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Thanks to recently developed theory of Markov population processes, models
of how an individual primate migrates from one casual social group to another
or from one breeding troop to another can now deal exactly with transition rates
which depend nonlinearly on the sizes of both the group (or troop) left and
the group (or troop) entered. Examples of such models presented here are
consistent with existing observations of primate social and population dynamics
and are more plausible as explanations of these data than previous linear models.

1. INnTRODUCTION

A Markov population process (Kingman 1969) is a stochastic population
process defined on A-tuples of nonnegative integers. Individuals arrive at,
depart from, and transfer among the & positions. The number of individuals
at any instant in each position is given by the corresponding integer in the
k-tuple which describes the system at that instant. Theorems permit calculation,
in some special cases, of the stationary distributions of the numbers of individuals
at each position from the instantaneous rates of arrival, departure, and transfer
(Section 2). Two sets of such rates, describing systems with a variable number
of individuals, lead to negative binomial marginal distributions of the number
of individuals at each position. A third set of rates, describing a system with a
fixed number of individuals, leads to a marginal distribution of the number of
individuals per position that is negative binomial only in the limit as the number
of individuals and positions in the system is large (Section 3). Calculation of
aggregate rates of arrivals to and departures from groups of each size shows
that these rates are linear functions of group size in the two models of open
systems, are quadratic functions in the model of a closed system, and in all cases
are consistent with the marginal distributions of group size (Section 4).

* I thank Samuel Karlin for making me aware of Kingman’s (1969) work, and J. F. C.
Kingman and referees for repeated and very substantial assistance. This research was
supported by the National Science Foundation, the Population Council of New York,
and Harvard and Princeton Universities.
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The three new Markov population processes presented here improve on
previous linear one-step transition (LOST) models for systems of freely
forming social groups because the nonlinear models do away with the need for
certain implausible assumptions in interpreting the equations of the LOST
models (Section 5). The Markov population process models also improve on
previous birth-immigration-death-emigration (BIDE) models which treat
ensembles of primate troops (breeding units) as independent, noninteracting
replicates of a BIDE process; by their very multidimensionality, Markov
population processes allow for the possibility and suggest the measurement of
intertroop migration and other demographic interaction (Section 6). Several other
recent multidimensional stochastic models, though not immediately applicable
to primates, are special cases of or closely related to Markov population processes
(Section 7).

2. Markov PoPULATION PROCESSES

Following Kingman (1969: 1-4), let k be any positive integer and let
n = (n;,...,m;) and m = (m ,..., m;)) be k-vectors whose components 7, and
m; are nonnegative integers. We define a continuous-time Markov chain on
some subset .S of the set of all such vectors, and denote by g(n, m) the transition
rate (not to be confused with the transition probability) from n to m. Write e,
for the vector with all components zero except for 1 in the ith place. Then the
transition from n to n 4 e; may be described as an arrival at component i
the transition from n to n — e; as a departure from #; and the transition from
nton — e; -+ e;asatransfer from ¢ to §, ¢ # j (assuming 2 > 2). A continuous-
time Markov chain on S is a Markov population process if and only if, for any
n, g(n, m) = O except possibly for

g(n, n + ei) = o‘i(n)
g(n, n — e;) = lgz'(n)’ 1)
g(n, n —e; +¢) = yy(n) (@)

The boundary conditions on these transitions are 8,(n) = y;(n) = 0if n; = 0.

For present applications it is assumed that the Markov chain on S is irre-
ducible. A Markov population process on S is closed if o; = B; = 0 for allZ (no
arrivals or departures) so that the number of individuals in the system
n=mn, + - + n, is conserved. In this case S is the set of vectors whose
components sum to z. In an open system, S ={n|n <Ly,..,m < Ly}
where L is a vector of upper limits some or all of whose components L; may be
infinite. Processes with absorbing states are not considered here.
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The stationary distribution on S is a set of positive numbers p(n), for n in S,
satisfying
2 pn) =1 )
nes

and

k

% o)+ ¥ An) + 3 yufa)| oo

= 2 x(n —e)p(n —e;) + Zl Bin +e)p(n +e,)
+ Y vun+e —e)p(n + e —e), (3)

2,d=1

where terms involving p(m) with m ¢ S are to be ignored. Where S is finite
(as in any closed system), a unique stationary solution exists.
A Markov population process is reversible if it satisfies

#(n) g(n, m) = p(m) g(m, n) )

for any pair of states n, m. Conditions equivalent to or necessary for reversibility
are given by Kingman.

A process is simple if the arrival, departure, and transfer rates depend only
on the numbers in the components affected by the transition, so that

a(n) = oyn), Bin) = By(ny), vi(R) = yy(n; , n;). )

Kingman (1969: 7-8) showed that if o(n) = oy(n;) and B(n) = B,(n;) are
positive functions of #; alone, and if the process is reversible, then the stationary
distribution p(n) is given by

p(n) =[] film), (6)

=1
where

MZ(Z)U _ ﬁgz(’;) fj» =01l nd io fo) =1 (@)

Such a process need not be simple, since the y,;;(n) need not depend solely on
n;and n; . Result (6) implies that the numbers #; of individuals in each component
are mutually independent in open systems. Hence in open systems, f; is the
marginal probability density function of 7, .
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3. STATIONARY DISTRIBUTIONS

Given ayn;) and By(n,) as required by Kingman’s theorem, the further
requirement of reversibility (4) may easily be shown to be met by taking
y;;(n) = 0, in which case there are no transfers among components, or by
taking

vi(n) = guBin;) o;(n;), &8ii = 8t » (3)

where g,; may depend on any of the components of n except #n; and #; . In this
case (8), a transfer from ¢ to § occurs at a rate proportional to the usual rate of
departure from 7 and proportional to the usual rate of arrival to j, scaled by a
factor g;; which might be some measure of geographical, genetic, or psycho-
logical proximity.

For purposes of application, three special cases, two open and one closed,
are of interest. In the first (ModelI), arrivals and departures satisfy

an) = a; + b, Bin)) = dn;, a;,b;,d; >0, b; < d; &)

but there are no transfers, y; = 0. (The last inequality in (9) is necessary to
obtain a stationary distribution.) In the second (Model IT), arrivals and departures
satisfy (9) and transfers satisfy (8) or (11). By Kingman’s theorem (6) and (7)
and by Katz’s (1945) derivation of probability density functions from difference
equations, the numbers of individuals in each component n; are independently
negative binomially distributed:

rl—l—n,—-l

» q; = b,/d;, p=1—gq (10)

f;(nl) - ( )Pilqit ri = az/bz ’ ni = 0) 1;--- .

In the limit as b; | 0, it may be shown from (7) (Katz 1945) or directly from
(10) that the negative binomial distribution approaches a Poisson distribution.
For b, < 0, the distribution of #; is binomial.

In the third case (Model III), «; = B; = 0 but transfers occur, as in Model II,

with rate
yi(n) = gi; dna; + bn;), g =giis a;,b0;,d; >0, b;<d;, 17#j. (11)

It follows easily from (3) that p(n) may be written in the form (6) and f(n;) of
Model III also satisfies the difference equation

fin; 4 D[fn;) = (a; + bny)/[di(n; + 1)].

But because of the constraint n; + -+ + n, = n, f,(n,) is no longer (as it was
in the open models) the marginal probability of %, individuals in component .
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For the case a; = a, b; = b, d; = d, Kingman (personal communication,
20 October 1971) established that

w0 =L (F)

i=1 i

By summing p(n) over all n such that #, = s and 7, + - + n, = n — s,
Kingman obtained the marginal probability density function P(s) of the number
s of individuals in a group:

P~ ()% D)) a2

§ n—s n

To investigate the limiting behavior of P(s), we rewrite the right side of (11a)
as

P(s):(r—l—i—l)((k—l)r-i—n—s—l)/(kr—i—n—])'

n—s n

Then from results of Feller (1957: 60, problems 18 and 19), if kr — o and
n — o0 so that
n 1—p

—_——

kr ?

(11b)
then

P(s)— (’ +i_ ])pr(l —p), s=0,1,2,..

which is just the negative binomial distribution. The condition (11b) is equivalent
to the reasonable condition that the mean number of individuals per group n/k
approach the mean 7(1 — p)/p of the negative binomial distribution. Thus the
marginal distribution of group sizes in a large closed system (Model III)
approaches the marginal distribution of group sizes in open systems where the
groups have no effect on each other (ModelI) or where groups exchange
members at rates that depend on the numbers of members in the groups left
and in the groups entered (Model IT).

4. AGGREGATION

When a permanent labelling { = 1, 2,..., & of each of the components of a
Markov population process is not natural or operationally feasible, an alternate
description in terms of the number of components of each size is desirable.
Obtaining such a description means aggregating the behavior of the individual



124 COHEN

components into a picture of the behavior of the whole system and requires
some attention in systems with nonlinear interactions such as occur in Models I1
and II1. We assume a; = a, b; = b, d; = d, g;; = g.

Thinking of each component 7 as a group of #; individuals, we let G(s) be the
number of groups each containing s individuals at some particular instant of
time, and G, = E(G(s)) be the expectation of G(s) at equilibrium. If, as above,
we take P(s) as the marginal probability density function of the number s of
individuals in a group, then clearly

&

G, =Y P(s) = kP(s).

.
il

Hence for Models I and II, G, is k times (10), and for Model III, G, is & times
(11a).

An alternate approach that yields the same end results illuminates en route
more of the aggregate dynamics, the volumes of flow into and out of groups,
and hence yields intermediate results that may be useful in applications of the
models. Let 3(x, y) = 1 if # =y, 8(%, y) == 0 otherwise. Then for any »,

i n8(n; , §) = $G(s).

In addition, for any s > 0,

dG,/dt = -+ expected rate of departures from groups of size s 4 1
+ expected rate of arrivals to groups of size s — 1
— expected rate of departures from groups of size s
— expected rate of arrivals to groups of size s. (12)

Equation (12) accounts correctly for a transfer from a group of size s to a group
of size s — 1, which eliminates one group of size s and creates another, leaving
no net effect, as well as for a transfer from a group of size s 4 1 to a group of
size s — 1, which creates two groups of size s at once. For groups of size s = 0,

dGy/dt = -+ expected rate of departures from groups of size 1
— expected rate of arrivals to groups of size 0. (13)

At equilibrium dG/dt = 0 for all 5. Thus from (13), the second and third
terms on the right side of (12) cancel for s = 1; this in turn makes the second
and third terms of (12) cancel for s = 2; and the general condition at equilibrium
which results is that

E (rate of departures from groups of size s -+ 1)
= E (rate of arrivals to groups of size s). (14)
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We now write down explicitly the expected rates of arrivals and departures
for Models I, II, and III.

Model 1
From (9),

E (rate of arrivals to groups of size s)

= E (Zk: (a 5 bn;) 8(n, , s)) = E(G(s)(a + bs))

= G(a + bs).

E (rate of departures from groups of size s)

=E (i dndn, , s)) = E(G(s) ds) = G.db.

From (14), at equilibrium

Gs+1 — a +bs
G,  ds+1) (1)

which, as has already been seen (Section 3, combining (9) with (7)), is just the
difference equation defining the negative binomial distribution. Here the G,
sum to k. No other result would have been credible, since Model I is simply %
independent, noninteracting replicates of a linear birth, death, and immigration
process with a negative binomial stationary distribution.

Because of this independence it is easy to see that var(G(s)) = kp(s)(1 — p(s))
where p(s) is given by (10). For s = ¢, cov(G(s), G(s")) = —kp(s) p(s')-

Model 11
From (11), using the independence of the #; , and letting n* = E(n,),
E (rate of arrivals to groups of size 7)
k
= B(Y [a+bn+ ¥ gdnte + bn)] 5, 9)
=1 i
= (a—}—bs)Gs—}—E(Z gdn,) (@ + bs) G,
i
= (@ + bs) G(1 4 gd(k — 1) n*).
E (rate of departures from groups of size s)

=E (i [dnz. + j;i gdnfa + bn,-)] 8(n; , s))

=1
= dsG, 4+ dsGg(a + bn*)(k — 1)
= dsG (1 - g(a + bn*)(k — 1)).
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From (14),
(a + bs) G(1 + gd(k — 1) n*) = d(s + 1) G, 5(1 + gla + bn*)(k — 1)),

and since n* = a/(d — b),

Gsﬂ_[ 1 4 gdn*(k — 1) ] at+bs  a+bs
G, I+gla+bn®E—1Dldis+1)  ds+1)°

Thus the aggregated distribution is again negative binomial. It must be so
because, in spite of the nonlinear migration rates between components, the
component sizes have independent and identical negative binomial distributions.
As g | 0, Model IT approaches Model I. As 4, b, and d vanish but g increases in
such a way that 4 = gad and B = gbd remain constant, Model II approaches
Model I11. In this limit, G, behaves discontinuously, as we shall now see.
Model 111

From (11),

E (rate of arrivals to groups of size s)

=E (f f gdna + bn;) &(n; , s))

J=1 i #j

= (. gdln — e + bn) 801, )

j=1

= G,gd(a + bs)(n — s)

= G(4n + s(Bn — A) — Bs?), A = gad, B = gbd,
= G(A(n — s) + Bs(n — s)).

E (rate of departures from groups of size s)

—E (i Y. gdnga + bn;) §(n;, 3))

i=1 j #¢

= sGy((k — 1)4 + (n — 5)B).
Then from (14), at equilibrium

Gs+1 (S + r)(n — S) (16)

G, (+Dk—1y+n—s—1]"

where, as in (10), = @/b. In Model III, the lack of independence among
groups gives a nonlinear aggregated difference equation (16) for the expected
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numbers of groups of each size. Kingman (personal communication, 20 October
1971) observed that the marginal probability density function P(s) given in (11a)
also satisfies this difference equation, as it must.

White’s General Attractor Model

The methods just used give with equal facility the aggregate equilibrium
equations of Markov population processes whose defining rates are considerably
more complex. For example, the rates defining White’s (1962: 156-159) general
attractor model are:

a(n) = o«G(1)(1 — &(n; , 0)),
Bin) = pn(l — 8(n;, 1)), (18)
vi(n) = 0.

It is easily seen that since no arrivals can occur to groups of size zero and no
departures can occur from groups of size one, the number £ — G(0) of groups
with one or more individuals in them (the only observable groups in some
circumstances) is constant. Then as in previous calculations

Rate of arrivals to groups of size s (s > 0)

= aG(1) G(s),

Rate of departures from groups of size s (s > 0)
= psG(s)(1 — 8(s, 1))-

From (14) one obtains the same difference equations for the aggregated variables
that Goodman (1964: 173-175) obtained in discussing this model.

A virtue of presenting this model in terms of the elementary rates (18) instead
of in terms of aggregated variables, as White (1962) did originally, is that a
candidate for the stationary distribution of the process can be tested directly
through (3). Since White (1962) proposed the general attractor model as a
process in which groups have truncated Poisson stationary distributions, we
substitute the trial solution

k A:l,
o) =11 e =y

i=1
and the rates (18) into (3). By symmetry of (18), A = A, so that (3) simplifies to

o4

«G(1)[k — G(0)] + u[r — G(1)] =

L) b — G(1)] + stk — G(0)

which would be satisfied exactly if

_n—G(1)

A =560
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were a constant. The denominator is already known to be a constant. The lower
the variance over time of A at equilibrium, the more closely the stationary
distribution of each group’s size approaches a truncated Poisson distribution,
as Goodman (1964) also pointed out.

5. AppLicATION I: SySTEMS OF SociaL GROUPS

Systems of freely forming social groups arise when a large number of
individuals gather but no particular associations among them appear to be
externally imposed. If the individuals are nonhuman primates, the larger
aggregation, usually a breeding unit, may be called a troop. A smaller, more
temporary face-to-face social clustering (such as a grooming pair or a play group)
within a troop may be called a group. A more precise operational definition of
such freely forming groups appears in Cohen (1971). In this section, each
component of a Markov population process is identified with such a group in
order to study associations within a troop. In Section 6, each component of a
Markov population process is identified with a whole troop (breeding unit) in
order to study the dynamics and interactions of whole demes within a species.

If the individuals in a social setting are humans, the larger aggregation of
interest is what Goffman (1963: 24) calls an unfocussed gathering, and the smaller
aggregation, here identified with a component of a Markov population process,
has been called variously a “casual” or “spontaneous” or “freely forming”
group.

In applying Models I, II, and III to systems of social groups, the parameter
a; can be thought of as the attractiveness to an outsider of belonging to group i,
b; as the average attractiveness to an outsider of an individual in group i, d; as
the average propensity to depart from group ¢ of an individual in group #; and
given these characteristics of individual groups, g;; may be thought of as a
proximity between group 7 and group j.

Because of the nonlinearities in the transfer rates Y15 » if there are no individuals
in groups other than those of size s then there are no arrivals to groups of size s
from other groups within the system. This reasonable characteristic of these
Markov population processes makes them a substantial improvement over the
linear one-step transition (LOST) models for systems of social groups (Cohen
1971: Chap. 4). In those models, because terms describing arrivals to groups
of a given size are independent of the numbers of isolates in the system, an
isolate in the system must have a propensity to join a group which is actually
inversely proportional to the number of isolates in the system. Thus, according
to the LOST models if the number of isolates in a system were doubled but the
number of groups of size three were held constant, then an isolate’s inclination
to join a triple would have to be halved, in order to guarantee a constant rate
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of arrival to groups of size three. Such a psychology is not impossible, but
seems far less plausible than the psychology implicit in the rates of the Markov
population process models.

Detailed identification of a Markov population process with social data
requires some permanent labelling of groups. None of the available data on
human social groups identify the groups by geographical position or by the
individuals in them, so the finest details cannot be tested with such data.

But the predictions of Model II regarding aggregate rates of arrival to and
departure from groups of each size have in fact already been tested and
confirmed, although with another model in mind. The dynamics of an open
LOST model were tested against observations of human children at play
(Cohen 1971, Chap. 5) by plotting aggregate rates of arrival and departure as
functions of group size, estimating from fitted straight lines parameter values
corresponding to a, b, and 4, and showing that these values were consistent with
the estimates of a/d and b/d obtained by fitting a truncated negative binomial
distribution satisfying (15) to the marginal distribution of group sizes.
Fortunately, in spite of y;; being nonlinear, the aggregate arrival and departure
rates of Model II in Section 4 are also linear functions of group size, and the
ratios corresponding to a/d and b/d in these functions ought also to be consistent
with the negative binomial marginal distribution of group sizes. Hence the
nursery school data support equally Model II’s dynamics for an open system
of casual social groups.

The aggregate or marginal distribution (16) of the number of groups of each
size predicted by Model III can now be tested with Struhsaker’s (1965)
observations of a (nearly) closed vervet monkey troop.

Table 1 presents Struhsaker’s observed frequency distribution of vervet
sleeping group sizes (including nights when some animals in the troop were not
seen), the expected numbers G, of groups of each size s according to the
difference Eq. (16) predicted by ModelIIl, and a previously fitted (Cohen
1971: 18) truncated negative binomial distribution, predicted by a closed LOST
model.

To estimate 7, a computer routine accepted fixed values for & and , calculated
G, iteratively by (16), normalized G, so that they summed to the total number
of groups observed, and searched for that value of  which minimized Pearson’s
X?2. The same pooling of frequency classes for fitting G, was followed as had
been previously adopted for fitting the truncated negative binomial. The
routine was verified by finding that it recovered the value of » which had been
used to generate by hand a set of artificial data which exactly matched the
expected values G, .

The number of monkeys in the troop was # — 17, and the maximum number
of separate sleeping groups observed on any night when all animals in the troop
were accounted for was & = 6 (Cohen 1971: 15). (Conveniently, the minimum
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TABLE 1

Marginal Frequencies (Column 2) of Group Sizes (Column 1) Observed by Struhsaker

in a Closed Vervet Monkey Troop; Expected Frequencies According to Model III

(Column 3) and a Truncated Negative Binomial Distribution (Column 4); and Expected

Frequencies According to Model III (Column 5) Fitted to the Negative Binomial
Distribution (Column 4)

6)) 2 €)] @ (5)
Group Struhsaker’s Model Truncated G, fitted

size observed III negative to truncated
s frequency G, binomial negative binomial

1 27 355 28.3 35.5

2 29 25.6 26.8 25.8

3 24 19.6 22.8 19.9

4 20 154 18.2 15.6

5 12 12.2 14.0 12.4

6 9 9.7 10.5 9.8

7 5 7.7 7.7 7.7

8 4 6.0 5.6 6.0

9 9 4.6 4.0 4.5
10 2 3.5 2.8 34

11 2 2.6 2.0 2.5
12 0 1.8 1.4 1.7

13 1 1.2 1.0 1.1

14 3 2 2.0 0.8 1.7 0.7 18 0.7
15 0 0.4 0.5 0.4
16 1{0 0.7{0.2 1.4(0.3 0.6¢0.2

> 17 1 0.1 0.6 0.1
k=26 r = 0.64 r =192 r = 0.67
n =17 p =035
X* = 13.803 X% = 11.599 X% = 3.996
df = 12 df =11

03 <P<05 03<P<05

values of X2 corresponding to the alternate parameter values # = 5 and &k = 7
are higher than the X2 with & = 6.) To the nearest 0.005, the value of 7 which
minimizes X2 when & = 6 and n = 17 is 0.640. While the corresponding value
of X2 = 13.803 is higher than the X2 = 11.599 obtained for the fit to the
truncated negative binomial distribution, the negative binomial has one more
free parameter. Since the probability levels P associated with the values of X2
in both cases satisfy 0.3 < P < 0.5, the difference in fit between the negative
binomial and G is negligible.

To illustrate how closely the distribution G, can approximate a negative
binomial distribution with parameter values as far from infinity as 2 = 6 and
n = 17, the last column of Table 1 shows the result of fitting G| to the expected
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values of the negative binomial distribution which had been previously fitted
to the data. Taken strictly as a numerical index without probabilistic inter-
pretation, X2 = 3.996 suggests a close fit.

The negligible difference in goodness of fit to aggregated data between the
closed LOST model, which assumes linear arrivals to groups, and Model III
which assumes nonlinear transition rates, suggests once again the inadequacy
of aggregated data alone to discriminate among alternate possible detailed
mechanisms. A more important difference between the two models than
goodness of fit is the difference between the estimated values of r, the ratio of
group attraction to individual attraction. Fitting the negative binomial gives an
estimated 7 = afb of 1.9. The value of = 0.6 obtained here by fitting G,
accords more closely with the still very tentative speculation (Cohen 1972) that
there may be a phylogenetic trend within the primates toward a rising value of 7:
an ascendancy of group attraction over individual attraction in systems of casual
social groups. Perhaps the most important difference between the two models,
and one which seems decisively to favor Model III, is the superiority of the
behavioral assumptions of Model III.

While a Markov population process offers the possibility of a much finer
analysis than do the LOST models of the aggregated consequences of variability
in the characteristics of groups and their interconnections, many analytical
questions remain unsolved. For example, what is the stationary distribution
p(n) when g;; # g;;?

At an even finer level than Markov population processes, one hopes for
models which specify the characteristics of mobility of individuals, and for
which sufficient analytical machinery is available to permit aggregation first
to groups and thence to the system as a whole. See White (1970).

6. AppLicaTiON II: POPULATIONS OF BREEDING UNITS (Troops)

Each component of Model I is a linear birth and death process with immi-
gration, or a birth-immigration-death-emigration (BIDE) model. The stationary
distribution of each component, the negative binomial distribution, fits with
fair accuracy the observed aggregated size distributions of troops (breeding
units) of a number of primates, including howler monkeys, gibbons, colobus,
langurs, and baboons (Cohen 1969). The very few data available on the size
distribution over time of a single primate troop (Altmann and Altmann 1970: 31)
were insufficient for testing whether that troop’s size distribution was negative
binomial; hence aggregated numbers of troops of each size, corresponding
to G, were analyzed on the basis of the explicit assumption (Cohen 1969: 473)
that immigrations to each troop were independent of emigrations from all other
troops.
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Some evidence contradicts this assumption. Altmann and Altmann (1970:
47-57) observed in detail several transfers among baboon troops by adult males.
They review (1970: 63-64) other cases of migration between troops described
elsewhere. Schaller (1965: 337-338) observed several migrations of adult
gorillas, both male and female, between what he called groups and what are
here called troops. Yoshiba (1968: 235-237) reported changes in the lead male
of six langur troops as a result of contacts between those bisexual troops and
all-male troops. A Japanese macaque, instead of entering another troop,
recruited a troop around himself from the membership of a larger troop (Frisch
1968: 247).

This list of well-attested cases of migration between troops, which makes no
pretensions of completeness, excludes many inconclusive observations of what
may be migrations between troops (e.g., Carpenter 1965: 269-270; Reynolds
and Reynolds 1965: 396). Altogether, the available observations are too few or
too imprecisely reported to make possible credible estimates of rates of intertroop
migration, although in the best case (baboons) some lower bounds might be
guessed.

D. 8. Sade (personal communication, July 1970) has objected to the BIDE
model’s assumption that the rates of immigration to a troop are independent
of its size, and has suggested that the rate of immigration increases with troop
size. If this is so, transfer rates which ignore the size of the receiving troop must
at a minimum be replaced by transfer rates of the form (11), and two parameters,
not one, must be estimated from observations: the rate g;; d;a; (per monkey in
the troop left per day) of transfers which do not depend on the receiving troop’s
size, and the rate g;; d;b; (per monkey in the troop left per monkey in the troop
entered per day) of transfers which depend on the numbers of monkeys in both
troops. Clearly estimation of these rates requires knowledge of the sizes of both
the troop left and the troop entered. A field worker who invites home a realistic
model has opened the door to a creature with an enormous appetite for costly
quantitative data. Yet if quantitative studies of the genetic structure of primate

populations are to have a firm foundation in population dynamics, there is no
other choice.

7. ADDITIONAL MARKOV POPULATION PROCESSES AND GENERALIZATIONS

Kingman (1969) reviewed a variety of probabilistic models which could
be formulated and analyzed as Markov population processes. Three more
examples, and two generalizations, all unavailable when he wrote, complement
his list.

Puri (1968) studied by ad hoc methods linearly interconnected birth and death
processes which are simple in the sense of (3).
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His defining rates were:

o = An,,

Bi = pm;,
Vi = Villy, Aoy Bisvi, 8, >0,
Yiica = O,

v =0 if jAiLl

Matis and Hartley (1971) allowed arbitrary linear connections from one
component to another, but no immigration. Their parameters were:

& = O,
B: = bon;
Yis == Oy .

Milch (1968), by Herculean calculations, derived the transition probabilities
from the rates of a process which has no transfers between components, but
which is not simple. His defining rates were:

&; :(n+ I)Pz’
Bi =n;,
Yi = 0.

Port (1968a) studied a model which is identical to a Markov population
process except that more than one individual can arrive at a component simul-
taneously. Port (1968b) generalized the arriving stream of clusters of individuals
from a Poisson process to an arbitrary renewal process.

Additional examples of multidimensional stochastic processes are reviewed
by Whittle (1964).
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