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Abstract. Irreversibly sickled cells (ISCs) remain 
sickled even under conditions where they are well 
oxygenated and hemoglobin is depolymerized. In our 
studies we demonstrate that triton extracted ISC core 
skeletons containing only spectrin, protein 4.1, and ac- 
tin also retain their sickled shape; while reversibly 
sickled cell (RSC) skeletons remodel to a round or bi- 
concave shape. We also demonstrate that these triton 
extracted ISC core skeletons dissociate more slowly 
upon incubation at 37°C than do RSC or control (AA) 
core skeletons. This observation may supply the basis 
for the inability of the ISC core skeleton to remodel 
its shape. Using an in vitro ternary complex dissocia- 

tion assay, we demonstrate that a modification in 
/3-actin is the major determinant of the slow dissocia- 
tion of the spectrin-protein 4.1-actin complex isolated 
from the ISC core skeleton. We demonstrate that the 
difference between ISC and control/3-actin is the inac- 
cessibility of two cysteine residues in ISC ~/-actin to 
labeling by thiol reactive reagents; due to the forma- 
tion of a disulfide bridge between cysteine TM and 
cysteine 373 in ISC/~-actin, or alternatively another 
modification of cysteine TM and cysteine 373 which is re- 
versible with DTT and adds less than 100 D to the 
molecular weight of ~-actin. 

T 
HE molecular events which occur within red blood 
cells (RBCs)' from homozygous sickle cell (SS) pa- 
tients, and to their extracellular environment, leading 

to the painful sickle cell crisis, organ damage, and mortality 
have been of great interest to the clinical and scientific com- 
munity (reviews Hebbel, 1990, 1991; Powers, 1990; Francis 
and Johnson, 1991; Joiner, 1993). Blood from SS patients 
can be separated on density gradients into morphologically 
and physiologically distinct RBC classes (Fabry et al., 
1984). During the course of vasoocclusion the highest den- 
sity class of RBCs are selectively trapped in the microvas- 
culature (Kaul et al., 1986, 1989). This high-density class 
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1. Abbreviations used in thispaper: CFF, class II force field; CF-FAB, con- 
tinuous flow fast atom bombardment; DTNB, 5,5'-dithiobis-(2-nitro- 
benzoate); FAB-MS, FAB mass spectrometry; HDSS, high density SS; IOV, 
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MALDI, matrix-assisted laser desorption ionization; MD, molecular dy- 
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of RBCs includes irreversibly sickled cells (ISCs) (60--85%) 
that retain a sickled shape in well oxygenated blood, and un- 
sickleable SS dense discocytes (USDs) (Kaul et al., 1983). 
These observations explain why ISCs and USDs are reduced 
in the peripheral blood during a sickle cell crisis (Fabry et 
al., 1984; Ballas et al., 1988; Lande et ai., 1988; Bailas and 
Smith, 1992). The ISCs appear to block the narrowed lumen 
of vessels lined primarily with the more adherent lower den- 
sity reversibly sickled cells (RSCs), and sometimes by direct 
capillary occlusion (Kaul et al., 1989; Fabry et al., 1992). 

Eighteen years ago, Lux and co-workers made the impor- 
tant observation that most rbc membranes (ghosts) isolated 
from ISCs remain sickled, and triton skeletons prepared 
from ISC ghosts all remain sickled (Lux et al., 1976). These 
observations demonstrated that after removal of all of the he- 
moglobin (HbS) from the ISC RBC, and most of the mem- 
brane phospholipids and integral membrane proteins, the re- 
maining skeleton retained the sickled shape. When sickled 
RSC's were triton extracted the resulting skeletons did not 
retain their sickled shape. For the released skeletons to re- 
model their shape, protein associations between spectrin, 
protein 4.1, and actin protofilaments (and other accessory 
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proteins) must be dissociated, and then new interactions 
formed. The experiments described in this article demon- 
strated that ISC core membrane skeletons (containing only 
spectrin, protein 4.1, and actin) dissociate slowly, and this 
slow dissociation is due, in part, to a posttranslational 
modification in ISC ~-actin. 

The RBC contains a two-dimensional latticework of fi- 
brous proteins which covers the cytoplasmic surface of its 
plasma membrane. This supramolecular structure, termed 
the membrane skeleton, maintains the biconcave shape of 
the erythrocyte, gives it essential properties of elasticity and 
flexibility for its circulatory travels, controls the lateral mo- 
bility of integral membrane proteins, and serves as a struc- 
tural support for the bilayer (for review see Goodman et al., 
1988). The essential core components of this two dimen- 
sional meshwork are spectrin, f-actin, and protein 4.1 (Yu et 
al., 1973; Sheetz, 1979), although triton membrane skele- 
tons isolated at moderate ionic strength conditions (such as 
those used by Lux et al., 1976) contain other more minor 
components which will be described below. 

Erythrocyte spectrin is primarily an (~ )2  tetrameric 
flexible rod of 200 nm extended contour length, formed by 
head-to-head linkage of two o~ heterodimers (Shotton et al., 
1979). Cloning and cDNA sequencing of both the ct subunit 
(Sahr et al., 1990) and/3 subunit (Winkelman et al., 1990) 
have indicated molecular weights of 280 kD (c0 and 246 kD 
(/3) for the spectrin subunits. Essential to the formation of the 
two-dimensional membrane skeleton is the ability of spec- 
trin tetramers to bind actin filaments at both ends, thereby 
cross-linking f-actin (Brenner and Korn, 1979; Cohen et al., 
1980; Shen et al., 1986). The actin binding domain of human 
RBC spectrin has been localized to a stretch of 140 amino 
acids at the NH2 terminus of ~ spectrin from alanine 47 
through lysine ~86 (Karinch et al., 1990). Erythrocyte actin 
protofilaments observed on electron microscopy of nega- 
tively stained intact membrane skeletons fall within a narrow 
range of lengths, with a mean length of 33 to 37 nm in control 
(AA)RBCs, equivalent to a double-stranded helix with ,014 
actin monomers (Shen et al., 1986; Byers and Branton, 
1985). The extended skeleton appears to be primarily a hex- 
agonal lattice (Liu et al., 1987) with actin protofilaments 
(and associated proteins) at the center and six corners of the 
hexagons, interconnected by spectrin tetramers (,0 85 %) and 
three armed hexamers ('010%). The spectrin-actin interac- 
tion is strengthened by a peripheral membrane protein, pro- 
tein 4.1, which also binds to the ends of the spectrin 
tetramers (Tyler et al., 1979; Ungewickell et al., 1979; 
Fowler and Taylor, 1980). Therefore spectrin, actin pro- 
tofilaments, and protein 4.1 constitute the core RBC 
skeleton. 

Other accessory proteins to the skeleton include protein 
4.9 which bundles f-actin in vitro (Siegel and Branton, 
1985), tropomyosin which lines the grooves of actin pro- 
tofilaments (Fowler and Bennett, 1984), and adducin a 
Ca2÷-calmodulin binding protein which stimulates the addi- 
tion of spectrin to f-actin in a protein 4.1-independent man- 
ner (Gardner and Bennett, 1987; Mische et al., 1987). The 
spectrin membrane skeleton is attached to the membrane by 
at least two types of interactions. Ankyrin binds to/3 spectrin 
"020 nm from the junction of the heterodimers and also binds 
to the integral membrane protein band 3 (Bennett and Sten- 

buck, 1979, 1980; Yu and Goodman, 1979; Hargreaves et 
al., 1980; WaUin et al., 1984). The second membrane link- 
age is based on the ability of protein 4.1 to bind to an integral 
membrane protein (Shifter and Goodman, 1984) which ap- 
pears to be glycophorin C (Mueller and Morrison, 1981). 

Previous attempts to look at membrane skeletal defects 
within the sickle cell have focussed on the membrane linkage 
proteins. Platt et al. (1985) demonstrated that SS spectrin 
depleted inside-out vesicles (IOVs) bound ,050% less spec- 
trin in vitro than did control AA IOV. While this suggested 
a potential ankyrin defect, purified ISC ankyrin bound spec- 
trin normally in vitro. Schwartz et al. (1987) demonstrated 
that SS protein 4.1 was more aggregated upon isolation than 
AA protein 4.1, and bound protein 4.1-depleted IOVs less 
effectively than AA IOV's. While both of these studies point 
to potentially important alterations in the linkage between 
the core skeleton and the SS bilayer, neither could explain 
the persistently sickled membrane skeleton observed on Tri- 
ton X-100 extraction oflSC ghosts (Lux et al., 1976). In the 
triton-extracted skeletons the bilayer has been removed, yet 
the ISC skeleton remained sickled. 

Hebbel et al. (1982) have demonstrated that sickle cells 
generate about twice the amount of activated oxygen species 
found in normal RBCs. The basis for this increase in oxygen 
radicals is the combined result of accelerated autoxidation 
of HbS to methemoglobin, a conversion which causes a re- 
lease of heme (Hebbel et al., 1988). Heme is increased in 
content on the cytoplasmic surface of sickle cell membranes, 
and this increase correlates with the amount of membrane 
protein thiol modification (Kuross et al., 1988). It is there- 
fore not surprising that spectrin, band 3, ankyrin, and pro- 
tein 4.1 all have some degree of thiol modification (Rank et 
al., 1985; Schwartz et al., 1987). While the thiol modifica- 
tions of spectrin and ankyrin are reversible with DTT (Rank 
et al., 1985), the oxidation of thiols in protein 4.1 is not re- 
versible (Schwartz et al., 1987). Schwartz et al. (1987) have 
reported that SS protein 4.1 contains 1-2 mole % fewer cys- 
teine than control protein 4.1, and 1 mole % cysteic acid not 
found in control protein 4.1. These studies raise the question 
of whether thiol oxidation of skeletal proteins may be in- 
volved in the persistently sickled shape of the ISC membrane 
skeleton. 

In the current study we utilize an in vitro spectrin-4.1-f- 
actin ternary complex dissociation assay to demonstrate that 
ISC/~-actin in the major cause of the slow dissociation of the 
persistently sickled ISC core skeleton. Using a combined 
protein chemistry, thiol labeling, and sophisticated mass 
spectrometry approach we demonstrate that ISC/3-actin has 
a unique modification when compared to RSC or AA 
~actin. This posttranslational modification in ISC/3-actin 
appears to be the formation of a disulfide bridge between 
cysteinC 84 and cysteine 373, or alternatively another mod- 
ification of these cysteines which is reversible with DTT and 
adds less than 100 D to the molecular weight of ~-actin. 
Therefore reversible thiol modification of/5-actin leads to 
slow dissociation of the ISC membrane skeleton, which 
offers a reasonable explanation for the inability of the ISC 
skeleton to rapidly remodel when it is released from the 
bilayer. Additional protein components not present in the 
core skeletons, may participate in the slow remodelling of 
the ISC membrane skeleton in vivo. 
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Materials and Methods 

Preparation of Density Separated RBCs, Ghosts, and 
Core Skeletons 
Blood (20-30 ml) was obtained by venipuncture from homozygous SS sub- 
jects, sickle cell trait subjects, and AA control subjects in vacutainer tubes 
containing 143 USP units of lithium heparin. Fresh blood (5 ml/gradient 
tube) was placed over a six layer step gradient (5 ml/layer) composed of 45, 
50, 55, 60, 65, and 70% Percoll in 18% Renografin M-60, 20 mM Hepes, 
1 mM MgCI2, 1 mM glucose (pH 7.4). Sedimentation was performed by 
centrifugation at 1,500 g for 45 rain. Each cell fraction within the Percoll 
layers was removed without cross-contamination and then washed two times 
in 10 mM NaPO4, 150 mM NaCI, pH 7.6. 

Packed RBCs were lysed in 30 ml of ice cold iysis buffer (5 mM 
NaPO4, 1 mM EDTA, pH 7.6) and ghosts sedimented at 31,000 g for 15 
rain at 4°C. This procedure was repeated until the pellet became white or 
light pink. 

Freshly prepared ghosts (1 vol) were incubated on ice for 15-30 rain in 
9 vol of 10 mM NaPO4, 0.6 M KCI, 1 mM ATE 1 mM DFP, 1% Triton 
X-100, pH 7.6. In some cases skeletons were sedimented at 35,000 g for 45 
rain at 4°C, but not for immunofluorescence. 

Immunofluorescent Images of Core Skeletons 
Poly-L-lysine (0.1% in dHzO) was applied to precleaned glass slides which 
were left to dry at room temperature. To 1 vol of RBC core skeletons was 
added one volume of 4% formaldehyde, 1.25% glutaraldebyde in PBS (150 
mM NaCI, 10 mM NaPO4, pH 7.6), and the mixture was incubated for 5 
min at 22°C. Fixed skeletons were allowed to settle on poly-L-lysine glass 
slides for 5 rain, and nonadherent skeletons were removed by three washes 
with PBS + 1% BSA. Primary antibodies prepared in rabbits against 
chicken muscle actin (Sigma Immunochemical, St. Louis, MO) and human 
rbc spectrin (characterized in Goodman et al., 1981) were diluted 1:100 in 
PBS + 1% BSA and applied to skeletons for 15 min at 22°C. After three 
washes for 5 min each in PBS + 1% BSA, FITC-conjugated goat anti-rabbit 
IgG (1:100 in PBS + 1% BSA) was applied to the skeletons for 15 rain. 
Nonbound secondary antibody was removed by three washes in PBS + 1% 
BSA. The fluorescent skeletons were mounted and observed with a Leitz 
Dialux Fluorescent Microscope. 

Isolation of Spectrin, Actin, and Protein 4.1 
RBC core skeleton pellets were dissociated by incubation in 5 vol of 2 M 
Tris, pH 7.2, at 37°C for 30 rain followed by sedimentation of undissociated 
material at 32,000 g for 30 min (4°C). The supernatant was layered onto 
a Sepharose 4B gel filtration column (1.5 × 170 era) which had been 
equilibrated with 2 M Tris, 0.2 mM ATE pH 7.2. The spectrin, protein 4.1, 
and actin were eluted with this same buffer and collected in 2 ml fractions. 
Every fraction following the void volume ("~50 ml) was analyzed by SDS- 
PAGE. Spectrin and protein 4.1 were dialyzed against 5 mM "Iris, 0.5 mM 
NAN3, pH 7.8. Actin was dialyzed against 2 mM Tris, 0.4 mM ATE 0.5 
mM NaN3 5= 0.2 mM DTT (pH 7.8). All proteins were dialyzed with three 
changes every 12 h of 2 liters dialysis buffer and then concentrated to 1 
mg/ml spectrin, 400 #g/ml actin, 500 #g/ml protein 4.1. Skeletal proteins 
were stored at 4°C and used within 48 h of isolation. 

SDS-PAGE 
SDS-PAGE was performed using the discontinuous buffer system of 
Laemmli (1970) and a 9% polyacrylamide separating gel. Protein was de- 
tected with Coomassie brilliant blue and densitometry performed with a 
Zeineth laser densitometer (Biomed Instruments, Inc., Fullerton, CA). 

In Vitro Ternary Complex Dissociation Assay 
Our procedure is a modification of published ternary complex assays (Un- 
gewickell et al., 1979; Cohen et al., 1980). Purified spectrin (400 #g/ml), 
protein 4.1 (80/zg/rnl), and g-actin (160 #g/ml) were incubated in 190 #1 
of polymerization buffer (4 mM Tris, 0.2 mM ATP, 0.5 mM NAN3, 2 mM 
MgC12, pH 7.4) for 1 h at 22°C. The resulting ternary complexes were 
sedimented at 100,000 g for 30 min (4°C) and resuspanded in 190 #l of high 
ionic strength triton buffer (10 mM NaPO4, 0.6 M KCI, 1 mM ATP, 0.1 
mM DFP, 1% Triton X-100, pH 7.6). The ternary complexes were allowed 

to dissociate in this buffer at 37°C for 30 min followed by centrifugation 
at 100,000 g for 30 min. The resulting pellets were analyzed by SDS-PAGE 
and laser densitometry. Purified spectrin, protein 4.1, and nonpolymerized 
g-actin (not complexed) demonstrate minimal (<10%) sedimentation at 
100,000 g (30 min) with no difference between control and sickle cell pro- 
teins. 

The statistical analysis was done using a commercially available statisti- 
cal software package, SAS (Statistical Analysis System). The descriptive 
statistics like mean, range, and standard errors were compiled for each of 
the eight combinations of actin, spectrin, and 4.1. The one-way analysis of 
variance was performed to compare the means of these combinations. Once 
the difference among means was established, the Duncan's multiple range 
test was performed to test for pairwise differences. The statistical discussion 
on these techniques can be found in Montgomery (1991). 

Determination of Exposed Thiols with DTNB 
The number of exposed thiol groups were measured with DTNB (El]man, 
1958). The reaction was monitored by spectrometry at 412 nm using the 
extinction coefficient of the thiobonzoate ion (13,600 M -l cm-I). The reac- 
tion was started by adding a 10-fold excess of DTNB to actin (1.5 × 10 -5 
M) and a reference cuvette in 2 mM Tris, 0.2 mM ATE 0.5 mM NAN3, pH 
7.8. The reaction at 22°C was recorded over time on an LKB spec- 
trophotometer. In some experiments the actin was reduced by dialyzing 
against 2 mM Tris, 0.2 mM ATE 0.2 mM DTT, 0.5 mM NAN3, pH 7.8, for 
12 h, and then twice for 12 h against the same buffer without DTT. 

Reverse Phase HPLC of Actin Digests 
AA, HDSS, and LDSS ~-actin was dialyzed against 75 mM NI-I4HCO3, 
0.1 mM CaC12, pH 7.8./~-Actins (400/~g/ml) were incubated with trypsin 
at 50/1 (mol/mol) for 20 h at 37°C. Digested actin was dried to a powder 
in a Speed-Vac (Savant Instruments, Inc., Farmingdale, NY), and then 
resuspended in half the original volume with buffer A (0.1% trifluoroacetic 
acid [TFA] in HPLC quality H20). The actin digest (200 #g) was loaded 
onto a ODS 5 t~ Ci8 reverse phase column (4.6 mm × 15 cm) with 
precolumn and eluted using a Beckman System Gold HPLC. The column 
was washed 5 min with buffer A, followed by a gradient of 0-100% buffer 
B (0.1% TFA, 80% acetonitrile) over 90 rain. The flow rate was 1 ml/min 
and OD215 was monitored. Fractions (1 rnl) were collected and dried in a 
Speed-Vac (Savant Instruments, Inc.) prior to mass spectrometry. 

Each of the dried HPLC fractions were dissolved in 15 ~1 supporting 
fluid (methanol/glycerol/water 1:1:8) that contained 0.1% TFA. The injector 
for FAB-MS was loaded using 2.5 #1 sample volumes, and injections were 
made in 10 scan intervals. The injector was carefully flushed with support- 
ing fluid between samples (2 x 4 #l before loading, 2 x 4 td after in- 
jection). 

Mass Spectrometry 

FAB-MS. A VG 70-250 SEQ hybrid tandem instrument equipped with a 
saddle-field FAB gun and a continuous flow-fast atom bombardment (CF- 
FAB) probe was used for the MS analyses. The probe was modified by at- 
taching a micro-sampler injector (Rheodyne model 7520; Alltech Assoc., 
Inc., Houston, TX) to it on a mounting plate fastened to the handle. The 
original 0.5 #l sample volume of the injector was increased to about 1.8 #l 
by enlarging the bore of the sample channel to 0.0225 #. This injection vol- 
ume ensured a chromatographic peak-width at half-height of about 45 s, 
adequate for acquiring three spectra under the flow and scanning conditions 
used. A fused silica capillary (*3-ft  long, 50 #m ID, 400 #m OD, 
RESTEC) led the CF-FAB supporting fluid 00% glycerol + 10% methanol 
+ 80% dH20) from the injector to the probe tip. The outstanding length 
of the capillary above the stainless steel probe tip surface was adjusted 
(0.1-0.3 ram) until stable ion peaks were observed on the oscilloscope. A 
2.5-cm long, 3-ram wide filter paper strip coiled around the probe tip 
greatly increased the spectral stability. The supporting fluid to the injector 
was supplied by a syringe pump (model 100D; Isco Inc., Lincoln, NE), 
through a PEEK tubing (1/16 ~ OD, 0.010 ~ ID) with a rate of 4/~l/min that 
required a pump pressure of ,,o200 psi, and resulted in a source pressure 
of 3 x l0 -4 mbar (2.5 x 10 -1 mbar at the source fore pump). 

The MS source temperature was kept at 45°C, and the source potential 
(the ion accelerating voltage) at 6 kV. Xenon was used for the generation 
of the fast atom beam of 6 kV energy and 1 mA intensity. Positive ion mass 
spectra were recorded in the mass range of 240-3,500 D and with a scan 
rate of 10 s/decade (~20 s/scan). 
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Tandem MS~MS Spectrometry. For obtaining MS/MS spectra, the first 
(sector) MS was focused to transmit the precursor (parent) ion selected 
from the primary mass spectrum. The ICP (Instrument Control Parameters) 
program module of the data system was used in this process, and it required 
one injection of the sample. After focusing the sector MS, the ion signals 
from the second (dual quadrupole) MS were observed: the transmission of 
the parent ion and the occurrence of the product ions were checked on the 
oscilloscope. The resolution, analyzer-energy (pole-bias) and collision- 
energy dials were slightly adjusted when finer tuning seemed to be neces- 
sary; the double quad unit was basically optimized before the continuous 
flow experiments, under static FAB-MS conditions. Argon was used as a 
collision gas, and its flow was adjusted to decrease the original intensity of 
the precursor ion by one half. The pressure reading at the ion gauge of the 
associated diffusion pump was 1 "× 10 --6 mbar. The collision energy was 
between 38 and 48 V. The protonated molecular ion of Leu-Enkephalin 
(m/z 556) was used for instrument tuning under static FAB-MS conditions, 
and injections of 100 ng/td Leu-Enkephalin solution were used to verify the 
optimal settings for the CF-FAB experiments. 

The analyzer quadrupole was scanning with a speed of 5 s/spectrum in 
the mass range of 100-900 D, and the MS/MS spectra were recorded in 
MCA (multiple channel analyzer) format: 8-10 continuum spectra at the 
elution-maximum of the sample were summed, then the resulting spectrum 
processed (smoothed, peak-detected, and mass converted) in the usual, 
mass vs. relative abundance, bar diagram format. 

MALDI Mass Spectrometry Analysis. Control AA and HDSS/3-actin 
were subjected to mass spectrometric analysis using a matrix-assisted laser 
desorption time-of-flight mass spectrometer constructed at Rockefeller 
University (New York, NY) and described elsewhere (Beavis and Chait, 
1989, 1990). The mass spectra shown in Fig. 7 were obtained by adding 
the individual spectra obtained from 200 laser shots. Actin samples were 
prepared for laser desorption mass analysis as follows. The laser desorption 
matrix material (4-hydroxy-ct-cyano-cinnamic acid) was dissolved in formic 
acid/water/isopropanol 1:3:2 (vol/vol/vol) to a concentration of 50 mM. A 
75 mM ammonium bicarbonate solution (pH 7.8) containing the actin sam- 
ple was then added to the matrix solution to give a final concentration of 
the actin of 0.5-1/~M. A small aliquot (0.5 #1) of this mixture was applied 
to the metal tip of the mass spectrometer sample probe and dried at room 
temperature. The sample was then inserted into the mass spectrometer and 
analyzed. Bovine carbonic anhydrase II (29,022 D) was used as an internal 
calibrant to calibrate the mass spectra. 

Synthesis of 35S-DNPTC. S-2,4 dinitrophenylthio-[35Slcysteine (35S- 
DNP'IC) was prepared by a modification of previously described protocols 
(Fontana etal. ,  1968; Drews and Faulstich, 1990). One mCi (12.5/zmoles) 
of [35S]cystine (Amersham Corp., Arlington Heights, IL) with a specific 
activity of 79.1 mCi/mmole and 62.5 t~moles of unlabeled L-cysteine (Al- 
drich Chemicals) were dissolved in 10 ml of nitrogenated double distilled 
deionized H20 and the solution adjusted to pH 8.6 with 0.8 M NI-hOH. 
After all crystals had dissolved the solution was stirred under N2 for 2 h 
at 22°C followed by lyophilization under N2 vapor. Lyophilized crystals 
were resuspended in 2 mi concentrated formic acid (Sigma Chemicals), 
mixed with 40.1 mg of 2,4-dinitrobenzenesulfenyl chloride (Aldrich Chem. 
Co., Milwaukee, WI) freshly dissolved in 2 mi formic acid, and the solution 
was stirred under N2 for 1.5 h at 22°C. 35S-DNPTC was purified by crys- 
tallization from the reaction above by slowly pouring the mixture on 50 ml 
of dry peroxide free diethyl ether (Aldrich Chem. Co.) with gentle stirring 
at 22°C for 10 rain. Crystals were harvested by centrifugation at 10,300 g 
for 15 rain, washed three times in 50 mi of dry ether, and dried under 
vacuum. Finally, crystals were resuspended in 20 ml of 10 mM NI-I4HCO3 
and recrystallized overnight at 4°C. Crystals were harvested by cantrifuga- 
tion and dried as described above. The specific activity of the final reagent 
was •28 mCi/mmol. 

3JS-DNPTC Labeling ofl~-Acrin. ~actin (11.6 #M) was labeled with 
35S-DNPTC (140/zM) in 2 mM Tris, 0.2 mM ATP, 0.5 mM NAN3, pH 7.8. 
After incubation (80 rain, 22"C) the absorbance at 408 nm was measured 
versus a blank containing no actin, and the number of free thiols per tool 
AA ~actin was ,ul.9. In experiments on HDSS /3-actin the number of 
thiols/mole actin was 0. Labeled actin was applied to a Sephadex G-50 
column (50 cm × 1.2 cm) and separated from unbound reagent. The 
column was eluted with 75 mM NH4HCOs, 0.1 mM CaC12, pH 7.8, 0.5 rnl 
fractions were collected, and Ol>zs0 measured. The first peak of OD2so 
contained S-([35S]cysteinyl)-/3-actin and was concentrated using a centri- 
prep-30 concentrator to 2.3 #M. The S-([35S]cysteinyl)-/3-actin was in- 
cubated with 700 #M NEM for 30 min at 22°C, digested with 50/l trypsin, 
concentrated and dried, and applied to reverse phase HPLC as described 
above, 

Peptide Synthesis and 3JS-DNPTC Labeling. Peptides representing 
fragments of actin generated by digestion with trypsin which contain cys- 
teine residues were synthesized on solid phase using FMOC chemistry. 
Defined sequence of amino acids were assembled on a 4313, peptide syn- 
thesizer (Applied Biosystems, Foster City, CA). TFA cleavage was used in 
conjunction with the appropriate chemical scavengers. Following synthesis, 
100/xg of each peptide was purified by reverse phase HPLC (System Gold; 
Beckman Instruments, Palo Alto, CA), using a standard 0.1% TFA and 80% 
aeetonitrile in 0.1% TFA gradient. After purification pepfides were labeled 
with 10-fold excess S-2,4 dinitrophenylthio [35S]cysteine (35S-DNPTC) by 
a modification of previously described protocols (Fontana et al., 1968; 
Drewes and Fanlstich, 1990). The reaction of 35S-DNPTC with free reac- 
tive thiols could be followed spectrophotometrieaUy since equivalent 
amounts of yellow 2,4-dinitrothiophenolate was released. Labeled peptides 
were again separated by reverse phase HPLC as above. After separation 50 
~1 of each fraction was mixed with 5 mi of liquid scintillation fluid and ra- 
dioactivity measured (LKB Instruments, Bromma, Sweden). Fractions con- 
taining the highest counts were dried (Speed-Vae; Savant Instruments, Inc., 
Farmingdale, NY) and processed for mass spectroscopy. 

Molecular Modeling of Cysteine2S~-Cystein~73 Disulfide Bond For- 
marion in ISC 13 Actin. To model the disulfide bond formation between 
residues 373 and 284 of ISC ~-actin, the chaperon portion of the crystal 
structure profillin-/~-actin (Schutt et aL, 1993) was removed, hydrogen 
atoms were added to the remaining structure, and bond orders were as- 
signed. This full atom protein model served as the initial structure for con- 
strained molecular dynamics (MD) simulations. Using a physically relevant 
set of parameters to represent the potential and kinetic energy of the actin 
protein model (class II force field; CFFgl [Maple et al., 1990]), molecular 
dynamics affords conformational exploration across many local minima and 
maxima in an effort to obtain a globally realistic protein conformation as 
the CYS-373, CYS-284 distance was closed from 21 to 3/~. The simulated 
temperature of the MD simulations was 300*K. Further details concerning 
our MD simulation methods will appear in a complete article on this subject 
(Gussio, R., N. Pattabiraman, C. A. Monteiro, and S. R. Goodman, manu- 
script in preparation). 

Results 

ISC Core Skeletons Retm'n The Sickled Shape and 
Dissociate at A Slower Rate at 370C Than Do RSC or 
Control Core Skeletons 

The purpose of our studies was to determine why the mem- 
brane skeleton released from an ISC, by Triton X-100 extrac- 
tion, appears unable to remodel to a round or biconcave 
shape. In their classic studies, Lux and colleagues demon- 
strated that ISCs extracted in 0.5 % Triton X-100 in 56 mM 
Na Borate, pH 8.0 (30 min, 0°C), yielded skeletons that re- 
mained sickled. At the ionic strength used by Lux etal .  
(1976), spectrin, actin, and protein 4.1 accounted for ~85 % 
of the Coomassie blue-stained protein observed in the skele- 
tons; the remaining proteins being ankyrin, band3, band 4.2, 
and the other accessory proteins discussed in the introduc- 
tion. By repeating these experiments under the high ionic 
strength buffer conditions (10 mM NaPO,, 0.6 M KC1, 1 
mM ATE 1 mM DFP, pH 7.6, + 1% Triton X-100) of Sheetz 
(1979) we could analyze ISC, RSC, and control core skele- 
tons which maintain the physiological skeletal protein con- 
tacts with 95 % of lipid extracted (Byers and Branton, 1985; 
Shen et al., 1986; Liu et al., 1987) and contain almost exclu- 
sively spectrin, protein 4.1, and actin. 

RBCs from control (AA) subjects and homozygous siclde 
cell subjects (SS) were separated by a percoll density step 
gradient. AA core skeletons, low density SS (LDSS) core 
skeletons, and high density SS (HDSS) core skeletons were 
prepared by extraction of ghosts in the high ionic strength 
Triton buffer, and their shape analyzed by indirect im- 
munofluorescence with spectrin antibodies (Fig. 1, A-C) and 
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Figure 1. Indirect immunoflu- 
orescence of RBC core skele- 
tons. Core skeletons prepared 
as described in the Materials 
and Methods section were ap- 
plied to polylysine-coated glass 
slides, fixed, and stained with 
rabbit anti-human rbc spectrin 
(A, B, and C) and rabbit anti- 
chicken skeletal muscle actin 
(D, E, and F) at 1:100 dilution. 
Fluorescein-conjugated goat 
anti-rabbit IgG was used in a 
1:100 dilution. A and D are 
control core skeletons from 
AA erythrocytes isolated from 
the 45 % Percoll layer. B and E 
are core skeletons from the 
LDSS erythrocytes isolated 
from the 45 % Percoll layer. C 
and F are core skeletons from 
the HDSS erythrocytes isolated 
from the 65 %/70% Percoll 
layers. Bar, 10 #m. 

actin antibodies (Fig. 1, D-F). The control AA core skeletons 
all appeared biconcave or rounded (Fig. 1 A and D), as did 
the low density SS core skeletons derived primarily from 
RSCs (Fig. 1, B and E). HDSS core skeletons remained al- 
most exclusively sickled in shape because of the high per- 
centage of ISCs in the 65/70% percoll fractions used (Fig. 
1, C and F). The small number of rounded HDSS cores 
skeletons (15-30 %) were probably generated from the USDs 
(Kaul et al., 1983). We concluded from this study that the 
defect leading to the persistently sickled ISC membrane 
skeleton should be found within the core skeleton proteins: 
spectrin, protein 4.1, or actin, and that RSC core skeletons 
are capable of remodelling to a biconcave or rounded shape. 

SDS-PAGE analysis of ghost protein from AA erythro- 
cytes isolated from 45 and 50% Percoll layers (Fig. 2, left, 
A, lanes a and b) and SS erythrocytes from 45, 50, 55, 60, 
65, 70 % PercoU layers (Fig. 2, left, A, lanes c-h) indicated 
no differences in membrane protein composition. Core 
skeletons prepared by a 15-min extraction at 4°C in high 
ionic strength Triton buffer demonstrated the presence of 

spectrin, protein 4.1 and actin in the control and SS core 
skeleton samples (Fig. 2, left, B). All other proteins, includ- 
ing protein 4.9, were present at very low substiochiometric 
levels. Densitometry of the core skeletons prepared at 4°C 
indicated that the composition of spectrin, protein 4.1 and 
actin were nearly identical in AA and SS core skeletons inde- 
pendent of the density of the AA and SS erythrocytes from 
which they were extracted (Fig. 2, right, top). 

Major differences in the stability of AA and SS core skele- 
tons were observed when the extraction was conducted at 
37°C for 15 min in a water jacketed air/CO2 incubator. As 
can be clearly seen in Fig. 2 (left, C, lanes a and b) and Fig. 
2 (right, bottom) at 37°C (15 min) the control AA core skele- 
tons are greater than 80% dissociated in agreement with the 
previous results of Yu et al. (1973). Nearly identical results 
were obtained in separate experiments where the control 
erythrocytes were obtained from a 35-y-old African Ameri- 
can male or a 40-y-old Caucasian male. However the highest 
density SS cells (65 %, 70% Percoll, enriched in ISCs) pro- 
duced core skeletons where greater than 60 % of the spec- 
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Figure 2. SDS-PAGE of density separated AA and SS erythrocyte ghosts and core skeletons prepared at 4 ° and 37°C. (Left) Coomassie 
blue stained SDS-PAGE of 20 #1 packed rbc ghosts (A), core skeletons prepared from 40 #1 of packed rbs ghosts by high ionic strength 
Triton X-100 extraction at 4°C (15 min) (B), or 37°C (15 min) (C). The source of the material in each lane is AA erythrocytes 45% percoll 
(lane a) and 50% percoll (lane b), and SS erythrocytes 45% (lane c), 50% (lane d), 55% (lane e), 60% (lane f ) ,  65% (lane g), 70% 
(lane h) percoll. (Right top) Densitometric analysis of the protein content of core skeletons prepared at 4°C from the SDS-PAGE shown 
in the left, panel B. The content of spectrin, actin, and protein 4.1 is given as % original skeletal protein remaining from the initial ghost 
protein. N, AA normal core skeletons; and S, SS core skeletons, x axis is percentage percoll gradient. (Right, bottom) Densitometric 
analysis of the protein content of core skeleton prepared at 37°C from the SDS-PAGE shown in left, panel C. 

trin, protein 4.1, and actin remained associated after 15 min 
at 37°C (Fig. 2, left, C, lanes g and h). LDSS core skeletons 
dissociated at a similar rate to AA core skeletons (compare 
Fig. 2, left, C, lanes c and a). The resistance of SS core 
skeletons to dissociation at 37°C increased with increasing 
density of the isolated erythrocytes (Fig. 2, right, bottom). 
Only small density dependent increases in resistance to dis- 
sociation were observed for control erythrocytes (Fig. 2, left, 
C, compare lanes a and b) and sickle cell trait erythrocytes 
(data not shown). 

This slow dissociation of spectrin, protein 4.1, and actin 
within the ISC core skeleton was not based on a covalent 
bond because: (a) given sufficient time (>30 min) the high 

density SS core skeletons will also disassociate at 37°C, and 
(b) the interactions of spectrin, protein 4.1, and actin within 
the "locked" ISC skeleton are broken by SDS (Fig. 2, left, 
lanes g and h). We use the term "locked" to imply that the 
components of  the ISC core skeleton disassemble slowly at 
37°C (and therefore the skeleton is less capable of remodel- 
ling from its persistently sickled shape). We concluded from 
these studies that a modification in spectrin, protein 4.1, or 
actin caused the slower dissociation of the ISC core skeleton, 
based on a noncovalent locking mechanism. Furthermore we 
concluded that this locking mechanism could be studied in 
vitro based on the rate of  dissociation of  ISC versus control 
core skeletons at 37°C. While the dissociation experiment 
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under the precise conditions described in the Materials and 
Methods section (37°C, water jacketed air/CO2 incubator) 
and presented in Fig. 2 (left, C) was performed on two inde- 
pendent sickle cell patients, we have performed similar ex- 
periments at 24°C up to 37°C (water bath regulated) on 10 
additional SS subjects (Shartava et al., manuscript in prepa- 
ration). We have found on all 12 SS subjects studied, at all 
temperatures studied (24°--37°C), that HDSS core skeletons 
(enriched in ISCs) dissociate more slowly than do LDSS 
core skeleton (enriched in RSCs), and both have a slower 
rate of dissociation than AA core skeletons (data not shown). 

The In Vitro Ternary Complex Dissociation Assay 
Allows the Identification of [3-Actin and Spectrin as the 
Functionally Altered Proteins Leading to the Slow 
Dissociating ISC Ternary Complex 
Based on our observation that ISC core skeletons are more 
resistent to dissociation at 37°C, than control AA or RSC 
skeletons, we created an in vitro assay to determine the pro- 
tein(s) leading to the slow dissociation of the ISC skeleton. 
Spectrin, protein 4.1, and actin were isolated by extraction 
of core skeletons from AA and HDSS RBCs in 2 M Tris, pH 
7.2, at 37°C. The extract was then placed on a Sepharose 4B 
gel filtration column, which led to the isolation of pure spec- 
trin, protein 4.1, and actin as demonstrated on a typical SDS- 
PAGE shown in Fig. 3 (left). To obtain enough spectrin, pro- 
tein 4.1, and actin from HDSS erythrocytes for the in vitro 
ternary complex dissociation assay, the ghosts from two SS 
patients (20 ml blood each) were combined in each ex- 
periment. 

Spectrin, protein 4.1, and actin isolated from HDSS and 
control AA core skeletons (prepared at 4°C) were recom- 
bined at final concentrations of 400 ~g/mi, 80 #g/mi, and 
160 ~g/ml respectively in polymerizing buffer (4 mM Tris, 
0.2 mM ATP, 0.5 mM NaNa3, 2 mM MgCI2, pH 7.4). (We 
included only spectrin, protein 4.1 and actin in our assay be- 
cause these were the components of the released core skele- 
tons from ISCs which retained a sickled shape [Fig. 1] and 
demonstrated resistance to dissociation at 37°C [Fig. 2]. It 
is possible that other accessory proteins may also play a role 
in the slow remodelling of the ISC membrane skeleton in 
vivo). Under these conditions, and ratio of protein compo- 
nents, spectrin, actin, and protein 4.1 are known to form ter- 
nary complexes that resemble their physiological molecular 
contacts (Cohen et al., 1980); although the supramolecular 
structures formed appear quite different from negatively 
stained membrane skeletons. We believe the differences in 
appearance are due to the role the accessory proteins may 
play in skeleton assembly and the nature of the spectrin- 
4.1-actin interaction is basically the same as in the intact 
skeleton. After incubation (22°C, 1 h) the resulting spectrin- 
4.1-actin complex was sedimented and then shifted to the 
high ionic strength Triton X-100 buffer and incubated at 
37°C for 30 rain to allow dissociation to occur. The remain- 
ing ternary complex harvested by 100,000 g centrifugation 
(30 rain) was analyzed by SDS PAGE and laser densitometry 
(Fig. 3, right). Although the initial ternary complexes 
formed by HDSS and AA spectrin, protein 4.1, and actin 
were identical (because we used a 1-h incubation which is 
sufficient time for AA and SS spectrin-4.1-actin ternary 
complex formation to reach steady state; data not shown), 

after shifting the ternary complexes to the high ionic strength 
Triton X-100 buffer at 37°C, we could again see the expected 
differences in disassociation at 37°C. The data presented in 
Fig. 3 (right) are the mean + standard error of three inde- 
pendent experiments which all gave very similar results. 
When the control spectrin-4.1-actin ternary complex was 
shifted to 37°C only 28.7 + 6.4% of the spectrin and 35.0 
+ 2.5% of the actin resisted dissociation when compared to 
the HDSS ternary complex (Fig. 3, right). This allowed us 
to perform the critical mixing-matching experiments where 
the initial ternary complexes were formed from comixtures 
of HDSS and AA skeletal proteins. Using this technique we 
demonstrated that a comixture of AA spectrin, AA actin, 
and HDSS protein 4.1 formed a ternary complex where only 
20.0 5: 6.0% of the spectrin and 28.0 + 4.6% of the actin 
resisted dissociation at 37°C. These values are not statisti- 
cally distinct from that obtained with the control ternary 
complex and therefore protein 4.1 does not play a role in the 
slow dissociation of the HDSS ternary complex. It is impor- 
tant to note that although HDSS protein 4.1 is known to con- 
tain oxidative damage including conversion of cysteines to 
cysteic acid (Schwartz et al., 1987), these 4.1 modifications 
do not contribute to the slow dissociation of the HDSS ter- 
nary complex. On the other hand, the comixture of AA spec- 
trin, AA protein 4.1, and HDSS actin formed a ternary com- 
plex where 78.3 + 15.7% of the spectrin and 63.3 + 15.4% 
of the actin resisted dissociation at 37°C as compared to the 
HDSS ternary complex (Fig. 3, right). Both of these values 
are statistically distinct (P < 0.05) from the control ternary 
complex values (28.7 + 6.4% and 35.0 d- 2.5%) and there- 
fore/3-actin was the major culprit in the slow dissociation of 
the HDSS ternary complex. The comixture of HDSS spec- 
trin, AA protein 4.1, and AA actin yielded a ternary complex 
where 46.7 5: 11.9% of the spectrin and 61.7 + 4.8% of the 
actin resisted dissociation at 37°C. For this complex, where 
only spectrin came from the HDSS erythrocytes, the differ- 
ence from the control ternary complex was only significantly 
different for actin dissociation (Fig. 3, right). 

We concluded from these experiments that a defect in ISC 
B-actin was the key determinant of the slowly dissociating 
ISC skeleton, spectrin also appears to play some role, while 
protein 4.1 is not responsible for the locking mechanism. 
Since ~-actin was the major determinant of the slow dissoci- 
ation of the ternary complex under the conditions of our as- 
say, and a much smaller protein than spectrin, we decided 
to determine the ISC/3-actin modification first. 

Search for the ISC [3-Actin Defect Leads 
to Modified Cysteines 
To determine the posttranslational modifications of ISC 
~-actin, we first isolated/3-actin from AA, HDSS (65 and 
70% percoll layers, enriched in ISCs), and LDSS (45 and 
50% percoll layers, enriched in RSCs) erythrocytes. The iso- 
lated B-actin samples were reduced in a buffer containing 
DTT (0.2 mM), digested with trypsin (50/1, mol/mol) for 20 h 
at 37°C, and actin peptides were separated by reverse phase 
HPLC on a C,8 column. The resulting peptide maps for 
HDSS/~-actin, LDSS/3-actin, and AA ~actin were nearly 
identical (data not shown). Detailed comparisons of the pro- 
tein containing HPLC fractions (1-50) for HDSS, LDSS, and 
AA B-actins by FAB-mass spectrometry (FAB-MS) yielded 
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Figure 3. Isolation of core skeleton proteins and in vitro ternary complex dissociation assay. (Left) SDS-PAGE of purified spectrin, protein 
4.1, and actin isolated by 2 M Tris, pH 7.2, extraction of core skeletons followed by gel filtration on Sepharose 4B. Fraction numbers 
are given above the gel. (Right) Densitometric analysis of the amount of spectrin and actin which resist dissociation at 37°C (30 min) 
in high ionic strength Triton X-100 buffer, when spectrin-4.1-actin ternary complexes formed in vitro are shifted to these conditions. Details 
of the protocol are given in the Materials and Methods section. Under each set of bars is given the initial composition of normal AA 
(N) or HDSS (S) actin, spectrin, and protein 4.1 in the incubation mixture. The data is expressed as "density %" which indicates the density 
of spectrin or actin remaining in any complex + density of spectrin or actin remaining in the complex formed by the incubation of HDSS 
spectrin + HDSS actin + HDSS protein 4.1 x 100%. Data is presented as mean + standard error, with asterisks indicating a statistically 
significant difference (P <0.05) as compared to the N-Actin/N-Spectrin/N-4.1 sample. Note that HDSS actin forms a ternary complex that 
is resistant to dissociation even when it has been combined with AA normal spectrin and AA normal protein 4.1. B, Spectrin; II, actin. 
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Figure 4. Determination of the number of available thiols in HDSS, 
LDSS, and AA ~actin. Reduced and nonreduced G-actin (1.5 x 
10 -5 M) from control (AA), HDSS, and LDSS erythrocytes was 
incubated with a 10-fold molar excess of DTNB. The reference 
cuvette contained the actin buffer (2 mM Tris, 0.2 mM ATE 0.5 
mM NAN3, pH 7.8) plus 1.5 x 10 -4 M DTNB. The color reaction 
was monitored at 412 nm at 22°C. (A) G-actin samples were not 
reduced. AA actin (el had 2.0 thiols per mole/3 actin, LDSS actin 
(o) had 1.2 thiols per mole/3 actin, and HDSS actin (A) had 0.2 
thiols per mole/3 actin. (B) G-actin samples were reduced with a 

virtually identical spectra (data not shown). Of the 38 poten- 
tial peptides generated by tryptic digestion 20 could be as- 
signed to major ions within our FAB-MS spectra. These 20 
tryptic peptide molecular ions were identical in mass when 
comparing HDSS, LDSS, and control/3-actin. 

We were now faced with the dilemma of a known func- 
tional defect in ISC /3-actin with no observable structural 
change in the tryptic fragments generated from reduced 
HDSS, LDSS, and AA B-actin. Because of  the previous evi- 
dence of  thiol oxidation in SS membrane skeletal proteins 
(Rank et al., 1985; Schwartz et al., 1987), we decided to 
measure the available thiols in nonreduced native fl-actin iso- 
lated from HDSS, LDSS, and AA erythrocytes (Fig. 4 A). 
Thiol groups available in native B-actin were determined first 
with 5,5'-dithiobis-(2-nitrobenzoate) (DTNB). As shown in 
Fig. 4 A when the/3-actin samples were not incubated with 
reducing agent, the number of  thiols per actin were 2.0 
(AA), 1.2 (LDSS), and 0.2 (HDSS) (tool/moll. It now be- 
came of substantial interest to determine whether the lack of  
titratable cysteine residues in HDSS fl-acdn was reversible 
upon incubation with reducing agent (I7I~). I f  the fl-actin 
samples were reduced with buffer containing 0.2 mM DTT, 
and then the DTT removed prior to measurement of thiols 
with DTNB, then we obtained the results shown in Fig. 4 B. 
With reduced/3-actin the number of titratable thiols became 
2.0 (AA), 2.0 (LDSS), and 1.6 (HDSS). Therefore the lack 
of accessible cysteine residues in nonreduced HDSS/3-actin 
was reversible with reducing agent, and therefore could not 
be explained by oxidation of cysteine to cysteic acid. The 

buffer containing 0.2 mM DTT, followed by removal of DTT prior 
to DTNB measurements of available thiols. Details are given in the 
Materials and Methods section. Reduced/3-actins from AA (el and 
LDSS (o) erythrocytes contained 2.0 thiols per mole actin, and 
B-actin from HDSS (zx) erythrocytes had 1.6 thiols per mole actin. 
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Figure 5. Structure of 35S-DNPTC and/3-actin. (Left) The structure of S-(2,4-dinitrophenylthio[aSS]cysteine) or 3sS-DNPTC is presented. 
The radioactive sulfur is shown in red. (Right) The primary structure of fl-actin is presented using the single letter code for amino acids. 
The arrows indicate sites of trypsin cleavage. Stretches of amino acids in red indicate tryptic peptides which contain cysteine residues. 
K 372 is in red because under our conditions cleavage after K 372 occurs less frequently than cleavage after R TM , therefore KCF is generated. 

most reasonable explanation of these results is that a 
disulfide bridge is present between two of the six cysteine 
residues in HDSS (enriched in ISC) ~-actin which is not 
present in control AA fl-actin; an alternative explanation be- 
ing that the two cysteines are blocked by some other mecha- 
nism that is reversible with DTT. The determination of ex- 
posed thiols with DTNB was performed twice with/3-actin 
samples from four SS subjects with virtually identical 
results. Furthermore the same results were obtained when 
S-2,4,dinitrophenylthiopsS]cysteine (35S-DNPTC) (Fig. 5, 
left) was used as the thiol reactive reagent. 

Next we wanted to identify the two cysteines which were 
available to labeling by 35S-DNPTC in AA fl-actin but un- 
available in nonreduced HDSS/~-actin. We began by synthe- 
sizing S-(2,4-dinitrophenylthio) [35S]cysteine (35S-DNP'IC) 
which has previously been demonstrated to specifically label 
exposed thiols utilizing skeletal muscle actin as substrate 
(Fontana et al., 1968; Drewes and Faulstich, 1990). The ad- 
vantage of this reagent is that it: (a) introduces by disulfide 
exchange [3~S]cysteine as a label to exposed thiols within 
actin; (b) these [~sS]cysteinyl-peptide bonds are not broken 
during trypsin digestion or reverse phase HPLC; (c) the ad- 
dition of the [35S]cysteinyl residue does not change the elu- 
tion properties of peptides perceivably in reverse phase 
HPLC, as preliminary experiments with the model peptides 
demonstrated; and (d) the release of 2,3-dinitrothiopheno- 
late allows the efficacy of labeling to be followed by absor- 
bance at 408 nm. The entire sequence of human/3-actin is 
known (Fig. 5, right), and it contains six cysteine residues 
at residues 16, 216, 256, 271, 284, and 373. (In the nomen- 
clature of Vandekerckhove and Weber [1978] these six 

~-actin cysteines are numbered 17, 217, 257, 272,285, and 
374 based on alignment with the ct-skeletal muscle actin se- 
quence.) Based on the known sequence there should be five 
tryptic peptides within/3-actin which contain cysteine resi- 
dues (shown in red in Fig. 5, right). We synthesized six cys- 
teine containing synthetic peptides shown in Table I. We syn- 
thesized both KCF (372-374) and CF (373-374) because it 
was not clear whether trypsin would cleave at both R TM and 
K 372 under our digestion conditions. The strategy behind 
our experiments was that 35S-DNPTC should label two cys- 
teines in AA ~-actin and after trypsin digestion and reverse 
phase HPLC should yield two radiolabeled tryptic peptides 
which will coelute with two S-([35S]cysteinyl)-synthetic 
peptides. Furthermore the 35S-cysteinyl-labeled tryptic and 
synthetic peptides eluted from reverse phase HPLC should 
contain predicted molecular mass ions (Table I) on FAB-MS. 

The results of the experimental approach described above 
are presented in Figure 6. We labeled AA ~actin with 3~S- 
DNPTC, digested with trypsin, separated the tryptic frag- 
ments by reverse phase HPLC, and determined radioactivity 
in the fractions. Control AA /3-actin had two S([35S]cys- 
teinyl)-tryptic peptides, eluting at fractions 17/18 and 21 
(Fig. 6, left). The broad low peak in fractions 41-56 repre- 
sents labeling of trypsin because it was observed in control 
samples which contained trypsin but no/3-actin. HDSS actin 
labeled with 35S-DNPTC, digested with trypsin, and sep- 
arated on reverse phase HPLC, demonstrated no labeling of 
tryptic peptides as expected (data not shown). Of the six 
cysteine containing synthetic peptides, shown in Table I, 
only residues 1-17, 284-289, 372-374, and 373-374 were 
soluble in our aqueous buffers. When these soluble syn- 

Table L Cysteine Containing Peptides 

Peptide sequence Residues [M + HI + S-([35S]cysteinyl)-[M + HI* 

CF 373-374 269 388 
KCF 372-374 397 516 
CDVDIR 284-289 720 839 
DDDIAALVVDNGSGMCK 1-17 1,723 1,842 
LCYVALDFEQEMATAASSSSLEK 215-237 2,494 2,613 
CPEALFQPSFLGMESCGIHETTFNSIMK 256-283 3,119 3,238 

Shartava et al. Defect in Irreversibly Sickled Cell ~-Actin 813 

 on O
ctober 5, 2004 

w
w

w
.jcb.org

D
ow

nloaded from
 

http://www.jcb.org


thetic peptides were labelled with 3~S-DNPTC and in- 
jected into reverse phase HPLC S-([3sS]cysteinyl)-37~KCF T M  

and S-([3sS]-cysteinyl)-373CD374 eluted in fractions 17/18 
(S-(p~S]cysteinyl)-KCF is shown in Fig. 6, left). S-([3~S] - 
cysteinyl)-~CDVDIR ~s9 eluted at fraction 21, and S-([3~S] - 
cysteinyl)JDDDIAALVVDNGSGMCK ~7 eluted at frac- 
tion 36. We concluded from the reverse phase HPLC 
elution, shown in Fig. 6, le~, that the two tryptic peptides 
labeled with 3~S-DNPTC in AA ~-actin are probably KCF 
(or CF) and CDVDIR. That this conclusion is correct is dem- 
onstrated by the FAB-MS spectra shown in Fig. 6 (right). 
Fraction 17 from 3~S-DNPTC-Iabeled synthetic KCF (Fig. 
6, right, A) and labeled AA ~actin tryptic peptides (Fig. 
6, right, B) yielded molecular ions of 397 and 516 on FAB- 
MS spectrum. The molecular ion of 397 corresponds 
to [M+H] ÷ for KCF and 516 represents [M+H] ÷ for 
S-(psS]cysteinyl)-KCE The identification of the molecular 
ion of 516 as S-(p~S]cysteinyl)-KCF was further confirmed 
by MS/MS tandem spectroscopy (data not shown). Fraction 
21 from ~S-DNPTC-labeled synthetic CDVDIR (Fig. 6, 
right, C) and labeled ~-actin tryptic peptides (Fig. 6, right, 
D) yielded molecular ions at 720 and 839 on FAB-MS spec- 
trum. The molecular ion at 720 corresponds to [M+H] ÷ for 
CDVDIR and 839 represents [M+H] + for S-(p~S]cysteinyl)- 
CDVDIR. We concluded from these studies that the two cys- 
teines which are labeled with thiol reactive reagents are 

C T M  and C 373 of control AA ~actin. These cysteines are not 
available in HDSS /~-actin, unless this actin is pretreated 
with reducing agent. 

The most reasonable conclusion from our studies was that 
in HDSS ~-actin (highly enriched in ISC #-actin) a disulfide 
bridge exists between cysteine T M  and cysteine ~7~ making 
these cysteines unavailable for reaction with DTNB or 35S- 
DNPTC. Upon reduction with DTT the disulfide bridge is 
broken, making HDSS/~-actin like AA ~-actin in having ap- 
proximately two accessible thiols per actin molecule. While 
this is the most plausible explanation for our data, it was pos- 
sible that some other posttranslational modification of ISC 
/~-actin could cause a burying of cysteine TM and cysteine ~73. 
This modification would have to be reversible with reducing 
agent, and evaded detection in our previous FAB-MS analy- 
sis of tryptic fragments of HDSS versus AA ~-actin. While 
this was a less likely scenario, it could be tested by matrix- 
assisted laser desorption ionization (MALDI) with a time of 
flight (TOF) instrument. We measured the molecular weight 
of nonreduced AA ~-actin and HDSS B-actin (Fig. 7, A and 
B, respectively) by MALDI-TOF mass spectroscopy. The 
molecular weights were identical within the accuracy of the 
measurement: 41,760 + 100 daltons (HDSS /~-actin) and 
41,690, + 100 D (AA ~actin). These results are consistent 
with a modification that altered the molecular weight by less 
than 100 D. Formation of a disulfide bridge, which would 
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Figure 6. Demonstration that cysteine TM within CDVDIR and cysteine 373 within KCF are the reactive thiols in intact AA ~actin. (Left) 
Intact AA ~actin and synthetic peptides KCF, CDVDIR, and -DDDIAALVVDNGSGMCK were labeled with 35S-DNPTC as described 
in Materials and Methods. S-([35S]cysteinyl)-/~-actin was cleaved with trypsin and the resulting S-([35S]cysteinyl)-actin peptides were sepa- 
rated by reverse phase HPLC and 50 #1 of each fraction was measured for radioactivity. S-([3sS]cysteinyl)-KCF, -CDVDIR, and -DDD- 
IAALVVDNGSGMCK were injected into the identical C18 column and separated by reverse phase HPLC. Again 50 #1 of each fraction 
was counted for radioactivity. The S-([35S]cysteinyl)-actin peptide peaks in fraction 17/18 and fraction 21, elute in the same position as 
the synthetic S-([3~S]cysteinyl)-KCF and synthetic S-([3sS]cysteinyl)-CDVDIR. (Right) FAB-MS was conducted on fraction 17 from the 
reverse phase HPLC separation of synthetic S-([35S]cysteinyl)-KCF (A) and fraction 17 from S-([35S]cysteinyl)-actin peptides (B). The 
molecular ions with asterisks are KCF (397) and S-([35S]cysteinyl)-KCF (516). FAB-MS was also conducted on fraction 21 from the re- 
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Figure 7. Molecular weight 
determination of fl-actin 
from MALDI-TOF spectra. 
MALDI-TOF mass spectra of 
/~-actin isolated from control 
AA erythrocytes (A) and 
HDSS erythrocytes (B). The 
molecular weights were 41,690 
5:100 and 41,760 5: 100, re- 
spectively. 

cause a change of only 2 mass units, certainly falls within 
this range. If any other modification exists it would have 
to change the molecular weight of the protein by less than 
100 mass units. The experimentally determined molecular 
weights of HDSS and AA/3-actin are consistent within the 
error of measurement with the molecular weight calculated 
from the known amino acid sequence (41,605.6 D) plus D' 
acetylation (42 D) and FF 2 methylation (14 D) (Nakajima- 
Iijima et al., 1985). 

Discussion 

Based on our functional assays, we have demonstrated that 
a modification of/~-actin is the major determinant of the slow 
dissociation of the ISC membrane skeleton. It is logical ex- 
tension of our work that slower dissociation of the ISC core 
skeleton is probably responsible for the slow remodelling of 
the ISC skeleton and hence its persistently sickled shape 
upon release from the lipid bilayer. Other accessory mem- 
brane skeletal proteins, as well as cytoplasmic factors, may 
also contribute to the inability of the ISC to change shape 
in vivo. 

Furthermore we demonstrate that a posttranslational mod- 
ification differentiates ISC (or HDSS) 15-actin from control 
~-actin; which is probably a disulfide bridge between 
cystein¢ as4 and cysteine a73. This latter conclusion is sup- 
ported by the following observations: (a) The amount of 
available thiols is ~2  mol/mol (AA B-actin) and 0 mol/mol 
(HDSS fl-actin) for nonreduced samples, but becomes 2 
mol/mol (AA) and close to 2 mol/mol (HDSS) when/%actin 
is reduced with DTT. (b) No difference between reduced 
HDSS and AA B-actin tryptic peptides could be detected by 

HPLC-FAB-MS. (c) The molecular weights of nonreduced 
HDSS and AA B-actin are identical (41,760 + 100 D versus 
41,690 + 100 D) or within 100 mass units of each other. (d) 
Cysteine as4 and cysteine 373 can be labeled by 32S-DNPTC in 
the intact AA ~-actin molecule but not in the HDSS (or ISC) 
fl-actin molecule. (e) MALDI mass spectrometric peptide 
mapping experiments using V8-protease, endoproteinase 
Lys-C and endoproteinase Asp-N did not show any unknown 
modification in HDSS actin compared to AA actin within the 
observed part of the sequence (~,90%) (Schneider and 
Chalt, unpublished results). 

Although/~-actin is a major determinant of the ISC skele- 
ton locking mechanism, as determined by our in vitro ter- 
nary complex dissociation assay, spectrin also may play a 
role. Liu et al. 0993) have recently suggested that the spec- 
trin dimer-tetramer equilibrium may play a role in the per- 
manent deformation of irreversibly sickled cells. They base 
their conclusion on the fact that RSCs could be converted to 
ISCs in vitro at 37°C, a temperature at which spectrin 
tetramer-dimer interconversion occurs in solution, but RSCs 
were not converted to ISCs at 13°C, a temperature at which 
tetramer-dimer interconversion does not occur. The possi- 
bility that spectrin reorganization may be involved in the per- 
manent deformation of the ISC membrane skeleton is intrigu- 
ing, and not in conflict with our current experiments. The 
current data showing that a modification of B-actin contrib- 
utes to slower dissociation of ISC versus AA core skeletons 
at 37°C, suggests that the temperature dependence of actin 
polymerization and depolymerization at 37 and 13°C must 
also be considered to interpret the findings of Liu et al. 
(1993). It is also important to point out that our data deals 
with the question of why the ISC skeleton remains siclded 
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upon release from the membrane, and does not address the 
question of whether the persistently sickled skeleton was im- 
printed by an abnormal membrane or vice versa. 

It will be of great interest to determine the effect of the 
predicted cysteine~-cysteine 373 intrarnolecular disulfide bond 
(or alternative block of these cysteines) upon ISC/3-actin 
structure and its interactions with spectrin and other actin 
monomers. Our data suggests that the structural modifica- 
tion oflSC/$ actin would lead to a higher affinity noncovalent 
interaction with spectrin, other actin monomers, or both. 
Consistent with this concept, Lux and John (1978) have dem- 
onstrated that ISC ghosts could be converted to a round 
echinocytic shape, after a lag period, by a 20-min incubation 
in 600 mM NaC1 at 37°C. We have recently found that when 
ISC core skeletons are incubated in the high ionic strength 
Triton X-100 buffer in a 37°C water bath (instead of the 37°C 
water jacked air/CO2 incubator used in the current study) 
that 20 min is sufficient time to obtain extensive dissociation 
(Shartava, A., P. Miranda, A. Shah, C. A. Montiero, and 
S. R. Goodman, manuscript in preparation). (This is due to 
the fact that the samples reach the designated temperature 
[37°C] more rapidly in the water bath than in an air/CO2 
incubator.) Therefore the lag period observed in the conver- 
sion of ISC ghosts to rounded echinocyte ghosts at 37°C 
(Lux and John, 1978) was undoubtedly due to the time re- 
quired to dissociate the locked ISC skeletons. In the 37°C 
water bath one still sees the slower rate of ISC versus control 
core skeleton dissociation (Shartava et al., manuscript in 
preparation), but both have faster kinetics than observed in 
the 37°C air/CO2 incubator (presented in Fig. 2). The re- 
suits of Lux and John (1978), and our current observations, 
point to the need of a careful evaluation of the ISC versus 
control actin-actin and actin-spectrin interactions. Compar- 
isons of ISC versus control actin polymerization rates and 

the ability of f-actin to bind spectrin + protein 4.1, currently 
underway, will allow us to determine whether the modifica- 
tion of cysteines effects actin/actin or actin/spectrin interac- 
tions. 

Atomic structural models of g-actin from x-ray crystallog- 
raphy of the a-skeletal muscle actin/DNAse I complex 
(Kabsch et al., 1990) and bovine/3-actin/profilin complex 
(Schutt et al., 1993) are now available. From these models 
cysteine 373 in ~/-actin resides within subdomain I, a region 
of actin involved in the binding of various actin binding pro- 
teins. The/3-actin model (Schutt et al., 1993) would place 
cysteine TM in subdomain III, with a separation of 21.63/Yt 
between the two sulfur atoms. This indicates that a sub- 
stantial conformational change in ISC/3-actin would be re- 
quired to allow disulfide bridge formation to occur between 
cysteine TM and cysteine 373 (or alternatively that these cys- 
teines are blocked by some other DTT-dependent mechanism 
which has gone undetected by our mass spectroscopy analy- 
sis). The inherent assumption in the existing x-ray crystal- 
lography analysis of g-actin (Kabsch et al., 1990; Schutt et 
al., 1993) is that binding of DNAse or profillin does not alter 
the structure ofactin. But differences in actin structure deter- 
mined for the actin/DNAse and actin/profillin crystalline 
structure may indicate that this assumption is not valid. Fur- 
thermore, we need to remember that protein structure in so- 
lution is dynamic. We have performed extensive computer 
modeling of the/3-actin structure which indicates that the 
C2s4-C 37~ disulfide bond can be formed in solution. Fig. 8 is 
a stereo view of the backbone of the actin crystal structure 
and the protein model of the formed C284-C 373 disulfide 
bond. From viewing the figure, one can observe only minor 
shifts in the tertiary structural domain, which for the most 
part, occur in the proximity of the ATP binding region (RMS 
deviation of all backbone atoms = 2.6/~). It is reasonable 

Figure 8. Computer modeling of ISC 
/~-actin. Stereo view of the beta actin crystal 
structure backbone (top) with the profilin 
chaperon portion removed. In the crystal 
structure, the CYS 373 and 284 side chain 
sulfur atoms are 21.63/~ apart. The second 
model (bottom) represents ~-actin with the 
disulfide bridge formed between residues 
CYS 373 and CYS 284. 

The Journal of Cell Biology, Volume 128, 1995 816 

 on O
ctober 5, 2004 

w
w

w
.jcb.org

D
ow

nloaded from
 

http://www.jcb.org


that these minor structural changes may not have occurred 
if an ATP-actin complex structure was used for the molecu- 
lar modeling simulations. Our model suggests that the car- 
boxy terminal portion of actin (residues 372-374) undergoes 
a conformational change when its chaperon protein dissoci- 
ates which orients the C 373 side chain toward the solvent 
and predisposes both C 373 and C TM residues to disulfide 
bond formation. A complete report of our computer model- 
ing of/~-actin is currently being prepared (Gussio, R., N. 
Pattabiraman, C. A. Montiero, and S. R. Goodman, manu- 
script in preparation). X-ray analysis of/3-actin from ISCs 
and control AA erythrocytes will be required before we can 
confirm the distances between cysteine ~u and cysteine 373 in 
control rbc 13-actin, determine whether the conformational 
change required for disulfide bridge formation occurs in ISC 
/3-actin, and understand the relationship between the struc- 
tural changes in/~-actin and the functional changes leading 
towards the "locked" ISC skeleton. 

Finally, reduced glutathione levels are diminished about 
20 % in SS RBCs as compared to high reticulocyte controls, 
and is lower in ISCs than in RSCs (Lachant et al., 1983; Wet- 
terstroem et al., 1984). The diminished levels of reduced 
glutathione are related to decreased glutathione reductase 
activity, increased glutathione peroxidase activity, and inhi- 
bition of the pentose phosphate shunt in SS erythrocytes 
(Lachant et al., 1983). Therefore ISCs have increased acti- 
vated oxygen species, but decreased levels of reduced 
glutathione to protect the cell from oxidant damage. The di- 
minished levels of this intracellular reducing agent, probably 
led to the cysteine oxidation in ISC/3-actin. In recent studies 
we have demonstrated that the membrane permeable reduc- 
ing agent dithiothreitol blocks the formation of ISCs by in 
vitro deoxygenation-reoxygenation cycling and converts 
ISCs isolated from the blood of sickel cell patients to RSCs 
(Campbell, N. E, Y. Zhang, W. Korn, A. Shartava, and 
S. R. Goodman, manuscript in preparation). If safe mem- 
brane permeable reducing agents can block ISC formation 
in vivo, then this will suggest future therapeutic interven- 
tions to diminish the number of sickle cell crisis episodes 
and organ damage related to sickle cell anemia. 
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