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Arguments from the comparative statics of populations with fixed vital rates 
are of limited use in studying age-structured populations subject to stochastically 
varying vital rates. In an age-structured population that experiences a sequence 
of independently and identically distributed Leslie matrices, the expectation 
of the Malthusian parameters of the Leslie matrices has no exact interpretation 
either as the ensemble average of the long-run rate of growth of each sample 
path of the population (Eq. (3)) or as the long-run rate of growth of the ensemble 
average of total population size (Eq. (4)). On the other hand, the Malthusian 
parameter of the expectation of a sequence of Leslie matrices is exactly the 
logarithm of the finite growth rate of the ensemble average of total population 
size when Leslie matrices are independently and identically distributed (though 
not in general when Leslie matrices are sequentially dependent). These ob- 
servations appear to contradict the claims of a recent study using computer 
simulation of age-structured populations with stochastically varying vital rates. 

In demography, the intrinsic rate of natural increase or Malthusian parameter 
r summarizes the long-term or equilibrium growth rate of certain populations. 
A single-sex closed population with fixed age-specific birth and death rates 
will have total numbers proportional to eTt for large values of time t. Though r 
is an implicit function of a population's vital rates and not trivial to calculate 
numerically in any given instance, it has been extensively studied because of its 
virtues as a summary measure of growth rate. 

It  is entirely natural to try to extend the use of r to biological and demographic 
models other than that from which it was derived. Such efforts have been 
successful for single-type populations, that is, those without different age classes 
(Lewontin and Cohen, 1969). 

The purpose of this note is to discuss the long-run growth rates of age- 
structured populations with stochastically varying vital rates, and the relations 
of these rates to r. 

Let us say that an n x n nonnegative matrix L with elements Lij is in Leslie 
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form if every element L,, of the first row and every element L,+,,j of the sub- 
diagonal is positive, i = 1 ,..., n; j = 1 ,..., n - 1, and all remaining elements 
are 0. 

In the theory of age-structured populations without migration, matrices in 
Leslie form are used to project a vector that describes an age census from one 
point in discrete time to the next. The elements of the first row of a matrix in 
Leslie form are interpreted as age-specific effective fertility rates. The elements of 
the subdiagonal are interpreted as age-specific survival proportions. 

If L is in Leslie form, then by the Perron-Frobenius theorem the eigenvalue 
p of L which is largest in modulus is real and positive. Boyce (1977) calls p the 
"finite growth rate." He calls r = log, p the "Malthusian parameter" of L. 
(All logarithms in this paper are to the base e.) 

On the basis of computer simulations, Boyce (1977) conjectures that the 
finite growth rate of population size estimated by least squares when populations 
are projected by independently and identically distributed matrices in Leslie 
form is the geometric mean of the finite growth rates of the matrices that occur 
in the projection. He also attempts to justify a conjecture that increasing variation 
in elements of L lowers a measure of long-run growth under stochastic dynamics, 
by facts from comparative statics about the behavior of p as a function of 
elements of L. In Section 2, we consider the relation between his and other 
observations about comparative statics. In Section 3, we examine the main 
question of the paper: what can facts from the comparative statics of age- 
structured populations with fixed vital rates tell about the long-run growth 
rates for age-structured populations with stochastic dynamics? In Section 4 
we present a numerical example which supports some of the claims in Section 3. 

The study of the behavior of p or r, which are equilibrium values of growth 
rates, as functions of the age-specific vital rates, which are specified as parameters, 
is an example of comparative statics in demography. 

"It is the task of comparative statics to show the determination of the equili- 
brium values of given variables (unknowns) under postulated conditions 
(functional relationships) with various data (parameters) being specified" 
(Samuelson, 1965, p. 257). 

In this section we discuss some recent and new results in comparative statics. 
In  the next section we discuss the possible uses of these results in analyzing 
stochastic dynamics. 

We recall some definitions. I f f  is a real function of a positive real variable x 
such that the second derivative f "(x) exists at all x > 0, f is convex at x if and 
only iff "(x) 2 0. f is concave at x if and only iff  "(x) < 0. If these two in- 
equalities are strict, then f is strictly convex, or strictly concave, at x. We shall 
say that f (x) is (strictly) convex iff is (strictly) convex at every positive x. 
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If A is a 2 x 2 matrix in Leslie form, 

Boyce (1977, pp. 370-371) shows that r is a strictly concave function of a, 
elements d = 0 and b and c of A being held constant. This result in comparative 
statics compares the limiting properties of different populations. In each popula- 
tion the vital rates, or elements of A, are held constant in time. 

While r is a strictly concave function of a in a 2 x 2 matrix in Leslie form, 
.p is a strictly convex function of a (Cohen, 1978, Theorem 3). 

For comparative statics, with fixed vital rates in each population, which 
function, p or r, is the more natural measure of the limiting growth rate as a 
function of the elements of the Leslie matrix? Given the population, the con- 
vexity or concavity (if any) of an acceptable measure of growth rate should be 
the same regardless of the number of age classes used to describe the population, 
since the number of age classes is usually chosen for the convenience of the 
observer. 

For any n >, 2, the dominant eigenvalue p of a matrix L in Leslie form is 
a strictly convex function of Lll , all other elements being held constant (Cohen, 
1978, Corollary 5). On the other hand, it is not true that r is a concave function 
of Lll for every n >, 2. Specifically, let 

By r(x) we mean the value of r when Lll = x.  Then r(0.1) = -0.69315, 
r(0.2) = -0.60056, and r(0.3) = -0.50550. Since (r(0.1) + r(0.3))/2 > r(0.2), 
r is not a concave function of Lll in general, even for n = 3. Thus in general 
there is no "inherent concavity of r as a function" (Boyce, 1977, p. 368) of an 
arbitrary positive element of a matrix in Leslie form, though concavity may be 
observed in special cases. 

Boyce (1977) asserts correctly that r is a concave function of each off-diagonal 
element b and c in a 2 x 2 matrix in Leslie form when the remaining elements 
are held constant. This concavity does not generalize to larger matrices in Leslie 
form. Daley (1979) derives a necessary and sufficient condition for r to be a 
concave function of each element of a matrix in Leslie form, all other elements 
held constant. 

It  is thus not safe to assume that results about 2 x 2 nonnegative matrices 
generalize to n x n nonnegative matrices. Daley (1979) independently makes 
the same point. The 2 x 2 case is worth studying mainly as a source of con- 
jectures about n x n nonnegative matrices or n x n matrices in Leslie form. 
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These caveats apply not only to Boyce's results, but also to the results on 
comparative statics which we now state. 

Recall that a 2 x 2 matrix A in Leslie form, i.e., with d = 0, a, b, c > 0, 
must have two real eigenvalues, p and (say) T, where T is always negative and 
p + T = a > 0. In a general n x n nonnegative matrix, no eigenvalue other than 
the dominant one need be real. 

THEOREM 1. In a 2 x 2 nonnegative matrix A, when all other elements are 
constant, the second e+envalue T is (i) an increasing, (ii) concave function of a ;  
(iii) a decreasing, (iv) convex function of either off-diagonal element. When A is in 
Leslie form, (i) to (iv) hold strictly. 

Since the eigenvalues of A are identical to those of the real symmetric matrix 

Theorem l(ii) follows from the proof by Lax (1958, p. 182) that the smallest 
eigenvalue of a real symmetric matrix is a concave matrix function. 

The positive ratio -TIP measures the rate of convergence of the population's 
age structure to its stable limit. The smaller the ratio --TIP is, the more rapidly 
any initial age structure converges to stability under the action of A. 

THEOREM 2. In  a 2 x 2 matrix A in Leslie form, when all other matrix 
elements are constant, -TIP is (i) a strictly decreasing, (ii) strictly convex function 
of a ;  and (iii) a strictly increasing, (iv) strictly concave function of either off-diagonal 
element. 

Theorems 1 and 2 may be proved by explicit elementary calculations, as in 
Boyce (1977). 

Consider a closed, single-sex age-structured population whose vital rates vary 
in time according to some stochastic process. We exclude from consideration 
the binomial variability in numbers of actual births and deaths conditional on 
given vital rates. This source of variability is of primary concern in the theory 
of multitype branching processes. We also ignore sampling error that may arise 
from the need to estimate the vital rates observed at each time. We thus assume, 
for example, that if there are exactly y,(t, w) individuals in the ith age class at 
time t, there will be exactly L,+l,i(t + 1, w) y,(t, w) individuals in age class i + 1 
at time t + 1, i = 1 ,..., n - 1, whether or not y,(t, w) and Li+l,i(t + 1, w) are 
integers. Here w refers to a particular realization or sample path of the stochastic 
process that produces the vital rates. 
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By ignoring the variability in births and deaths conditional on given vital rates 
as well as the sampling error in estimates of the vital rates, we do not assert that 
these two sources of variability are insignificant in reality. Our purpose rather is 
to isolate and to study the effects of variations in the vital rates themselves. 

Suppose (D. J. Daley, personal communication, 21 June 1978) "a wildlife 
authority observes a Leslie matrix [L(t, wl)] year by year, [t = 1, 2, 3, ...I and 
year by year it computes its current estimate of the population growth rate... . 
It  matters that the procedure used in this estimation should be roughly un- 
biassed so that the controls are 'correct."' (My insertions are in brackets.) Here 
L(t, w,) refers to the Leslie matrix observed at time t in one particular region 
w, ; a neighboring park (or another computer simulation with the same instruc- 
tions but different random numbers) might have a different sequence of observed 
Leslie matrices L(t, w,) though the stochastic process governing successive 
Leslie matrices were the same. 

After T years of observation, the wildlife management authority might estimate 
the long-run growth rate of the population by one of two statistics: the Malthu- 
sian parameter of the sample average of the observed Leslie matrices, 

or the sample average of the Malthusian parameters computed from each 
observed Leslie matrix, 

Boyce (1977) points out correctly, for 2 x 2 Leslie matrices, that (2) is 
strictly less than (1) if a single element of L(t, w,) varies over time. This con- 
clusion follows from Jensen's inequality and the concaerity of r as a function of 
individual elements of a 2 x 2 matrix in Leslie form, which Boyce established 
as a fact of comparative statics. 

The main point of this paper is that Boyce's inequality (1) > (2) does not 
necessarily tell anything about the long-run growth rate of the population 
until it is established independently that (1) or (2) estimates some meaningful 
measure of long-run growth rate in a dynamic stochastic model. 

T o  see this point most clearly, define p(E(wl)) and p(wl) by replacing the 
symbol r with the symbol p on both sides of (1) and (2). If the matrices varied 
only in theLll element (denoted by a in the 2 x 2 case), then, because of Jensen's 
inequality and the convexity of p as a function of Lll , one has p(w,) > p(E(wl)) 
(Cohen, 1978). The direction of this inequality is opposite to the direction of 
Boyce's. 

Boyce (1977) assumes that a benighted "population biologist might conclude 
that a population is increasing" because (1) is greater than 0, "where in reality 
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it may be headed for extinction" (p. 369) because (2), based on the same data, 
is less than 0. 

Unfortunately for the latter conclusion, there is a fundamental difference 
between single-type populations and age-structured populations. If a single-type 
population of initial size No at t = 0 has finite growth rate p, at t = 1 and p, 
at time t = 2, then the total population size N, = p,plNo at time t = 2 is the 
same as if the population experienced finite growth rate p, at t = 1 and p, at 
t = 2, because p@, = p,p, . Thus an estimator like (2), as recommended by 
Lewontin and Cohen (1969), is appropriate for a single-type population. 
In an age-structured population, if L, and L, are two Leslie matrices, it is not 

in general true that LlL2 = L2Ll nor that p(L,L,) = p(L,) p(Ll). Empirically 
when Leslie matrices are estimated from the vital rates of various human 
populations, the product p(LT) P(LT-l) ... p(Ll) is a "poor" approximation to 
p(LT ... L,) (Kim and Sykes, 1976, p. 159; see Fig. 5). I n  terms of Malthusian 
parameters, r(L(T, w) -.. L(l,  w ) )  is poorly approximated by Tf(w), where f(w) 
is given by (2). 

T o  understand an age-structured population with varying vital rates, a more 
detailed analysis is required. Let yi(t, w) be the number of individuals in the 
ith age class, i = 1, 2, ..., n at time t of a population subject to stochastically 
varying matrices in Leslie form. Here w labels a sample path, or sequence, 
of matrices chosen by some stochastic process. Let N(t, w) be the total population 
size at time t, N(t, w) = zr=, y,(t, w). The age-structure vector y(t, w) at time t 
is given by y(t, w) = L(t, w) L(t - 1, w) ... L(2, w) L(l,  w) y(0, w). 

There are at least two plausible measures of the long-run growth rate of total 
population size in populations with stochastically varying vital rates(Cohen, 1979): 

log X = lim(l/t) E,(log N(t, w)), 
t-tm 

log p = lim(1 It) log E,JV(t, w), 
t-tm 

where E, is the expectation over all sample paths w, each weighted according to 
the probability assigned by the underlying stochastic process. Under reasonable 
conditions, which are likely to be satisfied in demographic applications, the 
stochastic process and the matrices in Leslie form are such that the limits in 
(3) and (4) exist. Equation (3) is due to Furstenberg and Kesten (1960), who 
denote log X by E. 

It  is worthwhile spelling out the difference between X and p. TO compute A, 
one first calculates the long-run growth rate (l l t)  log N(t, w), as t gets large, 
of each sample path w separately and then averages the growth rates over all 
available sample paths, wildlife areas, or simulations presumed to be governed 
by the same process. Thus X is an average of growth rates, not of population 
sizes. T o  compute p, one first finds the expected population size EJV(t, w) at 
time t and then computes the rate of growth of this average as t gets large. 
Thus p rests on an average of population sizes, not of growth rates. 
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In both (3) and (4), the effect of the initial population size vanishes as t gets 
large. While (1) and (2) are sample statistics, (3) and (4) depend on the under- 
lying stochastic process and its parameters. 

If vital rates are variable, then it follows from the concavity of log and Jensen's 
inequality that X < p. When only a single realization (sample path) of the process 
can be observed, the sample estimates of (3) and (4) obtained by inserting 
observed values in the right-hand sides will be the same. 

If an age-structured population is projected by independently and identically 
distributed matrices in Leslie form as Boyce (1977) assumed, then p equals the 
largest eigenvalue of the expected matrix (Cohen, 1977, p. 467, Corollary 2; the 
corollary is stated in terms of a finite number of possible matrices, but since 
a computer can represent matrices only with finite precision, the corollary covers 
simulations such as Boyce's). When only a single sample path w, is observed, 
as in the biological example which Daley described, a very reasonable sample 
estimator of p is 

The numerical example in Section 4 shows that this procedure could be 
seriously misleading if there is dependence between successive Leslie matrices. 

If the game warden wished to estimate the average growth rate X in an ensemble 
of parks identical to his, even assuming no sequential correlation, he would first 
have to find the stationary probability distribution of the age structure vector 
y(t, w) (assuming such a distribution exists) and apply, conditional on each 
y(t, w), the appropriate distribution of Leslie matrices in order to get an average 
growth rate. 

When successive Leslie matrices are chosen by an aperiodic ergodic finite-state 
Markov chain, the required limit distributions exist. Numerical procedures for 
calculating log X and upper and lower bounds on log X have been described 
(Cohen, 1977, 1979). In examples based not on simulation but on numerical 
solution of exact equations, in general logX # Ew[r(L(w:))], even assuming 
identically and independently distributed Leslie matrices. Thus the measure 
5 in (2) espoused by Boyce (1977), which is the natural estimator of Ew[r(L(w))], 
does not in general estimate either log p or log X in age-structured populations, 
with or without sequential dependence in vital rates. 

Why, then, does Boyce (1977) recommend 5 as a measure of growth rate? 
Boyce argues from simulations in which successive 2 x 2 Leslie matrices are 

identically and independently distributed. "Population trajectories from a 
minimum of 30 simulations (see Fig. 1) were determined by least-squares 
regression utilizing the BMDP package ... [pp. 367-3681. The average growth ' 
rates realized in the population projections summarized in Fig. 1 were precisely 
described by 5, the arithmetic mean of r" [p. 3691. 
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However, at least when Q 2 0, the least-squares estimator of the growth 
parameter Q in an exponential function PeQt may be shown analytically to 
coincide with log p when sufficiently long trajectories are observed (Appendix). 
Since log pis  estimated by (1) > fwhen 2 x 2 Leslie matrices are independently 
and identically distributed, and since at least some sets of Boyce's simulations 
clearly had Q > 0 (his Fig. l), I am unable to understand how r could have 
"precisely described" the results of Boyce's simulations. 

We describe an example based on artificial, but not biologically implausible, 
numbers. Consider a closed, single-sex population with two age classes. At each 
point in discrete time the population is subject to one of three Leslie matrices: 

These three matrices have been chosen so that if the population experienced 
x(l) only, it would eventually decline exponentially. If it experienced x ( ~ )  only, 
it would approach a stationary population. If it experienced x ( ~ )  only, it would 
grow rapidly. 
' Now let P = (pij) be a 3 x 3 row-stochastic matrix. If the population 

experiences Leslie matrix x ' ~ )  at time t, then the probability that the Leslie 
matrix occurring at time t + 1 will be x'j) is pij . Thuspij = P,[L(t + 1, w )  = 
x'j) I L(t, w )  = xu)]. We consider three possible transition matrices P I ,  P", 
and PHI, which we label the L.I.D. case, the forward Markov case, and the 
reverse Markov case. These matrices describe three possible ways a sequence 
of Leslie matrices might be chosen from the set {x(l), x ( ~ ) ,  x'~)}. 

Case I (I.L.D.): Let 

As does Boyce (1977), case 1 assumes there is no sequential correlation among 
successive Leslie matrices. Unlike the examples studied by Boyce (1977), more 
than one element of a Leslie matrix is permitted to vary. This increase in 



STOCHASTIC AGE-STRUCTURED POPULATIONS 167 

generality is clearly more realistic, yet in no way affects our conclusions con- 
cerning the questionable interpretability of f. 

Case I1 (forward Markov): Let 

Pn specifies an ergodic, aperiodic Markov chain with an equilibrium distribution 
given by any row of PI. Thus (P1l)t -t P I .  In the long run the Leslie matrices 
x") occur with the same relative frequencies in case I as in case 11. The difference 
between case I and case I1 is that case I1 allows for the possibility of sequential 
correlation. Partial numerical results for this case have been confirmed by 
simulation previously (Cohen, 1977). 

Case 111 (reversed Markov): Let 

T o  seven decimal places, this is the transition probability matrix that would 
occur if the Markov chain in case I1 were run backward in time. Specifically, if ri 
is the equilibrium probability of x"), given by any element in the ith column 
of PI, then rip:,!' = rjpf:, i, j = 1, 2, 3. The reversed Markov chain has the 
same equilibrium probability distribution as do cases I and I1 (Kemeny and 
Snell, 1960). 

Table I gives the derived parameters which are common to all three cases in 
this example. Table I1 gives the derived parameters which differ among the three 
cases. The numbers in these tables are based, not on simulation, but on numerical 
evaluation of analytically derived expressions. All derived parameters were 
computed with at least seven decimal places of precision and rounded to six 
decimal places for reporting. 

T o  calibrate the computer programs used to obtain these results, examples 
not presented here were analyzed in which the results were known in advance. 
These calibrations did not reveal any unexpected behavior. 

Tables I and 11 deserve comment. (Line (m.n) refers to line n in Table m.) 

(i) The mean Malthusian parameter f given in line (1.6) is not a sample 
estimate based on (2) but is an expectation (the limit of (2) as T -+ w).  Observe 
that f equals neither log p (line (2.2)) nor log h (line (2.4)) in any of the three 
cases. The absolute size of the numerical differences, small in some instances, 
merely reflects the happenstance of the choice of parameters. The point is that f 
has no apparent biological interpretation as a measure of long-run growth 
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TABLE I 

An Artificial Example of an Age-Structured Population with Stochastically Varying 
Vital Rates: Derived Parameters Common to all Three Cases 

Line 

p(xll') = 0.868466, ~ ( x ' ~ ) )  = 1.000000 , p(xta') = 2.095445 

r(xI1)) = -0.141027, r ( ~ ( ~ ) )  = 0.000000 , r ( ~ ( ~ ) )  = 0.739766 

0, = 0.170213, a, = 0.723404, n, = 0.106383 

p(X:, wix(<l) = 1.076971 

r ( t )  = log p(~:_,  7 ,~"))  = 0.074152 

i = X:-, ~ ~ r ( x ( ~ ) )  = 0.054694 

X:,, O, log(1east column sum of xu)) = -0.267478 

X;, rri log(greatest column sum of xu)) = 0.197484 

a p(x")) = spectral radius of x") = "finite growth rate" of x"). 
r(x")) = log ~(x"))  = "Malthusian parameter" of xu). 
ni = equilibrium probability of x"). 
Spectral radius of average Leslie matrix. 

* Malthusian parameter of average Leslie matrix = log of (1.4). 
Mean Malthusian parameter. 

P Lower bound on log h (Cohen, 1979); also a lower bound for P. 
Upper bound on log h (Cohen, 1979); also an upper bound for P. 

TABLE I1 

An Artificial Example of an Age-Structured Population with Stochastically Varying 
Vital Rates: Derived Parameters Differing among the Three Cases 

Case I Case I1 Case I11 
Independently and Forward Reversed 

Line identically distributed Markovian Markovian 

(2.1)" = 1.07697 1 ,  = 1.077178, = 1.060268 

(2.2)b log = 0.074152, log = 0.074344, log = 0.058521 

(2.3)" h1 = 1.049788, A" = 1.057159, A"' = 1.044196 

(2.4)d log h1 = 0.048588, log A" = 0.055585, log A"' = 0.043248 

(2.5)" Varl = 0.033771, Varll = 0.032650, VarlI1 = 0.028433 

a Defined by Eq. (4); computed by Corollary 1 of Cohen (1977, p. 466). 
"og of (2.1). 

Defined by Eq. (3); computed by Eq. (5) of Cohen (1979). 
log of (2.3). 

* Var = variance of log(/] xG'y I I / ( /  y 11) computed with respect to the equilibrium joint 
probability distribution of (x"), y) obtained from Corollary 3(iv) of Cohen (1977, p. 27); 
y = age-structure vector and I Y ll = X),, I yi I. 
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when Leslie matrices are chosen I.I.D. or by a regular Markov chain. Moreover, 
because r depends only on the equilibrium distribution and not on the sequential 
dependence described by P, f is intrinsically incapable of revealing variation 
in X and [L when P varies while keeping the equilibrium distribution fixed. 

(ii) The Malthusian parameter of the average Leslie matrix (line (1.5)) 
is exactly log p in the I.I.D. case, but not when there is Markovian dependence 
(line (2.2)). Under Markovian dependence, the long-run rate of growth of 
average population size may either exceed (case 11) or be less than (case 111) the 
rate of growth of average population size in the I.I.D. case. 

(iii) Similarly, A, the average of the rate of growth of each sample path, 
which in this case is also the almost-sure rate of growth of each sample path 
(line (2.3)), may be larger (case IT) or smaller (case 111) under Markovian depen- 
dence than in the I.I.D. case. 

(iv) Because, in general, Leslie matrices are not commutative, time 
reversal can significantly affect the long-run growth characteristics of an age- 
structured population (compare cases I1 and 111 in Table TI). In this respect, 
among others, an age-structured population differs fundamentally from a single- 
type population. 

It  is hoped that this detailed numerical example will provoke simulations to 
test and verify the results claimed. We call attention to the recommendations 
for reporting computation-based results of Hoaglin and Andrews (1975). 

5. COMPARATIVE STATICS AND STOCHASTIC DYNAMICS 

Comparative statics, developed for analyzing age-structured populations 
subject to fixed vital rates, as well as tools developed for analyzing single-type 
populations subject to varying vital rates, are of limited (though not zero) value 
in understanding age-structured populations subject to stochastically varying 
vital rates. 

Because of the novelty and complexity of the phenomena which arise when 
vital rates vary stochastically in age-structured populations, it may be easier to 
perform simulations than it is to interpret them correctly without the help of 
analytical results. 

The mean Malthusian parameter of an age-structured population subject to 
identically and independently distributed Leslie matrices bears no necessary 
relation to biologically interpretable measures of long-run population growth. 
Measures of long-run growth that do have meaning and are computable are 
available. 
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APPENDIX: LEAST-SQUARES ESTIMATION OF A LONG-RUN GROWTH RATE 

For times t = 0, ..., T, suppose y(t) is the age-structure vector, N(t) = 
2,"_, y,(t) is the total population size, and for t > 0, L(t) is the matrix in Leslie 
form, so that y(t + 1) = L(t + 1) y(t). This is the notation of Section 3 without 
the sample path parameter w. Assume y(0) is a positive constant vector and let 
n ( t )  = 21, [(EL(t))(EL(t - 1)) -.- (EL(1)) y(O)], . E means expected value. 
N(t) is the total population size which would be obtained if the fixed initial age 
structure y(0) were projected to time t by the average of the matrices which occur 
at each time. Assume that, for t > 0, L(t) are independently and identically 
distributed for all t, as in Boyce's (1977) simulations, with a probability density 
function g(L(t)). 

We seek estimators of the parameters P # 0 and Q that will give the least- 
squares fit of the function PeQ' to N(t) treated as data. We proceed formally, 
assuming the existence of all integrals, derivatives, etc. The sum of the squared 
deviations of the data from PeQt is 

Then we seek P and Q which satisfy 0 = aS/aP = aS/aQ. Using the indepen- 
dence of successive matrices, we find 

since every possible value of L(t) is a matrix in Leslie form, EL(t) is primitive, 
so p(EL(t)) > 0. Moreover, p = p(EL(t)), where p is defined in (4) (Cohen, 
1977, p. 467, Corollary 2). Consequently, for some K > 0, 

lim m(t)/pt = K. 
t+m (A4) 

If it were true that, for all t, 

then substituting into (A2) and (A3) and eliminating P and K would give 

Equation (A6) reduces to an identity if Q = log p. 
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Without assuming (A5) for all t, we now use a well-known fact (P6lya and 
Szego, 1972, Sect. 70): Le t  two sequences of real numbers a,, a,, a, ,..., and 
b, , b, , b, ,..., satisfy b, > 0,  n = 0, 1, 2 ,..., lim,,, bj = w, lirn,,, 
an/b, = s. T h e n  limn,, c;=, aj/~;=, bi = s. 

Suppose Q >, 0. If b, = e2Qn, then b, > 0 and  b, + bl + b, $ diverges. 

Let  a, = eQnN n . Then,  by (A4), lirn,,, a,/b, = K lim,,, pt/eQt. From (A2), 
T 3 ) 

P = Ct=o atlCt=o bt = K limt,m(p/eQ)t, o r  

T h e  only finite values of Q and P # 0 consistent with (A7) are P = K and 
Q = log p. 
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