MALARIA IN NIGERIA:
CONSTRAINED CONTINUOUS-TIME MARKOV MODELS FOR DISCRETE-TIME

LONGITUDINAL DATA ON' HUMAN MIXED-SPECIES INFECTIONS
Joel E. cOhenl and Burton Singer

"A thorough prior knowledge of the endemicity of malaria will
be essential in a population which is to receive an acceptable
malaria vaccine."

S. Cohen (1979, p. 340)

"In art as in science there is no delight without the detail,
and it is on details that I have tried to fix the reader's
attention. Let me repeat that unless these are thoroughly
understood and remembered, all 'general ideas' (so easily
acquired, so profitably resold) must necessarily remain but
worn passports allowing their bearers si:ort cuts from one area
of ignorance to another."

V. Nabockov (1972, p. B)

Abstract
A research project on malaria in the Garki district of
northern Nigeria included 8 baseline surveys at approximately
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10 week intervals prior to efforts to control malaria. Using
data from these surveys, we define 4 infection statuses for each
person: uninfected, singly infected with either Plasmodium
malariae (P.m.) or P. falciparum (P.f.), and jointly infected
with both species. We study the 4 X 4 estimated tramsition
probability matrices P(s,t) from survey s to survey t during
the 8 baseline surveys. We find that the infection histories
are representable as a time-series of time-homogeneous
continuous-time Markov chains with intensity matrices of a
special form, called model Q. This model excludes the
possibility that both P.f, and P.m. would either be gained or
lost simultaneously. The model makes it possible for the first
time to disentangle the transition intensities of one species
when a second species is absent from the transition intensities
of the first species when the second species is present.

A special form of Q, called model M, which is formally
equivalent to Lotka-Volterra competition equations linearized
near equilibrium, did not describe the full set of transition
tables. We infer that the Lotka-Volterra equations should not
be regarded as a general model for the interaction of malarial
species in human populations.

The variation of the estimated parameters of model Q, as
functions of age and season, is reviewed in detail. A major
finding is that adults are generally better than very young
children in eliminating infections from peripheral blood.
Adults appear to be less susceptible than children only to
infection with P.f. when P.m. is absent.

Possible non-Markovian dependence between events
separated by at least one survey is not modeled in our time-
series representation. We present evidence that initially
uninfected individuals remain uninfected, and initially doubly
infected individuals remain doubly infected, with higher

frequency than would be predicted from the Markovian assumption.
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1. Intreduction

Malaria remains one of man's most durable and lethal
parasitic diseases, From 1972 to 1976, the number of confirmed
autochthonous (i.e., not imported) cases of malaria in the
world increased from 3,251,000 to 7,517,000, an increase of
131%. These figures omit China, Kampuchea and Vietnam, for
which figures are not available, and all of Africa, for which
the figures are unreliable (Director-General of WHO, 1978,
P. 226). In Europe, the number of autochthonous cases increased
from 21,000 to 39,000 and in The Americas from 284,000 to
379,000. TFor Africa, the estimated number of annual deaths due
to malaria is one million (S. Cohen, 1979, p. 324). By the end
of 1976, "the population of originally malarious areas of the
world was 2,048 million . . . 352 million (17%) were living in
places where no antimalaria measures were undertaken" (Noguer
et al.,, 1978, p. 9).
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An improved understanding of the natural dynamics of
malaria infections in unprotected human populations may provide
a more precise baseline against which the performance of
control measures can be assessed and may suggest critical
points at which the disease could be attacked.

The research project on the epidemiology and control of
" malaria conducted in the Garki District, Kano State, jointly by
the Government of Nigeria and the World Health Organization,
included among its objectives the study of the baseline
epidemiology (Molineaux and Gramiccia, 1979). This project
collected data uniquely suited to test ecological and
evolutionary models of the dynamics of multiple species
infections in unprotected human populations (Cohen, 1970).
Independently of these empirical and theoretical studies,
methods have been developed to analyze longitudinal survey
data, such as those ccllected in Garki, in terms of
continuous-time stochastic models like those proposed for
malaria (Singer and Spilerman, 1976a, 1976b; Singer and Cohen,
in press).

This paper draws together these recent empirical,
theoretical, and methodological developments. The new results
presented here are both methodological and substantive. These

results are summarized in the Discussion, section 10.

2. Materials and Methods

Molineaux and Gramiccia (1979) describe the Garki study
comprehensively. The Garki study had three phases: a baseline
period, a control period, and a follow-up period. The data
discussed in this paper are drawn entirely from the baseline
period. '
During the 18-month baseline period, from November 1970
to May 1972, a previously unprotected human population was

studied without any attempts to interfere with malaria. This
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population lived in a rural district (Garki) of northern
Nigeria, in the West African Sudan savanna. In this region
there is a long dry season and a short wet season. The density
of mosquitoes and the transmission of malaria are low in the
dry season and high in the wet season. Eight village-clusters
(follow-up units, each containing two or more villages or parts
of villages) were surveyed every 10 weeks. Eight of these
surveys fell within the baseline period.

Sixteen villages were included from survey l; 6 more
villages (or sections of villages) were added at survey 5, At
that survey, the 22 villages had 7,423 inhabitants. The
surveys aimed at total coverage, The initial survey included a
nominal de facto census, updated at each survey.

The dates, number of villages, season, and number of
individuals present at each successive pair of baseline surveys

may be summarized as follows:

Approximate Population 1t
Survey date of Number of Season present at both
midpoint* villages surveys n and n+l
1 11-70 16 wet 1514
2 17-2-71 16 dry 1450
3 23-4-71 16 dry 1784
4 30-6-71 16 dry 236k
5 -9~
15-9-71 22 wet 3620
6 6-12-71 22 wet 2720
7 20-2-72 22 dry 2635
8 1-5-72 22 dry

*Dates of surveys 2-8 from Molineaux, Storey, Cohen and Thomas

(in press).

*In addition, there were 2785 individuals from population 2 who

were present at all 8 surveys.
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__ At each survey, a thick blood film was collected from each

individual. 1In collecting a thick blood film, a drop of
blood is drawn, usually from a finger or ear lobe, and spread
in a standardized way on a glass microscope slide. Each film
was linked by a code number to the person's identity and
‘examined microscopically by a standardized procedure. Among
the characteristics recorded from each blood film
examination, the 2 of interest here are the presence or
absence of malarial parasites of the species Plasmodium
malariae (hereafter abbreviated P.m.) and the presence or

absence of a second malarial species Plasmodium falciparum

(abbreviated P.f.). We omit discussion of Plasmodium ovale.

Each individual in a survey has one of 4 states of infection:

State Symbol P.f. P.m.
0 (-,-) absent absent
1 (-,4) absent present
2 (+,~) present absent
3 (+,+) present present

Sometimes we refer to P.m. as species 1 and to P.f. as
species 2. With this convention, for i = 1, 2, an individual
is in state i when he is infected with species i only.

The number of the state corresponding to an infection
status may be computed by replacing - by 0, + by 1 and
interpreting the ordered pair of numerals as a binary integer:
thus (+,-) = 10, = 2.

We adopt the comvention that an individual with a
positive blood smear is infected and that an individual with a
negative blood smear is uninfected. Sampling errors and errors
in diagnosis are discussed by Molimeaux and Gramiccia (1979,
Ch. 5). Aside from these sources of error, an individual with

a negative blood smear may harbor exoerythrocytic forms of the
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. malaria parasite, e.g., in the liver, without parasites in the

peripheral blood. Hence the estimated intensity with which an
“uninfected" individual acquires infection may overstate the
intensity with which a truly uninfected individual acquires

infection, and the estimated intensity with which an infected

_ individual appears to "lose" infection may overstate the true

intensity with which an infected individual loses infection.

We refer to the collection of all individuals who were
present for at least one of the 8 baseline surveys but who were
not present at all of them as population 1. We refer to the
2,785 individuals who were present at all 8 baseline surveys as
population 2. We refer to the combination of populations 1 and
2 as population 3,

Each individual falls into one of 7 age groups,

according to his age at survey 1. These age groups are:

Age group Range of ages (in years)
1 infants (less than 1)
1-4
5-8
9-18
19-28
29-43
44 and older

~ O oW N

The irregular boundaries of these age groups minimize the
effect of age rounding (the tendency of people who are
uncertain of their own age to pick round numbers like §, 10, or
20) and provide greatest detail at the younger ages, where
incidence and prevalence are changing most rapidly.

Let u be the number of any one of the first 7 surveys,
and v be the number of any one of the baseline surveys later

than survey u. There are 28 pairs of surveys (u, v) for which
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u < v. For each pair (u, v) of baseline surveys, for each of
the 3 populations just defined, for each of the 7 age groups,
the data of this study are 4 % 4 tables of transitien
frequencies. Each entry in such a table gives the number of
people who had infection status i at survey u and who
subsequently had infection status j at survey v,
i=o0,1,2,3;j=0,1, 2, 3. For each of the 3 populations,
there are 28 X 7 = 186 such 4 X 4 tables, It is not feasible to
present the data here, We shall present illustrative analyses
of one 4 X 4 transition table and summaries of parallel analyses

of the remaining tables.

3. Mixed-Species Interactions
We conceptualize the infection histories of persons in
each age class as realizations of a 4-state continuous-time
stochastic process {X(t,w), 0 St s 1}, where T is the duration
of the baseline surveys, here approximately 80 weeks, and w is

a sample path, We define the transition rates

= lim E(number of i+j transitions in X(u) during
B s, t)|X(s)=1)/(t-5) (3.1)

pij

for 1 ¥ j, i,j = 0,1,2,3. By suppression of P.m. by P.f., we

mean pOl > Py3 and P3o > plD' On the other hand, we interpret

pOl < p23 and p32 < plo to mean that P.f. enhances P.m.: the

rate of acquisition of P.m. is higher for persons already

positive for P.f. than for those who are negative for P.f., and

an individual positive for P.m. is more likely to become negative

for P.m. in the absence of P.f. than in the presence of P.f.

Similar interpretations ensue for comparisons of P2 with P13

and of p20 with 931 when the roles of P.m. and P.f. are reversed.
Since the data in this study do not allow us to observe

{x(t,w), 0 <t < 1}, we cannot directly measure (3.1). Our only
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recourse is to propose classes of stochastic models to describe
the available data

tij(uA,vA) = number of persons who are in state i at

survey u+l and in state j at survey v+l, (3.2)

where 0 £ u<v <7, and A is the sampling interval between
successive surveys, here approximately 10 weeks. Next, we
ascertain whether any of the proposed models could have
generated (3.2). Then we estimate (3.1) and infer competitive
or cooperative behavior between malarial species by appropriate
comparisons of pij estimated within a model that is not
rejected.

The models we shall consider are 4-state homogeneous,

continuous-time Markov chains with intensity matrices denoted

by
3
R={R: RijZO, i#3, I R;. = 0} (3.3)
We will restrict attention to the sub-set of R defined by
Q=Rn{Q: Q4 =051 0,1,2,3}. (3.4)

The zero elements on the minor diagonal exclude the possibility
that both P.f. and P.m. would either be gained or be lost
simultaneously. Intensity matrices of exactly this form are
considered by Coleman (1964, p. 104, his Fig. 4.5). Within
this class of models, the transition rates (3.1) are the
intensities Qij’ i ¥ j. We also introduce two alternative and
more restrictive specifications of the transition rates (3.4);

namely,

and M__ M

M= . - = . =
M=o dM: My M, = M,N 0213 T M3 Mgt
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and

L=Qn{L:L

~ 01/1'I

23 = Laa/byo 308 Lgp/lyg = Lyy/lagd -

M specifies that the difference in rates of acquisition
of a gi;en species of parasite without--in contrast to with--
the presence of a second species is the same as the difference
in rates of loss of the given species with--in contrast to
without—the presence of the second species. L is a
multiplicative specification of the same idea. The notion of a
multiplicative formulation here is due to Tukey (see S¢renson,
1975, p. 88) although no prior models coincide with L.

This kind of balance between acquisition rates and loss
rates appears in a Markov chain analog of a linearized form of
the Lotka-Volterra equations for competition (Cohen, 1970). In
particular, for a 4-state continuous-time Markov chain with an
intensity matrix M € M, the differential equations that describe
the expected fraction~xl(t) of people infected with P.m. and the
expected fraction x2(t) infected with P.f. are formally identical
to the Lotka-Volterra equations

dxlldt = rlxl(l-axl-uxz)

(3.5)
dx2/dt = r2x2(1-8xl-bx2)

when equations (3.5) are linearized in the neighborhood of the
equilibrium where both species are present.

The constraints that define M and L specify 6-parameter
families of intensity matrices, in ;ontrast to the 8-parameter
family defined by (3-.4). The matrices in ¥ may be represented
as
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-A, A, A A, 0
B cHptAots ° A&
M=
Hy ° UpAytey M-
° Mot nre "My -€mH S

where Ai 20, g 2 0, and Ai Zei 2 “His i=1,2. The

matrices in L may be represented as

-bldl'b2d2 bldl b2d2 0

L. alld1 -b2—a1/d1 0 b2
a2/d2 0 -bl-azld2 bl
0 a, a, -a,-a,

where a; 20, bi 20, di >0,1=1,2.

In these models, suppression of P.m. by P.f. is
represented by € > 0 in M and dl > 1 in L., Suppression of
220 in M and d2 > 1 in L.

If the inequalities are reversed, then the two species reinforce

P.f. by P.m. is represented by ¢

or enhance one another.

To test the hypotheses underlying Q, M and L, we fit each
of the 3 model types to the 4 X 4 tables ;f ;ounts~for each
age class

T((k-1)A, kAa) = (tij((k-l)A, kA)), 1Sk s7, (3.86)
and measure the goodness of fit of members of a single model
class to this time-series of transition counts.

By modeling each of the 4 X 4 tables of counts separately,

we represent the process {X(t,w), 0 S t S T} in the form

X(t,w) = Zk(t,w)l (k-1)AS t<kA, 1<ks7, (3.7)
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where Zk(t,w) is a homogeneous continuous-time Markov chain that
describes transitions only between surveys k and k+l. Possible
non-Markovian dependence between events in X(t,w) separated by
at least one survey is not modeled in the representation (3.7).
The full probability structure of {X(t,w), 0 S t S T} is not
ascertainable from the time-series of tables of counts (3.6),

even when supplemented by the tables
T(ud, vd), 0Su<vs7, withv-uz2. (3.8)

Though our analysis ignores possible dependence among events at
points widely spaced in time, it is the first analysis of ,
mixed-species infections in which the rates of acquisition and
of loss of one species when a second species is absent can be

disentangled from the corresponding rates when a second species

is present.

4, Fitting Models to Data
We assume a priori that the infection histories of

individuals in each age class are independent realizations of
some 4-state continuous-time stochastic process. Thus,
conditional on being in state i at time kA, an individual has
an a priori unknown, multinomial probability pij(kA, (k+1)4),
j = 0,1,2,3, 2'.?:0 pij(') = 1, of being in state j at the next
survey time, (k+1l)A. We estimate pij(') from the transition
counts T(k4A, (k+1)A) using the maximum likelihood estimator

pij = tij()cA, (k+1)A)/ti*(kA) (4.1)
= 3 =
where ti+(kA) = Zj=° tij(kA, (k+1)8), k = 0,1,...,7.

Since the transition matrices of time-homogeneous Markov

chains are of the form
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e(t-s)R (%.2)

(py5(s,1)) = (B(X(t)=3[X(5)=1)) =
where 0 < s S t and R € R (Doob, 1953), we test our hypotheses
about parasite interactions within the class of time-homogeneous
Markov chains by seeking to replace R in (4.2) with a matrix
of the form Q, M, or L, for t-s = A. We measure the goodness
of fit of a model R by

2
€z = -2 I (observed frequency)
e log(frequency predicted by model/observed frequency)
(4.3)

where the summation is over all cells in the & X 4 table
T(kd, (k+1)A) with nonzero observed frequencies (Bishop,

Fienberg and Holland, 1975). The predicted frequencies under
: _ AR s
models Q, M and L are given by (TR)ij = ti+(e )ij for R in

9, M and L, respectively.

For each table of transition counts in each age class
2 2 2
Q'2GH and GL’
respectively., These estimated minimal values of G, and the

we compute a matrix Q, M, and L that minimizes G

corresponding estimated intensity matrices are given in Tables
S5, 6 and 7. The numerical methods used to compute Gf and the
intensity matrices are presented in Appendix 2.

Since Gf has asymptotically, for large predicted
frequencies, the distribution of a X~ variate with degrees of
freedom (d.f.) appropriate to the model being fitted, we can
find the probability, for each class of models, that a worse
agreement between observed and predicted frequencies would
have occurred by chance. These probabilities and an appraisal

of the performance of the models are given in section 7.
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5. A Detailed Example

We now give an example of the analysis of a single 4 x 4
table of data.

Table 1 gives the recorded number of people aged 19 to
28 years old (age group 5) present at both surveys 4 and 5
(population 3) who made each transition from state i = 0, 1, 2,
3 to state j = 0, 1, 2, 3, These data are labelled T (for
transitions).

In each cell of Table 1, beneath each datum T, are 5
predicted frequencies for the same transition. The predicted
frequencies labelled Q, M, and L are computed, as described

previously, from
t, (e )[ h R =
5 j» vhere Q, M, L.

The predicted frequencies labelled 1 and 2 are derived
from models 1 and 2 of Molineaux et al. (in press)., Model 1
assumes complete independence between species in the
transitions from one survey to the next; in the & X & table,
the model has 4 fitted parameters and 8 d.f. Model 2
assumes conditional independence: the transitions of each of
the 2 species of malaria are independent but occur at rates
that depend on the presence or absence of the other species of
malaria. In the 4 X 4 table, model 2 has 8 fitted parameters
and 4 d.f., For details of parameter estimation, see Molineaux
et al. (in press).

Table 1 gives the summary 62 measure of goodness of fit
and d.f. for each model. For these data (though not in
general), all 5 models are acceptable. In the absence of other
information, one would prefer models with the fewest fitted
parameters or greatest d.f. Molineaux et al. (in press)
cbserve that model 1 is not an adequate model in genmeral. 1In
unpublished work, we find that if the entire set of transition
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frequencies is viewed as a large multidimensiomal contingency
table, model 2 is also inadequate. We evaluate Q, M and L in
general in the next section,

Certain comparisons of the models in Table 1 are
possible, Model 2 contains model 1 as a special case. Q
contains both M and L as special cases. Because of these
"hieparchical" relations, it is valid to subtract values of G2
and corresponding d.f. to determine whether a model with fewer
parameters fits significant;.y worse. For example, G: - Gg
= 7.483 - 3.764 = 3.719 = GH-Q with d‘f'H-Q = d.f.), - d.f.Q
=6 -4 = 2. Thus, in this instance, there is no evidence to
favor the 8-parameter Q over the simpler 6-parameter
M. However, Gi_Q = 10.662 - 3,764 = 6.898 with d'f'L—Q =2 is
significant at the 5% level, according to a table of the
xz-dist-pibution. Some people would accept this result as
evidence that L might be worse than Q even though it is simpler
and even though the fit of L is not significantly bad
considered by itself.

Table 2 gives the elements of C = Re(log P), Q. M, and
L. The imaginary part of log P in this instance has every
element less than 10'1“. Thus here no information has been
lost by disregarding the imaginary part of log P. i

Except in the second row (corresponding to state 1), the
elements on the minor diagonal of C are the smallest (in
magnitude) elements of the corresponding row. The requirement
in Q, ¥ and L that the minor diagonal elements be 0 is thus not
Procrustean.

The interval between surveys has been taken as the unit
of time. To convert the entries in Table 2 to rates per day,
divide by the interval between the midpoints of surveys 4 and
5, approximately 77 days.,

By comparing the numerical values in Table 2 with the

corresponding matrix elements in the definitions of the models



Table 1. Transitions in infection state between surveys 4 and 5 for all individuals

aged 19-28 years present at both surveys (population 3): observed and predicted

frequencies

State at
survey 4

(30 June 1971)

0

(p.f.-,P.m.-)

1

(P.f.~,P.m.+)

2

(P.f.+,P.m.~)

Entry

-3

-t X o

State at survey 5 (15 Sept. 1871)

0

(P.f.~,P.n.-)

340

340.1
341.7
347.0
337.5

340.0

21

21.6
20.4
21.4
19.1

21.6

77

77.1
76.0
73.0
76.6

73.5

1

(P.f.-,P.m.+)

14
13.6
13.0
12.2
18.1

14,0

2

(P.f.+,P.m.-)

i
166.3
164.6
160.4
167.4

171.0

8.2
9.1

9.1

103

106.1
105.8
109.1
109.4

106.5

3

(P.f.+,P.m.+)

10.0
12.7
12.3

9.0

(Table 1 continued)

3

(P.f.+,P.m.+)

Model

16

15.2
16.4
18,1
15.4

15.4

Summary measures of fit

GZ

3.764
7.483
10.662
11.846

5.573

x2

3.419
6.170
10.835
12.876

4.658

20

20.2
21.2
20.8
22.0

20.6

d.f.
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Q, M and L, one can find the estimated parameter values. For
o1 © 0.110 and € = "01 - H23 = ~,218. The same

estimate of € is obtained from € F H32 - "10 = 3.086 - 3.304.

The substantive surprise here is that € is negative. The
negative sign of € is the opposite of that expected from the

example, Al = M

linearized Lotka-Volterra competition equations. However,
€, = 0.179 is positive as expected.

Q differs from M only in that there is no requirement
that Qol - Q23 = 032 - °1o’ and no analogous requirement for
€, Further insight into €, may be gaineq by comparing the 2
unconstrained estimates of this interaction parameter from
Q. Since 032 - Qlo = -1.405, the rate of loss of P.m.
when P.f. is absent at the initial survey exceeds the rate of
loss of P.m. when P.f. is present; crudely speaking, the
initial presence of P.f, helps P.m. remain present (a
b1 = 023 = -0.090, the rate
of acquisition of P.m. when P.f, is present slightly exceeds
the rate of gain of P.m, when P.f. is absent (again a
cooperative effect). Thus the initial presence of P.f.

cooperative effect). Also, since Q

consistently promotes the acquisition and reduces the loss of
P.m. in this example.

On the contrary, the presence of P.m. does not have such
a consistent effect on the acquisition and loss of P.f. in this
example. Since Q31 - 020 = =0.142, the rate of loss of P.f.
when P.m. is absent at the initial survey exceeds the rate of
P.f. loss when P.m. is present (a cooperative effect). But
Q02 - 013 = 10,635, so the rate of P.f, acquisition when P.m.
is present initially is less than the rate of P.f. acquisition
vhen P.m. is absent initially (a competitive effect). M has a
positive value of €, because here the competitive effect
dominates the cooperative one.

This discussion illustrates the detailed information

available from a comparison of the parameter estimates of the 3

Table 2. Intensity matrices Q, M and L estimated from the transition frequencies

in Table 1 for all 19-28 year olds present at surveys 4 and 5; C = real part of

log P.
State at
survey 4

(30 June 1971)

[¢]

(P.f.- P.m.-)

1

(P.f.~ ,P.m.+)

2

(P.f.+,P.m.-)

3

(P.f.+,P.m.+)

Entry

State at survey 5 (15 Sept. 1971)

0

(P.f.-,P.m.~)

-0,782
-0.751
-0.723

-0.786

3.028
3.351
3.304

7.205

0.840
0.764
0.734

0.626

-0.049

1

(p.f.-,P.m.+)

0.154
0.116
0.110

0.208

-3.174
-3.351
-3.738

=7.u45)

-0.095

0.828
0.621
0,914

1.469

2

(p.f.+,P.m.-)

0.710
0.635
0.613

0.578

0,357

-1.141
-0.970
-1,063

-1.046

2.216
1.946
3.086

3,561

3

(p.f.+,P.m. 1)

-0.083

-0.211

0,434

0.2u46

0.395
0.206
0.328

0.420

-2.995
-2.567
-4,000

-5.029
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Is Pooling Legitimate?

6
Many of the 4 X 4 transition tables for individuals who

are present at all B baseline surveys (population 2) have some

It would be desirable, when testing

models, to pool these tables with the corresponding tables

cells with small counts.

from the population of persons who missed at least one survey

In this section we investigate whether there

are systematic differences in transition proportions between

these 2 populations.

(population 1).

Columns

tatus from an

on §

in infecti

tions

i

the trans

In columns 1 and 2, the numbers "1" and "2" mean that
in

To this end, consider the numbers in the first line of .

Table 3.
initial survey, number 1, to a final survey, number 2.

We are examining

3, 4, and 5 pertain to all individuals who were initially (that
is, at survey 1 in line 1) infected with both species (in state

3, (+,%)).

These individuals were in one of 4 states at the

We wished to test whether

the proportions in each of the 4 states in population 1

final survey (survey 2 in line 1).

differed significantly from the corresponding proportions in

The numbers in columns 3, 4, and 5 describe the

results of a homogeneity test on a 2 X 4 contingency table that

was constructed as follows.

population 2.

in each

n 1

io
state at the final survey in row 1 of the 2 X 4 table, and the

duals from populat

Starting with the youngest age group (infants, group 1),
ivi

we entered the numbers of ind

corresponding numbers from population 2 in row 2 of the 2 X 4

We then added the numbers

We then observed that at least ome cell in the 2 x 4
table had fewer than 5 individuals,

table.

‘e TEL

of individuals from the next age group; individuals from

population 1 were added to row 1 and from population 2 were

We again observed that at least one cell had

added to row 2.
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fewer than 5 individuals. So we continued adding age groups,
stopping anly when there were no more age groups to add. In
this case, we added all 7 age groups together to obtain a

single 2 X 4 table for individuals who were initially (+,+) .

To assess homogeneity between populations 1 and 2, we
computed the 62 statistic (4.3). In this instance, the
predicted frequencies are those that would be expected supposing
the transition probabilities to be the same in population 1
as in population 2. The numerical value of G2 in this case was
0.883, as shown in column 3. This statistic has in theory the
distribution of a )(2 variate with (in this instance) 3 d.f. as
shown in column 4. The prabability of a greater departure from
homogeneity due to sampling variation alone is 0.830, as shown
in column 5, We find no evidence of a statistically
significant difference between populations 1 and 2 in the
distribution of the final state at survey 2 of the individuals
who were (+,+) at survey 1.

Columns 6, 7, and 8 show the results of the same kind of
homogeneity test for individuals who were initially in state 2,
(+,-), that is, infected with P.f. but not infected with P.m.
In this case, there are 6 d.f., as shown in column 7. This
means that it was possible to partition the 7 age groups into 2
classes, young and old, and to construct 2 X 4 tables for each
class, such that no frequency in either table was less than 5.
There were 3 d.f. for each table separately, and the sum of G2
calculated separately for each 2 X 4 table was 10.632, as shown
in column 6. From the distribution of a )(2 variate with 6 d.f.,
we infer that the probability of a greater departure from
homogeneity due to sampling fluctuation alone is 0.100, as
shown in column 8.

Columns 9, 10, 1l present the corresponding results for
individuals initially in state 1, (-,+), that is, infected with
P.m. but not P.f. Columms 12, 13, and 14 do the same for

MALARIA IN NIGERIA 23

individuals initially in state 0, uninfected with either
species,

Columns 15, 16, and 17 summarize the homogeneity tests
for all 4 initial states. The entry G2 = 11.766 in column 15 is
the sum of the entries in columns 3, 6, 9 and 12. The 15 d.f.
shown in column 16 is the sum of the d.f. in columns 4, 7, 10,
and 13 and is calculated on the assumption that the transitions
made by individuals with different initial starting states are
independent. The probability that a x2 variate with 15 d.f.
would exceed 11,766 is 0.697, given in column 17.

From line 1, we infer that there is no strong evidence
that the transitions observed in population 1 from survey 1l to
survey 2 were different from the transitions observed in
population 2 in the same interval.

The remaining lines of Table 3, except the last line,
report parallel computations for all other possible pairs of
surveys in the baseline period.

Just as the last 3 columns of Table 3 are a summary of
the homogeneity tests according to initial and final survey,
the last line of Table 3 is a summary according to initial
infection state, In column 3, G2 = 91,330 is the sum of the
entries above it; similarly for the values of G2 in columns 6,
9, 12, and 15 and for the d.f. in colums 4, 7, 13, and 16.
The probability that a x2 variate with 87 d.f. would exceed
91,330 is 0.354, shown in column 5. The probability values in
columns 8, 11, 14, and 17 are calculated in the same way.

We now summarize the conclusions drawn from Table 3.
The entry in the lower right corner of Table 3, P = 0.000,
indicates that somewhere there are significant differences
between population 1 and population 2 in the transition
proportions from an initial to a final state. A scan of the
colums 5, 8, 11, and 14, which contain P values for specific

initial states and specific pairs of surveys, shows that all P



Table 4. Distribution of final infection status in individuals initially uninfected,
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24 JOEL E. COHEN AND BURTON SINGER for 6 pairs of surveys in which population 1 (individuals absent from

baseline survey) differs from population 2 (individuals present at all 8 baseline
values swaller than 0,010 appear in column l4, Moreover, in

column 14, only 6 of the 28 P values for specific pairs of surveys)
surveys are less than 0.010. In 5 of these 6 pairs of surveys,

the final survey is either survey 6 or survey 7. In the

Supvey Population Proportions with each final infection state Total
remaining pair of surveys, the final survey is number 5. Thus (-.+) (~,~) individuals
Initial Final (+,%) (+,-) ’ '
populations 1 and 2 differ in the transition proportions of *
individuals who are initially uninfected and who are
subsequently observed during or near the end of the wet season N 5 1 0.021 0,366 0.027 0.587 632
(1971) or the beginning of the dry season (1972). ) 0.016 0.293 0.020 0.671 1115
To show that the transition propartions of initially ’
uninfected individuals in populations 1 and 2 differ only in
the 6 instances with P < 0.01, we find the sum of G and of d.f. N 6 1 0.024  0.336  0.014  0.627 581
for the 28 - 6 = 222remaining comparisons in columns 12 and 13 2 0.022 0.259 0.033 0.685 1115
of Table 3. With G° = 149,99 and d.f. = 123, ’
we find P = 0.049, which is not significant evidence of
heterogeneity. 2 7 1 0.031 0,228  0.025  0.716 aadl
In the 6 sets of transition frequencies where ) 0.020 0.157 0.033 0.790 1427
populations 1 and 2 differ, there is a consistent pattern to
the difference (Table 4). In every case, at the final survey,
the initially uninfected members of population 1 have a higher 3 6 1 0.039 0.358 0.016 0.588 825
probability of being infected with P.f. only (+,-), a higher ) 0.019 0.301 0.031 0.649 1494
prabability of double infection (+,+), and a lower probability
of remaining uninfected (~,-), than do the initially uninfected
members of population 2, Compared to the individuals present 3 7 1% 0.077 0.365 0.021 0.536 233
at all 8 surveys, there is an association between being absent ok 0.04k 0.247 0.021 0.688 430
from at least one survey and acquiring infection with P.f.
i initi ; + 0.014  0.158  0.026  0.802 349
(entering states 2 or 3). Put differently, initially uninfected 1 "
individuals who appear in all 8 surveys have a reduced 2t 0.012 0.13% 0.036 0.818 1064
probability of becoming infected with P.f. and an increased
chance of remaining uninfected, compared to individuals who 737
. . 0,684
miss at least one survey. For those 6 pairs of surveys where 4 7 1 0.034 0.258 0.024
this difference is statistically significant, its magnitude is 2 0.018 0.176 0.035 0.771 1451
on the order of 0,06 to 0.10, The differences between the 2

#pges 0-28 (age groups 1-5)

1'Ages 29+ (age groups 6-7)
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populations in the proportions who change from uninfected to
doubly infected or to infected with P.m. only are relatively

minor.

This analysis provides some assurance that, except for

the 6 transitions that appear in Table 4, we may accept the

With the same

duals who were

ivi

transition proportions of population 2 as representative of

the transition proportions of all ind
abserved at any time during the baseline.

exceptions, we may also combine the transition frequencies of

populations 1 and 2 to obtain overall transition proportions

gnificant heterogeneity.

ing si

for population 3 without overlook

7. General Performance of Models Q, M, and L

To assess the overall usefulness of the models, we now

the transitions from survey 4 to survey 5 of

is

3 sets of 4 X 4 tables of transition frequencies.

Set A
population 3 in all 7 age groups separately (Table 5).

examine

Set B

the transitions of individuals aged 0 to 4 (pooled age
groups 1 and 2) in population 2 at all 7 pairs of successive

is

pX-

Set C

duals aged 44 and older (age group

surveys (survey 1 to survey 2, survey 2 to survey 3, etc.) plus

the transition from survey 1 to survey 8 (Table 6).

the transit

ivi

d
7) in population 2 at all 7 pairs of successive surveys plus

ions among in

the transition from survey 1 to survey 8 (Table 7).
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were fitted to the data.

The selection was not biased by the
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Table 6. Estimated parameters and goodness of fit of models Q, M and L for transition frequencies from
survey 1 to survey 8 and for successive pairs of surveys, for all individuals 0-4 yr old present at all
8 baseline surveys. The unit of time is the interval between the initial and final survey of each pair.

N 2 @ W G ® (M (8 (9 a0 ) a2 3)
2 2 2
Surveys Model Ry Rgy  Ryg Ry RypmRyg Roy-Rog Ryj-Rop Rop Ry © X T
l1to8  Q .000 1.27% 1.180  .235 -,063 -.908  .145 -4.538 3,392 2,914 2,644
M 1,243 7.633  .603 1.722  .560 -1.521 14,652 16,448 12,933
L .040 .425 17.101  .531 -16.362 -.877  .075  .548 19,631 23.506 17.485
1to2 Q .000 .720  .000  .180  .377 -.257 -.142 -.07%  4.402 2,825 3,402 -
M& .000  .722  .586  .176 -.2u3 -.129 12.499  8.670 11.757
L .188  .563 .22  .161 -.076 -.041 -,095 -.809  17.453 11.837 16.487
2t 3 Q .037 .53  .000  .117  .237 -.172 -,059 -.282  3.390 3.393 2,760
M .049  .565  .368  .111 -.153 -.046 5.777  4.031 4.879
L .27  .521  .169  .118  .063 .07  -.054 -.443  13.114  9.836 11.650
3to4 Q .100  .202  .805  .23% -.427 -,173 -.130 -6.389  2.889 2.683  2.083
M .196 8.926  .432 3.696 =-.050 -3.566 65.261 75.073 62.584
L .11 .437  .908  .279 -.533 -.158 -.245 -3.129  7.355 6,437  6.412
Wto5 Q .000 1.643 2.423  .112 -1.836 -.206  .067 1.643  4.172 4,700 3.116
M .000 1.626  .882 .13  -,206 .100 7.540 6.628  6.362
L .013 1.624 7.629  .006 -7.211 -.221  .373 1.600 19,592 22.811 18.004
5to6  Q .343 1.502  .320  .267  .477 -.141 -,184 -.197 5,770 5.119 5,197
Mt 417 1,472 .813  .255  -.056 -.162 5.998 4.723  5.555
L .516 1.346  .661  .241  .099  .067 -.099  -.940  7.136 5.952  6.642
6to7 Q .000 1.301 .64  .13% -.375 -.284  ,000  .253 7,454 6,402 6,965
M .000 1.262  .557  .132 -.284 .018 7.633  6.571 7,217
L .031 1.492 1,510  .136 -1.324 -,223  .037  .320  11.315 10.395 10,277
7¢8 Q .192  .383  .680  .093 -.431  .018  .015 -3.274 11,790 10.290 9.848
M .03 6,492  .000 1.224  .268 -1.077 50.549 70.849 43,487
L .137  .456  .333  .116 -.069 -.036 -,092 -1,756  13.184 13.286 10.958
Q has 4 d.f., M has 6 d.f., L has 6 d4.f. *See Appendix 2.

Table 7. Estimated parameters and goodness of fit of models Q, M and L for transition frequencies from
survey 1 to survey 8 and for successive pairs of surveys, for all individuals 44+ yr old present at all
8 baseline surveys. The unit of time is the interval between the initial and final survey of each pair.

) @) @ W ) ® (M’ (9 (10 a2 a3
2 2
Surveys Model Ry Ry Ryy  Ryg  RyyoRyg Roj~Ryg Ry -Rog RopRyy @ X FT
1tos Q .102  .339 2.139 1,773 1.131 -.378 1.424 -.830  5.039 3.832  4.60
Mt .176  .337 2.882 1.964  -.124 -.726 6.853 6.395 5.959
L .169 .30 3.070 1.887 -1.207 -.109 -.368 -.087  6.376 5.714  5.691
lto2 Q .13  .382 3.111 1,471 -2.183 -.063 -.049  .347 2,294 2.366 2.103
M .108 371 2.486 1.457  -,245 .110 4.099  4.435  3.328
L .116  .367 2.857 1.398 -1.580 -.143  .622  .113 3,300 3.483  2.765
2t 3 Q .053 .33 1,531 1.249 5.692 -.976  .863  .240  4.040 3.958 3,64k
M .349  .328 5.564 1.385 -.370 - 149 16.370 21.502 14.149
L .117  .319 2,09 1,27 -.,942 -,101  ,332  .066  7.567 7.319 6.886
3to4  Q .117 .42 1.251 1,820 2.196 -.861 -1.439 442 9,362 9.343  8.143
M .53 .37% 5.662 1.439 -.767 -.078 27.729 38.742 22.899
L .230  .375 3.504 1,031 -2,581 -,595 1.652  .231  25.777 34.244 21.586
4toS  Q .032  .807  .87% 1,363 2.917 -,198 4,343 -3.526  7.346  7.405 6.999 .
M& .088 .74  1.824 1.549  .039 -.548 13.160 17.245 11.458
L .080 1.204 2.026 2.320 -.241 -,011 -.357 -.235  13.855 15.974 12.806
Sto6 Q .080  .661  .641 1,683 4.082 -.090  .505 -,976 3,071 2.709 2.624
MY 0120  .701 1.688 1.746  .081 -.307 6.220 5.662 5.751
L .108  .780 1.338 1.889  .979 .05 -.483 ~.268  5.136 4.617 4.620
6 to7  Q .291  .302 7.314 1,638 -3.056 -.248 6.730 -2.768 4,158 3.366  2.959
M* .354 343  8.715 1.911 -.630 -112 5.808 4.769  4.450
L .313 .67 7.971 3.537 -3.648 ~-.264 -.536 -.120  13.726 13.746 12.241
7¢08 Q .202 .326 3.688 1.488 -3,389  ,137 455 -.639  5.643 5,019  5.069
M* .255  .350 4.705 1.635 -.396 -.368 12,988 19.662 9.763
L .41 .350 2.335 1.659 -.535 -.042 -.823 -.344  8.707 7.686  8.000

Q has 4 d.f., M has 6 d.f., L has 6 d.f. %See Appendix 2.
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The youngest and oldest age groups were selected to make
possible a comparison of estimated rates for children, before
they could acquire immunity, with estimated rates for adults,
who had survived long exposure to infection and who had had a
maximum opportunity to develop immunity. According to S. Cohen
(1979, p. 333), "Infants born to immune mothers are relatively
resistant during the first three months of life and thereafter
all children suffer severe and recurrent attacks of the
disease. Clinical malaria becomes infrequent in later
childhood and among adults is rarely seen in acute form."

None of the transitions in sets A, B, or C displayed any
difference in proportions between populations 1 and 2 (Table
3). The rates estimated for population 2 in sets B and C
therefore pertain to the entire population. However, in each
of the 23 sets of transition frequencies analyzed in Tables 5,
6 and 7, there were several non-zero transition frequencies
(absolute numbers of people making a specified change of
infection status) less than §5. The transition proportions, or
estimated probabilities, and the transition intensities or
rates given in Tables 5, 6 and 7 are therefore not to be
regarded as highly stable.

We now explain the columns of Tables 5, 6, and 7.
Column 1 specifies from which age group or from which pair of
surveys the transition frequencies are taken. Column 2
specifies the model fitted, Q, ¥ or L. In the rows marked M,
the starting guesses for the parameters are obtained from the
final values of the Q parameters. 1In the rows marked M¥*, the
starting guesses are least-squares approximations to
C = Re(log P), as described in Appendix 2. Let R stand for any
of the final matrices Q, M, or L, Colum 3 is ROl’ the
inferred rate of acquisition of P.m. in the absence of P.f.
Column 4 is R02, the inferred rate of acquisition of P.f. in

the absence of P.m. Column 5 is RlO' the inferred rate of loss
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of infection with P.m. in the absence of P.f. Colum 6 is Ryos
the inferred rate of loss of infection with P.f. in the absence
of P.m, Column 7 is R32 - Rlo‘ the inferred rate of loss of
P.m. when P.f. is present minus the rate of loss of P.m. when
P.f. is absent. In model M, column 7 gives ¢,. Column 8 is
R01 - R23, the inferred rate of acquisition of P.m. when P.f.
is absent minus the rate of acquisition of P.m. when P.f. is
present. In model M, the entry in column 8 would by definition
be equal to that in column 7 and is therefore omitted here.
Column 9 is Ry - Rype the inferred rate of loss of P.f.
infection when P.m. is present minus the rate of loss of P.f.
infection when P.m. is absent. In model M, column 9 gives e,.
Column 10 gives R02 - Rygs the inferred rate of acquisition of
P.f. when P.m. is absent minus the rate of acquisition of P.f.
when P.m. is present. For model M, the entry in column 10
would be identical to that in column 9 and is therefore
omitted.

All of these rates assume that the interval between
surveys is one unit of time. Even the interval from survey 1l
to survey 8 is treated as one unit of time. The time scale
has no effect on the goodness of fit of the models. But the
numerical values in Tables 5, 6 and 7 must be divided by the
appropriate number of days between surveys before they can
be interpreted as transition intensities per day.

Columns 11, 12 and 13 give 3 measures of goodness of fit
of the predicted transition frequencies to the observed
transition frequencies. These are not measures of the goodness
of fit of the constrained parameters of the models to
Re(log P). G2 for each model has been defined earlier.

X2 = Z(observed - expected)zlexpected,

where the sum is over all cells of the 4 X 4 table, and terms in
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which the expected frequency is 0 are taken as 0. FT refers to
Freeman-Tukey deviates and is calculated as

1/2

/ 2

F12 = E(observedl 2 + (observed + l)l/2 - (1 + 4 x expected)” )
Bishop, Fienberg and Holland (1975) show that when the
underlying model is correct and the expected frequencies are
estimated in any "reasonable" way (including, as in this
instance, by maximum likelihood via minimum G2), the 3 goodness
of fit statistics all have the same distribution in the limit
as the number of observations in each cell becomes large. A
cursory comparison of columns 11, 12, and 13 confirms the
general numerical similarity of the 3 measures. Our remaining
discussion of goodness of fit will be based entirely on 62.

To summarize the performance of the 3 models Q, M, L, we
add the values of G2 corresponding to each model for the 7 age
groups in Table 5 and for the 7 pairs of successive surveys n
to n+l in Tables 6 and 7. (In Tables 6 and 7, we omit from
this sum the transitions from survey 1 to survey 8.) The
corresponding d.f. for Q is 7 x 4 = 28 and for M and L is
7 x 6 = 42, The results are:

Data set G2 for model
Q M L
A. All age groups, survey 4  59,408%%  88,079%*% 95 u52k%k%k
to survey 5 (Table 5)

B. Ages 0-4, all pairs of 39,867 155,197%%%x 89, 1u9%k%
surveys n to n+l (Table 6)
C. Ages L4+, all pairs of 35.934 86.37uk*%k  78,068%%
surveys n to n+l (Table 7)
Degrees of freedom 28 42 42
3

*% peans 10°° > P > 10'“; #i# means 107" > P
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Model Q performs admirably with the longitudinal
histories of sets B and C (Tables 6 and 7). Table 5 shows that
Gg is large enough to give 0.001 < P < 0.01 for only one of
the 7 age groups, age group 6, 29-43 years old. A comparison
of observed frequencies with predicted frequencies for each
individual cell in this 4 x 4 table shows that only one of the
Freeman-Tukey deviates

1/2 + (observed + l)l/2 - (1 +4x expected)l/2

observed
is greater in magnitude than 2.0. The number, 8, of
individuals observed making the transition from state 0 (-,-)
to state 3 (+,+), was considerably less than the number, 18.6,
predicted by Q. Otherwise, predicted and observed frequencies
were close, cell by cell.

Subtracting the poor fit of Q in this age group yields
Gé = 41.120 with 24 d.f. for the remaining 6 age groups and
P > 0.01. Therefore, Q provides an acceptable description of
the transition data for 22 of the 23 sets of data in Tables 5,
6, and 7. It is not surprising to find one of 23 significance
tests significant at the 0.01 level. We conclude that there is
little evidence against Q. For more formal ways of carrying
out such multiple comparisons, see Miller (1966). If the
transitions in infection status result from the operation of a
time-homogeneous Markov chain, one may assume that the 2
potentially present species of malaria do not change status
simultaneously.

The value of Gg obtained for age group 6é 29-43 years,
in Table 5 is not the global minimum, because GL is lower for
these transition data. Since L is a special case of Q, this
could not happen if Gg were a global minimum. Comparison of Gg
with G: and Gi shows that this anomaly, which results from

limitations of the numerical minimization procedure, arises
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nowhere else in the data analyzed.

Model M describes acceptably 18 of the 23 sets of data
in Tables 5, 6 and 7, if one abandons the constraints on the
signs of €y and €, suggested by the competitive Lotka-Volterra
interpretation of M.

In Table 5, if the values of G: associated with the 2
significantly bad fits (in age groups 6 and 7) are subtracted
from the total G: for Table §, the remaining G: = 39.789 .
with 30 d.f. is acceptable. In Table 6, if the values of GH
associated with the 2 significantly bad fits (in the
transitions from survey 3 to survey 4 and from survey 7 to
survey 8) are subtracted from the total G: for Table 6 (which
omits the transition from survey 1 to survey 8), the remaining
Gi = 39,387 with 30 d.f. i; also acceptable. However, in
Table 7, if the value of Gy associated with the only
significantly bad fit (in the transition from survey 3 to
survey 4) is subtracted from the total G: for Table 7, the
remaining G: = 58,645 with 36 d.f. has 0.001 < P < 0.01. This
indicates a generally poor fit among the remaining sets of data
in Table 7, even though they are not significantly bad
individually. Since age group 7 (4u+ years old) is poorly
described by M in Table 5, which describes the transitions from
survey 4 to survey 5, it is indeed not surprising that the
transition from survey 4 to survey 5 in Table 7, which
describes the transitions of individuals 44+ years old, is not
very well described by M, even though G: does not quite
attain the P = 0,01 critical value. Because of these failures
of M, we must finally admit that this model is not in general
an adequate description of the interactions in continuous time
between P.f. and P.m, in this human population in Nigeria,
though it may describe many individual transition tables
economically.

To determine whether there was a consistent pattern in
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the discrepancies between the observed frequencies and those
predicted by M, we examined the Freeman-Tukey residuals cell by
cell for each of the five 4 X 4 transition tables with a

significantly large value of G2 The Freeman-Tukey deviates

exceeded 2.0 in the following :ases. In Table 5, age group 6,
fewer transitions from state 0 to state 3 were observed than
predicted (the same discrepancy was observed previously with
Q). In Table 5, age group 7, the same discrepancy was
cbserved; in addition more transitions from state 3 to state 1
were observed than predicted, but here both the observed and
predicted frequencies were small (5 vs. 1.2). In Table 6, the
transitions from survey 3 to survey 4 and from survey 7 to
survey 8 had an identical pattern of discrepancies, different
from the above: there were more transitions from state 0 to
state 0 observed than predicted, and fewer transitions from
state 0 to state 3 and from state 2 to state 0 observed than
predicted. Finally, in Table 7, the transitions from survey 3
to survey 4 had yet another pattern of discrepancies: there
were more transitions from state 1 to state 1 observed than
predicted.

Because the large residuals between observed and
predicted frequencies did not conform to a consistent patterm,
we are unable to identify a specific point at which the
assumptions of M are inadequate.

Though the details are slightly different, L suffers
the same fate as M. L describes acceptably 16 of the 23 sets
of data in Tables 5, 6, and 7. If the significantly bad data
sets in Table 5 (age groups 2, 6 and 7) and Table 7 (the
transition from survey 3 to survey 4) are removed, the
remaining data sets do not reject model L, In Table 6, the
transitions from survey 1 to 8, 1 to 2, and 4 to 5 are not
described acceptably (0.001 < P < 0,01 in each case) by
L. If the values of Gi associated with the latter 2
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transitions are removed from the total Gi for Table 6, the
remaining G = 52.104 with 30 d.f. still has 0.001 < P < 0.0L.
In a sense, L here suffers from double jeopardy, since the
rejection of L by age group 2 in the transition from survey &
10 survey S appears once in Table 5 and once in Table 6.
Nonetheless, the data force us to admit that this model, too,
is not in general an adequate description of the interactions
in continuous time between P.f. and P.m. in this study.

Given that only Q survives, we now examine in detail the
estimated values of the parameters of Q in each of the 3 sets
of data in Tables 5, 6 and 7. '

8. Effects of Age and Season on Intensities of
Acquiring and Losing Infections

The estimated Q parameters vary as a function of age
group at the transition from survey 4 to survey 5 (Fig. 1,
based on Table 5) and as a function of season within the
youngest age groups (Fig. 2, based on Table 6) and within
the oldest age group (Fig. 3, based on Table 7).

Throughout these figures, o denotes the intensity of
acquisition, and * the intensity of loss, of infection with a
particular species,

In Figs. 1, 2 and 3, panels (a), (b), (c) and (d)
are organized in the same way:
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panel elements table description
of Q columns
(a) QOl’ Qlo col. 3, Rates for P.m. when P.f. is
col, 5 absent at first survey of pair
(b) Q Q col. 4, Rates for P.m. when P.f. is

23 732

col. 6 present at first survey of pair

(c) Q,s Qy col. 3 - col. 8 Rates for P.f. when P.m. is
col., 5 + col. 7 absent at first survey of pair
) 013, Q31 col. 4 - col. 10 Rates for P.f, when P.m. is

col. 6 + col. 9 present at first survey of pair

When P.f. is not present at the beginning of the
transition from the dry season to the wet season, the rates of
loss of P.m. are far more variable as a function of age than
are the rates of acquisition of P.m. (Fig 1(a)). Intensities
of both acquisition and loss appear to peak in the middle age
groups and to decline in the youngest and oldest age groups.
The presence of P.f. at the beginning of the transition (Fig.
1(b)) markedly alters this pattern: the rates of loss of P.m.
increase monotonically with age to a high level in the oldest
groups. The concomitant presence of P.f. is associated in some
important way with the increasing ability of older individuals
to lose P.m. infections. As before, the variability by age
in rates of loss far exceeds the variability in rates of
acquisition.

When P.m, is not present at the beginning of the
transition from the dry season to the wet season, there is
substantial variation by age in the rates of both acquisition
and loss of P.f. (Fig. 1(c)). Rates of acquisition drop from
high levels among individuals up to 8 years old (age groups 1,
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2, 3) to levels half as large in the older population. Rates
of loss of infection are low among individuals up to 18 years
old (age groups l-4) and increase monotonically thereafter.

The presence of P.m. at the beginning of the transition (Fig.
1(d)) leaves the increase in rates of loss of P.f. with age
qualitatively unchanged, but dilutes or reverses the decline in
rates of acquisition of P.f, with increasing age.

In Figs. 2 and 3, an annual seasonal cycle corresponhds
to abscissae labelled 4 to 8, that is, from the transition from
survey 3 to 4 up to the transition from survey 7 to 8. Surveys
3 to 8 include substantially more people than the first 2
surveys, which we do not discuss here.

In individuals up to 4 years old at survey l, rates of
loss of P.m. are generally far more variable during an annual
cycle (Figs. 2(a,b)) than rates of acquisition, while for P.f.,
rates of acquisition are far larger and more variable than
rates of loss (Figs, 2(c,d)). The complementarity between P.f.
and P.m. that has often been noted clinically acquires
quantitative detail from a comparison of Fig. 2(a) with 2(c)
and of Fig. 2(b) with 2(d). In both cases, the transition
with the greatest rate of P.f. acquisition corresponds to the
transition with the least or close to least rate of P.m.
acquisition. What is surprising is that the peak rate of
acquisition of either species in all 4 panels of Fig. 2 occurs
during the dry season transition from survey 3 to survey 4 in
Fig. 2(d), one step ahead of the peak rate of acquisition in
Fig. 2(c). The transition from survey 3 to survey 4 is one of
the transitions where model M fails most egregiously.

Comparison of each panel of Fig. 3 with the
corresponding panel of Fig. 2 reveals details of how adults (44
years and older) resist malaria infections better than very
young children. In most cases, rates of loss are

larger in the older age group. The increase in loss rates
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CAPTIONS FOR FIGURES 1, 2 AND 3

Fig. 1. Estimated transition intensities for model Q by
age groups, based on all individuals present at survey 4 (end
of dry season 1971) and survey 5 (beginning of wet season
1971). The abscissa is the number of the age group: 1 =
infant, 2 = 1-4 ypr, 3 = 5-8 yr, 4 = 9-18 yr, 5 = 19-28 yr, 6 =
29-43 yr, 7 = 44+ yr.

Fig. 2. Estimated transition intensities for model Q by
season, based on all individuals not more than 4 yr old at
survey 1 who were present at all 8 surveys. Abscissa 1 =
transition from survey 1 to survey 8; forn =2, 3, .. . , 8,
abscissa n = transition from survey n-1 to survey n.

Fig. 3. Estimated transition intensities for model Q by
season, based on all individuals at least 44 yr old at survey 1
who were present at all 8 surveys. Abscissae are the same as

in Fig. 2.

o = Intensity of acquisition of infection.

# = Intensity of loss of infection.

(a) Rates for P. malariae in individuals not infected
with P. falciparum at the first survey of the pair.

(b) Rates for P, malariae in individuals infected with
P. falciparum at the first survey of the pair.

(c) Rates for P. falciparum in individuals not infected
with P. malariae at the first survey of the pair.

(d) Rates for P. falciparum in individuals

infected with P. malariae at the first survey of the pair.
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with age is accompanied by a pronounced decrease in rates of
acquisition only for P.f. when P.m. is absent (compare Fig.
3(c) with Fig. 2(c)). Thus adults are generally better than
very young children in eliminating established infections from
peripheral blood, but appear to be better than children at

avoiding infection only with P.f. when P.m. is absent.

9. Are Transitions of Infection Status Markovian?

We have assumed so far that the probabilities of future
changes in infection status depend on present infection status,
but are independent of past infection status. In assuming that
transitions of infection status are Markovian, we joined
Molineaux and Gramiccia (1979). We now wish to test that
assumption.

We mention at the outset that precise statistical
methods are lacking to evaluate the hypothesis that transitions
are Markovian, using the data available for this study. But
there is evidence that transitions are not Markovian.

What does the Markovian assumption imply? Let s, t, u
be the numbers of any 3 of the first 8 surveys ordered so that
s <t <u. Let P(s,t) be the estimated transition probability
matrix from survey s to survey t. If the transitions were
Markovian and each P(s,t) were precisely equal to the
underlying transition probabilities, i.e., if there were no
sampling variability, the Chapman-Kolmogorov equations would

imply
P(s,t)P(t,u) = P(s,u), for all 1 Ss<t<uc<sS8.

For all 57 increasing triples s < t < u we computed a

matrix of residuals

D(s,t,u) = P(s,t)P(t,u) - P(s,u).
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We used all individuals present at both surveys s and t to
estimate P(s,t), regardless of whether those individuals were
Present at survey u, and similarly for P(t,u) and P(s,u). We
added the raw transition frequencies for all 7 age groups
together to get a single P(s,t) for each pair s,t.

In every one of the 57 cases, Doo(s,t,u), D22(s,t,u),
and D33(s,t,u) were negative and Doa(s,t,u) and Dso(s,t,u) were
positive. Dll(s,t,u) were negative in 47 of 57 cases.
Individuals who were in any of states O (uninfected), 2
(infected with P.f. only), or 3 (infected with P.f. and P.m.)
at any survey s always appeared in that same state at any
later survey Uu more often than predicted by the Markovian
assumption. Fewer individuals actually changed from doubly
infected to uninfected or vice versa between any surve§§ s and
u than were predicted from the Markovian assumption.

This striking pattern might result from adding together
the transition frequencies of age groups, which have different
transition probabilities.

To remove this possible artifact, D(4,5,6) was computed
for each age group separately. However, the transition
frequencies of age groups 1 and 2 (individuals up to 4 yr old)
vwere combined. In all 6 cases, DOO(H,S,S) and DSS(H,S,S) were
negative and D03(4,5,6) were positive, as before. Dao(u,s,s)
were positive except in the youngest (0-4 yr) age group. If
one were to suppose naively that, under the Markovian
assumption, the sign of an element of the residual matrix
D(4,5,6) would be positive or negative with equal probability
(we do not affirm that this supposition is correct), then the
probability that the residual would have the same sign in 6 of
6 cases is fairly low: 2%, Ve lack a statistical test of
the hypothesis that D(s,t,u) = 0, which can allow for the
dependence among the observations used to construct P(s,t),
P(t,u) and P(s,u).
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The predominantly negative diagonals in D(s,t,u) may
be summarized by saying that trace D(s,t,u) < 0. A wide variety
of panel surveys in sociology and economics (Singer and

Spilerman, 1977) have a similar pattern of residuals,
k
trace P"(0,4) - trace P(0,kA) < 0.

This kind of deviation from time-homogeneocus Markov chains has
often been accounted for by modeling the panel data with mixtures
of Markov chains. It remains for a future investigation to
determine whether infection histories in fhe Garki baseline
surveys can be represented by a simple, interpretable mixture

of inhomogeneous Markov chains.

The evidence we have presented against the Markovian
hypothesis is not a definitive disproof. Molineaux and
Gramiccia (1379, §5.2.1.3, §4.6) observe that different
villages differ in parasitology and in entomology. The
non-Markovian behavior might disappear with finer disaggregation
of the data, for example, by age and village or by the presence
or absence of P. ovale.

The non-Markovian behavior might also disappear if a
finer state space were used. The state "infected" includes
densities of infection ranging from low to high. An individual
with a high density of infection might have a lower chance of
becoming uninfected than an individual with a low density of
infection. The dichotomous state space we have used treats
all "infected" individuals as homogenecus.

These possibilities cannot be resolved by 4 X 4 tables of
transition frequencies defined by age and survey only.

Progress awaits examination of more detailed underlying data.
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10. Discussion--What Has Been Accomplished?
We have defined 4 infection statuses: uninfected, singly

infected with either P. malariae or P. falciparum, and jointly

infected with both. We have studied the 4 X 4 estimated
transition probability matrices P(s,t) from survey § to survey
t during the 8 surveys of the baseline period of the Garki
study. Our principal results partly concern malaria and partly
concern methods for studying longitudinal panel data. We
summarize these results here.

The transition proportions from one survey to the next
of individuals who were present at all 8 surveys were the same
as the transition proportions of the individuals who were
absent from at least one survey. The exception to this general
pattern is that initially uninfected individuals who appear in
all 8 surveys have a reduced probability of becoming infected
with P.f. and an increased chance of remaining uninfected,
compared to individuals who miss at least one survey, when the
second survey at which the individuals are observed is near the
end of the wet season or the beginning of the dry season.

New computer algorithms were developed for abtaining
from two-wave panel data the maximum likelihood estimates of
the intensity parameters in 3 models, named Q, ¥ and L, of a
time-homogeneous continuous-time Markov chain. Previously,
the intensities of acquisition and loss of each species of
malaria were estimated from a time-series of two-wave panel
surveys modeled by 2-state continuous-time Markov chains
without regard to the possible effect of the simultaneous
presence or absence of another species of malaria (Bekessy et
al., 1976; Molineaux and Gramiceia, 1979). The methods
developed here make it possible for the first time to
disentangle the transition intensities of one species when a
second species is absent from the transition intensities of the

first species when the second species is present.
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The signs of interaction parameters in model M were
frequently contrary to the sign predicted by an interpretation
of the model in terms of Lotka-Volterra competition equations.
The observed signs of the interaction parameters suggested
cooperative effects between malarial species rather than
competitive ones.

when the 3 models were fitted to 23 sets of transition
frequencies, Q performed admirably. Q excludes the possibility
that both P.f. and P.m. would either be gained or be lost
exactly simultaneously: the elements on the minor diagomal of Q
are 0. Though both M and L, which are special cases of Q,
described the observed transition frequencies in a majority of
the 23 sets well, they did not describe a considerable number
of cases anceptably and are therefore considered inferior to Q
here,

The estimated parameters of Q vary as a function of age
at the transition from the end of the dry season to the
beginning of the wet season 1971 and, within the youngest and
oldest age groups, as a function of season from the end of
April 1971 (dry season) to the beginning of May 1972 (dry
season).

As a function of age, whether P.f. is present or absent,
the variability of rates of loss of P.m. far exceeds the
variability of rates of gain of P.m. The presence of P.f.
appears to be associated with a monotonic increase in the rate
of loss of P.m. with increasing age of individuals.

Except possibly for infants, rates of loss of P.f. also
appear to increase monotonically with age. Rates of gain of
P.f. are higher for individuals up to 18 yr old than for older
individuals when P.m. is absent, but no such clearcut pattern
is evident when P.m, is present.

Among very young children (up to % yr old), seasonal

variation in P.m. is associated primarily with variation in
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rates of loss, Seasonal variation in P.f. is associated
primarily with variation in rates of acquisition.

Among adults (44+ yr old), seascnal variation in P.m.
is, as with young children, associated primarily with variation
in rates of loss. Unlike young children, seasonal wariation in
P.f., in the absence of P.m., is also associated primarily with
variation in rates of loss. When P.m. is present, rates of
both acquisition and loss of infection with P.f. vary widely
and over comparable ranges.

Adults are gemerally better than very young children in
eliminating infections from peripheral blood, but appear to be
better than children at avoiding infection only with P.f. when
P.m. is absent.

Model Q, like many malaria models before- it, assumes
that the process of change in infection status is Markovian.
Strictly speaking, Q also assumes that the Markovian process is
time-homogeneous. Since the parameters of Q change with
season, one can piece together a time-series of homogeneous
Markov models by assuming, as a first approximation, that the
parameters are constant during the interval between surveys.

The question of whether the full baseline process is
Markovian seems rarely, if ever, to have been confronted with
data. Precise statistical methods are lacking to evaluate the
hypothesis that transitions are Markovian, using the data
available for this study. But some evidence suggests that
transitions are not Markovian. In general, initially
uninfected individuals tend to remain uninfected with higher
frequency, and initially doubly infected individuals tend to
remain doubly infected with higher frequency, than would be
predicted from the Markovian assumption.

In conclusion, we remark briefly on the relation of this
work to ecological models of the entire transmission cycle of

malapia, to previous studies of mixed-species infections of
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malaria in human populations, and to previous analyses of these
same data.

The present analysis concentrates on one detail of
malarial transmission: the intensities of acquisition and
loss of malaria species when other species of malaria may or
may not be present in the same people. The methods presented
make it possible to separate overall intensities of transition
of P.f., for example, into intensities of transition for P.f.
in the presence of P.m. and intensities of transition for P.f.
in the absence of P.m. Such details could be valuable for
ecological models of the entire malaria transmission cycle that
sought to apply the transition intensities observed for P.f. in
the Garki project to locales or times when the prevalance of
P.m. might be substantially different. (See Dietz et al., 1974
and Bailey, 1975 for examples of ecological models of malaria.)
These details about intensities of acquisition and loss may
lead to more nearly correct interpretations of age-prevalence
curves, which are often of interest to ecological modelers (see
Fig. 1 and accompanying text). The present study is thus
complementary to efforts to model overall transmission
dynamics.

Model M was originally proposed as a means of testing
the Lotka-Volterra competition equations empirically (Cohen,
1970). At that time, no longitudinal data comparable to those
of the Garki project existed for malaria. Analysis of the
prevalence of single-species and mixed-species malarial
infections in human populations suggested that
phenomenoclogically something like competition between malarial
species might occur. There were fewer than randem
mixed-species infections in humans who had enlarged spleens, a
clinical sign of immunological arousal (Cohen, 1973),

The prevalences of single-species and mixed-species
infections in the Garki project have yet to be analyzed by
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level of immune response (e.g., titer of immunoglobulin). But,
contrary to the surveys analyzed by Cohen (1973), there are
overall more mixed-species infections than expected at random
from the_;;;;alences of the species separately., Without doubt,
the microscopic technique of the Garki project was more tightly
controlled and of higher quality than that of any malaria
survey before it. Nevertheless, when the frequency
distribution of the positive (infected) blood films was
analyzed by the number of positive microscope fields, there
were more films with 2 fields positive than with one field
positive. "A plausible explanation is that, once a positive
field is found, the remaining fields are examined more
carefully" (Molineaux and Gramiccia, 1979, §5.1.4.3). If this
explanation were correct, it might also explain a more than
random prevalence of mixed-species infections.

If one takes at face value the estimates of the
interaction parameters €, €, for M where that model
succeeds in predicting the observed transition frequencies
(Tables 5, 6, 7), the high frequency of negative signs also
argues against competition.

Since M does not succeed very well overall, the
linearized Lotka-Volterra equations, with or without the
competitive interpretation, should not be regarded as a general
model for the interaction of malarial species in human
populations.

Incidentally, there is a remark, which has been
attributed to Joseph Bertrand, to the effect that "if you give
me n parameters, I will fit an elephant; and if you give me n+l
parameters, I will make him wave his trunk," where n is usually
4 or 5. This remark, frequently and often justly aimed at
statisticians, is true only if one looks at few data--a small
elephant. Here we have rejected the 6 parameter models M and L

by evaluating their performance against a large number of sets
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of data.

Finally, we relate our results to some findings of
Molineaux and Gramiccia (1979), which are based on independent
analyses of the same data. We confirm in general their
inference (§5.2.1.1) "that the main effect of immunity is to
increase recovery and/or to decrease detectability, rather than
to decrease susceptibility." We interpret "recovery" as
intensity of loss of infection and "susceptibility" as
intensity of gain of infectian. Molineaux and Gramiccia (1979,
Figs. 5.11 and 5.12) graph the intensities per day of acquiring
and of losing infection with P.f., P.m, and P. ovale as a
function of age. Our results in Fig. 1 suggest that these
patterns by age may depend significantly on the simultaneous
presence or absence of malarial species other than the one of
interest. The same point arises from comparing our Figs. 2 and
3 with their Fig. 5.13, a plot for each age group of the
estimated daily intensity of acquiring infection with P.f. by
season. Our panels (c), showing the intensity of P.f.
acquisition in the absence of P.m., agree very well
qualitatively with the shape of the seasonal distributions from
survey 3 to survey 8 shown in their Fig, 5.,13. The very
different pattern in our panels (d) has no counterpart in Fig.
5.13. If a substantial fraction of a population were jointly
infected with P.m. and P.f., the marginal intensity of
acquisition of P.f. might have a distribution by season quite
different from that shown in Fig. 5.13,

In offering our own analysis of the results of the Garki
project, we aspire only to take one more step down the road

Molineaux and Gramiccia (1973) pioneered.
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Appendix 1. Row Sums of log P
The following theorem is basic to the computational
algorithms in Appendix 2,
Theorem: Over the field of complex numbers, let M be an
n X n matrix whose minimal polynomial (Gantmacher, 1960, 1:89)
ot P Sn. Let A

be one of these roots with corresponding right eigenvector x

has only simple roots Al, Az, ey A

(so that Mx = Ax), and let f be a complex-valued function of a
complex number such that f(A) = 0, If f£(M) is defined by the

Lagrange-Sylvester interpolation formula (Gantmacher, 1960, p.
101), then f(M)x = 0,

Proof. By definition, if I is the n X n identity matrix

m
£ = I FOD T (A DO,
k=1 7k ] J
The justification for using Il without indicating the sequence of
factors is that for any complex z and w, (M-zI)(M-wI)
= (M-wI)(M-z1). Labelling the roots so that Al = A, we have
f(Al) =0, so

m
-1 -1
f(M) = -2 1 - - -
(M) k)=:2 f(Ak)[jI;k(H AJ. )()\k Aj) J(Ak Al) (M All)
j#l
= A(H—All)

where A is defined by the last equality. Then f(M)x = A(H&-Alx)
= 0.

Corollary. If P is a non-negative stochastic matrix
whose minimal polynomial has only simple roots, then both
Re(log P) and Im(log P) have 0 row sums.

Proof. Such a P has eigenvalue 1 with corresponding
right eigenvector % in which each element is 1. Now log 1 = O,

By the theorem, (log P)1 = 0, and each element of the vector
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(log P)1 is just the sum of the corresponding row of log P. The
corolla;y is proved.

Empirically, the eigenvalues of the transition matrices
estimated from observed transition frequencies were distinct
in every case, so the corollary is relevant to the data.

Appendix 2. Computational Algorithms

We describe procedures for finding the matrices in
e M, and L that give the best fit of predicted frequencies
to ;bserve; frequencies. By minimizing GQ, we obtain the
maximum likelihood estimates of the parameters of each
model (Bishop, Fienberg, and Holland, 1975).

The fitting procedure consists of 2 parts: first,
obtain initial parameter estimates; second, perturb these
estimates, subject to the comstraints of the particular
model, to minimize G2.

The second part of the fitting procedure is the
same for all 3 models and will be explained first. The initial
value of (.‘~.2 is minimized using the method of successive
adjustment of variables (lance, 1960, p. 130). Our algorithm

for minimizing a function
AXMIN(FUNCT, X, N, DELTA, EPS, MAXFN, IER, CTFN, CTITR, F)

is a double-precision PL/1 subroutine.

FUNCT is the name of the function to be minimized; it
must have 2 arguments, (X,F), where X, a vector of length N, is
the input to FUNCT, and [ is the scalar result of evaluating
FUNCT at X.

X, as input, carries the initial estimate of the argument
of FUNCT that minimizes F; as output, carries the final
estimate of the argument of FUNCT that minimizes F,

N is the length of the vector X. For model Q, N = 8;
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for Mand L, N = 6.

DELTA is a vector of length N. On input, DELTA informs
AXMIN of the initial estimate of the perturbation to be used
for each element of X; here we set DELTA(I) = max(0.1, 0.1 X
absolute value of X(I)), for I =1,...,N.

EPS, a scalar input to AXMIN, is the convergence
criterion. Each final X{(I) should be within EPS of the actual
minimizing argument of FUNCT when AXMIN stops (unless IER = 1
or the minimum obtained is not global); we set EPS = 0.0005.

MAXEN, a scalar integer input, is the maximum number
of times AXMIN is permitted to evaluate FUNCT; we set MAXFN =
600.

IER, an output error parameter, is 0 if convergence
occurs with not more than MAXFN function evaluations, and is 1
otherwise.

CTFN, on output, counts the actual number of evaluations
of FUNCT.

CTITR, on output, counts the number of iterations of the
main loop in AXMIN,

F, on output, gives the value of FUNCT at the final
value of X.

In operation, AXMIN increments the index I cyclically
through 1, 2, ..., N. Each complete cycle counts as one
iteration of CTITR. For each I, X(I) is increased by DELTA(I).
If this increment increases F, X(I) is decreased by DELTA(I).
If this decrement also increases F, then DELTA(I) may be too
large to detect the minimum. So DELTA(I) is replaced by
1/2 x DELTA(I); the increment and decrement tests are then
repeated, continuing if necessary until DELTA(I) becomes less
than or equal to 0.6 X EPS,

If the initial change of X(I) by DELTA(I) decreases F,
DELTA(I) may be too small to locate the minimum rapidly. So
AXMIN multiplies DELTA(I) by 1, 2, 4, 8, and 16 successively,
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increases the previous DELTA(I) by this amount, and evaluates F
with X(I) replaced by X(I) + DELTA(I) until the adjustment in
DELTA(I) no longer decreases F. Using the latest DELTA(I), the
interval between X(I) and X(I) + DELTA(I) is then repeatedly
bisected to see if the previous lowest value of F can be
lowered further; the old value of X(I) is then replaced by the
new value that gives the lowest F.

In this application, FUNCT takes the 6 or 8 parameters
in X, constructs an intensity matrix of appropriate form (Q, M,
or L) satisfying the corresponding constraints, exponentiates
that intensity matrix, multiplies each row of the result by the
corresponding row sum of T in order to obtain expected
transition frequencies, and then computes G2.

We now describe procedures for obtaining initial
parameter estimates for Q, M, and L. We take P as the
transition probability matrix estimated by (4.1). Because
all row sums of P are 1, P has one eigenvalue equal to 1. P
has 3 other real or complex eigenvalues of smaller modulus.

We assume henceforth that these 3 other eigenvalues are
distinct. In the computations to be described, we always
computed the eigenvalues and confirmed that they were distinct.
In the context of panel surveys, vhenever P is estimated
from frequencies large enough to be of scientific interest,
repeated eigenvalues are extremely unlikely.

A 4 x 4 matrix log P is any matrix that satisfies
exp(log P) = P.

Following Singer and Spilerman (1976a), let z = a
be any non-zero complex number with modulus |z| = (a2 +b")
and argument @ = tan™ b/a. For each value of k = 0, *1, 2,

« « .+, log z = log |z| + i(0+27mk) is a branch of the

logarithm of z, and the branch with k = 0 is the principal
branch. Since log |z| is the logarithm of a real number, it is
unique. Clearly, arg(log z) = tan™ [(o + 2mk)/log |z|3.
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We say that a branch of log z is admissible if it satisfies
(3m)/4 S arg(log z) S (5m)/4 .

(For 4 X 4 matrices, this is a necessary condition for an
eigenvalue of a stochastic matrix P to be generated by a
continuous-time Markov process; see Singer and Spilerman,
1976a, p. 12, eq. 3.3.)

Numbering the eigenvalues so that 1 = A, > [A;] 2 |A,|
& |A3], we define log P by the Lagrange-Sylvester interpolation
formula (Gantmacher, 1960, I:101):

log P = 2;2:0 Log (A )Ty (P-AD/LT; 4y (-2,

where I is the 4 x 4 identity matrix, and log A is an
admissible branch of the logarithm.

If any eigenvalue of P is such that its logarithm has
more than one admissible branch, then each possible combination
of the admissible branches, one for the logarithm of each
eigenvalue, yields, by definition, an admissible branch of
log P. At most a finite number of branches of log z can
satisfy the inequalities above, so log P has at most a finite
number of admissible branches. In the sets of data analyzed
here, log P never had more than one admissible branch. We
henceforth assume log P is unique. For a detailed discussion
of the problem of choosing among the admissible branches of
log P when more than one branch is admissible, see Singer and
Spilerman (1976a,b).

An admissible branch is not necessarily an intensity
matrix. An intensity matrix is a square real matrix with
zero row rums and nonnegative elements off the main diagonal.

The matrix Re(log P), which has ijth element equal to
the real part of (log P)ij' bhas row sums equal to 0 (for
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proof, see Appendix 1) but may have some negative elements that
are not on the main diagonal. Let C = Re(log P) be a 4 X 4
matrix with elements cij'

For Q, we seek the minimum of the sum of squared

deviations
3 3 2 3 3 2
min I I (C,,-Q..)°= I min I (C,.-Q:.)",
i=0 j=0 ¥ H 1=0 jeo 01

subject to the constraints that Q be an intensity matrix with 0
minor diagonal. The above equality holds because the elements
of different rows of Q are independent. Thus it suffices to
minimize the sum of squared deviations for each i

independently. We illustrate with i = 0. Since

Q <0, Q

” 20, Q

20, Q= -{Qy,18,s Qg3 = 0s

01 02

we have

3
. 2 2
min L (Coj-on) = C

i 03 * min f(QOl’Q02)

where

£(Q = (~(C,. +Cn +Cr.) + (°01+°oz))2

01’002) 01 702 703

2 2
*+ (€91-Qg))" + (Cop-Qgp) -

Then setting Bf/aQol = af/3002 = 0 yields

Qou = o1 * Coa/% Q= Gop * Cp5/d -

To ensure that Q01 2 0, Q02 2 0, we take
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o
[

= max(0, €,  + Cy,/3),

01
max(0, C

02 * Coa/3)s

Qo = =%1 - Qo2
=0,

The other rows of Q are cbtained by an appropriate

rearrangement of indices. Q obtained this way provides a

reasonable starting value for numerical minimization.

For M, we again seek a least-squares approximation to C.

We no longer have independence among rows because the same

parameters occur in different rows. Let

£

= (C_ +A,+A )2 + (C

2 2
0012 017"t (Cgpmry)

2 2 2

+(Cpgmup)T + (Cp iy hmer)” + (Cpg-otey)

2 2 2

+ (c20 u2) + (C22+“2”‘1"1) + (°23')‘1+‘1)

2 2 2
+ (CyHpm€)” # (Cypmby=eg)™ + (Cyghiyte tityte))”

Then we obtain & linear equations

0= af/axl = /A, = af/aul = af/an, = aflael = f/Be, .

Explicitly, these equations may be written

where

AX + X =0
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r
B 1 0 1 -2 0
1 4 1 0 0 -2
0 1 4 1 2 o
A= ,
1 0 1 &% o 2
-2 0 2 0 & 1
0 -2 0 2 1 &
A Coo = Co1 * €22 = C23
A o0 = %2 * €11 - €13
u €. 4C.-Co +C
x= | ", K< 10 ¥ €11 - Ca2 * C33
Hy ~Ca0 * Ca2 = €31 * G55
€1 “Cy2 ¥ Ca3 = Cyp * Cyy
€2 | €11 *C3 - Cy * Gy
Thus
x= -2,

and then we set to 0 any Ai or u, for which a negative
estimate is obtained. €; may be either positive or negative,
and we impose Ai 2 € 2 T A virtue of this
method is that A-l needs to be computed only once. The final
value of the intensity matrix obtained using these least-squares
initial values is called M%,

Another obvious way of obtaining initial guesses for M
is to ride piggyback on the final values of Q as follows:

AT Qope ¥y T Qo i1 2

m
1

= (1/2)(Qq; - Qg5 + Qs - Qq), 175

We shall refer to the final numerical values obtained by
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minimizing G2 starting from these piggybacked initial estimates
as M. We computed both M and M* and chose whichever
result gave the lower G2.

For L, we obtain initial estimates by again riding

piggyback on Q. From the definition of L, we have

1/2
ST,

o
1

= [(Ly /Ly ) (Lgy /by

_ 1/2
dy = [(Lop/ly ) (L /Ly ) T2,

_ 1/2
a) = [d)Ly gLy, 17
1/2

2 = [4y0p0lgy 17775
1/2

by = [Ly)Lyy/a) 177,
172

by = [hoglya/d 1" -
These identities become initial estimates of the parameters ays

bi’ di if each Lij on the right is replaced by Qij‘
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