
subgroups. Thus Simpson’s paradox is a potentially wide-
spread phenomenon that is familiar to many demographic
and statistical specialists but possibly not to other scientists
or the general public. The frequency with which Simpson’s
paradox actually occurs in real data seems never to have
been studied empirically.

Table 1. Simpson’s Paradox in a Hypothetical

Comparison of Death Rates

Country A Country B
At Death At Death
risk  Deaths rate risk  Deaths rate
Young 90 25 25/90 40 10 10/40
Old 10 4 4/10 60 20 20/60
Total 100 29 29/100 100 30 30/100

As a comfort to the intuition, note that if two countries
have identical age structures and the age-specific death rates
in the first all exceed the corresponding rates in the second,
then the crude death rate of the first must exceed the crude
death rate of the second. Simpson’s paradox also cannot
occur in a comparison of two stationary populations or in
a comparison of two stable populations differing only by a
so-called neutral change in mortality (see the Appendix).

3. REAL EXAMPLES OF SIMPSON’S PARADOX

Here are some examples of Simpson’s paradox in real
data from demography and business.

According to Keyfitz and Flieger (1968, pp. 94, 506),
every age-specific female death rate (,M,) was larger in
Costa Rica in 1960 than the corresponding rate in Sweden
in 1958-1962. Figure 1 shows the two sets of death rates
up to age 70. Yet the Costa Rican female crude death rate
of 8.12 per 1,000 was less than the Swedish rate of 9.29
per 1,000. (In the male population, the Costa Rican age-
specific rates are higher at every age except in the 75 to 79-
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Figure 1. Age-Specific Female Death Rates of Costa Rica in
1960 and Sweden in 1958—-1962. Source of data: Keyfitz and Flieger
(1968). Though every age-specific death rate of Sweden is lower
than the corresponding age-specific death rate of Costa Rica, the
crude death rate (CDR) of Sweden exceeds that of Costa Rica.
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Figure 2. The Age Pyramids of Sweden in 1958—1962 and Costa
Rica in 1960. Source of data: Keyfitz and Flieger (1968). The Costa
Rican population has a much higher proportion of young individuals,
whose death rates are less than those of old individuals in either
Costa Rica or Sweden.

year-old group. Here the possibility of imperfections in the
data should not be overlooked. For males also, the crude
death rate of 9.15 per 1,000 is lower in Costa Rica than the
rate of 10.36 per 1,000 in Sweden.)

The age pyramids of Costa Rica in 1960 and of Sweden
in 1958-1962 (Fig. 2) show that Costa Rica had a much
younger population than did Sweden. Because there were
relatively many more Costa Ricans at the young ages for
which age-specific death rates were lower than those of older
Swedes, and relatively many more Swedes at the older ages
for which age-specific death rates were higher than those
of young Costa Ricans, the male and female crude death
rates of Costa Rica were less than those of Sweden.

Real examples of Simpson’s paradox were known long
before Simpson (1951) attracted the attention of statisticians
to the problem. Cohen and Nagel (1934, p. 449) pointed
out that in 1910 the death rates from tuberculosis were higher
in New York than in Richmond, Virginia, for both the
“white” and the “colored” populations separately but that
the aggregate death rate from tuberculosis was much higher
in Richmond.

Demographers are aware of the limitations of using the
crude death rate for mortality comparisons (Kitagawa 1955;
Shryock and Siegel 1973, p. 418). Rural fertility and urban
fertility can both be rising while (as a result of population
movements) aggregate fertility is falling. The morbidity of
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both young and old can be improving while (as a result of
shifts in the age structure) aggregate morbidity worsens.

In an example given me by Keyfitz, the mean numbers
of children in 1971-1976 of French and English speakers
in Quebec were, respectively, 1.80 and 1.64 and in the
remaining provinces of Canada, respectively, 2.14 and 1.97,
so the French exceeded the English in both comparisons.
In Canada as a whole, however, the mean numbers of chil-
dren of French and English speakers were, respectively,
1.85 and 1.95, so the English exceeded the French (La-
chapelle and Henripin 1982).

Bickel et al. (1975) showed that among applicants for
graduate school at the University of California at Berkeley,
the proportion of women who were denied admission was
higher than the proportion of men who were denied admis-
sion. When admissions were analyzed department by de-
partment, an apparent discrimination in favor of women
appeared. The apparent overall discrimination against women
resulted from the lower admission rate, for both men and
women, of those departments that had more female appli-
cants.

Using techniques for analyzing unobserved heterogeneity
proposed by Heckman and Singer (1982a,b), Trussell and
Richards (1985) modeled child mortality in Korea using a
Weibull hazard function, which is a particular formula com-
monly used to model the age-specific risk of death. They
found that the hazard function declined with increasing age
when their analysis ignored possible heterogeneity in risks
of death among children of the same age but increased with
increasing age when, using the Heckman—Singer approach,
their analysis allowed for possible heterogeneity. This find-
ing illustrates that Simpson’s paradox, described earlier in
a simple situation, may generalize extensively. Other counter-
intuitive demographic consequences of unobserved heter-
ogeneity in death rates were described by Vaupel and Yashin
(1985).

Business statistics provide some interesting examples of
Simpson’s paradox. The overall subscription renewal rate
of a magazine increased from one month to the next, but
the renewal rate in each of five categories of subscriptions
declined (Wagner 1982). The federal income tax rate for
taxable income tax returns in each of five categories of
adjusted gross income declined from 1974 to 1978, but
(because of category creep) the overall tax rate increased
(Wagner 1982). In the Stalcup Paper Cup case of the Har-
vard Business School, unit costs for each of two products
increased from one period to the next when indirect costs
were allocated on the basis of direct labor dollars; but when
indirect costs were allocated on the basis of the weight of
each product, the unit costs of both products decreased
(Sunder 1983).

4. AN UNCERTAINTY PRINCIPLE FOR
DEMOGRAPHIC COMPARISONS

Kruskal (1977) and Lindley and Novick (1981, p. 53)
noticed that Simpson’s paradox can apply recursively and
that the direction of the association (e.g., of sex with prob-
ability of death, recovery, or admission) evident at the most
refined level of analysis may depend on which, and how
many, variables are chosen for stratification. Dawid (1979)



further pointed out that the assumption that only sex affects
the probability of interest “could be examined by introduc-
ing more covariates, but at some state this process must
stop, leaving a weak link at the very beginning of the chain
of inference, which can only be reinforced by the statisti-
cian’s informed judgement” (p. 7).

The uncertainty principle I now present, arrived at in-
dependently of Kruskal, Lindley and Novick, and Dawid,
adds to their insights one elementary quantitative observa-
tion: when, as a result of repeated stratification, the groups
being compared become too small, possible differences be-
tween them in the probability, rate, or measurement of in-
terest may be swamped by statistical fluctuations.

First, I give a concrete example. Though the female crude
death rate of Costa Rica is less than that of Sweden, the
death rate of women aged 50-54 in Costa Rica exceeds that
in Sweden. But the age-specific death rate of women aged
50-54 may be viewed as the crude rate for that particular
age group. Suppose that those women were stratified ac-
cording to their smoking habits into those who had never
smoked tobacco and those who had. The available data do
not exclude the possibility that within each smoking cate-
gory, the age- and smoking-specific death rates were lower
in Costa Rica than in Sweden. Then stratify each age-smok-
ing group into two alcohol-use groups, normal and exces-
sive. Though age- and smoking-specific rates might be lower
in Costa Rica than in Sweden, age-, smoking-, and alcohol-
specific rates might be lower in Sweden than in Costa Rica,
and so on. With each successive stratification of an existing
classification by an additional variable that affects mortality,
the mortality comparison between two countries may shift
from favoring one country to the other and then shift back
again with further stratification.

Refinements in comparing the mortality rates of two coun-
tries must end when the numbers of people in the individual
cells being compared are so small that substantively im-
portant differences in mortality rates cannot be detected with
acceptable power.

To avoid being fooled by unrecognized confounding var-
iables, one should control the comparisons between coun-
tries A and B by matching as many of the characteristics of
the comparison groups as possible. (Randomization is not
an option available to demographers.) The greater the num-
ber of characteristics specified, the smaller the sizes of the
comparison groups.

To avoid missing a difference in mortality between groups,
one should make the test for differences as powerful as
possible. Given a fixed difference in the underlying force
of mortality, the probability of detecting that difference
increases with the sizes of the comparison groups. The greater
the power desired, the greater the necessary size of the
comparison groups.

I now describe quantitatively the constraints governing
these conflicting goals under some idealized assumptions.
Suppose that countries A and B each have populations of
size N. Since Simpson’s paradox requires different propor-
tions of subgroups in the two populations being compared,
suppose that each mortality-related characteristic that is used
to specify comparison groups divides each country’s pop-
ulation into two unequal groups. For simplicity, suppose

that some characteristic (e.g., smoking) divides population
A in the proportions 1:3 and population B in the proportions
3:1 and another characteristic (e.g., regular exercise) divides
population A in the proportions 3:1 and population B in the
proportions 1:3. Let C be the number of characteristics we
consider, and (for convenience later) take C to be even.
Suppose that within each population all C characteristics
are mutually orthogonal, that is, that within any subgroup
defined by some previously given characteristics, an addi-
tional characteristic splits the subgroup in the proportions
1:3 or 3:1. Let m be the number of individuals in each of
two comparison groups that are specified by an even number
C of characteristics, and let half of these characteristics,
namely C/2 of them, divide population A in the proportions
1:3 and the other C/2 characteristics divide population A in
the proportions 3:1. Then m = N[(¥)(V4)]<.

Instead of using death rates, it is convenient for statistical
purposes to use probabilities of death, which are estimated
as the numbers of deaths during a year divided by the pop-
ulation at risk of death at the beginning of the year. Let p;
be the probability of death in country i, i = 1 (4), 2 (B),
and let ¢; = 1 — p;. To detect a difference d = p, — p;
in the probability of death using a two-tailed significance
test at the a level with probability P, the minimum number
n of individuals in each of two comparison groups (e.g.,
see Snedecor and Cochran 1967, p. 222) is

n = K(p\g, + pgr)d 2,

where K = (Z, + Z,,-p)* and the probability that the
absolute value of a unit normal variate will be greater than
Z,is a. '

Then the maximum number C of characteristics that can
be used to specify two comparison groups and the minimum
difference d in probabilities of death that can be detected
are constrained by the inequality

m=n or NCh6)? = K(pq, + pgz)id:. (1)

When the minimum difference d is small, the size n of each
comparison group must be large, so the number C of char-
acteristics used to stratify cannot be large. Conversely when
C is large, m and therefore n must be small, so d must be
large. [There are various other tests, besides the one in
Snedecor and Cochran (1967, p. 222), for detecting a dif-
ference in proportions, but none of them can escape an
inequality analogous to (1).]

To give a numerical illustration of (1), let N = 1,200,000,
the approximate population of Costa Rica in 1960. Suppose
that mortality is believed to be affected by eight dichotomous
characteristics (sex, rural or urban location, smoking habits,
drinking habits, income, education, marital status, and
weight). Then the size of each comparison group is 1,483
people. Suppose that I want to have a probability of .9 of
detecting a difference in either direction between two com-
parison groups and I want the difference to be significant
at the 1% level. Then K = 14.88 (Snedecor and Cochran
1967, p. 113). For an annual probability of death p; = .01,
which is typical of middle age, the minimum detectable
difference would be d < — .01 or d > .02. Thus the annual
probability of death in the comparison group would have to
be p, < 0, which is impossible, or p, > .03.
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In Costa Rica in 1960, the annual probability of death
for males aged 30-34 was .009893, and the corresponding
rate in Sweden in 1958-1962 was .006525, according to
Keyfitz and Flieger (1968). In this hypothetical example,
if two groups of 1,483 people each were repeatedly drawn,
one from a population with the Costa Rican probability of
death and one from a population with the Swedish proba-
bility of death, the difference in probability of death would
not be detectable by a significance test at the 1% level in
90% of the samples. Similarly, the annual probability of
death for Costa Rican females aged 30-34 was .011445,
and the corresponding Swedish annual probability of death
was .003676. This difference is also too small to be detected
by a significance test at the 1% level in 90% of repeated
samples, with each comparison group of size 1,483.

The unrealistic assumptions used to derive the preceding
inequality (e.g., that each stratification orthogonally splits
the population in the proportions 1:3 or 3:1 and that each
comparison group in populations A and B is of the same
size) can easily be removed. At the cost of more complicated
expressions, an uncertainty principle appropriate to a par-
ticular real comparison can be derived using the same ideas.
What matters is not the specific formulas in (1) but the
general conflict between the control and the power of com-
parisons that the inequality illustrates.

The inequality (1) constrains inferences about a single
pair of matched comparison groups. It limits the precision
of answers to the second elementary question posed in the
Introduction. To compare a given individual’s mortality risks
in country A and country B, one seeks a single pair of
comparison groups that share as many as possible of that
individual’s characteristics.

To answer the first elementary question posed in the In-
troduction, that is, to compare the mortality risks of country
A and country B, information from all strata should be used.
Various summary statistics or procedures for simultaneous
inference are possible. To take one illustrative example,
suppose that in the jth stratum, j = 1, 2, ..., 2€, the
significance level of a test for a difference between the two
comparison groups in the probability of death is ;. Assum-
ing independence among strata in mortality differences, the
summary statistic ¢ = —22; In «;, originally proposed by
Fisher, has the distribution of x? with 2€*! df. Gill (1978,
pp. 75-76) derived Fisher’s test statistic and reviewed sub-
sequent analysis of it as well as alternative procedures. He
observed that “if the average of the «a; exceeds approxi-
mately 0.3, then combined significance [a value of g with
a tail probability much less than 0.3] cannot be achieved

. ,1.e., strong evidence cannot be obtained by combining
bits of rather weak evidence” (p. 76). If stratification re-
duces the sizes of comparison groups far enough and the
differences between countries within strata are small enough,
even simultaneous test procedures will not recover signif-
icant evidence of a difference between countries in the prob-
ability of death.

Other approaches to comparing the mortality of two pop-
ulations do not escape from analogous uncertainty con-
straints. For example, if contingency tables are used, an
increase in the number of dimensions implies a decrease in
the number of individuals counted within each cell of the
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table. If proportional hazard models are used, increasing
the number and refinement of covariates decreases the pos-
sibility of comparing the assumed underlying common haz-
ard function with that of any of the subgroups specified by
the covariates, because the subgroups become too small.
Related uncertainty principles for more complicated models
may be developed by using the approach of Heckman and
Singer (1982a,b).

5. THE UNISEX ISSUE

Comparing the mortality of the populations of two coun-
tries does not differ in substance from comparing the mor-
tality of any two arbitrarily defined populations. The preceding
argument shows that the subgroup-specific and overall mor-
tality risks of population A cannot reliably be distinguished
from those of population B if so many stratifying variables
affect mortality that too few individuals belong to the
subgroups being compared and the probabilities of death in
the subgroups differ between A and B by too little. In this
case, whether A or B is seen as having better mortality risks
could depend in an arbitrary way on how many stratifying
variables are specified.

We now leave the realm of elementary calculations, where
facts are clear, to enter the realm of interpretation, where
reasonable people may differ.

According to the Teachers Insurance and Annuity As-
sociation—College Retirement Equities Fund (TIAA-CREF;
1983), “The [unisex] issue is whether the use of mortality
tables that reflect the differences in life expectancy between
men and women will be prohibited, required, or left as one
of several approaches to determining annuity income under
pension and TDA [tax-deferred annuity] plans” (p. 7).

A background press release (TIAA—CREF 1980) ex-
plained:

At issue in the controversy is whether Title VII of the Civil Rights Act of
1964 and/or the Equal Pay Act are violated by the use of *‘sex-distinct”
mortality tables that reflect known differences in the life expectancies of
men and women. One result of using such tables is that women receive
somewhat lower monthly pension benefits than similarly situated men under
single-life retirement income options, because women live longer on av-
erage and therefore receive more monthly payments than men of the same
age. (p. 2)

The U.S. Supreme Court (1983) ruled that Title VII of
the Equal Rights Act of 1964 forbids employers from of-
fering as a privilege of employment any retirement annuity
plan, whether operated by the employer or by a third party
under contract with the employer, that does not give men
and women equal monthly retirement payments for equal
contributions made after August 1, 1983. The Court noted:

No insurance company has been joined as a defendant, and our judgment
will in no way preclude any insurance company from offering annuity
benefits that are calculated on the basis of sex-segregated actuarial tables.
All that is at issue in this case is an employment practice: the practice of
offering a male employee the opportunity to obtain greater monthly annuity
benefits than could be obtained by a similarly situated female employee.
(p. 14, footnote 17)

The Court did not rule out employees’ accumulating tax-
deferred withholdings from income under an employer’s
plan, taking a lump-sum payment on retirement, and buying
a sex-segregated annuity on the open market.



The Court had ruled in 1978 that when pension benefits
are set at the same level for men and women in a retirement
plan, an employer may not require larger contributions from
women. This earlier ruling, which governs so-called “de-
fined benefit plans,” and the 1983 ruling, which governs
“defined contribution plans,” together settled the unisex
issue for employers.

In 1983 the U.S. House of Representatives and Senate
considered (e.g., U.S. Congress 1983) bills “to prohibit
discrimination in insurance on the basis of race, color, re-
ligion, sex, or national origin” (H. R. 100) and *“to promote
interstate commerce by prohibiting discrimination in the
writing and selling of insurance contracts” (S. 372). The
bills did not pass and as of May 16, 1985, were not before
the Congress. Is additional legislation to prevent insurers
from selling annuities based on sex-segregated actuarial ta-
bles reasonable or desirable?

The Fourteenth Amendment of the U.S. Constitution, in
guaranteeing to all persons equal protection of the laws, has
been interpreted to require “that those who are similarly
situated be similarly treated” (Tussman and tenBroek 1949,
p. 344). Here similarly situated is to be defined with respect
to the purpose of the law (Tussman and tenBroek 1949). If
new laws are intended to assure “fairness” in the criteria
according to which the prices of insurance are set, then the
acceptability of criteria (such as sex, race, or age) is largely
influenced by social and political judgments of what is “fair.”
But these judgments seem subject to influence by scientific
and statistical findings. For example, if as has been claimed,
nonsmoking American men and women have identical life
expectancies (apart from deaths from accidents, suicide, and
homicide), it would seem very difficult to defend charging
male and female nonsmokers different rates because more
men than women smoke. In the other direction, the absence
of information is less persuasive: judgments of fairness might
forbid insurance premium rates that differ by sex even if
extensive stratification on other variables failed to explain
sex differences in mortality.

It has been objected that if insurers are not permitted to
use sex-distinct mortality tables, why should they be per-
mitted to use age-specific mortality tables? According to
this argument, both sex and age are biologically determined
variables that have measurable effects on mortality, and
since it seems absurd to disregard age, it would seem equally
absurd to disregard sex.

One response to this argument is that insurers sometimes
ignore age or use extremely broad age classes in setting
premiums, for example, when health insurance premiums
are set on the basis of prior health history, or increase with
age only for individuals over 50. This shows that under
certain circumstances, age is not a necessary variable. Even
if sex is like age, sex need not necessarily be considered.

A second response to this argument is that age is not like
sex because an individual’s age changes over time, whereas
sex does not (ordinarily).

Another issue that has been proposed as relevant to the
unisex issue is whether the observed mortality differences
between males and females are biologically determined or
are consequences of cultural, social, and behavioral traits
for which biological sex is a surrogate but not intrinsically

responsible in some sense. Those who raise this issue argue
that if the sex differences in mortality are primarily biolog-
ically determined, then sex-distinct mortality tables should
be used, but if the sex differences in mortality are not pri-
marily biologically determined, then sex-distinct mortality
tables should not be used. [In most, but far from all, non-
human animal species in which the survival of males and
females has been compared, the females survive better. But
the difference in survival between the sexes can be greatly
influenced by changes in the environment (MacArthur and
Baillie 1932; Comfort 1979, pp. 163-167).]

One problem with raising this issue of biological deter-
mination is that it asks a question that is very difficult to
define precisely and nearly impossible to answer persua-
sively.

A second problem with this issue is that it has not been
necessary to answer the analogous question regarding bio-
logical versus cultural determination of mortality differences
between “races” (aside from the fact that what race a person
belongs to in this country is much more a social than a
biological question). A social decision has been made that
race-distinct mortality tables will not be used for insurance,
although the race- and sex-distinct tables published by the
U.S. National Center for Health Statistics are used for a
variety of other purposes. For employers, the U.S. Supreme
Court (1983) ruled, “if it would be unlawful to use race-
based actuarial tables, it must also be unlawful to use sex-
based tables” (p. 9). For insurers, a social decision, one
way or the other, could equally be reached with respect to
the use of sex-distinct mortality tables without resolving the
question of biological versus cultural determination.

The decision to permit or forbid sex-distinct actuarial
tables, with or without other stratifying variables, could be
enlightened by research in a combination of statistical de-
mography and economics. What is needed in statistical de-
mography is a rank ordering of variables (let us suppose
dichotomous variables, for simplicity) according to their
ability to discriminate mortality, conditional on the sub-
groupings higher in the rank ordering. For example, suppose
that smoking habits (never smoked vs. ever smoked) are
the best single discriminator of life expectancy at some age,
that weight is the best discriminator, conditional on smok-
ing, that sex is the best discriminator, conditional on smok-
ing and weight, and so on. It would then be useful to compare
quantitatively both the costs for insurers and insureds of
measuring reliably the stratifying variables (e.g., smoking,
weight, sex, etc.) and the gains (or losses) of charging more
risk-specific premiums for more risk-homogeneous groups
according to, for example, smoking only, or smoking and
weight, or smoking, weight, and sex, and so forth. This
combination of economic and demographic analysis could,
in principle, give a revised order of merit and a quantitative
estimate of merit for potential stratifying variables. Carrying
out this program in a convincing way may not be easy
(Kruskal 1984).

If it turned out that sex stood by itself at the head of the
ordering of stratifying variables, not nearly approached in
merit by any other variable, then it would be possible to
argue for the economic and practical sense of using only
sex as a stratifying variable for actuarial tables. If it turned
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out that sex stood in the middle of several influential var-
iables, all of high merit, it would be possible to argue in
favor of using sex as one among several stratifying char-
acteristics. If sex turned out to have little merit as a strat-
ifying variable, the use of only sex in actuarial tables could
hardly be defended.

According to a letter to The Washington Post from Con-
gressman John D. Dingell,

[There] is a greater mortality differential between Mormons and non-
Mormons, between whites and blacks, between Jews and non-Jews at older
ages, between smokers and nonsmokers, between residents of Hawaii and
residents of the District of Columbia, than there is between males and
females. All of these, except sex, are ignored in rate and benefit classi-
fication for annuities. (U.S. Congress, House 1983, p. 52)

This intriguing list, if confirmed, is a beginning but not a
full response to the program of research just proposed.

To summarize the argument: Sex is only one of a number
of characteristics of individuals and groups that appear to
affect mortality and life expectancy. The decision to permit
or forbid the use of sex-distinct actuarial tables in the in-
surance industry does not hinge on an analogy with the use
of age or on whether sex differences in mortality or mot-
bidity are biologically determined. Rather, the decision rests
ultimately on contemporary values of fairness, and these
values can be constructively influenced by demographic and
economic analyses that do not appear to have been done
yet. Such analyses could show whether sex is the sole strat-
ifying variable of demographic and economic merit, one of
several such variables, or of negligible merit as a stratifying
variable.

In the absence of reasonable attempts to carry out such
demographic and economic analyses, the decision to stratify
by sex alone is arbitrary. The use of sex alone, apart from
age, fails to recognize that an apparent advantage in mor-
tality of one sex over the other may well be reversed or
eliminated on further stratification.

APPENDIX: DEMOGRAPHIC COMPARISONS
IN WHICH SIMPSON’S PARADOX
CANNOT OCCUR

Robert Parke (personal communication, March 29, 1985)
asked whether Simpson’s paradox could occur in comparing
age-specific and crude death rates of two stationary popu-
lations. It cannot. If u,(x), the force of mortality at age x
in population A, is greater than uz(x) for every age x, then
d4, the crude death rate in population A, must exceed dg.

Proof. Let l,(x) be the fraction of a birth cohort in
population A that survives to age x. Thus [,(0) = 1. Then
a(x) > pg(x) for all x implies that

| att e > [ gt a

0 0

for all x > 0, which implies that

lL(x) = exp(— fo palt) dt) < lglx) = exp(— fo pp(t) dt)

for all x > 0. Let ¢4 be the expectation of life at birth in
population A. Then
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ey = folA(x) dx < eg = LIB(X) dx

sod, = lley > dg = l/eg. This proof shows that if p,(x)
= ug(x) for all x, then d, = dj, and if in addition u,(x) >
pp(x) over any interval of x with positive length, then d, > dp.

If the forces of mortality in stable populations A and B
satisfy p,(x) = pg(x) + &, where ¢ is independent of age
(a “neutral” change in mortality; see Keyfitz 1968, pp. 187-
188), but the schedules of fertility in A and B are identical,
then again Simpson’s paradox cannot arise because d, =
dg + e

Proof. The stable fraction of the population between
age x and x + dx is the same in both populations, c,(x) dx
= cp(x) dx (Keyfitz 1968, p. 188). Since the crude death
rate is [ o c(x) m(x) dx (Keyfitz 1968, p. 172), it follows that

dy

fo calx) pa(x) dx = J; cp(®)[up(x) + €] dx

o

L cp(x) pp(x) dx + EJ; cg(x) dx = dg + €.

[Received September 1983. Revised May 1985.]
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