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ERGODICITY OF AGE STRUCTURE IN 
POPULATIONS WITH MARKOVIAN VITAL RATES. 
11. GENERAL STATES 

J O E L  E.  COHEN, The Rockefeller University, New York 

Abstract 

The age structure of a large, unisexual, closed population is described here by 
a vector of the proportions in each age class. Non-negative matrices of 
age-specific birth and death rates, called Leslie matrices, map the age structure 
at one point in discrete time into the age structure at the next. If the sequence of 
Leslie matrices applied t o  a population is a sample path of an ergodic Markov 
chain, then: (i) the joint process consisting of the age structure vector and the 
Leslie matrix which produced that age structure is a Markov chain with explicit 
transition function; (ii) the joint distribution of age structure and Leslie matrix 
becomes independent of initial age structure and of the initial distribution of the 
Leslie matrix after a long time; (iii) when the Markov chain governing the Leslie 
matrix is homogeneous, the joint distribution in (ii) approaches a limit which 
may be easily calculated as the solution of a renewal equation. A numerical 
example will be given in Cohen (1977). 

AGE STRUCTURE. POPULATION DYNAMICS; ERGODIC THEOREMS OF DEMOGRAPHY; 

PRODUCTS OF RANDOM MATRICES; MULTlTYPE PROCESSES IN RANDOM ENVIRON- 
MENTS 

1. Results and example 

1 . 1 .  Summary. In human and other biological populations, the numbers of 
births and deaths sometimes fluctuate more than would be predicted by binomial 
sampling from processes with fixed underlying vital rates. A central problem of 
demography and of general population biology is to find intuitively reasonable, 
mathematically tractable and empirically successful models for observed and 
future variations in underlying vital rates. 

The model studied in Cohen ((1976); hereafter referred to as Part I) and in this 
Part I1 is a three-tiered structure. 

At the lowest level is a sequence { y , )  of age structures of a closed, unisexual 
population observed at discrete instants of time n = 0,1,. . - . Since attention 
focuses here on age structure, these vectors y, are normalized so that at each n 
their elements sum to 1. 
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At the middle level is a sequence of operators {x.} representing the action of 
age-specific vital rates on age structure; x. maps y.-I into y., n = 1,2, - .  . . 

At the highest level is a model for passing from x.-~ to x.. In the classical 
theory of stable populations, the model at the highest level is an identity 
operator: x, = x.-,. Under that model, for certain choices of yo and XI ,  y. 
approaches the unique limiting stable age distribution determined by xl but not 
by yo. In the weak ergodic theorem of Lopez (see Golubitsky, Keeler and 
Rothschild (1975)), the model at the highest level is an arbitrary determinate 
sequence {x.} in which the elements are chosen from a set X of possible 
operators. Under that model, for certain choices of yo and X, y, approaches a 
possibly time-varying sequence which depends entirely on the sequence {x.} and 
not on yo. 

In both Parts I and 11, the model for passing from x,-I to x. is a Markov chain, 
with certain ergodic and other properties, on a state space (or sample space) X 
of possible operators. 

In Part 11, the behavior of the age structures {y,) is described by four 
theorems. They are stated formally in Section 1.2. The corollaries deal with cases 
of practical interest in demography and Markov chains. 

Theorem 1 observes that, assuming smoothly behaved transition functions in 
the Markov chain on X and smoothly behaved operators x in X, the joint 
process (x., y,) of operators and points (vital rates and age structures) is a 
Markov chain (although {y.} by itself is not in general a Markov chain). The 
transition function of this bivariate chain is written out explicitly in terms of the 
transition function governing {x.}. 

Theorem 2 says that under additional smoothness and ergodic conditions on 
the chain on X, and assuming the abstract equivalent of the weak ergodic 
theorem of demography, the bivariate chain {(x,, y,)} also has ergodic features. 
The idea of the proof is simply to divide a long period from time n to time n + m 
into two long periods. The first, from n to n + r, is long enough for the chain on 
X to forget its past. The second, from n + r to n + m, is long enough for 
contractions on Y to obliterate the effects of the values of y at time n + r and, a 
fortiori, at time n. 

Theorem 3 supposes that the chain on X in Theorem 2 is homogeneous. Then 
the bivariate chain converges in distribution to an invariant long-run distribution 
which may be calculated explicitly by solving a linear integral equation. 

Theorem 4 says that under even stronger conditions on the smoothness of 
action of the operators from X, the bivariate chain {(x,, y,)} satisfies a stronger 
ergodic condition; when the chain {X,,} of operators is homogeneous, the rate of 
convergence in distribution of the bivariate chain {(x,, y,)} is exponential. 

Corollary 1 suggests a possible model for estimation of the transition function 
of the chain on X from historical data on vital rates. 
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Corollary 2 applies Theorems 1 to 3 to finite Markov chains with random 
transition matrices. Each transition matrix is required to fall in a uniformly 
bounded class of scrambling matrices. 

Corollary 3 rests on the concept, due to Hajnal (1976), of an ergodic set of 
matrices. The corollary shows that the same contractive property of the 
operators and of the stochastic process determining the choice of successive 
operators assures the results of Theorems 2 and 3. This corollary permits the 
operators to belong to a finite class of non-negative matrices that is so general 
that applications of the theorem in genetics and economics become obvious. 

1.2. Setting, definitions and results. Let N be the set of natural numbers 
{1,2, . . ), R the set of all finite real numbers ( -  03, + w), and P the set of 
non-negative finite reals [O,w). If S and S '  are any sets, S c  is the complement of 
S, 2' is the family of all subsets of S, and SAS '  = (S U S') rl (S rl St)' is the 
symmetric difference of S and S'. Used with sets, + means disjoint union; thus 
S + S f  means S U S', and moreover S f l  S '  = 0. Limn( . )  means the limit of ( a  ) 
as n +w, n in N unless otherwise indicated. If Y is a family of sets, u (Y)  is the 
minimal a-field generated by 9, W ( 9 )  the ring generated by Y. If x is a k X k 
real matrix, k in N, x = (x(i, j)), define ) I  x l l x  = C:,=, I x(i, j)l. If y is a k-vector (a 
column), y = (y (i)), define ( 1  y 11 = C:=, ( y (i) 1 .  

The elements of the set Y(X) will be denoted by y (x) with or without affixes, 
e.g. y', y,, y. (x', XI ,  x.), and similarly for sets A (B) belonging to the field 
d ( B ) .  Elements of Z will sometimes be denoted z and sometimes (x, y)  with 
corresponding affixes if any. Thus z' is the same as (x', y') without further 
comment. 

The transpose of a vector is indicated by a suffix Tr. 
Let (R, 9, P )  be a probability space, and {X.) a sequence for n in N of 

measurable functions from R into a measurable space (X, d )  where X is a set 
and d is a a-field of subsets of X. For every A in d and x in X, 
let Q,(A)=P{oER:X, , (o )EA)=P[X.EA]  and let P:(x,A)= 
P[X,+, E A I X, = x]. Assume {X,,) form a Markov chain. If Pf, = Pi for all n in 
N, the chain is homogeneous. We sometimes abbreviate P!, = P,,. 

Definition 1. The chain {X,) is weakly ergodic if and only if, for every n, for 
every E > 0, for every A in d and for every x, x' in X, there exists mo such that 
for all m 2 mo, 1 P:(x, A ) -  P:(xl, A ) [  < E .  

Definition 2. The chain {X,) is uniformly weakly ergodic if and only if, for 
every n, for every E > 0, and for A in d ,  there exists mo such that for all m 2 mo, 
S U P ~ , ~ ~ E X I  P ~ ( x ,  A ) -  P ~ ( x ' ,  A ) (  < E .  

Definition 3. The chain {X.) is S-ergodic if and only if, for every n and for 
every E > 0, there exists mo such that for all m 2 mo, 
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A.,({X.))= sup sup ( P r ( x ,  A ) -  P r ( x r ,  A )  ( < E .  
r . r ' E X  A E d  

This condition is identical to Griffeath's (1975) 'S-uniform ergodicity' 

These definitions apply to both homogeneous and inhomogeneous chains. 
Any chain with a finite state space which is weakly ergodic is S-ergodic; and 

conversely. 
We now list the assumptions needed to ensure the validity of Theorem 1 

below. Proofs of the theorems will be found in Section 2. Suppose (Y, d )  is a 
pseudometric space (of age structures), 3 the Borel a-field of subsets of Y 
generated by open spheres, and (X, d ,  p x )  is a a-finite non-negative measure 
space (of vital rates operators) such that d is the a-field generated by a topology 
on X. Let Z = X x Y and let % = a ( d  x 3 ) .  (If, as in most applications, X and 
Y are separable metric spaces, then % = d x 3 (Billingsley (1968), p. 225).) 

Suppose that the application of an operator x E X to an element y E Y yields 
another element of Y denoted by xy. Assume that the image xy is a jointly 
continuous function of both x and y. Let B l y  denote the set of all operators x in 
X which, when applied to an element y in Y, produce an image xy falling in 
B E 3 ,  i.e., B l y  = {x E X : xy E B).  (Obviously(Bly)y C B.) Then suppose 
that B l y  is a uniformly continuous function of y, i.e. for any E > 0, there exists 
6 > 0 such that, for any y, y' in Y, if d(y, y') < 6, then px( (Bly)A(Blyr ) )  < E .  

Now let {X.) form a Markov chain, i.e. for every n let P. be a regular (Lokve 
(1963), p. 137) Markov transition function. Let both the initial distribution Q 1 ( . )  
and Pr(x,  . ), x E X, be px-continuous. We define 3 to be the Borel field (whose 
points are the sets A in d )  which is generated by the family of open spheres 
S ( A , r ) = { A ' ~ d : p ~ ( A A A ' ) < r ) , f o r a l l A  E d  and r>O.Thenweassume 
further that (x, A ) +  Pr(x, A )  is jointly measurable, for every n and m ; that is, 
if p E [O,l], then { (x ,A) :  x E X ,  A E d and Pr(x,  A ) S p ) E  a ( A  x 3 ) .  

For a given yo in Y, define {Y,) inductively by Yo(R) = yo, Y,(w) = 

X,,(w)Y.-,(w). Define {Z.), with sample probability space (Z, %), by Z,(w) = 

( X  ( w )  Y (w)). Finally, define G, : X x Y x ( d  X 3 ) +  [O,1] by 
G,(x, Y, A x B ) =  P,(x, A n (BIY)). 

Theorem 1. With the definitions and assumptions listed above, 
(i) G. is a regular conditional probability. 
(ii) There is a unique extension of G, to a regular conditional probability 

which maps X x Y x % to  [0, 11. (Again, this is immediate if X and Y are 
separable metric spaces.) 

(iii) Z,, is a Markov chain with one-step transition probability function given 
by P[Z,+, E C (Z,, = z ]  = G,(x, y, C),  z E Z, C E %, n E N, and with initial 
probability distribution F, determined by the unique extension to % of the 
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function F1 : d x 94 -t [0, 11 defined by Fl(A x B )  = QI(A fl (Bly,,)) where Ql  is 
the distribution of XI .  

Theorem 2. Under the  assumptions of Theorem 1, the one-step transition 
probability functions P,(x, - )  of {X,) are  expressible as integrals of density 
functions. Suppose that these densities are  uniformly bounded above, and that 
{X,,) is S-ergodic (Definition 3). 

Suppose, analogously to  the  weak ergodic theorem of demography, that for 
every 6 > 0 there exists mo such that for all m 2 mo, for all initial elements y, 
y ' E  Y, and all subsequent sequences of operators x l , .  . ., x, from X, 
d(x, . . - xly, X, . . . xlyr )  < 6. 

Then {Z,,) is a uniformly weakly ergodic Markov chain (Definition 2). 

Theorem 3. Under the  assumptions of Theorem 2, let F, : V -t [O,1] be the 
distribution of Z,, n in N. Suppose, after some time no in N which, without loss 
of generality, we shall take to  be  no = 1, the one-step transition functions of the 
chain X. are  homogeneous in time, that is, P,, = PI for n in N. 

Then (i) there is a probability F (  . ) : V -t [0, 11 such that, for every n in N, C 
in %, lim, sup,,,,,,) G:(x, y, C )  - F ( C )  I = 0. 

(ii) F satisfies the renewal equation F ( C )  = J,JuF(dx x dy)G,(x, y, C),  for 
all C in %, and any n in N. 

(iii) F is an invariant distribution of the  chain Z,, that is, if F, = F, then F, = F 
for all n in N. 

(iv) Limn g(Zk) /n  = J&z)F(dz) almost surely, for any Borel function g 
for which the integral exists.% 

(v) Let Z be a metric space, % the a-field of Borel subsets of Z .  Let 
g : Z + R be any bounded, real, measurable function that is continuous almost 
everywhere with respect t o  F. Then for all n in N, x' in X, y' in Y, 
lim, I Jzg(z) G:($ )! d z )  - Jzg(z)F(dz)I = 0. 

Theorem 4. Under the  conditions of Theorem 1, replace the assumption 
that B l y  is a uniformly continuous function of y by the stronger assumption of 
uniform equicontinuity, namely, for all E > 0, there exists 6 > 0 such that for all 
B in 94 and for all y, y' in Y, if d(y, y ' )< 6 then p,(B/y A B / y r ) <  E. 

Then: 
(i) Under the additional assumptions of Theorem 2, {Z,) is an S-ergodic 

Markov chain (Definition 3). 
(ii) If {X,,) is also homogeneous as in Theorem 3, then the  chain {Z,} is 

exponentially convergent (Lokve (1963)), that is, there exist a > O  and 
b > 0 such that, for every n, m in N, SUP~EZ SUPCEW I G:(x, y, C ) -  F(C)I  5 
ae  -bm. 

W e  now indicate, as corollaries, two important applications of the above 
results. 
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Corollary 1 (age-structured populations). 
(i) Let k in N be greater than 1, and k t ,  k"  in N satisfy k t <  k " S  k, g.c.d. 

( k l , k " ) = l . L e t  L, U i n P s a t i s f y O < L < l , L < U . L e t X b e t h e s e t o f  k x k  
real matrices of the form 

satisfying L 5 s, 5 1, L 5 fk,, fk,, d U, and 0 5 f, 5 U for j# k' ,  k", j = 1 ,2 , .  a ,  k. 
Non-zero elements may occur only in the first row and subdiagonal. s, occurs in 
row j + 1 and column j, j = 1, - .  ., k - 1. 

For each matrix x in X, let p (x)  be the vector p(x)=' = (fl - . . fk, s1 . . . 3 

(pl(x), . . , P2k-l(~)) in PZk-I. Let I, be the open interval (excluding both end 
points) of possible values of p,(x), x E X. For example, I, = (L, 1) for j = 

k + 1;..,2k - 1. Define p ( X ) =  II x 1 2 x  . . .  x 12k-1; p ( X )  is an open rectangu- 
lar parallelepiped in PZk-' which excludes all the (2k - 2)-dimensional faces. Let 
Int(X) = {X E X : p ( x )  E p(X)}; Int(X) is the interior of X. If the topology on X 
is induced by the metric dx(x, x') = 1 1  x - xfllx, then d is the Borel field. Take px 

to be Lebesgue measure on PZk-' .  
(ii) Let Y = {y E Pk : y(j)  > 0 for some j 5 k"  and 11 y 11 = 1). Y is of dimen- 

sion k - 1. Algebraically, each y in Y is a column k-vector with jth element 
y (j). For y, y '  in Y, define d(y, y') = 1 1  y - y ' 1 1 .  S is the Borel field in Y with 
typical element B. Let yo, y6 be in Y. 

(iii) Let Z = X x Y, with elements z = (x, y);  and V = a ( &  x 93) with ele- 
ments C. (Since Z is separable, V = d x 3 . )  The product metric p, on Z X Z is 
PZ (2, t ') = max (dx (x, x '), d (y, y I)). 

(iv) Define xy = x y 111 x . y 11 where means the usual multiplication of a 
matrix (on the left) by a column vector (on the right). (Thus B l y  = {x E X :  
11 x . y 11 b = x . y, for some b E B).) 

(v) Let {X.), n in N, be a Markov chain with sample probability space (X, d ) .  
For each n in N, let p.(x, x') be the conditional density of X.,, at x '  given 
X. = x. Let p.(x,xf) be  jointly continuous in x and x' ;  let  sup,,^ 

~ u p , . ~ ~ p ~ ( x ,  x') < M < m. Assume 'uniform positivity': there exists 6, 0 < 6 < 1, 
such that for every n in N, there exists E d satisfying p x A n + , Z  6 and 
inf,,, inf,,,,m+, p.(x, x l ) Z  6. 

(vi) Let X I  E Int(X). Define Y,,(o) = X n ( o ) .  Yn- l (o ) / J JX. (o) .  Y.-,(o)II, and 
Z" = (X", Y"). 

Then the conclusions of Theorems 1, 2 and 3 apply. In particular, {Z,) is 
uniformly weakly ergodic; the age structure {Y,,) converges in distribution; and 
' the factor by which total population size changes in the interval from time n to 

n + 1, averaged over all sample paths beginning from Z1 = t l ,  converges as 



24 JOEL E. C O H E N  

n -+m to A = $ ,EzJr .E,x  ( 1 1  x r  y IIIII y 11). PI(x ,  dx t )F (dz )?  where z = (x ,  y ) and F 
is given by Theorem 3. Moreover, the time-average rate of growth for any 
particular sample path converges almost surely to A, i.e. 

n-1 

lim n '  C 1 1  X ,+!(W) . (o)  J I / ( J  Yl (LJ)  I (  = A almost surely (o). 
1 = , I  

Remarks. We now specify a concrete Markov chain {X,) in order to show 
that these apparently abstract and stringent conditions are met by a process 
which is demographically plausible and statistically natural for the analysis of 
historical data. 

Let Tl (a ,  .), ., Tzk- l (a ,  a), where the parameter a is in R ,  be 2k - 1 
continuous functions with continuous derivatives from p ( X )  into R defined by 

for ; = l ; . . , k ;  

for all j =  k + 1 ; . . , 2 k - l .  

Since aT,lap,(x) = 0 whenever i > j and aT,lap,(x) < 0 everywhere on p ( X ) ,  
the Jacobian of T = (T I , .  . ., T2k-,)T' never vanishes on p ( X ) .  Hence 
7 - I  : R 2 k - 1  .+ p ( X )  exists, is continuous and has continuous derivatives. 

Define the map S : RZk-'-+ R2 ' - '  via 

where qTr  = (q,, . . a ,  qZk-l) and ST' = ( S l ,  . ., S2k-1).  
Define N : Int ( X ) +  Int(X) as acting identically to ~ - ' ( b ,  S T ( a ,  -)) on 

P ( X ) .  
Then let p,(.  , .)  = p ( .  , ) where, for x, x r E  l n t ( X ) ,  

In other words, if X , ( o )  = x, let X,+,(o) = H ( x ) +  E ,  where P ( E ) ,  the vector 
containing the possibly non-zero elements of the matrix E,  has a truncated 
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multivariate normal distribution. The truncation excludes all values of H ( x )  + E 

falling outside of Int (X); the untruncated normal distribution of p ( ~ )  has means 
0 and a non-singular matrix V of finite variances and covariances (e g., but not 
necessarily, V = uZZ where 0 < u2 < m). 

The transformation H may be interpreted as follows: Z:=, p, (x)  is (except for 
mortality adjustments required by the discrete time interval) the cumulated 
fertility through the jth age category, and ZISlp, (x)/(kU) is cumulated fertility as 
a fraction of the maximum possible gross rate of reproduction. If the age 
categories correspond to age intervals of equal width and if cumulated fertility is 
described by the Gompertz distribution (Brass (1974), p. 552), then, for 
appropriate choice of constant a, T,(a,p(x)) is linear in j, j = I ; . . ,  k. 
T,(a,p(x)), j = k + 1 , .  ., 2k - 1 are logit transformations of the probabilities 
n!~? s, of surviving from birth to age category j - k. 

Empirical studies reviewed by Brass (1974) suggest that short-term variation in 
age-specific fertility can be represented as a single linear transformation of the 
Gompertz-transformed rates, and similarly for the logit-transformed age-specific 
survival rates. The choice of a, b, a,, P,, i = 1,2, is determined by examinatiori of 
particular data. When a = b, a,  = a2 = 0, PI = p2 = 1, H is the identity map. 

The transformation H simply rearranges the elements of any x into a vector, 
takes the Gompertz transform of the cumulated fertility and the logit transform 
of the cumulated survival described by x, applies a linear transform to each. and 
inversely transforms the result to an element H ( x )  of Int(X). 

Corollary 2 (Markov chains with random transition matrices). (i) Let k > 1 ,  
k in N, 0 < L 5 1. Let X C P k x k  be the set of all k x k row stochastic matrices 
x = ( ~ ( i ,  j)), C:=l ~ ( i ,  j )  = 1, such that x is irreducible and aperiodic and that for 
any rows i,, i, there is a column j such that x(il ,  j )  2 L, x(iz, j )  2 L. (The column 
j is not required to be uniform over x in X.) Let dx(x, x') = ( ( x  - xlIlx. Let 8 be 
the metric topology of P k x k ,  d the Borel field, p, Lebesgue measure in 
Euclidean space of dimension k (k - 1). 

(ii) Let Y = {y E P k  : 11 y ) I  = I}, d(y, y ') = ( 1  y - y ' ( 1  for any y, y '  in Y. Interpret 
each y algebraically as a row k-vector. yo in Y is arbitrary; Q is the Borel field in 
Y with typical element B; p is Lebesgue measure in Euclidean (k - 1)-space. 

(iii) Z = X x Y with elements z = (x, y); and '% = d x Q with elements C. 
(iv) Define xy = y - x where . means multiplication of a row vector (on the 

left) by a matrix (on the right). 
(v) Let {X.}, n in N, be a Markov chain with sample probability space (X, 4 ) .  

For each n in N, let p.(x, x') be the conditional density of X,,, at x' given 
X, = x .  Let p.(x,x1) be jointly continuous in x and x'; let  sup,,^ 

~up,. ,~p.(x, x') < M < m. Assume uniform positivity (defined in Corollary 1). 
(vi) Choose any x , E  X. Let Yo(R)= yo and X, (R)=  x,. For n > O ,  let 

Y.(w) = Y"-l(w).X"(w), z. = (X", Y"). 
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Then, interpreting the notation as defined above, Theorems 1 ,2  and 3 apply. 

Remarks. Except for the uniform lower bound L, the set X in Corollary 2 is 
the class of 'scrambling matrices' defined by Hajnal((1958), p. 235). The Markov 
matrices independently studied by Takahashi ((1969), p. 438, his Lemma 7) are 
special scrambling matrices. X is a special kind of ergodic set (Definition 4 
below, due to Hajnal (1976)). 

Hajnal ((1956), pp. 76-77) suggests the possibility of studying non- 
homogeneous Markov chains whose transition matrices are determined by a 
stochastic process. Corollary 2 may be viewed as one interpretation of that 
suggestion. 

Takahashi (1969), in another possible interpretation which is apparently 
independent of Hajnal(1956), (1958), assumes that X., X,,, (m Z n )  are indepen- 
dently (though, in his Theorem 8, p. 441, not necessarily identically) distributed 
in the set of all stochastic k x k matrices, and finds conditions on the 
distributions which imply almost sure uniform contraction: for all E >O, all 
S > 0, and any two probability row k-vectors yo, y 6 in Y as defined in Corollary 
2, there exists no in N such that for n 2 no, 

Pll(y0X,(w).. .Xn(w)- y6Xl(w).~.Xn(w)~~<&]>1-S. 

The same sequence of stochastic matrices is applied to y6 as to yo; hence this 
result establishes an almost sure version of the sure condition, which Hajnal 
(1958) calls ergodicity in the weak sense, assumed in our Theorem 2. Hybrids of 
our Corollary 2 and Takahashi's Theorem 8 can be imagined. 

Definition 4 (Hajnal (1976)). An ergodic set H(s, g, r) is a set of s x s 
non-negative square matrices with at least one positive element in each row and 
in each column such that any product of g factors which are members of 
H(s, g, r) is positive (i.e., every element of the product is positive and finite) and 
such that for each h in H(s, g, r), n~in+(h)/max+(h) > r > 0. Here min+(h) and 
max+(h) are the smallest and largest of the positive elements of h ; s and g are in 
N, r > O  is in P. 

The sets X defined in the preceding corollaries are ergodic sets if k "  = k in 
Corollary 1. Hajnal (1976) describes many more examples. 

Corollary 3 (finite ergodic sets of operators). Let X = Hl(sl, gl, r,) be an 
ergodic set containing s2 distinct members (s2 finite) labelled xl, - ., x,, and let 
S = H2(s2, g2, r2) be an ergodic set each of whose members is stochastic. (This 
means that if the elements of t in S are t(i, j), then Z J L ~  t (i, j) = 1, i = 1, . a ,  s2.) 
Let {t,}ES1 be an infinite sequence, with repetitions possible, of members of S, 
and let {X.}E=, be a Markov chain with state space X such that P IXn+l  = 

x, 1 X, = x,] = t, (i, j). Let Y be the set of all positive column sl-vectors with 
elements which sum to 1. 
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Define 24 to be the family of all Bore1 sets B in Y. Define B ly  = 

E X : x y /(I x . y ( 1  E B}. Let Z = {(x, y) :  x E X, y E Y} and let % be the set 
all sets C = A x B where A C X, B E 9. Let yo E Y. Define {Y.}:=o to be the 

family of random variables with sample space Y such that Yo = yo with 
probability 1, and for n > 0, Y. = X. Y.-l/llX. . Y.-l 11. Let {Z.}:=, = 

{ ( X n , Y n ) } ~ = l . F o r n E N , x E X , y E Y , A C X , B E 2 4 , d e f i n e G . ( x , y , A x B ) =  
P, (x, A rl (Bly )) where P. (x, A ) = Zx,EA t. (x, x1). 

Then: 
(i) G. is a regular conditional probability which maps X x Y x % to [0, I]. 
(ii) Z,, is a Markov chain with one-step transition probability function given 

by P [Z.,, E C I Z, = (x, y)] = G.(x, y, C), (x, y) E Z, C E %, n E N. 
(iii) Z,, is uniformly weakly ergodic. In particular, for any two members yo and 

y6 of Y, if . means ordinary matrix o r  matrix-vector multiplication, 

lim sup sup 1 P [X,(w,). .Xl(wl) .  yol(l X.(wl). .Xl(wl) - y o l ( ~  B ]  
n y, , ,y ( ,> ( ,  "(-1)."(-2)EX 

-P[Xn(w,)...X~(~2).~6I(JXn(~2)"'X~(~2)'~4II~ B ]  ( = 0 .  

(iv) When t. = t for all n, then the five conclusions of Theorem 3 follow. In 
particular, for every positive yo, suppressing w 

limP[X. = x i  and X : ~ ~ X 1 ~ y o / ~ ~ X : ~ ~ X 1 ~ y o l J ~ B ] =  F(xi ,B), j= 1;..,s2, 

where F : X x 24 -, [O, I]  is the limiting joint probability distribution. F is the 
solution of 

where IB(y)= 1 if y E B, Ig(y)=O if y e B .  

2. Proofs 

2.1. Proof of Theorem 1. 

Lemma 1. For A, A r E d ,  if p (A ,A1)=  px(A  AA') ,  then ( d , p )  is a 
pseudometric space which is homeomorphic to a pseudometric space of diameter 
at most one. A n  additive vector- or scalar-valued function on d which is 
px-continuous is continuous on ( d ,  p); A U A',  A rl A', A A A ' ,  and A '  are 
continuous functions of A and A '. 

Prbof. Kelley ((1955) p. 121) and Dunford and Schwartz ((1958), p. 158). 

Lemma 2. Y. is 24-measurable. 
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Proof. Yo is measurable since R E  9. Since y, = x,y,-, is continuous, the 
compound map Y,(w) = X, (w) Y,-,(w) is measurable. Use induction. 

Proof of (i). Regularity means (Lokve (1963), p. 137) (a) for every A X B in 
d x 9 ,  G,( . , . , A x B )  is %-measurable; and (b) for every z in Z, G, (x, y, - ) is 
a probability on d x 9. 

(a) The map from Z to X x sB given by z = (x, y)+(x, B ly )  is jointly 
continuous by assumption. The map (x, Bly)+  (x, A f l  Bly)  is jointly continu- 
ous by Lemma 1. The map (x, A fl Bly)+  P,(x, A f l  Bly)  = G,(x, y, A x B )  is 
jointly measurable by assumption. Hence the composed map is %-measurable. 

(b) Given (x, y) in Z, we show that G.(x, y, A x B )  2 0, G,(x, y, X x Y) = 1, 
and G, is u-additive. First, G,(x, y, A x B )  2 0 since P,(x, A f l  (Bly)) 2 0. 
Second, for any y in Y, X C Y/y because if x E X  then xy E Y. But also 
X 3 Y/y by definition. Hence X = Y/y. So G,(x, y, X x Y) = 

P,(x, X fl (Yly)) = P,(x, X )  = 1. Third, we show initially that G, is additive on 
disjoint elements of d x 9. Let A x B = A1 x B1 + A 2  x B2. Then A1 fl A 2  = 0 
or B1 f l  B2 = 0 .  Now for any y in Y and any B', B "  in 58, (B' f l  B")l y = 

(B'ly) n (BHly). In the present situation, letting B, = B', B2 = B" gives 

so that 

Then 

+ P, (x, A 2  n (Bzly )) = Gn (x, y, A,  x El)  + G, (x, y, A 2  x B2) 

by additivity of P, on disjoint elements of d. Finally, to show that G, is 
u-additive, it remains only to show that G, is continuous from above at 0 
(Kingman and Taylor (1966), p. 56, Theorem 3.2 (iii)). Let A, x B,, j E N  be a 
decreasing sequence of sets in d X 9 with limit 0 ;  write A, X B, J 0. Then 
A, J 0 or B, J 0 or both. If A, 4 0 then lim,P,(x, A,) = 0 for each x in X, n in 
N, and P, 2 G,. If B, J 0 ,  then for any y in Y, B,ly J 0 ,  so lim,P,(x, A, r l  
(B,ly)) 5 lim,P,(x, B,ly) = 0, for any x in X, y in Y, and n E N. So G, is 
u-additive. 

Proof of (ii). We first show (b) there is a unique extension of G,(x, y, . ) 
from the domain d x 9 to the domain % = u ( d  X 9 )  and that this extension is 
a probability on %, for every x in X, y in Y; then we show (a) G,( . , - , C) is 
%-measurable, for every C in %. 

(b) d x 9 is a semi-ring (Kingman and Taylor (1966), pp. 15, 134). SO 
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(Theorem 3.5 of Kingman and Taylor (1966), p 66) there is a unique additive 
extension of G,(x, y, - )  to a measure (which is also non-negative) on the ring 
% ( a  X 93) generated by d X 93. This ring is actually a field, so G,(x, y, . )  is a 
probability on % ( d  x 93). Since the u-ring generated by % ( d  X 93) is actually a 
u-field Ce and G,,(x, y . ) is bounded on % ( d  X 93), t h e x  is a unrq3.e extension 

of G,(x, y, . )  to a (non-negative) measure on Ce (Theorem 4.2 of Kingman and 
Taylor (1966), p. 77). The extension is a probability since G, (x, y, X x Y) = 1. 

(a) Let Vo = { C  E V : for every z in Z, the map G, ( . , . , C )  : z + G, (x, y, C )  is 
measurable). By (i) Va 3 d x 53. If C E % ( d  x 93), then C = E; C,, C, E d x 93 
for so~sle finite s in N (Theorem 1.4 of Kingman dnd Tzylor (lC)66), p. 17). $or 
such C, by (b) above, G , ( - ,  . , C )  = C; G,( . , . , C,) which is a continuous function 
of mcasurable functions and therefore measurable. So Ceo 3 % ( d  x B ) ,  Finally, 
if {C,);, is a monotone sequence of sets in % ( d  x 3 ) ,  then for each fixed n, 
{G,(.  , . , C,))P=I is a monotone sequence of measurable functions. So (Theorem 
5.4 (iii) of Kingman and Taylor (1966), p. 106) lim, G,( . , . , C,) is measurable. By 
continuity of G,(x, y, . ) for every z E Z ,  lim,G,(. , . , C,) = G,( . , . ,limy C,). 
Hence lim,C, E Vo and Ce,, is a monotone class containing % ( d  x 93). Then 
V o 3  V by the corollary of the monotone class theorem (Kingman and Taylor 
(1966), p. 18), or by the T - A  theorem (Blumenthal and Getoor (1968), p. 5, 
Theorem 2.2). 

Proof of (iii). Y, is 3-measurable by Lemma 2. Given Y,(w) = y,, 
Y,+,(w) = X,+,(w)y, by construction. But X.+, given X,(w) = x, is conditionally 
independent of Xl(w), . . ., X,-,(w) because {X,) is a Markov chain. Thus for 
C E V, P [(X,+l(w), Y,+,(w)) E C 1 Z,(w) = z,, j = 1, . . . , n ]  = P [Z,+I(W) 
E C (Z,(w) = I,]. So {Z,) is a Markov chain. 

T o  show that G, is the one-step transition probability function of Z., by (ii), it 
suffices to establish that P [Z,,, E C 1 Z, = z ]  = G,(x, y, C )  for C = 

A x B E d X 3 .  Now Y,+,=X,,+,y if Y. = y. Then X , + , E A  and Y , + , E B  if  
and only if X,,, E A and X,,, y E B if and only if X,,, E A and X,+, E B l y  if  
and only if X.,, E A fl (Bly).  Hence P[Z.+, E C (Z. = z ]  = P,(x,A n (Bly))  = 

G.(x, y, C). 
For C = A x B E d x 93, F, (C)  = P [Z1 E C ]  = Ql(A f l  (Blyo)) by the same 

argument. The extension of F1 to C in % repeats the argument of (ii). 

2.2. Proof of Theorem 2. 

Lemma 3. Under the assumptions of Theorem 1, for every n in N and x in 
X, there is a density function p,(x,. ) determined up to px-null sets such that for 
every A in d ,  P,,(x,A) = J,p,(x,xr)px(dxr). 

Proof. In view of the px-continuity assumed in Theorem 1, the 
Radon-Nikodym theorem applies. 
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Lemma 4. Under the assumptions of Theorem 1, if there is'a finite constant 
M  > O  such that, for all n in N and x  in X, p.(x, . ) S  M, then P,(x;) is 
uniformly continuous in A ,  uniformly in n E N and x  E X; that is, for every 
E > 0 there exists 6  > 0 such that for all A, A '  E  d, if p(A ,  A ') < 6  then for 
every n in N and x  in X, IP , (x ,A) -  P . ( x , A f ) I < ~ .  

Proof. Choose 6  = EIM.  Then I P. (x ,  A ) - P. (x ,  A ') ( 5 !A aA,Mpx(dxr)  = 

M p x ( A  A A ' )  < E.  

Lemma 5.  Under the assumptions of Theorem 2, for each B  in 58, the 
family of maps from Y to [ O ,  11 given by {G,(x, a ,  A x B )  : n E  N, x  E  X, 
A E  d )  is uniformly equicontinuous; that is, for every E > 0 and every B  in 58, 
there exists 6  > 0 such that for any y, y' in Y, if d  (y ,  y') < 6, then for every n in 
N, x  in X and A in d ,  l G , , ( x , y , A x B ) - G . ( x , y f , A x B ) I < ~ .  

Proof. Choose B  in 58 and E > 0. By Lemma 4, there exists 6' > 0 such that 
for all A ', A " in d ,  if p ( A  ', A ") < 6' then for every n in N and x  in X, 
) P , ( x , A 1 ) -  P . ( x , A U ) I < ~ .  Now for all A , A l , A 2 E d ,  ( A  n A l ) A ( A  nA2)= 
A n ( A l A A 2 ) C A l A A 2 ,  SO p ( A  n A l , A  n A 2 ) S p ( A l , A 2 ) .  Theorem 1 as- 
sumes that, given B, there exists 6  > 0 such that for all y, y '  in Y, if d(y ,  y ' )  < 6  
then p(Bly ,  B l y ' )  < 6'.  Letting Al = Bly ,  Az = B l y ' ,  A ' =  A n A1 = A fl  

( B l y ) ,  A " = A  n A 2 = A  n ( B l y l ) g i v e s  ) G . ( x , Y , A  x  B ) - G , ( x , y l , A  x B ) I =  
I P n ( x , A  n ( B 1 y ) ) -  P,(x ,A n ( B l y f ) ) l <  E whenever d(y ,  y1)<6.  

Lemma 6. Under the assumptions of Theorem 2, for every E > 0 and every 
C  in %', there exists lo in N such that for all n in N, all 1 1- lo in N, x  in X, y, y' in 
Y and x l ; . . , x l  in X, ( G . ( x , x , ~ ~ ~ x , y , C ) - G . ( x , ~ , ~ ~ ~ x ~ y ' , C ) ( < ~ .  

Proof. Let %', = { C  E  %': for every E > 0 there exists lo in N such that for all n 
in N, all 1210 in N, all x ,x l ; . . , xr  in X, all y , y f i n  Y, IG . ( x , x1 . . . x l y ,C) -  
G . ( x , x l . . . x , y l , C ) / < ~ )  . First, % ' , 3 d x 5 8 .  For let E > O  and C E d x 9 3 ,  
C  = A x  B. By Lemma 5 ,  for this B there exists 6  > 0 such that for any y  *, y  * *  
in Y, if d ( y  *, y  **)< 6, then for every n in N, x  in X and A '  in d 
) G . ( x , y * , A 1 x B ) - G . ( x , y * * , A f x B ) ( < ~ .  By assumption of Theorem 2, 
there exists lo in N such that, for all y, y' in Y, any 1 1 -  lo, 1 in N, and all X I , .  . ., X I  

in X ,  if y * = x 1 . . . x l y  and y * * = x r . . . x l y ' ,  then d(y* , y** )<6 .  This is the 
desired lo. 

Secondly, 3 % ( d  X 93). For let E > 0 and C  E  % ( d  X 58). Again 
(Theorem 1.4 of Kingman and Taylor (1966), p. 17), C  = IfZl C,, C, E d x  58. By 
Theorem 1 (ii), G ,  (. , , C )  = Is=, G. ( . , . , C,.). Then there exist 1 0 ' )  such that 
whenever 1 h 1(j),  1 in N, then for all n in N, all x, x,, . a ,  X I  in X, all y, y '  in Y, 
) G , ( x , x ~  ~ ~ y , C , ) - G , ( x , x ~ ~ ~ ~ x ~ y ' , C , ) (  < E / s ,  for j =  l ; . . , ~ .  Choose lo= 
max, { l ( j ) } .  This is the desired I,. 
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Finally, let {C,);"=l be a monotone sequence, C, E 9?(d X B ) ,  C = limjC,. For  
C in %, let TC = {x E X : for some y in Y, (x, y ) E C).  Then r C  is in d ,  pxrC is 
defined, and for every n in N, x in X ,  y in Y, G.(x, y, C )  5 P,,(x, TC). Choose 
s > 0. Since pxrC = lim, pxrC,  and for all n in N, x in X, y in Y, G.(x, y, . ) is 
px-continuous, there exists jo in N such that for all j  2 jo ,  G.(x, y, C - G )  < &/4, 
uniformly in n, x and  y, by Lemma 4. Moreover since %, 3 9?(d X B)) ,  there 
exists lo such that for all n in N, all 1  2 lo in N, all x, x,,  . a ,  Xi in X, and  all y, y '  in 
Y, 1 G.(x, Xi . . . xly,  C,) - G.(x, Xi . . . x l y l ,  CAI < ~ 1 2 .  Then for this lo ,  whenever 
1 2 1 0 ,  1  in N, ( G . ( x , x ~  . . .  x ~ ~ , C ) - G , ( X , X ~ ~ ~ - X ~ ~ ~ , C ) ( < F .  

Thus contains the  monotone class generated by 9 ( d  x B ) ,  so  = % by 
the monotone class theorem (Kingman and Taylor (1966), p. 18). 

Lemma 7. If {X,,) is any Markov chain on  the  measurable space (X, d ) ,  and 
if P;(x, A )  is t he  regular transition probability function from x E X at time n 
into A E d at time n + m, then 

= sup ;Ix ( P ; ( x , d x f r ) - P : ( x f , d x l ' ) l .  
r ,x 'EX 

Proof. Loeve ((1963), p. 367). 

Proof of Theorem 2. Define 6(y,  y') = 1 if y = y', 6(y, y') = 0 if y # y '. 
Then 6(y,  y1)6(y',  y") = 6(y,  y "). Define r = [m/2 ]  = the  integral part of m/2 .  
W e  shall always assume m E 2. Then lim, r = lim, (m - r )  = m. Define 
G;(x, y, C )  = P [Z,,+, E C ( Z. = z ]  for all n, m in N. 

For n, m in N, y. in Y, define y,, (y.) = x.+, . - - x.+,y. as an explicit function 
o f  y. and an  implicit function of x.,,, ., x.+, in X. Then y,,(y.) = 

y,+,,,-Xy,,(y.)). Let  y be an  arbitrary fixed element of Y. Whenever 

and 

occur in the  same equation, we interpret the  expression x .+, -, . x .+,+I to  be 
the  same both times it occurs, so  that y .+ ,.,-,- ,(y,,(y.)) and y.+ ,,,-,- ](y)  have a 
common factor consisting of the  leftmost m - r - 1 elements from X. 

Now choose n in N, F > 0 and C in %. By Lemma 6, there exists mA large 
enough that for m Z mA, m in N, ( q,, 1 < s t 4  and 1 q k ,  I < &/4  uniformly in y., 
y A in Y and  uniformly in x.,,, - -, x .+,-, in X, where 
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The second term in these definitions does not depend on y,, y :  or  x.+, ,  . . ., x,+,. 
qRm and q km are implicitly functions of y, of x,+, ,  . ., x , + , - ,  and, respectively, 
of y,, y L but not of x .  or x : .  

Then G , ( x ,  y, A X B )  = P. (x ,  A n ( B l y ) )  implies that G , ( x ,  y, d x '  X d y  ') = 

P. (x ,  dx '  n ( d y ' l y ) )  = P.(x ,  d x ' ) S ( y l ,  x ' y  ). The iterated regular conditional 
probabilities theorem (Logve ( 1 9 6 3 ) ,  p. 137)  applied to the Markov chain Z, 
gives 

,- 

where T, is the i th term on the right. Replacing x .  by x and qnm by qkm gives 
expressions of identical form for G : ( x L ,  y : ,  C ) =  TI+ T;. Then 
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(Gr (x , ,y , ,C ) -Gr (x~ ,yL ,C) (= I  T I +  T2- TI- T ; ( S ( T I J + )  T ~ / + ( T z -  T;/S 
&/4  + ~ / 4  + P;(x,,, dx.+,) - P',(X;, dx,+,) I .  Since {Xn) is S-ergodic, there 
exists mo in N at least as big as m; chosen earlier so that whenever m 2 mo. the 
integral on the right is less than ~ / 2 .  Then, whenever m 2 m 1 1 ,  

I Gr(xn,yn,C)-  Gr(x:,yL,C)( < E, uniformly in z, and zk in Z. 

2.3. Proof of Theorem 3. Since Pn = P , ,  we abbreviate the one-step transi- 
tion functions GI, to G and the m-step transition functions G r  to G m .  

Then (Lo2ve (1963), p. 366) for all n, m in N, 

(B) F.+.(C) = Iz F n ( d z ) G m  (x, y. C )  

and 

( c )  G.+"'(X, y, c ) =  lz Gn(x .  y, dz ' )Gm(x' .  y'. C).  

For the remainder of this proof, the domain of integration is Z. 

(i) From (C), G "+" (x, y, C )  - G m  (x, y, C )  = $ G  "(x, y, dz ' )Gm (x', y ', C )  - 
$ ~ ~ ( ~ , y , d z ~ ) G ~ ( x , y , C ) = $ G " ( x , y , d z ' ) [ G ~ ( x ' , y ' , C ) - G ~ ( x , y , C ) ] .  Choose 
E > O .  By Theorem 2, for this C there exists mo in N such that if m 2 mo, 

1 G "+" (x, y, C )  - G m  (x, y, C )  ( < $ G "(x, y, dz') . E = E, for all n in N. By Cauchy, 
l immGm (x, y, C )  exists and by Theorem 2, this limit is a function of C only; call it 
F (C) .  F ( C )  is countably additive by the Nikodym corollary of the 
Vitali-Hahn-Saks theorem (Dunford and Schwartz (1958), p. 160), and therefore 
a probability. T o  show uniformity in (x, y )  for a given n and C, choose E > 0, and 
choose a particular (x, y )  in Z, say (xo, yo). By the result just proved, there exists 
mo in N such that if m 2 mo, I G;(xo, yo, C )  - F(C)I < ~ / 2 .  By Theorem 2, there 
exists m,  in N such that if m 2 m, then supZEz ( G ~(xO, yo, C )  - G?(x, y, C )  1 < 
~ / 2 .  Let m2 = max(mo, m,). Then for m 2 m2, and any (x, y )  in Z, 

I G :(x, y, C )  - F ( C )  ( S 1 G ?(x, y, C )  - G r(xo, yo, C )  1 + ( G ?(xtr. yo, C )  - F ( C )  I < E. 

(ii) Setting m = 1 and applying limn to Equation (C) gives F ( C ) =  
limn $ Gn(x ,  y, dz f )G(x ' ,  y ', C).  For any characteristic function Ic of a set C E %, 
limn $ Gn(x ,  y, dz')IC(z1) = lim,Gn(x, y, C) = F ( C )  = $F(dz1)IC(z'). Therefore 
for any simple functions f, : Z -, [0,1], limn $ G n ( x ,  y, dz')f,(zl) = $F(dz')f ,(zl) .  
Since G ( - ,  . , C )  is non-negative, uniformly bounded by 1, and measurable, 
choose f,, j in N, to be a sequence of simple functions increasing uniformly to 
G (  - , . , C )  (Kingman and Taylor (1966), p. 104). Choose E > 0. Then there exists 
jo such that, uniformly in z, 1 f, (z )  - G(x, y, C)I < ~ / 3  whenever j 2 jn and there 
exists n '  such that ) $  Gn(x ,  y, dz')f;(zr) - $F(dzr)f,(z ')(  < E /3 whenever n 2 n'. 
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Thus for all n 2 n' ,  

Thus 

(iii) In Equation (B), set m = 1, F, = F. Then by (ii), F,,, = F. Use induction. 
(iv) By (iii), if F,  = F, then the sequence g ( Z n )  is stationary. By Theorem 2, it 

is indecomposable, so that the a-field of invariant events is { 0 , Z } .  The claim 
then follows from the stationarity theorem (Lokve (1963), p. 421). 

(v) Result (i) implies weak convergence of Gr (x ,  y. - ) to F (as m --tm), which 
implies (v) (Billingsley and Tops@e (1967), p. 1). 

2.4. Proof of Theorem 4. 

Lemma 8. Under the assumptions of Theorem 4 (i) the family of maps from 
Y to [O,1] given by {G.(x, - ,  C ) :  n E N, x E X, C E % j  is uniformly equicon- 
tinuous; that is, for every F > 0, there exists 6 > 0 such that for any y, y '  in Y, if 
d(y ,  y I) < 6, then for every n in N, x in X, C in Ce, 

1 G n  (x, y, C )  - G, (x, y ', C )  1 < F .  

Proof. Choose E > 0. Repeat the argument of Lemma 5 using the uniform 
equicontinuity with respect to B to  establish uniform equicontinuity for all x in 
X and all A x B in d x 3. Extend G. to  uniform equicontinuity for all x in X 
and all C in % by repeating the argument of Theorem 1 (ii). 

Proof of (i). Choose n in N and F >O. Drawing on Lemma 8, repeat the 
argument of Theorem 2 without initially conditioning on C in %. The  argument 
then concludes uniformly in z,, z :  in Z and uniformly in C in Ce. 

Proof of (ii). Every homogeneous S-ergodic chain is exponentially con- 
vergent. 



Ergodicity of age structure in populations with Markovian vital rates. 11 35 

2.5. Proof of Corollary 1. Uniform positivity. We must confirm that the 
particular p,(x, x')  defined in (A) satisfies the general conditions assumed in the 
first paragraph of (v) of Corollary 1. First, p.(x, x') in (A) is jointly continuous in 
x and x', and p. (x, x') < M < m. Second, let 6 '  = px(Int (X)) = 

( U  - L)2Uk-2(l - L)k-'. Then 6 '  > 0. Since s ~ p , , . , ~ , , ~ ~ ,  dx(x, xr)  < m, 6 " =  
infI,,~,l,,,x,p.(x, x') > 0. So if 6 = min (6', 6"), uniform positivity is satisfied. 

Proof that Theorem 1 applies. The assumptions of Theorem 1 which remain 
to be verified in the context of Corollary 1 are that (1) Bly is a uniformly 
continuous function of y, and (2) the map (x, A)-+ P:(x, A )  = JAP(x, xl)dx' is 
jointly measurable. 

(1) Since ( 1  x . y 11 # 0, the set Bly = {x E X : x . y /(I x . y 11 E B )  is a continuous 
function from Y to d by inspection. (Y, d )  is a compact metric space. If 
p(A, A ') = px(A A A I), for A, A ' in d, then (d, p) is a pseudometric space. The 
proof of Theorem 2.4 of Kingman and Taylor ((1966), p. 37) extends to a rgnge 
space which is a pseudometric space so Bly  is uniformly continuous. Thus given 
B in 93, for all E > 0, there exists 6 > 0 such that for all y, y' in Y, if ( (  y - y ' 1 1  < 6 
then px((Bly)A(Blyr))< E .  

(2) The map (x,A)-+ P,"(x,A) is jointly continuous, hence jointly 
measurable. 

Proof that Theorem 2 applies. The assumptions of Theorem 2 which remain 
to be verified in the context of Corollary 1 are that (1) {X,) is S-ergodic, and (2) 
for all 6 > 0 there exists mo such that for all m 2 mo and for all X I , .  . ., x, E X, 
d(x, . . .  x,yo,x, . . .  xlyA)<6. 

(1) Uniform positivity is an obvious analog of the generalized Markov 
condition (Lobve (1963), p. 369) for homogeneous chains on general state spaces. 
A calculation exactly parallel to Lobe ' s  shows that An, 5 (1 - 6')". Thus 
assumption (v) of Corollary 1 guarantees that {X,) is not merely S-ergodic, but is 
exponentially convergent (Lobve (1963), p. 367), even when {X,) is not 
homogeneous. Here 6 = min(6', 6") as in 2.5 above. 

(2) The weak ergodic theorem of demography is proved with elegance by 
Golubitsky, Keeler and Rothschild ((1975), p. 89). This theorem implies (2). 

Proof that Theorem 3 applies. The transition probability density function in 
(A)is homogeneous. Theorem 3 (v) applies since Z = X x Y with the metric p, 
is a separable metric space and % is the Bore1 u-field. 

For w in R, total population size changes from time n to time n + 1 by the 
factor A,(w) = ((X,+,(w).  Y,,(w)l(/ll Y,,(w)Il. ( .  means matrix-vector multiplica- 
tion.) By construction of Y,(o), ( 1  Y,(w)ll# 0 surely so A,(w) is defined, and 
A,(w) is bounded surely by construction. Then A(z,)= 
E,(An(w)( Z, = (x,, y,)) = Jx (llx . y, ((Ill y. (()P,(x,, dx) is a bounded, positive, 
continuous function of z, which gives the expected factor of change in 
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population size from n to n + 1 conditional on Z,,. If only the initial c'onditions 
Z, are known, then 

is the expected factor of change from n to n + 1. In the homogeneous case, 
lim,E,(A,(w) 1 Z, = 2,) = $zA(z)F(d~)  = A. 

If F, = F, then since {Z,} is a stationary ergodic sequence of random vectors, 
the sequence of random variables {A,) is also stationary and ergodic (Breiman 
(1968), pp. 105, 119), hence lim,n-' X;:; A,(w) = A almost surely (w). 

2.6. Proof of Corollary 2. The analog of the weak ergodic theorem of 
demography required by Theorem 2 is immediate from Lemma 3 of Hajnal 
((1958), p. 237). 

2.7. Proof of Corollary 3. 
(i) Using counting measure on X and Lebesgue (s, - 1)-measure on Y, the 

measurability of G,( . , - , A x B) is immediate, and G,(x, y, . ) is obviously a 
probability. The extension to % is immediate since X and Y are separable 
metric spaces. 

(ii) By proof of Theorem I (iii). 
(iii) P,,(x, . ) is defined in terms of a transition density t,,(x, - )  which is 

uniformly bounded by 1. Theorem 3 of Hajnal (1976) implies both that {X,,} is 
S-ergodic (in fact, exponentially convergent) and that the analog of the weak 
ergodic theorem of demography assumed in our Theorem 2 also holds. Because 
X is finite, our Lemmas 4 and 5 are trivial, and do not require the continuity 
assumptions of our  Theorem 1. The result then follows by the arguments for 
Lemmas 6 and 7 and Theorem 2. 

(iv) By proof of Theorem 3. 
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